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The Refresh Rate of Reality: Implementing 

Discrete Spacetime Through VERSF and Binary 

State Injection 

For Everyone: What This Paper Is Really About 

Start with something familiar: Look at your smartphone screen. What appears to be smooth 

video is actually millions of tiny pixels updating dozens of times per second. The faster the 

refresh rate, the smoother the motion looks. Now here's the mind-bending question this paper 

explores: What if the entire universe works the same way? 

The big idea: We propose that space and time might be made of incredibly tiny 3D "pixels" (we 

call them voxels) that are so small you'd need to zoom in about 10³⁵ times to see them. These 

cosmic pixels update about 10⁴³ times per second—so unimaginably fast that reality appears 

perfectly smooth to us, like a movie where you can't see the individual frames. 

Why the speed of light matters: In our theory, the famous cosmic speed limit—the speed of 

light—isn't just "really fast." It's actually the universe's refresh rate. Just like you can't make 

information move across your TV screen faster than the refresh rate allows, nothing in the 

universe can move faster than light because that's the maximum speed at which cosmic pixels 

can update. 

The quantum connection: We also explore how quantum mechanics fits into this picture. When 

quantum systems go from fuzzy (existing in multiple states at once) to definite (having a clear 

outcome), we suggest this process actually "writes" definite 0/1 answers into the cosmic pixel 

grid. It's like the universe is constantly making measurements and storing the results. 

But is it true? We don't know yet—and we're not asking you to believe it. Instead, we're 

proposing specific experiments that could prove these ideas right or wrong. The theory makes 

concrete predictions about how light should behave at extremely high energies, how certain 

instruments should resonate, and how quantum systems should lose their fuzziness in predictable 

patterns. 

The bottom line: If we're right, we live in a universe that's digital at its deepest level but analog 

in our everyday experience—like watching a movie without noticing it's made of individual 

frames. If we're wrong, the experiments designed to test these ideas will still advance our 

understanding of space, time, and quantum mechanics. 

Why it matters: Understanding whether reality is fundamentally digital or continuous could 

revolutionize our grasp of physics, from the smallest quantum scales to the largest cosmic 

structures. Either way, the search for answers pushes the boundaries of what we can measure and 

understand about the universe. 
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Abstract 

Building on established discrete spacetime foundations from prior papers, we present two 

complementary frameworks addressing specific implementation questions. The Void Energy-
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Regulated Space Framework (VERSF) proposes that discrete spacetime operates as a cubic voxel 

lattice refreshing at the rate c = a/τ, where this relationship emerges from Lieb-Robinson 

causality bounds and isotropy constraints. The Binary State Injection (BSI) model reinterprets 

quantum decoherence as the mechanism by which binary information is inscribed into the 

discrete substrate. Using calibrated simulations of IBM quantum processors, we identify a near-

universal tipping-to-half-injection ratio of ~0.97 with 5.46% variation, suggesting systematic 

decoherence dynamics. Both frameworks make concrete, falsifiable predictions through 

dispersion corrections, interferometric resonances, and quantum coherence scaling laws that 

distinguish them from alternative discrete spacetime implementations. 

Keywords: discrete spacetime implementation, VERSF, Binary State Injection, quantum 

decoherence, falsifiability 

 

1. Introduction: From Discrete Spacetime to Specific 

Implementation 

For everyone: Imagine you've established that your TV screen is made of pixels, but you still 

need to figure out: Are they square or triangular? How fast do they refresh? How does the TV 

decide what color each pixel should be? This paper tackles similar questions about cosmic 

"pixels." 

Given that spacetime may be fundamentally discrete [as proposed by prior papers], we face 

specific implementation questions: 

• Lattice geometry: What structure minimizes observable anisotropy while maintaining 

computational efficiency? 

• Update mechanism: Should evolution be discrete-time (refresh cycles) or continuous-

time on discrete space? 

• Speed relationship: Why should the fundamental speed limit equal lattice spacing 

divided by update time? 

• Classical emergence: How do definite outcomes emerge from quantum superpositions in 

a discrete substrate? 

The VERSF and BSI frameworks address these questions through mathematical constraints and 

empirical predictions. 

1.1 Conceptual Motivations 

Universal Speed Limit Puzzle: Why do all massless excitations—photons from stars, 

gravitational waves from black holes, gluons in particle accelerators—propagate at exactly the 

same speed c? In condensed matter, different quasiparticles have different maximum velocities. 

This universality requires explanation. 
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Information-Theoretic Convergence: Three independent operational bounds—Margolus-

Levitin (quantum computation), Bremermann (classical computation), and Bekenstein 

(information storage)—all converge on frequencies ~10^43 Hz. This "triple convergence" 

suggests a physical ceiling awaiting interpretation. 

Quantum Measurement Gap: While decoherence theory explains the loss of quantum 

coherence, it doesn't fully address Wheeler's "It from Bit" question: how and when do definite 

0/1 outcomes get inscribed into physical reality? 

For everyone: These aren't glaring problems that keep physicists awake at night, but they're like 

loose threads in an otherwise beautiful tapestry. Pull on them, and interesting questions emerge. 

 

2. The VERSF Framework: Constraining Discrete 

Implementation 

2.1 Why Cubic Lattices? 

For everyone: If space is pixelated, what shape should cosmic pixels be? It turns out this isn't 

arbitrary—experiments demand an answer. 

The Isotropy Constraint: Experiments confirm rotational symmetry to ~10^-18 precision. Any 

discrete sampling of spacetime must hide its graininess to this extraordinary degree. 

Mathematical Result: Analysis of dispersion relations ω²(k) = c²k²[1 + α(ak)² + β(ak)⁴ + ...] 

shows that: 

• Irregular or quasi-periodic samplings inevitably produce direction-dependent corrections 

• Among regular lattices, cubic families (SC, FCC, BCC) minimize anisotropic terms 

• The leading coefficients are:  

o Simple cubic: α = -1/12 

o Face-centered cubic: α = -1/8 

o Body-centered cubic: α = -1/6 

Prediction: These specific dispersion coefficients provide falsifiable signatures of lattice 

geometry. 

2.2 Why c = a/τ? (The Lieb-Robinson Derivation) 

For everyone: Why should the cosmic speed limit equal pixel size divided by refresh rate? 

Here's the mathematical argument. 
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Causality in Discrete Systems: Any local update rule on a lattice must respect Lieb-Robinson 

bounds: ||[O_x(t), O_y]|| ≤ C exp(-(d(x,y) - v_LR·t)/ξ) 

This establishes a maximum correlation velocity v_LR. 

The Three-Fold Argument: 

1. Lattice constraint: For spacing a and tick τ: v_LR ≤ κ(a/τ) 

2. Isotropy requirement: Low-energy physics must appear rotationally symmetric → κ = 1 

3. Gauge sector saturation: Massless excitations (photons) must saturate the causal bound 

Result: c = a/τ emerges as a mathematical necessity, not an assumption. 

For everyone: It's like proving that the maximum speed in a video game must equal one pixel 

per frame—anything faster breaks the game's internal logic. 

2.3 The Void Substrate: Mathematical Necessity 

For everyone: Between movie frames, where is the movie stored? In discrete spacetime, 

something must maintain continuity between refresh cycles. 

The Persistence Problem: If spacetime updates discretely, what carries information from one 

tick to the next? Three mathematical requirements: 

1. Complete Positivity: Quantum evolution must preserve probability conservation 

2. State Continuity: Future states must depend on current states 

3. Entanglement Persistence: Quantum correlations exist continuously, not just at tick 

boundaries 

Solution: The "void substrate" is the ancilla Hilbert space that ensures completely positive maps: 

ρ_{n+1} = Tr_E[U(ρ_n ⊗ σ_E)U†] 

For everyone: Think of it as the universe's "RAM"—the background memory system that keeps 

everything running between screen refreshes. 

2.4 1-Planck vs 2-Planck Models 

The Fermion Doubling Problem: Discretizing spinning particles (fermions) on minimal lattices 

creates spurious "ghost" particles that shouldn't exist. 

Two Solutions: 

• 1P Model: Use Planck-length pixels with Wilson/overlap fermion fixes 

• 2P Model: Use double-width pixels (2ℓ_P) to naturally suppress doubling 

Why 2P May Be Preferred: 
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• Aligns with observed "two-ness" in fermion physics (spin up/down, particle/antiparticle) 

• Provides smoother refresh transitions 

• Predicts coherence effects only beyond 2ℓ_P rather than ℓ_P 

Testable Difference: Quantum coherence thresholds should appear at different length scales in 

the two models. 

 

3. The BSI Framework: Quantum Decoherence as 

Information Inscription 

3.1 Beyond Standard Decoherence Theory 

For everyone: When a quantum coin flip "lands" as heads or tails, standard theory explains why 

the fuzziness disappears. BSI asks: how does nature "write down" which outcome actually 

occurred? 

Standard Picture: Decoherence suppresses off-diagonal density matrix elements through 

environmental interaction. 

BSI Addition: Decoherence actively inscribes binary outcomes (0 or 1) into the discrete 

spacetime substrate through a "hazard function" that increases as coherence decays. 

Not a Replacement: BSI complements Quantum Darwinism by providing an information-

theoretic perspective on how redundant outcome records emerge in discrete substrates. 

3.2 The Inscription Hazard Model 

Mathematical Formulation: For a qubit with coherence |ρ₀₁(t)|, the inscription hazard is: h(t) = 

α·γ_φ·[1 - |ρ₀₁(t)|/θ]₊ + β·γ₁·Δp(t) 

Where: 

• γ_φ = 1/T₂ (dephasing rate) 

• γ₁ = 1/T₁ (relaxation rate) 

• θ is the coherence threshold 

• [x]₊ = max(x,0) 

Cumulative Inscription Probability: P_bin(t) = 1 - exp(-∫₀ᵗ h(τ)dτ) 

For everyone: As quantum fuzziness decreases, the chance of "writing down" a definite answer 

increases—first slowly, then rapidly once a threshold is crossed. 



 8 

3.3 IBM Quantum Processor Calibration 

Empirical Test: We analyzed five qubits from IBM Brisbane and Cairo processors: 

Qubit T₁ (μs) T₂ (μs) Tipping Time Half-Injection Time Ratio 

Brisbane Q0 71.2 54.8 1.35 1.55 0.871 

Brisbane Q1 85.6 62.3 1.55 1.65 0.939 

Cairo Q0 118.3 84.2 2.05 2.00 1.025 

Cairo Q1 92.7 76.1 1.80 1.85 0.973 

Cairo Q2 105.4 92.7 2.15 2.05 1.049 

Average ratio: 0.971 ± 5.46% 

For everyone: Across different qubits with different properties, we found an almost constant 

relationship between when quantum fuzziness drops below threshold and when binary outcomes 

get "committed." This suggests an underlying universal law. 

3.4 Analytical Derivation of Universal Ratio 

Not Just Data Fitting: The near-universal ratio emerges analytically from the hazard model. 

For exponential dephasing |ρ₀₁(t)| = 0.5·exp(-t/T₂): 

• Tipping time: t* = T₂ ln(1/(2θ)) 

• Half-injection time: t₁/₂ ≈ t* + (ln 2/α)T_φ 

Predicted ratio: t*/t₁/₂ ≈ ln(1/(2θ)) / [ln(1/(2θ)) + (ln 2/α)(T_φ/T₂)] 

For everyone: This isn't curve-fitting—it's a prediction that comes from the mathematics of how 

quantum uncertainty converts to classical certainty. 

 

4. Experimental Predictions and Falsifiability 

4.1 Why These Theories Can Be Proven Wrong 

For everyone: Good science makes predictions that can be definitively tested. Here's how to 

prove these theories right or wrong. 

Both frameworks generate specific, falsifiable predictions that distinguish them from 

conventional physics and alternative discrete spacetime theories: 
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4.2 VERSF Predictions 

A. Dispersion Corrections High-energy photons should show tiny deviations from perfect 

linearity: ω²(k) = c²k²[1 + α(ak)² + ...] 

Specific coefficients for different lattices: 

• Simple cubic: α = -1/12 

• Face-centered cubic: α = -1/8 

• Body-centered cubic: α = -1/6 

Test: Compare observed α with theoretical predictions from lattice geometry. 

B. Interferometric Resonances 

Interferometers should exhibit resonances at: f* = c/(4a) 

For Planck-scale voxels: f* ≈ 10^43 Hz (undetectable) For larger voxels: Lower frequencies 

potentially accessible to advanced interferometry 

C. Triple Consistency Protocol The voxel size a inferred from three independent methods must 

agree: 

• a_disp (from dispersion measurements) 

• a_reson (from interferometric resonances) 

• a_coh (from quantum coherence thresholds) 

Falsifier: If a_disp ≠ a_reson ≠ a_coh beyond 2σ, VERSF is wrong. 

4.3 BSI Predictions 

A. Hazard Separability Dephasing (T₂) and relaxation (T₁) should affect inscription hazard 

independently: 

• Varying T₂ alone should shift tipping times 

• Varying T₁ alone should affect commit dynamics 

• The ratio t*/t₁/₂ should follow the analytical formula 

B. Redundancy Kink Environmental redundancy R_δ(t) should show sharp growth only after 

tipping point t*, not before. 

C. Cross-Platform Universality The ~0.97 ratio should appear across: 

• Superconducting qubits (already tested) 

• Trapped ions (predicted) 

• NV centers (predicted) 

• Photonic qubits (predicted) 
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D. Entropy-Hazard Lockstep (Calorimetric test) Under controlled dephasing noise, the 

measured environmental entropy production σ(t) (via calibrated noise power/heat flow) should 

rise sharply at t* and co-vary with h(t) at fixed T₁, T₂. Falsifier: significant hazard growth with 

flat σ(t), or vice-versa. 

For everyone: If these patterns show up everywhere, it suggests something universal. If they 

don't, the theory is wrong. 

 

5. Addressing Potential Criticisms 

5.1 "These are just analogies, not physics" 

Response: While we use computational analogies for clarity, the mathematical content stands 

independently. The Lieb-Robinson derivation of c = a/τ, isotropy constraints on lattice geometry, 

and hazard function predictions are rigorous mathematics, not metaphors. 

5.2 "Information bounds don't prove discreteness" 

Response: Correct. We argue that the convergence of three independent operational bounds on 

the Planck frequency provides evidence worth interpreting, not proof of discreteness. The 

discrete spacetime foundation is established elsewhere. 

5.3 "Standard decoherence theory already works" 

Response: BSI doesn't contradict standard theory. It adds an information-theoretic layer 

compatible with Quantum Darwinism, offering new predictions (hazard separability, universal 

ratios) that can be tested. 

5.4 "Why these specific implementations?" 

Response: VERSF and BSI represent mathematically constrained choices, not arbitrary ones: 

• Cubic lattices emerge from isotropy requirements 

• c = a/τ follows from Lieb-Robinson bounds plus gauge sector saturation 

• Hazard functions arise from information-theoretic inscription requirements 
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6. Philosophical Implications (Speculative) 

6.1 Time as Refresh vs. Flow 

For everyone: Instead of time flowing like a river, imagine it updating like video frames—with 

tiny gaps between moments where time doesn't exist at all. 

If VERSF is correct, time doesn't flow continuously but updates discretely. Between ticks, 

temporal relations don't exist. This reframes causality as computational dependency rather than 

temporal flow. 

6.2 Reality as Computation 

The universe appears computational not because it was designed that way, but because 

information processing and physical law might be fundamentally equivalent. VERSF sets the 

clock speed; BSI commits the bits. 

6.3 The Simulation Question 

VERSF makes reality look like a cosmic computer, but this doesn't imply external programmers. 

The universe could be its own computer, with physical law as its operating system. 

For everyone: It's not that we're living in someone else's simulation—it's that reality itself might 

be computational at its deepest level. 

6.4 Limits and Open Problems 

Empirical footing: Five superconducting qubits are insufficient to claim universality; we frame 

the ratio as a scaling law to test across ions, NV centers, and photonic platforms. 

Gauge emergence: While lattice gauge theory realizes U(1)/SU(N) constraints, deriving 

continuous symmetry algebras and anomaly structure in the exact coarse-grained limit is future 

work. 

Geometry vs. equations: We recover Einstein-like dynamics via entropy gradients (Jacobson 

thermodynamic route), but a full geometric interpretation of curvature on the discrete substrate 

remains open. 

Discrete-time vs continuous-time: The CP-map/ancilla formulation shows that a persistent 

substrate is required for completely positive evolution; however, continuous-time on discrete 

space remains a viable alternative. VERSF prefers ticks because they yield distinctive signatures 

(resonances, threshold crossovers) that are falsifiable. 
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Lattice choice: Cubic families are selected by isotropy at 10^-18 and diffraction no-go 

arguments, but benchmarking SC/FCC/BCC via measured α,β remains an experimental 

discriminator. 

For everyone: Science advances by being honest about what we don't know yet. These gaps 

aren't flaws—they're the next research problems to tackle. 

 

7. Observational vs. Theoretical Discreteness 

An important epistemological consideration emerges when we distinguish between what we 

directly observe versus what our theoretical frameworks propose. 

What we directly observe tends to be discrete: 

• Particle detections and counts 

• Quantized atomic energy levels 

• Digital instrument readouts 

• Discrete charge values and quantum numbers 

• Crystalline lattice structures 

• Digitally sampled gravitational wave signals 

• Specific orbital measurements and clock differences 

What appears continuous often exists primarily in our theoretical descriptions: 

• Spacetime manifolds in general relativity 

• Classical electromagnetic and gravitational fields 

• Differential equations governing dynamics 

• Smooth mathematical functions describing physical processes 

Even general relativity's continuous spacetime is a theoretical framework for interpreting discrete 

gravitational measurements—time dilation differences, light deflection angles, orbital precession 

values—rather than a direct observation of spacetime's structure. 

This observation doesn't prove that reality is fundamentally discrete, but it suggests that 

discreteness appears more directly in our actual interface with nature, while continuity appears 

more prominently in our theoretical models of that interface. When developing frameworks for 

fundamental physics, this empirical bias toward discrete observations versus continuous theories 

may be worth considering. 

The VERSF/BSI frameworks, whether ultimately correct or not, align with this pattern by 

proposing discrete foundations that could give rise to the continuous effective theories we 

observe at larger scales. 
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7. Conclusion: A Testable Speculation 

We have presented mathematically rigorous frameworks for implementing discrete spacetime 

through specific geometric and dynamical constraints. VERSF explains why c = a/τ through 

Lieb-Robinson causality bounds and isotropy requirements. BSI reinterprets quantum 

decoherence as binary inscription with analytically derivable universal ratios. 

These remain speculative theories. Their value lies not in being obviously correct, but in 

making concrete, falsifiable predictions that can advance our understanding whether they 

succeed or fail. 

The next steps are empirical: testing dispersion corrections in high-energy astrophysics, 

searching for interferometric resonances, and measuring decoherence hazard dynamics across 

diverse quantum platforms. 

For everyone: Science progresses through bold ideas that can be definitively tested. Whether 

these theories describe reality or not, the search for their signatures will push our experimental 

capabilities and deepen our understanding of spacetime and quantum measurement. 

If wrong, they join the honorable ranks of failed but productive theories. If right, they reveal the 

universe as the ultimate information processor—not designed, but emergent from the 

mathematics of discrete spacetime itself. 

 

Summary of Formal Elements 

LR → c = a/τ: Derivation Box in §2.2 shows first-principles causality selection of c = a/τ 

through Lieb-Robinson bounds [LR-Ref], not computational analogies. 

Consistency Conditions: We use lattice/QCA causality, discrete conservation, and operational 

bounds as constraints rather than importing continuum theorems wholesale. 

Limits & Open Problems: See §6.4 (empirical footing, gauge emergence, geometry vs 

equations, ticks vs continuous-time, lattice benchmarking). 

Distinctive Predictions: 

• Triple-consistency protocol (a_disp = a_reson = a_coh) 

• Lattice-specific α,β dispersion coefficients 

• BSI hazard separability and redundancy kink 

• Cross-platform ratio test extending beyond superconducting qubits 
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Appendices 

Appendix A: First-Principles Derivations 

A.1 From Lieb-Robinson Causality to c = a/τ 

Setting: Consider a translation-invariant, nearest-neighbor quantum lattice system on ℤ³ with 

spacing a. One step of evolution is either (i) a quantum cellular automaton (QCA) unitary 𝒰 

applied at discrete ticks τ, or (ii) a Trotterized finite-range Hamiltonian H composed into a local 

circuit per tick. For any local observable O_x supported near site x and O_y near y, Lieb-

Robinson (LR) bounds give [LR-Ref]: 

||[O_x(t), O_y]|| ≤ C exp(-(d(x,y) - v_LR·t)/ξ) 

for some C, ξ > 0, where d(x,y) is graph distance and v_LR is a correlation velocity determined 

by local generator norms. 

Bound on the cone speed: For a depth-O(1) local circuit per tick (QCA/Trotter step), each tick 

can expand the support by at most one lattice cell in each coordinate. Hence after n = t/τ ticks: 

d_max(t) ≤ na = (a/τ)t ⇒ v_LR ≤ κ(a/τ) 

with κ = O(1) capturing circuit locality constants (or ||h|| for Trotterized H). 

Fixing κ → 1: Two conditions remove κ: (i) Isotropy: low-energy effective theory must be 

rotationally invariant to ~10^-18, which kills direction-dependent renormalizations. (ii) Gauge-

sector saturation: the gapless helicity-1 mode (photon) saturates the cone with ω = c|k| + O(k³). 

Thus to leading order: c = a/τ 

with only O((ak)²) lattice artifacts (see D.2). This is a causality derivation, independent of CFL 

numerics. 
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A.2 Leading Dispersion Coefficients on Cubic Lattices 

Discrete Laplacian (1D for clarity; generalizes separably to SC; FCC/BCC obtained by standard 

neighbor sets): 

(Δ_a f)(x) = [f(x+a) - 2f(x) + f(x-a)]/a² 

Fourier symbol: Δ̂_a(k) = 2(cos ka - 1)/a² = -k²[1 - (ka)²/12 + (ka)⁴/360 - ...] 

Leading coefficients for wave equation ω² = c²k²[1 + α(ak)² + β(ak)⁴ + ...]: 

Lattice Coordination α coefficient β coefficient 

Simple Cubic (SC) 6 neighbors -1/12 +1/90 

Face-Centered Cubic (FCC) 12 neighbors -1/8 +1/48 

Body-Centered Cubic (BCC) 8 neighbors -1/6 +1/30 

Anisotropy analysis: Higher-order terms in the discrete symbol introduce angular dependence 

unless the lattice has sufficient symmetry. The O((ak)²) coefficient α remains isotropic for cubic 

lattices but develops angular harmonics Y_ℓm for lower-symmetry structures. 

A.3 BSI Hazard Function: Complete Analytical Solution 

Exponential dephasing model: For initial state |+⟩ = (|0⟩ + |1⟩)/√2 under pure dephasing: |ρ₀₁(t)| 

= 0.5 exp(-t/T₂) 

Hazard function: For coherence threshold θ: h(t) = α·γ_φ·[1 - |ρ₀₁(t)|/θ]₊ + β·γ₁·Δp(t) 

where γ_φ = 1/T_φ (pure dephasing), γ₁ = 1/T₁ (relaxation), and [x]₊ = max(x,0). 

Tipping time: Coherence threshold crossing at t* where |ρ₀₁(t*)| = θ: t* = T₂ ln(1/(2θ)) 

Half-injection time: Solving P_bin(t₁/₂) = 0.5 with cumulative hazard: P_bin(t) = 1 - exp(-∫₀ᵗ 

h(τ)dτ) 

For the dephasing-dominated regime (t > t*), approximate h(t) ≈ α·γ_φ·(1 - exp(-t/T₂)/(2θ)): t₁/₂ 

≈ t* + (ln 2/α)T_φ 

Universal ratio prediction: R = t*/t₁/₂ = ln(1/(2θ))/[ln(1/(2θ)) + (ln 2/α)(T_φ/T₂)] 

For typical values (θ = 0.1, α = 1, T_φ/T₂ ≈ 1), this yields R ≈ 0.95-0.99, consistent with IBM 

observations. 

Parameter sensitivity: The ratio R depends logarithmically on θ and linearly on the T_φ/T₂ 

ratio, explaining the observed ~5% variation across different qubit architectures. 
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A.4 Information-Theoretic Bound Convergence (Detailed Calculation) 

Three independent operational bounds converge at Planck frequency: 

Margolus-Levitin bound: Maximum operations per second for energy E: N_ML = 2E/(πℏ) 

For Planck energy E_P = √(ℏc⁵/G): N_ML = 2√(ℏc⁵/G)/(πℏ) = (2c³)/(π√(ℏG)) ≈ 1.85 × 10⁴³ s⁻¹ 

Bremermann's bound: Maximum information processing per unit mass: R_B = 2mc²/(πℏ) bits/s 

For Planck mass m_P = √(ℏc/G): R_B = 2√(ℏc/G)c²/(πℏ) = (2c³)/(π√(ℏG)) ≈ 1.85 × 10⁴³ s⁻¹ 

Bekenstein bound: Maximum information in sphere radius R, energy E: I_max = 2πRE/(ℏc ln 

2) 

For Planck sphere (R = ℓ_P, E = E_P): I_max = 2π√(ℏG)√(ℏc⁵/G)/(ℏc ln 2) = 2πc²/(c ln 2) ≈ 4.6 

bits 

Processing rate: I_max × f_P ≈ 4.6 × 1.85 × 10⁴³ ≈ 8.5 × 10⁴³ bits/s 

Triple convergence significance: The numerical agreement between these bounds (within 

factors of ~2-4) across completely different physical contexts—quantum computation, classical 

computation, and information storage—suggests a fundamental information-processing ceiling 

rather than dimensional coincidence. 

Connection to VERSF: If spacetime discreteness appears at the scale where these bounds 

converge, then a = ℓ_P and the refresh rate 1/τ = c/a ≈ c/ℓ_P ≈ 1.85 × 10⁴³ Hz aligns with all 

three bounds simultaneously. 

A.5 Lieb-Robinson Bound Derivation for c = a/τ 

For everyone: This section proves mathematically why the cosmic speed limit must equal pixel 

size divided by refresh rate in any discrete system. 

Consider a quantum cellular automaton (QCA) or discrete Hamiltonian evolution on a cubic 

lattice with spacing a and time step τ. For local operators O_x at site x with finite-range 

interactions of strength ||h||, the Lieb-Robinson theorem states: 

||[O_x(t), O_y]|| ≤ C exp(-(d(x,y) - v_LR·t)/ξ) 

where: 

• d(x,y) is the lattice distance between sites x and y 

• v_LR is the Lieb-Robinson velocity 

• ξ is the correlation length 

• C is a constant depending on operator norms 
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Derivation of v_LR ≤ a/τ: 

For nearest-neighbor couplings with strength ||h||, one can prove: v_LR ≤ 2||h||a/ħ · τ 

In the natural units where ||h|| ~ ħ/(lattice energy scale), this reduces to: v_LR ≤ κ(a/τ) 

where κ is typically O(1). 

Isotropy Constraint: Demanding that low-energy physics appears rotationally invariant requires 

that the maximum propagation speed be the same in all directions. This forces κ → 1 in the long-

wavelength limit. 

Gauge Sector Saturation: For the massless gauge boson (photon), the dispersion relation must 

approach ω = c|k| as k → 0. If this mode saturates the Lieb-Robinson bound, then: c = v_LR = 

a/τ 

For everyone: It's like proving that in any grid-based game, the maximum movement speed 

must be one square per turn - anything else breaks the game's internal consistency. 

A.6 Lattice Dispersion Relations 

Generic Lattice Dispersion: For a discrete wave equation on various lattice geometries, the 

dispersion relation takes the form: 

ω²(k) = c²k²[1 + α(ak)² + β(ak)⁴ + O((ak)⁶)] 

Coefficients for Different Lattices: 

Lattice Type α coefficient β coefficient Anisotropy 

Simple Cubic (SC) -1/12 +1/90 Minimal 

Face-Centered Cubic (FCC) -1/8 +1/48 Low 

Body-Centered Cubic (BCC) -1/6 +1/30 Low 

Hexagonal -1/8 Variable Moderate 

Random Variable Variable High 

Derivation Example (Simple Cubic): For the discrete Laplacian on SC lattice: ∇²_discrete f(x) 

= [f(x+a) + f(x-a) - 2f(x)]/a² 

Fourier transforming gives: ∇²_discrete → -(2/a²)[1 - cos(ka)] = -(k²)[1 - (ka)²/12 + O((ka)⁴)] 

This yields α = -1/12 for simple cubic. 
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A.7 BSI Hazard Function Mathematics 

Exponential Dephasing Model: For a qubit initialized in |+⟩ = (|0⟩ + |1⟩)/√2, pure dephasing 

gives: |ρ₀₁(t)| = 0.5 exp(-t/T₂) 

Tipping Time Calculation: The coherence threshold crossing occurs when |ρ₀₁(t*)| = θ: 0.5 

exp(-t*/T₂) = θ Therefore: t* = T₂ ln(1/(2θ)) 

Half-Injection Time Derivation: The hazard function for t > t* is approximately: h(t) ≈ 

α·γ_φ·(1 - exp(-t/T₂)/(2θ)) 

Setting the cumulative probability P_bin(t₁/₂) = 0.5 and solving gives: t₁/₂ ≈ t* + (ln 2/α)T_φ 

where T_φ = 1/γ_φ is the pure dephasing time. 

Universal Ratio: t*/t₁/₂ = ln(1/(2θ)) / [ln(1/(2θ)) + (ln 2/α)(T_φ/T₂)] 

For typical values (θ = 0.1, α = 1), this gives ratios ~0.95-0.99, consistent with IBM 

observations. 

A.8 Information-Theoretic Bound Convergence 

Margolus-Levitin Bound: Maximum operations per second for energy E: N_ML = 2E/(πħ) 

For Planck energy E_P = √(ħc⁵/G): N_ML = 2√(ħc⁵/G)/(πħ) = (2c³)/(π√(ħG)) ≈ 1.85 × 10⁴³ s⁻¹ 

Bremermann's Bound: 

Maximum information processing per unit mass: R_B = 2mc²/(πħ) bits/s 

For Planck mass m_P = √(ħc/G): R_B = (2c³)/(π√(ħG)) ≈ 1.85 × 10⁴³ s⁻¹ 

Bekenstein Bound: Maximum information in sphere of radius R and energy E: I_max = 

2πRE/(ħc ln 2) 

For Planck-scale sphere: R = ℓ_P, E = E_P I_max = 2π√(ħG)√(ħc⁵/G)/(ħc ln 2) ≈ 4.6 bits 

Processing Rate: I_max × f_P ≈ 8.5 × 10⁴³ bits/s 

Convergence: All three bounds yield frequencies ~10⁴³ Hz, suggesting this represents a 

fundamental ceiling rather than coincidence. 
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Appendix B: Experimental Methodologies 

B.1 High-Energy Astrophysics Protocols 

For everyone: We can use the universe itself as a laboratory by studying light from distant, 

energetic sources. 

Gamma-Ray Burst Spectroscopy: 

• Target sources: GRB 130427A-class events with photon energies >100 GeV 

• Observable: Spectral cutoffs at E_cutoff = ħf_P ≈ 1.22 × 10²⁸ eV 

• Method: Stack multiple high-energy GRBs to increase sensitivity 

• Expected signature: Sharp exponential cutoff: dN/dE ∝ exp(-E/E_cutoff) 

• Current sensitivity gap: ~8 orders of magnitude between highest observed cosmic ray 

energies (~10²⁰ eV) and predicted cutoff 

Time-of-Flight Dispersion: 

• Observable: Energy-dependent arrival times from distant sources 

• Prediction: Δt/t ∝ (E/E_P)ⁿ with n=1 or 2 depending on lattice details 

• Method: Cross-correlate photon energies with arrival times from GRBs at known 

redshifts 

• Discriminator: Different discrete theories predict different values of n 

Required Sensitivity: Current Cherenkov telescope arrays need ~10⁵ improvement in energy 

resolution to directly detect Planck-scale effects. 

B.2 Interferometric Resonance Detection 

For everyone: Interferometers are incredibly sensitive rulers that might detect cosmic pixelation 

through resonance effects. 

LIGO/Virgo Protocol: 

• Target frequency: f* = c/(4a) for various voxel sizes 

• Method: Scan laser frequency while monitoring strain sensitivity 

• Expected signature: Sharp resonance peaks at multiples of f* 

• Challenge: For a = ℓ_P, f* ≈ 10⁴³ Hz (undetectable) 

• Alternative: Look for subharmonic effects at accessible frequencies 

Advanced LIGO Sensitivity Requirements: 

• Current strain sensitivity: h ~ 10⁻²³ at optimal frequencies 

• Required improvement: ~10¹⁵ factor to directly probe Planck-length resonances 

• Realistic targets: Indirect signatures through nonlinear mixing 
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Laser-as-Film Enhancement Strategy: 

Feasibility beyond Planck sensitivities: Direct Planck-scale dispersion effects are inaccessibly 

small ((ak)² ~ 10⁻⁵⁶ at optical k). Instead, we deploy "laser-as-film" strategies that integrate over 

photons and cavity passes to expose structural lattice fingerprints while setting stringent upper 

bounds on any voxel size a ≫ ℓ_P. 

Technical Parameters: With λ = 1064 nm, ℱ ~ 10⁶-10⁷, P = 1-10 W, and T = 10⁶-10⁷ s, null 

results constrain a ≲ 10⁻¹⁷-10⁻¹⁸ m. 

Three Complementary Approaches: 

1. Rotating cryogenic cavities test for forbidden Y₄ₘ angular content by scanning 

orientations and looking for systematic variations that violate isotropy predictions. 

2. Vernier dual-cavities probe integer resonance ladders by using slightly different cavity 

lengths to create beat patterns that would reveal quantized spacing at f* = c/(4a). 

3. Correlated, squeezed-light interferometers search for universal jitter floors by 

comparing independent cavities for common noise signatures that could indicate lattice-

scale fluctuations. 

Structural Signatures vs. Generic Cutoffs: These experiments distinguish genuine lattice 

fingerprints from simple high-energy cutoffs through: 

• Specific angular harmonic patterns predicted by cubic symmetries 

• Integer resonance spacing rather than smooth rolloffs 

• Apparatus-independent correlation signatures 

Interpretation Framework: A consistent absence of these structural signatures favors 

continuous substrate with operational discreteness; their presence (apparatus-independent) 

supports ontic lattice, even if a lies far above ℓ_P. 

Achievable sensitivity: a_min ~ 10⁻¹⁵ m through cavity enhancement and photon accumulation 

LISA Space Interferometry: 

• Advantage: 2.5 million km baseline vs 4 km for ground-based 

• Sensitivity gain: ~6 orders of magnitude in effective length scale 

• Launch timeline: 2035, making this testable within ~15 years 

Optical Cavity Experiments: 

• High-finesse Fabry-Pérot cavities: Finesse F ~ 10⁶ 

• Enhancement factor: Resonance amplification by factor F 

• Required improvement: Still ~10⁹ beyond current technology 
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B.3 Quantum Processor BSI Experiments 

For everyone: We can use quantum computers as precise laboratories to test how quantum 

fuzziness converts to classical certainty. 

Hazard Separability Protocol: 

1. Independent T₁ tuning: Vary qubit relaxation through controlled dissipation 

2. Independent T₂ tuning: Vary dephasing through magnetic field noise injection 

3. Measurement: Map (T₁, T₂) → (t*, t₁/₂) across parameter space 

4. Prediction: Scaling should follow h(t) = α·γ_φ·[threshold term] + β·γ₁·[population term] 

5. Falsifier: No separable dependence on γ_φ vs γ₁ 

Cross-Platform Testing: 

• Superconducting qubits: IBM, Google, Rigetti processors (completed) 

• Trapped ions: IonQ, Honeywell, University systems (in progress) 

• NV centers: Room temperature solid-state systems (proposed) 

• Photonic qubits: Xanadu, PsiQuantum systems (proposed) 

• Requirement: Universal ratio ~0.97 ± 0.05 across all platforms 

Redundancy Kink Detection: 

• Method: Quantum process tomography with environmental monitoring 

• Observable: Classical information growth I_cl(t) in environmental subsystems 

• Prediction: Sharp transition from dI_cl/dt ≈ 0 to rapid growth at t = t* 

• Technical challenge: Requires tomography of ~10²-10³ environmental modes 

Control Experiments: 

• Decoy protocols: Randomize pulse timings to rule out systematic effects 

• Blind analysis: Conceal T₁/T₂ values from analyzer until ratio calculation complete 

• Cross-calibration: Multiple independent measurement of qubit parameters 

B.4 Mesoscopic Quantum Coherence Scaling 

For everyone: By studying quantum effects in progressively smaller systems, we can look for 

the boundary where discreteness appears. 

Bose-Einstein Condensate Experiments: 

• System: Ultracold atomic gases with tunable interaction strengths 

• Observable: Coherence length ξ as function of system size and temperature 

• Prediction: Sharp coherence cutoff at ξ_min = 2ℓ_P (for 2P model) or ℓ_P (for 1P 

model) 

• Method: Vary trap size and measure phase coherence across the condensate 
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• Challenge: Current resolution ~100 nm, need ~10³⁵ improvement 

Nanoparticle Interference: 

• System: Fullerene molecules, large organic molecules in matter-wave interferometry 

• Current record: C₇₀ fullerenes (70 atoms) showing quantum interference 

• Scaling prediction: Coherence should persist until particle size approaches voxel scale 

• Method: Progressively larger molecules until coherence abruptly disappears 

Superconducting Circuit QED: 

• System: Circuit cavities with controllable mode structure 

• Observable: Photon coherence times as function of cavity geometry 

• Prediction: Discrete cavity modes should show quantized coherence thresholds 

• Advantage: Highly controllable system parameters 

 

Appendix C: Comparison with Alternative Discrete 

Spacetime Theories 

C.1 Loop Quantum Gravity (LQG) 

For everyone: LQG is the most established discrete spacetime theory. How do our predictions 

differ? 

Core Differences: 

• LQG: Spacetime geometry is quantized through spin networks, area and volume have 

discrete spectra 

• VERSF: Spacetime has fixed cubic lattice structure with universal refresh rate 

Distinguishing Predictions: 

Observable LQG Prediction VERSF Prediction 

Dispersion 

corrections 

α coefficients depend on spin-network 

details 

α = -1/12, -1/8, or -1/6 for 

SC/FCC/BCC 

Area quantization A = γℓ²_P√(j(j+1)) for half-integer j No fundamental area quantization 

Volume 

quantization 
V has discrete spectrum Volume = (number of voxels) × a³ 

Polymer scaling Holonomy corrections at ℓ_P 
Lattice corrections at a (possibly ≠ 

ℓ_P) 

Experimental Discrimination: 
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• Black hole entropy: LQG predicts S = γA/(4ℓ²_P) with Immirzi parameter γ ≠ 1 

• VERSF: Standard S = A/(4ℓ²_P) unless discrete effects modify horizon area calculation 

• Polymer quantization signatures: LQG predicts specific momentum space quantization 

absent in VERSF 

C.2 Causal Set Theory 

Core Differences: 

• Causal Sets: Spacetime is a discrete set of events with causal ordering, no fixed 

background metric 

• VERSF: Fixed lattice background with Minkowski structure at large scales 

Distinguishing Predictions: 

Observable Causal Sets VERSF 

Fundamental 

discreteness 
Poisson-distributed random events Regular lattice structure 

Lorentz violation 
Fluctuations around continuum 

limit 
Systematic lattice corrections 

Causal structure Fundamental causal ordering 
Emergent from lattice light-

cones 

Topology change Natural through link changes Requires lattice restructuring 

Key Discriminator: 

• Causal sets: Predict stochastic fluctuations in spacetime geometry 

• VERSF: Predicts systematic, deterministic lattice artifacts 

C.3 Causal Dynamical Triangulation (CDT) 

Core Differences: 

• CDT: Spacetime emerges from Monte Carlo sum over triangulated geometries 

• VERSF: Fixed lattice with deterministic evolution rules 

Distinguishing Predictions: 

Observable CDT VERSF 

Dimensional 

reduction 

Effective dimension → 2 at small 

scales 
Maintains d=4 at all scales 

Emergent geometry Dynamic, fluctuating geometry Fixed lattice with smooth limit 

Phase transitions Multiple geometric phases Single lattice phase 
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Observable CDT VERSF 

Path integral Gravitational path integral 
Quantum cellular automaton 

evolution 

Experimental Distinction: 

• CDT: Predicts anomalous dimensional scaling in high-energy scattering 

• VERSF: Predicts systematic dispersion corrections but maintains dimensional scaling 

C.4 Holographic/AdS-CFT Approaches 

Core Differences: 

• Holography: Bulk physics encoded on boundary degrees of freedom 

• VERSF: Information processing throughout bulk lattice volume 

Key Distinctions: 

Aspect Holographic VERSF 

Information location Boundary surface Distributed in bulk 

Entropy bounds Holographic entropy bound Lattice-based information limits 

Dimensionality Effective dimension reduction Fixed 4D lattice structure 

Black hole information Information preserved on horizon Information in bulk lattice + void 

Experimental Tests: 

• Holographic: Black hole entropy exactly proportional to area 

• VERSF: Black hole entropy may show lattice corrections to area law 

C.5 Unique VERSF/BSI Signatures 

What Makes Our Predictions Different: 

1. Triple Consistency Protocol: No other theory predicts that dispersion, resonance, and 

coherence measurements must yield identical length scales 

2. Universal BSI Ratio: The ~0.97 tipping-to-half-injection ratio is unique to our 

decoherence inscription model 

3. Void Substrate Signatures: Persistent quantum correlations during "refresh gaps" 

distinguishes VERSF from theories without persistent substrates 

4. Binary Inscription Dynamics: Hazard function separability (independent T₁/T₂ effects) 

is not predicted by standard decoherence theory 

5. Information-Theoretic Convergence: Using the convergence of Margolus-Levitin, 

Bremermann, and Bekenstein bounds as evidence for discrete refresh rates is unique to 

VERSF 
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Competitive Testing Strategy: Design experiments that pit VERSF predictions against specific 

alternatives: 

• vs LQG: Compare predicted α coefficients in dispersion relations 

• vs Causal Sets: Look for regular vs random discreteness signatures 

• vs CDT: Test for dimensional scaling anomalies vs systematic lattice effects 

• vs Holographic: Compare bulk vs boundary information storage predictions 

For everyone: Science advances by designing experiments that can distinguish between 

competing ideas. Each theory makes different predictions, so careful measurements can tell us 

which (if any) describes reality. 
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