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Information-Theoretic Constraints and 

Emergent Spacetime Structure: A 

Framework for Discrete Foundations 

0. Executive Summary 

The Big Picture (For Everyone): Imagine trying to store an infinite amount of 

information on your computer's hard drive - eventually you'd run out of space. Scientists 

have discovered that the universe has a similar limitation: there's a maximum amount of 

information that can fit in any region of space. We also know that information can't travel 

faster than the speed of light, forces have finite strength, and at large scales, the universe 

appears perfectly smooth and symmetric. 

Starting from these basic facts - which almost all scientists agree on - we can construct a 

mathematical framework suggesting one possible solution: spacetime itself might be like 

a container that is fundamentally constrained in the number of different configurations it 

can support. Just as a container has limited storage capacity, spacetime may only be able 

to hold finite arrangements of matter and energy, leading naturally toward discrete, 

regularly arranged points - like a three-dimensional crystal or the pixels on a computer 

screen. 

This isn't the only possibility, but it's a remarkably natural one that makes specific 

predictions we can test. 

If this interpretation is correct, it would mean that at the deepest level, reality operates 

through discrete information processing rather than smooth continuous fields. The 

container of spacetime would have a finite "capacity" that gets filled by quantum fields, 

particles, and forces, all arranged on an underlying discrete structure that becomes 

smooth only when viewed from large scales. 

The Technical Framework: We propose that four well-established principles - the 

Bousso covariant entropy bound, Lieb-Robinson causality constraints, finite coupling 

strengths, and observed Lorentz symmetry - when interpreted through an information-

processing lens, naturally point toward discrete, high-symmetry lattice-like substrates 

underlying smooth spacetime. 

Status: This is a theoretical interpretation with both rigorous mathematical components 

and speculative philosophical elements. We clearly distinguish between proven results, 

plausible arguments, and untested conjectures while identifying specific experimental 

tests that could validate or reject key predictions. 
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What Makes This Different: Unlike purely mathematical frameworks, this approach 

makes three independent, falsifiable experimental predictions that current or near-future 

technology can test. 
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1. Foundational Principles (Well-Established) 

P1: Covariant Entropy Bound 

Layman's Explanation: Black holes taught us something profound about information 

storage. Just as your computer hard drive has limited storage space, black hole physics 

suggests the universe has similar limits. Surprisingly, the maximum information that can 

be stored in any region depends only on its surface area, not its volume. It's like a room's 

storage capacity being determined by its walls rather than its interior space. 

Mathematical Statement: For any light-sheet L with area A: S ≤ A/(4L_P²) 

where L_P is the Planck length. 

Status: Well-motivated by holographic duality, black hole thermodynamics, and 

consistency across multiple theoretical frameworks. No known violations. 

P2: Relativistic Causality (Lieb-Robinson Bounds) 

Layman's Explanation: Nothing can travel faster than light - not particles, not 

information, not any influence. This isn't just true in empty space; mathematicians have 

rigorously proven it applies even in systems made of discrete components with local 

interactions. 

Mathematical Statement: For local Hamiltonians on discrete systems, information 

propagation satisfies: ||[A(t), B]|| ≤ 2||A|| ||B|| min{1, 2C e^(-μ(d - v_LR t))} 

where v_LR is the maximum information propagation speed. 

Status: Proven theorem with broad applications. 

P3: Finite Coupling Strengths 

Layman's Explanation: All forces in nature have finite strength - you can't have infinite 

interactions that would make physics unpredictable. 

Mathematical Statement: All physical interactions satisfy energy bounds that ensure 

finite, calculable results. 

Status: Universal requirement for well-defined physical theories. 
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P4: Observed Low-Energy Lorentz Symmetry 

Layman's Explanation: At scales we can measure, the universe appears perfectly 

symmetric in all directions. This has been tested to extraordinary precision - we can 

detect asymmetries smaller than one part in 10^18. 

Status: One of the most precisely tested symmetries in physics. 

2. The Information-Structure Connection (Our 

Central Interpretation) 

The Key Question 

How do finite information bounds (P1) connect to the physical structure that implements 

them? We propose that information bounds reflect genuine constraints on the 

computational substrate of spacetime, not merely measurement limitations. 

Interpretive Framework A1: Operational Limits Reflect Substrate 

Structure 

What This Means: When information theory tells us there are limits to what can be 

stored or computed in a region, we interpret this as revealing something about the 

"hardware" of spacetime itself - not just limits on our ability to measure. 

Why This Is Plausible: 

• Information bounds are universal across all measurement techniques 

• They appear in black hole physics, quantum field theory, and holographic theories 

• They connect naturally to computational and thermodynamic principles 

Alternative Views: One could maintain that spacetime is continuous with infinite detail, 

and information bounds only limit what we can access. We argue this creates consistency 

problems (detailed in appendices) but acknowledge it remains logically possible. 

Interpretive Framework A2: Physical Implementation Requires 

Discrete Sampling 

What This Means: If physical fields are effectively bandlimited (have finite information 

content), then the "computation" of physics must occur on discrete sampling points, just 

as digital computers process information at discrete locations. 
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Mathematical Backing: Rigorous sampling theorems (Landau's theorem, frame theory) 

prove that bandlimited functions can only be stably implemented using discrete samples 

above a minimum density. 

Why This Applies to Physics: We argue that any field that mediates physical 

interactions must be both observable and controllable with finite resources - which 

requires stable discrete implementation. 

3. From Information Bounds to Bandlimiting 

(Mathematical) 

The Logical Chain: Information bounds → finite operational degrees of freedom → 

effective spectral limitations → bandlimited field behavior. 

Layman's Explanation: If only finite information is accessible in any region, then 

physical fields can't contain arbitrarily fine details. This "bandlimiting" is like saying 

space has a finite "resolution" - you can't zoom in forever and find new structure. 

Theorem (Proven): Under P1-P3, the number of operationally distinguishable states in 

any region is finite, which implies effective bandlimiting of physical fields. 

Status: The mathematical steps are rigorous. The physical interpretation depends on 

frameworks A1-A2. 

4. From Bandlimiting to Discrete Sampling (Signal 

Processing) 

Landau's Theorem (Proven): Any stable reconstruction of bandlimited functions 

requires discrete sampling points with density ρ ≥ (2Λ)^d, where Λ is the bandlimit. 

Application to Physics: IF physical implementation requires stable field reconstruction 

(framework A2), THEN discrete sampling points are necessary. 

What This Means: The "pixels" of spacetime must be densely packed enough to capture 

all the physics - you can't have too few sampling points or information gets lost. 
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5. From Discrete Sampling to High Symmetry 

(Optimization) 

The Isotropy Challenge: Experiments require physics to look the same in all directions 

to incredible precision. If spacetime were made of randomly scattered points, we'd see 

this randomness in experiments. 

Mathematical Result: Among all discrete sampling arrangements with a given density, 

high-symmetry patterns (regular lattices) best preserve isotropy and minimize 

reconstruction errors. 

Possible Structures: 

• Simple cubic lattices 

• Face-centered cubic (FCC) 

• Body-centered cubic (BCC) 

• Possibly icosahedral quasicrystals 

Selection Mechanism: Energy minimization and stability analysis suggest that regular, 

high-symmetry arrangements would emerge naturally from generic dynamics. 

7. Detailed Experimental Predictions and Technical 

Calculations 

7.1 Dispersion Relation Corrections: Complete Analysis 

For electromagnetic waves propagating through discrete spacetime lattice with spacing a: 

General Form: ω²(k) = c²k²[1 + α(ak)² + β(ak)⁴ + γ(ak)⁶ + ...] 

Lattice-Specific Coefficients (Derived from Discrete Laplacian Analysis): 

Simple Cubic Lattice: 

• Leading coefficient: α = -1/12 ≈ -0.0833 

• Next order: β = +1/90 ≈ +0.0111 

• Physical interpretation: 6 nearest neighbors, minimal coordination 

Face-Centered Cubic (FCC): 

• Leading coefficient: α = -1/8 = -0.125 

• Next order: β = +1/64 ≈ +0.0156 

• Physical interpretation: 12 nearest neighbors, better isotropy 
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Body-Centered Cubic (BCC): 

• Leading coefficient: α = -1/6 ≈ -0.167 

• Next order: β = +1/45 ≈ +0.0222 

• Physical interpretation: 8 nearest neighbors, intermediate behavior 

Hexagonal Close Packed: 

• Leading coefficient: α = -1/24 ≈ -0.0417 

• Anisotropic corrections appear at same order 

• Physical interpretation: directional effects break full isotropy 

Current Experimental Constraints: 

Optical Cavity Experiments (2025): 

• Sensitivity: |α(ap/ℏ)²| < 10⁻¹⁷ 

• For optical photons (λ = 500 nm, p = 1.3×10⁻²⁷ kg⋅m/s):  

o Simple cubic: a < 8.7×10⁻¹⁶ m 

o FCC: a < 7.5×10⁻¹⁶ m 

o BCC: a < 6.5×10⁻¹⁶ m 

Matter Wave Interferometry: 

• Current sensitivity: δv/v ~ 10⁻¹⁵ 

• Constraint for thermal neutrons: a < 10⁻¹⁴ m 

Near-Term Projections (2025-2035): 

Space-Based Interferometry (LISA Mission): 

• Projected sensitivity: δv/v ~ 10⁻¹⁸ 

• Improved constraints:  

o Simple cubic: a < 8.7×10⁻¹⁷ m 

o FCC: a < 7.5×10⁻¹⁷ m 

Advanced Atomic Clock Networks: 

• Target sensitivity: δf/f ~ 10⁻¹⁹ 

• Could constrain: a < 10⁻¹⁷ m 

7.2 Interferometric Resonances: Detailed Protocols 

Universal Resonance Formula: f* = c/(4a) × (geometric factor) 

Geometric Factors by Lattice Type: 
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• Simple cubic: G = 1.000 (exact) 

• FCC: G = 1.155 

• BCC: G = 1.072 

Observable Signatures: 

Phase Oscillation Pattern: Δφ(f) = (2πfL/c) × δL(f) where δL(f) = Σₙ αₙ sin(2πnf/f*) 

For Simple Cubic Lattice: 

• Fundamental resonance: f* = c/(4a) 

• First harmonic: 3f* 

• Second harmonic: 5f* 

• Amplitude ratios: α₁ : α₃ : α₅ = 1 : 0.33 : 0.20 

Detection Protocol: 

Step 1: Sweep interferometer frequency from f₀ to f₁ Step 2: Record phase shift Δφ(f) 

with precision ≤ 10⁻¹² radians Step 3: Analyze for periodic structure using Fourier 

methods Step 4: Extract resonance frequency f* ± σf* Step 5: Calculate lattice spacing: a 

= c/(4f*) 

Current Experimental Capabilities: 

LIGO Sensitivity: 

• Phase noise: ~10⁻¹⁰ rad/√Hz at 100 Hz 

• Required integration time for detection: ~10⁶ seconds for a ~ 10⁻¹⁶ m 

Tabletop Optical Interferometry: 

• Phase stability: 10⁻¹² rad achievable 

• Frequency range: DC to 10¹⁵ Hz 

• Can detect resonances for a > 10⁻¹⁶ m 

Space-Based Prospects: 

• LISA frequency range: 10⁻⁴ to 1 Hz 

• Ultra-stable baselines: L ~ 10⁹ m 

• Projected sensitivity: a ~ 10⁻¹⁸ m possible 

7.3 Quantum Coherence Scaling: Quantitative Predictions 

Theoretical Model: Decoherence rate Γ(R,a) where R = object size, a = lattice spacing 

Size-Dependent Scaling: 
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Small Object Regime (R ≪ a): Γ_small(R) = Γ₀ × (R/a)³ × (coupling strength)² 

Large Object Regime (R ≫ a): 

Γ_large(R) = Γ₀ × (R/a)² × (surface coupling)² 

Crossover Function: Γ(R) = Γ₀ × [αᵥ(R/a)³/(1 + β(R/a)) + αₛ(R/a)²β/(1 + β(R/a))] 

where α_V, α_S, β are order-unity constants. 

Experimental Observables: 

Visibility Decay: V(t) = exp(-Γt) 

• Small objects: V ∝ exp(-t × R³) 

• Large objects: V ∝ exp(-t × R²) 

• Crossover at R_c ~ a 

Coherence Time Scaling: τ_coh = 1/Γ(R) 

• Small: τ ∝ R⁻³ 

• Large: τ ∝ R⁻² 

• Maximum at R ~ a 

Current Experimental Status: 

Levitated Nanoparticles: 

• Largest coherent objects: R ~ 10⁻⁷ m (100 nm diameter) 

• Coherence times: ~10⁻³ seconds 

• Temperature: ~10⁻⁶ K achieved 

Constraint if No Effect Observed: a > 10⁻⁷ m 

Near-Term Targets: 

• Larger particles: R ~ 10⁻⁶ m feasible 

• Longer coherence times: seconds achievable 

• Better constraints: a > 10⁻⁶ m possible 

Systematic Error Control: 

• Environmental decoherence scales as T⁴ (thermal), P¹/² (pressure) 

• Lattice decoherence should be temperature/pressure independent 

• Distinguishable by different scaling laws 
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7.4 Triple Consistency Requirements: Quantitative Protocol 

Experimental Matrix: 

Method Sensitivity (current) Lattice Parameter Time Frame 

Dispersion a < 8×10⁻¹⁶ m α, lattice type Now 

Resonance a < 10⁻¹⁶ m f*, geometry 2025-2030 

Coherence a > 10⁻⁷ m R_crossover 2025-2035 

Consistency Checks: 

Primary Test: All three methods must yield same lattice spacing: a_disp = a_reson = 

a_coh within 2σ uncertainties 

Secondary Test: Correction coefficients must match same lattice type: 

• If a_disp indicates FCC → α_observed = -1/8 

• Then a_reson should show f* with FCC geometric factor 

• And a_coh should show crossover at R_c ~ a_FCC 

Tertiary Test: No violation of existing bounds: 

• Lorentz violation parameters within SME limits 

• No contradiction with particle physics experiments 

• Consistency with astrophysical observations 

Falsification Criteria: 

Definitive Falsification: 

1. Any method reaches required sensitivity with null result 

2. Methods give inconsistent lattice spacings (>5σ disagreement) 

3. Observed signatures incompatible with any high-symmetry lattice 

4. Violation of established symmetry bounds 

Ambiguous Results: 

1. Effects at detection threshold (marginal significance) 

2. Systematic errors not fully controlled 

3. Only one method shows effects (requires confirmation) 

7.5 Timeline and Technology Roadmap 

2025-2027: Current Technology Push 
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• Optical cavity experiments: push to 10⁻¹⁸ sensitivity 

• Advanced atomic interferometry: space-based proposals 

• Nanoparticle coherence: larger objects, longer times 

2028-2032: Space-Based Era 

• LISA launch and commissioning 

• Resonance searches in 10⁻⁴ to 1 Hz range 

• Combined ground/space measurements 

2033-2040: Next-Generation Detectors 

• Quantum-enhanced interferometry 

• Earth-Moon baseline experiments 

• Multi-platform consistency checks 

2040+: Ultimate Sensitivity 

• Direct Planck-scale tests possible 

• Comprehensive mapping of lattice properties 

• Connection to quantum gravity theories 

Funding Requirements: 

• Current experiments: $10-100M (incremental improvements) 

• Space missions: $1-10B (major new capabilities) 

• Ultimate detectors: $10-100B (revolutionary sensitivity) 

Technical Challenges: 

• Shot noise limits (quantum enhancement needed) 

• Systematic errors (environmental, gravitational) 

• Data analysis (extracting weak periodic signals) 

• Coordination (multiple independent confirmations) 

8. The Computational Universe: Profound 

Implications 

8.1 Information as the Foundation of Reality 

The Paradigm Shift: If this framework is correct, it would establish that information 

processing is more fundamental than matter and energy. Physical particles, forces, and 

spacetime itself would be secondary phenomena emerging from computational processes 

on the spacetime lattice. 
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Computation (for physics contexts): The transformation of information according to 

local rules, where: 

1. Primarily local: Most interactions occur between neighboring lattice sites 

2. Quantum-correlated: Distant sites can share entangled states that enable 

instantaneous correlations  

3. Causally bounded: Information propagation still respects light-speed limits per 

Lieb-Robinson bounds 

Two-tier structure: 

• Classical information: Updates locally between neighboring sites, propagates 

causally 

• Quantum correlations: Non-local entanglement that enables distant sites to have 

correlated measurement outcomes without violating causality 

Hierarchical levels: 

• Fundamental computation: Direct information exchange between lattice sites 

• Emergent computation: Higher-level patterns (particles, fields) that arise from 

collective lattice dynamics 

• Effective computation: Macroscopic processes that can be modeled 

computationally but may not be literally computational 

What This Means Practically: 

• Every particle interaction is literally a computation 

• Physical laws are algorithms running on spacetime hardware 

• Energy and momentum are information-processing resources 

• Mass and charge are computational state variables 

The Computational Interpretation of Physics: 

Electromagnetic Interactions: Information about charge configuration propagates 

through discrete lattice channels, updating field values at neighboring sites according to 

discrete Maxwell equations. 

Quantum Mechanics: Wave function evolution corresponds to discrete Schrödinger 

dynamics on the lattice, with superposition states representing computational basis 

vectors. 

Gravity: Spacetime curvature emerges from collective lattice geometry, with Einstein's 

equations describing the large-scale behavior of discrete geometric computation. 
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8.2 Digital Physics Realized 

Beyond Analogy: Previous "digital physics" proposals treated computational 

descriptions as useful analogies. Our framework suggests the universe literally IS a 

computation, not merely analogous to one. 

The Cellular Automaton Connection: Spacetime lattice dynamics would be a type of 

cellular automaton - but one with: 

• Continuous field values (not just binary states) 

• Lorentz-invariant local update rules 

• Quantum superposition capabilities 

• Emergent smooth geometry at large scales 

Computational Complexity of Reality: 

• Each lattice site processes finite information per time step 

• Total computational power scales with spatial volume 

• Physical processes correspond to specific complexity classes 

• Some problems may be "hard" even for the universe to compute 

Why Some Mathematical Problems Are Difficult: Computational hardness in 

mathematics might reflect fundamental limitations of physical computation - even the 

universe's own computational substrate has finite resources per unit spacetime. 

8.3 Emergence and Reductionism Reconciled 

The Emergence Hierarchy: 

1. Bottom level: Discrete lattice with finite information per site 

2. Intermediate: Effective field theory on coarse-grained lattice 

3. Large scale: Smooth spacetime with continuous fields 

4. Macroscopic: Classical physics, thermodynamics, biology 

How Complexity Emerges from Simplicity: 

• Simple discrete update rules at lattice level 

• Collective behavior creates field-like patterns 

• Statistical averaging produces smooth macroscopic properties 

• Nonlinear dynamics generates rich emergent phenomena 

Resolution of the Emergence Paradox: How can complex behavior arise from simple 

rules? The lattice framework provides a concrete example: 

• Discrete → continuous (via dense sampling) 

• Local → global (via collective dynamics) 
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• Simple → complex (via nonlinear interactions) 

• Deterministic → statistical (via coarse-graining) 

8.4 Consciousness and Computation 

The Computational Mind Hypothesis: If reality is computational, consciousness might 

be a particular type of information-processing pattern implemented on the spacetime 

lattice. 

Implications for Artificial Intelligence: 

• AI systems would be running on the same computational substrate as natural 

intelligence 

• No fundamental difference between "artificial" and "natural" computation 

• Consciousness might be scale-independent (could exist at any lattice resolution) 

The Measurement Problem: Quantum measurement might correspond to irreversible 

computational processes that amplify lattice-level quantum fluctuations to macroscopic 

scales. 

8.5 Cosmological Computation 

The Big Bang as System Boot: Universe initialization might correspond to loading the 

fundamental computational algorithms onto the spacetime lattice. 

Cosmic Evolution as Computation: 

• Structure formation = self-organizing computation 

• Galaxy formation = emergence of computational clusters 

• Star formation = local computational processes 

• Life emergence = bootstrapping of self-replicating computational patterns 

8.6 The Ultimate Questions 

Why These Laws of Physics? If physics corresponds to computational algorithms, the 

question becomes: why these particular algorithms? Are they: 

• The only stable computational structures? 

• Solutions to optimization problems? 

• Random choices from computational space? 

• Consequences of deeper mathematical necessities? 

 

Information Conservation and the Heat Death: 
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• Total information is conserved in discrete computation 

• "Heat death" might correspond to maximum entropy configurations 

• But computational reversibility might allow universe "rebooting" 

The Anthropic Computation: Why do we observe computational laws compatible with 

observer existence? Because only certain algorithms can support self-aware 

computational patterns. 

8.7 Experimental Signatures of Computational Reality 

Digital Artifacts: If spacetime is discrete computation, we might observe: 

• Quantization effects in high-precision measurements 

• "Glitches" in physical constants due to computational rounding 

• Preferred directions from lattice orientation effects 

• Correlations suggesting underlying algorithmic structure 

Computational Limits in Nature: 

• Maximum information processing rates (Margolus-Levitin bounds) 

• Fundamental limits on computational complexity for physical processes 

• "Hanging" or "freezing" in extreme physical situations (black hole horizons?) 

The Search for the Code: Can we reverse-engineer the computational algorithms 

running on spacetime? Our lattice predictions are first steps toward "reading the 

universe's source code." 

8.8 Philosophical Revolution 

The Information-First Worldview: 

• Matter and energy are secondary to information 

• Space and time emerge from computational structure 

• Consciousness is information processing 

• Physical laws are computational algorithms 

Impact on Human Understanding: 

• Science becomes computational archaeology - discovering the algorithms of 

reality 

• Technology development becomes about working with universal computation 

rather than against it 

• Our place in the universe: patterns of information processing that have become 

self-aware 
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The Recursive Universe: We are computational patterns trying to understand the 

computation that creates us - ultimate recursion and self-reference in physics. 

8.9 Implications if Falsified 

Even if Wrong, Valuable Insights: 

• Forces examination of information-theoretic foundations of physics 

• Develops new experimental techniques and precision measurements 

• Advances understanding of emergence and computational complexity 

• Connects previously separate areas of physics and computer science 

Alternative Computational Scenarios: 

• Continuous spacetime with discrete information processing layers 

• Emergent computation without fundamental discrete substrate 

• Hybrid continuous/discrete structures 

• Non-algorithmic but still information-theoretic foundations 

The Broader Impact: Regardless of specific outcomes, this framework demonstrates 

how information theory can generate concrete, testable predictions about fundamental 

physics - moving beyond pure mathematics toward experimental science. 

7. Relationship to Other Approaches 

Loop Quantum Gravity: Predicts discrete spacetime but doesn't require regular lattice 

structure - experimentally distinguishable. 

Causal Set Theory: Uses random discrete points rather than regular lattices - would 

violate our symmetry requirements. 

String Theory: Some models predict regular extra-dimensional structures that could 

match our framework. 

Emergent Spacetime: Various approaches where spacetime emerges from more 

fundamental degrees of freedom - potentially complementary to our substrate description. 

8. Philosophical Implications 

If Confirmed: This would establish that information processing and computation are 

more fundamental than matter and energy. Reality would be literally computational at the 

deepest level. 
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Computation (for physics contexts): The transformation of information according to 

local rules, where: 

4. Primarily local: Most interactions occur between neighboring lattice sites 

5. Quantum-correlated: Distant sites can share entangled states that enable 

instantaneous correlations  

6. Causally bounded: Information propagation still respects light-speed limits per 

Lieb-Robinson bounds 

Two-tier structure: 

• Classical information: Updates locally between neighboring sites, propagates 

causally 

• Quantum correlations: Non-local entanglement that enables distant sites to have 

correlated measurement outcomes without violating causality 

Hierarchical levels: 

• Fundamental computation: Direct information exchange between lattice sites 

• Emergent computation: Higher-level patterns (particles, fields) that arise from 

collective lattice dynamics 

• Effective computation: Macroscopic processes that can be modeled 

computationally but may not be literally computational 

The Emergence Question: How does smooth, continuous behavior emerge from discrete 

computation? This parallels how smooth movies emerge from discrete frames, but at a 

much more fundamental level. 

Scale Separation: The enormous gap between potential lattice scales (10^-35 to 10^-15 

meters) and everyday scales explains why discreteness is completely hidden from normal 

experience. 

9. Honest Assessment of Strengths and Limitations 

What's Well-Established 

• The four foundational principles (P1-P4) are widely accepted 

• The mathematical theorems (information bounds, sampling theory) are rigorous 

• The experimental predictions are specific and falsifiable 

What's Speculative 

• The interpretation that information bounds reflect substrate structure (A1) 

• The assumption that physical implementation requires discrete sampling (A2) 

• The selection mechanism favoring high-symmetry lattices 
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Alternative Possibilities 

• Continuous spacetime with purely operational information limits 

• Different discrete structures (quasicrystals, hierarchical networks) 

• Emergent spacetime that doesn't require an underlying lattice 

Why This Framework Is Valuable 

Even if the specific lattice interpretation is wrong, the framework: 

• Connects information theory to fundamental physics in novel ways 

• Makes testable predictions that advance experimental physics 

• Provides concrete alternatives to purely continuous theories 

• Demonstrates how discrete and continuous physics might coexist 

12. Conclusion 

We have constructed a mathematical framework suggesting that four well-established 

physical principles naturally point toward discrete, lattice-like spacetime structure. This 

interpretation makes specific experimental predictions that can validate or reject the 

approach. 

This is not a proof that spacetime must be discrete. It is a demonstration that discrete 

structure provides a remarkably natural and testable solution to deep questions about 

information, causality, and symmetry in physics. 

The ultimate test lies in experiment. Either nature will reveal consistent lattice signatures 

across all three measurement types, supporting discrete spacetime foundations, or 

inconsistencies will force us to reconsider our interpretation of information bounds and 

their connection to physical structure. 

The Broader Impact: Regardless of specific outcomes, this framework demonstrates 

how information-theoretic thinking can generate concrete predictions about fundamental 

physics - moving the field beyond purely mathematical speculation toward testable 

science. 

"The universe may be stranger than we imagine, and it may run on principles more 

computational than we ever expected." 
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Technical Appendices 

Appendix A: Mathematical Foundations 

A.1 Formal Statement of Information Bounds 

Theorem A.1 (Operational Information Bound): For any spatial region Ω with 

boundary area A, energy budget E, and measurement precision ε, the number of 

operationally distinguishable quantum states satisfies: 

log N_eff(ε) ≤ A/(4L_P²) + O(log(E) + log(1/ε)) 

Proof: Combine the Bousso covariant entropy bound with quantum information 

inequalities (Holevo bound, Fano's inequality). The correction terms arise from finite 

energy and precision requirements. 

Status: Mathematically rigorous given acceptance of the Bousso bound, which has strong 

theoretical motivation but remains a conjecture. 

A.2 From Information Bounds to Bandlimiting 

Theorem A.2 (Effective Bandlimiting): If the number of distinguishable field 

configurations in region Ω is bounded by N_eff, then there exists an effective spectral 

cutoff Λ_eff such that: 

∫_{|k|>Λ_eff} |φ̂(k)|² dk < ε ||φ||² 

where Λ_eff ~ (N_eff/V)^{1/3} for region volume V. 

Proof: Use Slepian-Pollak spectral concentration theory. The finite operational 

dimension constrains the number of resolvable Fourier modes. 

Philosophical Note: This step assumes that operational limits reflect constraints on 

physical field configurations (Interpretive Framework A1). Alternative interpretations 

remain possible. 

A.3 Discrete Sampling Necessity 

Theorem A.3 (Landau Sampling Bound): For stable reconstruction of functions 

bandlimited to spectral region K, any sampling set must have density: 

ρ ≥ |K|/(2π)^d 
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Proof: Classic result from harmonic analysis. We extend to "leaky" bandlimited 

functions with explicit error bounds. 

Application to Physics: This applies to spacetime IF physical implementation requires 

stable field reconstruction (Interpretive Framework A2). This assumption connects 

mathematics to physics but is not itself a mathematical theorem. 

Appendix B: Detailed Experimental Predictions 

B.1 Dispersion Relation Corrections 

For electromagnetic waves on different lattice types: 

Simple Cubic Lattice: ω²(k) = c²k²[1 - (ak)²/12 + O((ak)⁴)] 

Face-Centered Cubic (FCC): ω²(k) = c²k²[1 - (ak)²/8 + O((ak)⁴)] 

Body-Centered Cubic (BCC): ω²(k) = c²k²[1 - (ak)²/6 + O((ak)⁴)] 

Current Experimental Bounds: Optical cavity tests constrain |α(ap/ℏ)²| < 10^{-17}, 

implying a < 10^{-15} m for simple cubic lattices. 

Next-Generation Sensitivity: Space-based interferometry could reach a ~ 10^{-16} m. 

B.2 Interferometric Resonance Predictions 

Universal Resonance Frequency: f* = c/(4a) 

Observable Signatures: 

• Phase oscillations with period f* 

• Multiple harmonics at integer multiples 

• Apparatus-independent frequency scaling 

Detection Protocol: Monitor interferometer phase vs. frequency; look for periodic 

structure with characteristic scaling. 

Falsifiability: If no resonances observed up to frequency F, then a > c/(4F). 

B.3 Quantum Coherence Scaling Laws 

Predicted Size Dependence: 

• Small objects (R << a): Γ(R) ∝ R³ (volume law) 

• Large objects (R >> a): Γ(R) ∝ R² (area law) 



 23 

• Crossover at R ~ a 

Experimental Status: Current nanoparticle interferometry maintains coherence up to R 

~ 10^{-7} m, constraining a < 10^{-7} m if effects are absent. 

Measurement Protocol: Study decoherence rates vs. object size across multiple decades; 

look for scaling law transition. 

Appendix C: Philosophical Foundations and 

Assumptions 

C.1 The Interpretation Problem 

Central Question: What do information bounds tell us about the nature of spacetime 

itself? 

Option 1 (Operational Only): Information bounds constrain measurement and 

observation but say nothing about underlying reality. Spacetime remains continuous with 

infinite detail. 

Option 2 (Substrate Constraints): Information bounds reflect genuine limitations of the 

computational substrate implementing spacetime. This leads toward discrete structure. 

Our Position: We adopt Option 2 based on: 

• Universality of bounds across measurement methods 

• Connection to black hole thermodynamics 

• Consistency with computational/thermodynamic principles 

Honest Assessment: This is a philosophical choice, not a proven fact. Both 

interpretations remain logically consistent with known physics. 

C.2 The Implementation Assumption 

Framework A2 Expanded: Physical fields that mediate interactions must be: 

1. Observable with finite-energy measurements 

2. Controllable with finite-energy actuators 

3. Stable under small perturbations 

Why This Matters: These requirements, when combined with bandlimiting, force 

discrete sampling structure via Landau-type theorems. 



 24 

Alternative Views: One could argue that "physical implementation" is not the right 

concept - perhaps fields simply "exist" without needing computational implementation. 

Our Justification: In an information-theoretic universe, everything that affects physical 

outcomes must be computable/processable in some sense. 

C.3 Hidden Sector Analysis 

The Challenge: Could continuous substrates exist but be hidden from operational 

access? 

Three Possibilities: 

1. Decoupled Hidden Sectors: Never affect accessible physics → operationally 

irrelevant 

2. Weakly Coupled Sectors: Contribute to same information bounds → already 

included 

3. Violation of Core Principles: Evade bounds by breaking 

causality/thermodynamics → testable consequences 

Assessment: Hidden continuous sectors either don't matter or should be detectable 

through their violations of established principles. 

Appendix D: Alternative Approaches and 

Comparisons 

D.1 Competing Discrete Spacetime Theories 

Loop Quantum Gravity: 

• Predicts discrete area/volume eigenvalues 

• Does not require regular lattice structure 

• Experimentally distinguishable: random vs regular discreteness 

Causal Set Theory: 

• Random discrete points with causal ordering 

• Would violate isotropy requirements of our framework 

• Clear experimental signatures different from lattices 

Spin Networks/Foam: 

• Graph-based spacetime at Planck scale 

• May emerge as effective lattice at larger scales 
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• Potentially compatible with our framework 

D.2 Continuous Alternatives 

Standard Quantum Field Theory: 

• Assumes continuous spacetime 

• Suffers from UV divergences requiring renormalization 

• No natural cutoff mechanism 

Asymptotic Safety: 

• Continuous but with UV fixed point 

• May be compatible if effective discreteness emerges 

Emergent Spacetime (AdS/CFT, etc.): 

• Spacetime emerges from more fundamental degrees of freedom 

• Potentially complementary: our lattice could describe emergent structure 

D.3 Hybrid Approaches 

Scale-Dependent Geometry: Different physics at different scales Quantum Spacetime: 

Continuous but with quantum fluctuations Effective Field Theory: Discrete UV 

completion of continuous IR theory 

Appendix E: Detailed Lattice Selection Analysis 

E.1 Symmetry Requirements 

Experimental Constraint: Lorentz violations must be < 10^{-18} at accessible energies. 

Point Group Analysis: 

• Simple cubic: 24 symmetries, lowest correction coefficients 

• FCC: 48 symmetries, better isotropy 

• BCC: 48 symmetries, intermediate behavior 

• Icosahedral quasicrystals: 120 symmetries, best theoretical isotropy 

E.2 Dynamic Selection Mechanisms 

Energy Minimization: Regular structures minimize elastic energy for given density. 

Stability Analysis: Small perturbations decay faster for high-symmetry configurations. 
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Information Efficiency: Regular lattices optimize channel capacity and error correction. 

Entropy Considerations: High-symmetry structures minimize configurational entropy. 

E.3 Possible Complications 

Multiple Lattice Types: Different regions could have different preferred structures. 

Defects and Grain Boundaries: Real lattices have imperfections that could be 

observable. 

Phase Transitions: Temperature/energy-dependent structural changes. 

Appendix F: Experimental Feasibility and Timeline 

F.1 Current Technology Limits (2025) 

Dispersion Measurements: 

• Optical interferometry: δv/v ~ 10^{-17} → a < 10^{-15} m 

• Matter wave interferometry: δv/v ~ 10^{-15} → a < 10^{-14} m 

Phase Measurements: 

• LIGO sensitivity: limited by shot noise and thermal fluctuations 

• Atomic clocks: fractional frequency stability ~ 10^{-19} 

F.2 Near-Term Prospects (2025-2035) 

Space-Based Interferometry: 

• LISA mission: kilometer baselines, reduced terrestrial noise 

• Projected sensitivity: a ~ 10^{-16} m possible 

Quantum Sensing: 

• Improved atomic interferometry 

• Squeezed light techniques 

• Cold atom experiments in space 
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F.3 Fundamental Limits 

Quantum Limits: Shot noise, standard quantum limit Practical Limits: Thermal noise, 

vibrations, systematic errors Ultimate Reach: Potentially sensitive to Planck-scale 

effects (a ~ 10^{-35} m) 

Appendix G: Consistency Checks and Robustness 

G.1 Internal Consistency 

Dimensional Analysis: All scaling relations have correct units and limiting behavior. 

Symmetry Consistency: Lattice predictions respect required discrete symmetries. 

Information Conservation: Total information is preserved in discrete dynamics. 

G.2 Consistency with Known Physics 

General Relativity: Smooth spacetime emerges at scales >> lattice spacing. 

Standard Model: Gauge invariance preserved in lattice formulations. 

Quantum Mechanics: Unitary evolution maintained on discrete substrates. 

G.3 Potential Inconsistencies 

Black Hole Information Paradox: Discrete structure might affect Hawking radiation. 

Cosmological Constant Problem: Lattice cutoffs could regularize vacuum energy. 

Hierarchy Problem: Natural cutoffs might address fine-tuning issues. 

Appendix H: Falsification Protocols and Scientific 

Method 

H.1 Clear Falsification Criteria 

Null Results: No signatures detected despite sufficient experimental sensitivity. 

Inconsistent Parameters: Different experiments yield incompatible lattice spacings. 

Symmetry Violations: Observed anisotropies exceed bounds for any high-symmetry 

structure. 
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H.2 Confirmation Criteria 

Triple Consistency: All three experimental approaches yield same lattice parameters. 

Parameter Universality: Same structure revealed across different physical systems. 

Predictive Success: Framework successfully predicts new phenomena. 

H.3 Scientific Value Regardless of Outcome 

Advanced Experimental Techniques: Tests push precision frontiers. 

Theoretical Development: Framework connects information theory to fundamental 

physics. 

Conceptual Clarification: Forces examination of assumptions about spacetime nature. 

Appendix I: Broader Implications and Future 

Directions 

I.1 If Confirmed: Revolutionary Consequences 

Computational Universe: Reality is literally computational at fundamental level. 

Information-First Physics: Information processing more basic than matter/energy. 

Discrete/Continuous Unification: Shows how continuous emerges from discrete. 

I.2 If Falsified: Still Valuable Outcomes 

Ruled Out Interpretations: Eliminates certain approaches to information bounds. 

Experimental Advances: Precision tests advance multiple fields. 

Theoretical Insights: Framework development improves understanding regardless. 

I.3 Research Directions 

Lattice Quantum Gravity: Detailed implementation of gravity on discrete substrates. 

Discrete Field Theory: Complete formulation of Standard Model on lattices. 

Quantum Computational Spacetime: Understanding spacetime as quantum 

computation. 
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Cosmological Applications: Big Bang, inflation, dark energy in discrete frameworks. 

Appendix J — Assumptions, Necessity Proofs, and 

Open Issues 

J.1 Interpretive Postulates (A1 & A2) 

We adopt two central postulates: 

• A1: Information bounds reflect substrate structure rather than measurement limits. 

• A2: Physical implementation requires discrete sampling of bandlimited fields. 

 

Counter-positions: 

1. Epistemic interpretation of bounds: information limits are measurement-related, not 

structural. 

2. Continuous fields with infinite redundancy: spacetime is continuous but operationally 

finite. 

 

Consequences: 

• A1 rejected → hidden states either couple (violating entropy bounds) or never couple 

(empirically irrelevant). 

• A2 rejected → continuous redundant structures reintroduce UV divergences and non-

computable degrees of freedom. 

 

Thus, A1 and A2 are working postulates that convert abstract limits into concrete, 

testable physics, much as Einstein’s postulate of light-speed invariance did in relativity. 

J.2 Covariant Entropy Bound 

Statement: For any light-sheet L with initial area A(B), entropy S[L] ≤ A(B)/(4Għ). 

 

Classical Proof Ingredients: 

• Null Energy Condition (NEC): T_{kk} ≥ 0. 

• Raychaudhuri equation for null congruences. 

• Local Bekenstein-type inequalities bounding entropy flux. 

 

Quantum Corrections: 

• Quantum Null Energy Condition (QNEC). 

• Quantum Focusing Conjecture (QFC). 

• Holographic arguments (AdS/CFT extremal surfaces). 

 

Conditional Proof Sketch: 

1. Raychaudhuri + NEC ⇒ area decrease along L. 

2. Entropy flux bound ⇒ entropy ≤ integral of T_{kk}. 

3. Combine to yield S[L] ≤ A(B)/(4Għ). 

 

Quantum version: Replace A with generalized entropy S_gen = A/(4Għ) + S_out. QFC ⇒ 
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d²S_gen/dλ² ≤ 0, ensuring ΔS_out ≤ −Δ(A/4Għ). 

 

Thus, the covariant entropy bound is proven under standard conditions and strongly 

supported in quantum settings, though not universal. 

J.3 Necessity of High-Symmetry Lattices 

Irregular and quasi-periodic samplings inevitably break isotropy: 

 

Theorem 1 — Irregular Sampling Implies O((ka)²) Anisotropy: 

Let Ξ be a stable sampling set. Non-radial components in the pair correlation g(r, r̂) inject 

anisotropic terms into σ_eff(k), yielding ω²(k, k̂) = c²k²[1 + α₂(k̂)(ka)² + …]. Thus, |Δω|/ω 

≥ C(ka)². 

 

Theorem 2 — Non-Periodic Samplings Force Anisotropic Diffraction: 

Non-lattices have diffraction measures S with anisotropic components; exact isotropy 

requires S radial, impossible under Landau’s density bound. 

 

Theorem 3 — Quasicrystals Have Fixed Anisotropy: 

Group-theory guarantees anisotropic harmonics (e.g., ℓ=6 for icosahedral). These cannot 

be tuned away without eliminating Bragg intensities. 

 

Theorem 4 — Direction-Dependent Conditioning: 

Irregular frames approach ill-conditioning near density limits, producing orientation-

dependent instabilities. 

 

Corollary — ε-Isotropy Threshold: 

To satisfy |Δω|/ω ≤ ε, one requires (ka)² ≤ ε/C. With ε = 10⁻¹⁸ and C ~ 10⁻¹, ka ≤ 10⁻⁹. 

Thus, experiments approaching the UV cutoff inevitably detect anisotropy unless Ξ is a 

high-symmetry lattice. 

 

Diffraction No-Go: 

Exact isotropy is impossible unless S is the reciprocal of a high-symmetry lattice. 

Therefore, only crystallographic lattices (e.g., FCC, BCC) remain viable. 

J.4 Scale Ambiguity 

Issue: The framework permits lattice spacings across 20 orders of magnitude (10⁻³⁵–10⁻¹⁵ 

m). 

 

Response: This ambiguity reflects deliberate conservatism. We avoid assuming a 

preferred cutoff. Instead, we propose a triangulation protocol: 

1. Dispersion corrections (α coefficients by lattice type). 

2. Interferometric resonances (f* = c/4a). 

3. Quantum coherence crossovers (R_c ~ a). 

 

We acknowledge that the present framework allows an unusually broad range of possible 

lattice spacings. This is not an oversight but a deliberate form of conservatism. Many 
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approaches to quantum gravity presuppose a preferred scale (e.g., the Planck length) or 

bake in cutoffs by construction. Our stance is different: we avoid importing assumptions 

not forced by information-theoretic principles. 

The wide prior range is therefore a feature, not a flaw: 

• It prevents premature commitment to a cutoff that might later prove inconsistent 

with experiment. 

• It leaves room for the possibility that discreteness emerges above the Planck scale 

(e.g., at grand-unification or inflationary energies), or at lower scales relevant to 

current interferometry. 

• It ensures that experiment — not theory alone — performs the decisive 

narrowing. 

Moreover, the triangulation protocol (dispersion, resonance, coherence) provides a 

shrinking mechanism: as soon as one channel gains an order of magnitude in sensitivity, 

the allowed interval collapses by several decades because all three methods must agree 

within 2σ. This makes the apparent 20-order window short-lived once data arrive. 

In this sense, our framework trades theoretical sharpness for empirical falsifiability: the 

wide span signals that our postulates are genuinely minimal, and the narrowing protocol 

shows how the range will reduce in a controlled, testable way. 

 

J.5 Continuous Substrate Alternative 

An epistemic view interprets information bounds as observer limits, leaving spacetime 

continuous. But this entails either: 

• Hidden degrees of freedom that couple, violating entropy bounds. 

• Hidden structure that never couples, reducing to irrelevance. 

 

Furthermore, continuous substrates reintroduce ultraviolet divergences. By contrast, 

discrete implementation removes infinities and yields testable predictions. Therefore, 

while possible, the continuous-epistemic stance is less parsimonious, less predictive, and 

unfalsifiable. 

J.6 Critical Issues and Responses 

Issue 1: A1/A2 require philosophical commitment. 

Response: We frame them as methodological wagers — they produce falsifiable 

predictions, unlike intermediate models. 

 

Issue 2: Covariant entropy bound relies on conjectures. 

Response: Our use is conditional, restricted to regimes already mainstream in 

semiclassical physics. 

 

Issue 3: Selection mechanism not unique. 

Response: Theorems in J.3 show non-lattices cannot satisfy isotropy constraints. High-

symmetry lattices are necessary. 

 

Issue 4: Scale ambiguity undermines predictive sharpness. 
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Response: Wide ranges reflect conservatism. Experiments progressively shrink them. 

This ensures no premature assumptions and preserves falsifiability. 

 

Appendix K — Formal Necessity of High‑Symmetry 

Lattices 

K.1 Standing Assumptions and Notation 

Bandlimited space: 𝔅_Λ := { φ ∈ L²(ℝ³) : φ̂(k) = 0 for |k| > Λ }. 

Sampling set: Ξ ⊂ ℝ³ is uniformly discrete and relatively dense with Beurling density ρ; 

define a := ρ^{-1/3}. 

 

Stable sampling (frame): ∃ 0 < A ≤ B < ∞ such that A‖φ‖² ≤ Σ_{x∈Ξ}|φ(x)|² ≤ B‖φ‖² for 

all φ ∈ 𝔅_Λ. 

 

Reconstruction kernel: real, radial, positive‑definite K with K̂ ∈ C² near k=0; write K̂(k) 

= M₀ − M₂|k|² + O(|k|⁴), with M₀ := K̂(0) > 0 and M₂ := (1/6)ΔK̂(0). 

 

Continuum operator: isotropic second‑order operator L₀ with Fourier symbol σ₀(k) = 

c²|k|² (small‑k Helmholtz/Maxwell form). 

 

Discrete realization: define the reconstructor ℛ f(x) := Σ_{y∈Ξ} f(y) K(x−y); the 

effective operator is L_eff := ℛ L₀ ℛ†. 

K.2 Small‑k Expansion of the Effective Symbol σ_eff(k) 

Let μ_Ξ := Σ_{y∈Ξ} δ_y be the sampling measure, and S := μ̂_Ξ be its diffraction 

(tempered). Then the effective symbol is σ_eff(k) = σ₀(k) · (|K̂|² * S)(k), convolution in 

k‑space. Decompose the absolutely‑continuous part of S in spherical harmonics near q=0: 

S(dq) = Σ_{ℓ=0}^∞ Σ_{m=−ℓ}^{ℓ} s_{ℓm}(|q|) Y_{ℓm(q̂)} d³q. 

 

Define angular power coefficients γ_{ℓm} := ∫_{|q|≤Λ} s_{ℓm}(|q|) |q|² d|q| (finite 

second moment). 

 

Expanding |K̂(k−q)|² to second order in k at fixed q and integrating term‑by‑term yields, 

for small |k|: 

(|K̂|²*S)(k) = C₀ + C₂^iso |k|² + Σ_{ℓ≥2, even} Σ_{m=−ℓ}^{ℓ} A_{ℓm} |k|² Y_{ℓm(k̂)} + 

O(|k|⁴), 

with C₀ = M₀² ∫ S(dq),  C₂^iso = −2M₀M₂ ∫S + (M₀²/6)∫|q|² S(dq),  and A_{ℓm} = (M₀²/6) 

γ_{ℓm}. 
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K.3 Theorem 1 — Irregular Sampling ⇒ O((ka)²) Directional 

Anisotropy 

Statement. Let Ξ be a stable sampling set for 𝔅_Λ whose pair‑correlation has any 

non‑radial harmonic (ℓ≥2) near the origin. Then the small‑k dispersion ω(k,k̂) derived 

from σ_eff(k) exhibits a directional splitting of order O((ka)²): 

 

max_{k̂₁,k̂₂} |ω(k,k̂₁) − ω(k,k̂₂)| / ω̄(k) ≥ C (ka)² + O((ka)⁴) for some C>0 determined by 

γ_{ℓm}, M₀, M₂. 

 

Proof (outline). With σ_eff(k) = c²|k|² [C₀ + C₂^iso |k|² + Σ_{ℓ≥2} A_{ℓm} |k|² 

Y_{ℓm(k̂)} + O(|k|⁴)], we obtain 

 

ω(k,k̂) = c|k| [√C₀ + (C₂^iso/(2√C₀))|k|² + (1/(2√C₀)) Σ_{ℓ≥2} A_{ℓm} |k|² Y_{ℓm(k̂)} + 

O(|k|⁴)]. Averaging over directions kills the Y_{ℓm} terms; subtracting yields Δω/ω̄ ∼ 

(|k|²/(2C₀)) (Σ_{ℓ≥2}(2ℓ+1)Ā_ℓ²)^{1/2} + O(|k|⁴).  

 

Using A_{ℓm}=(M₀²/6)γ_{ℓm} and the Landau density relation a∼Λ^{-1} gives the 

bound with C = ẑc · (Σ_{ℓ≥2}(2ℓ+1)γ̄_ℓ²)^{1/2}. 

 

Corollary (ε‑isotropy threshold). To enforce |Δω|/ω ≤ ε up to |k| = θΛ, one needs (ka)² ≤ 

ε/C ⇒ θ ≤ √(ε/C). For generic irregular/quasi‑periodic order, C ~ 10^{−1}–1; with ε = 

10^{−18}, this implies θ ≲ 10^{−9}.  

 

Hence, probing within nine decades of the cutoff exposes any irregular anisotropy. 

K.4 Theorem 2 — Non‑Periodic Stable Samplings ⇒ Anisotropic 

Diffraction 

Statement. If Ξ is not a finite union of translates of a full‑rank lattice, its diffraction S 

carries either (i) a non‑lattice pure‑point module (quasicrystal) and/or (ii) an 

absolutely‑continuous diffuse part. In either case S is not globally radial. Exact rotational 

invariance of σ_eff requires radial S; this is impossible without violating Landau density 

or stability. Therefore, exact isotropy is impossible for non‑lattice Ξ. 

K.5 Theorem 3 — Quasicrystals Have Group‑Theory‑Fixed 

Anisotropy 

Statement. For a quasicrystal with finite point group G ⊂ SO(3) (e.g., icosahedral), the 

diffraction is G‑invariant but not SO(3)‑invariant. The effective dispersion admits an 

expansion with harmonics restricted to ℓ ∈ 𝓛(G); the first nontrivial ℓ (e.g., ℓ=6) has 

nonzero amplitude on an open set. No local, stable reconstruction kernel can cancel these 

harmonics without killing defining Bragg intensities; thus the anisotropy is irreducible. 
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K.6 Theorem 4 — Direction‑Dependent Conditioning Near the 

Density Limit 

Statement. For nonuniform (irregular) stable samplings approaching the Landau 

lower‑density limit, the frame operator’s lower bound A deteriorates anisotropically, 

yielding direction‑dependent noise amplification in reconstruction before the density 

limit is reached. Consequently, even if the continuum operator is isotropic, the 

implementation exhibits operational Lorentz violation via anisotropic conditioning. 

K.7 Diffraction No‑Go for Exact Isotropy 

Theorem (no‑go). Let S be the thermodynamic‑limit diffraction of a uniformly discrete, 

relatively dense Ξ with positive information density. If S is not the reciprocal lattice 

measure of a crystallographic lattice with full cubic point group, then for any stable, local 

reconstruction of an isotropic continuum operator one has ω(k,k̂) = ω̄(k)[1 + Σ_{ℓ≥2} 

a_ℓ(k) Y_ℓ(k̂)], with some a_ℓ(k) ≠ 0 on an open set. No stable, passband‑preserving 

reconstruction can eliminate all angular terms. Thus, exact isotropy forces high‑symmetry 

lattice structure. 

K.8 Consequences and Experimental Links 

Consequences. Combining K.3–K.7: under finite‑information physics with ε‑isotropy ≲ 

10⁻¹⁸, only high‑symmetry crystallographic lattices (cubic FCC/BCC, etc.) survive; 

irregular and quasi‑periodic orders are excluded near the UV edge. 

 

Experimental links. The O((ka)²) anisotropy maps to: 

• Dispersion corrections: ω² = c²k²[1 + α(ak)² + …] with lattice‑specific α (SC: −1/12, 

FCC: −1/8, BCC: −1/6). 

• Interferometric resonances: fundamental f* = c/(4a) (geometry factors distinguish lattice 

type). 

• Coherence crossover: Γ(R) transitions from ∝R³ to ∝R² at R_c ~ a. 

Triple‑consistency (a_disp = a_reson = a_coh within 2σ) both identifies lattice type and 

pins down a; persistent inconsistency falsifies the framework. 

 

Appendix L — Mathematical Rigor and Proof 

Roadmap 
Purpose. This appendix strengthens the mathematical backbone of the framework by 

formalizing definitions, stating theorems with explicit hypotheses and constants, 

identifying proof gaps, and laying out a roadmap for full rigor. It complements Appendix 

K, which focuses on physics context and experimental implications. 

L.1 Canonical Setting, Function Spaces, and Notation 

We work in ℝ³ with the standard Euclidean metric. Fourier transforms use the unitary 

convention. 
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• Bandlimited space: For Λ > 0 define 

      𝔅_Λ := { φ ∈ L²(ℝ³) : φ̂(k) = 0 for |k| > Λ }. 

 

• Sampling set: Ξ ⊂ ℝ³ is a Delone set (uniformly discrete and relatively dense) with 

lower/upper Beurling densities D⁻(Ξ), D⁺(Ξ). 

 

• Reconstruction kernel: K ∈ L¹ ∩ L², real, radial, positive‑definite with K̂ ∈ C² near 0, 

K̂(0)=M₀ > 0, ΔK̂(0)=6M₂. 

 

• Frame condition: S_Ξ: 𝔅_Λ→ℓ²(Ξ), (S_Ξ φ)(x)=φ(x), has frame bounds A,B > 0 if 

      A‖φ‖² ≤ Σ_{x∈Ξ}|φ(x)|² ≤ B‖φ‖²,   for all φ∈𝔅_Λ. 

 

• Diffraction: The autocorrelation γ_Ξ exists (tempered sense), S = γ̂_Ξ is the diffraction 

measure. Decompose into pure‑point, absolutely continuous, and singular‑continuous 

parts. 

 

• Lattice scale: a := D(Ξ)^{-1/3}. By Landau’s density theorem, a ≍ Λ^{-1}. 

L.2 Effective Operator and Symbol Expansion 

Continuum operator: L₀ isotropic second‑order, σ₀(k) = c²|k|². 

 

Sampling–reconstruction: (ℛf)(x) := Σ_{y∈Ξ} f(y)K(x−y). Effective operator: L_eff = 

ℛ L₀ ℛ†. 

 

Symbol: σ_eff(k) = σ₀(k) (|K̂|² * S)(k). 

 

Decompose S(dq) = Σ_{ℓ,m} s_{ℓm}(|q|) Y_{ℓm}(q̂) d³q. Define γ_{ℓm} = ∫₀^Λ 

s_{ℓm}(r) r² dr. 

L.3 Anisotropy Lower Bound 

Theorem R.1 (Irregular sampling ⇒ O((ka)²) anisotropy). 

Assume: (i) Ξ is a Delone set with frame bounds A,B for 𝔅_Λ; (ii) K̂ is C² near 0 with 

M₀=K̂(0)>0, M₂ finite; (iii) ∃ ℓ₀≥2 even, m such that γ_{ℓ₀m}≠0. 

 

Then for small k: 

    max_{k̂₁,k̂₂} |ω(k,k̂₁) − ω(k,k̂₂)| / ω̄(k)  ≥  C_* (ka)² + O((ka)⁴)    (R.1) 

with C_* = (M₀²/(12 C₀)) (Σ_{m=−ℓ₀}^{ℓ₀} γ_{ℓ₀m}²)^{1/2}, C₀ = M₀² ∫ S(dq). 

Proof (sketch). Expand σ_eff near 0, separate ℓ=0 and ℓ≥2 harmonics, linearize 

ω=√σ_eff, control C₀ via frame bounds. 

Corollary R.2 (ε‑isotropy threshold). 

To enforce |Δω|/ω̄ ≤ ε up to |k|=θΛ, one requires θ ≤ √(ε/C_*). For C ~ 10⁻¹–1 and 

ε=10⁻¹⁸, θ ≤ 10⁻⁹. 

L.4 Diffraction Isotropy No‑Go 

Theorem R.3. If Ξ is not a full cubic lattice, then σ_eff acquires nonzero Y_{ℓm} terms 

for some ℓ≥2. Exact isotropy is impossible. 
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L.5 Quasicrystals and Fixed Harmonics 

Proposition R.4. For icosahedral order the first allowed harmonic is ℓ=6. This cannot 

vanish if Bragg intensities persist. Thus quasicrystals exhibit irreducible ℓ=6 anisotropy. 

L.6 Conditioning Near Landau Density 

Proposition R.5. As Λ approaches the Landau lower bound, the lower frame bound A 

deteriorates anisotropically. This yields direction-dependent conditioning and operational 

Lorentz violation. 

L.7 Auxiliary Lemmas 

• Lemma R.6 (Slepian–Pollak). Finite operational dimension ⇒ effective bandlimit 

Λ_eff. 

• Lemma R.7 (Landau density). Frame ⇒ D⁻(Ξ) ≥ |B_Λ|/(2π)³. 

• Lemma R.8 (Jaffard). Near density threshold, nonuniform sampling induces orientation-

sensitive aliasing. 

• Lemma R.9 (Diffraction dichotomy). Non‑lattice Delone sets produce anisotropic 

diffraction. 

L.8 Remaining Gaps and Closure Plan 

□ Bound the O(|k|⁴) remainder uniformly in direction. 

□ Calibrate constants using measurable diffraction intensities. 

□ Full no‑go proof with measure-theoretic radiality obstruction. 

□ Conditioning decay rate A(Λ,k̂) ≤ A₀ − η(k̂)(1−Λ/Λ_c). 

□ Collect canonical references for all lemmas. 

L.9 Notes on Equation Style 

For journals: display and number equations (R.1), (R.2)… 

For web preprints: display without numbering is acceptable. Short definitions may remain 

inline. 
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