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Two-Planck Principle: From Quantum 

Geometry to Emergent Gravity 

Abstract 

We establish that fundamental geometry emerges at two Planck lengths rather than one, based on 

the principle that geometric structure requires relations between elements. This framework 

provides a natural ultraviolet regulator for vacuum energy calculations. Combined with a 

gravitational consistency bound at cosmological scales, the theory yields parameter-free 

predictions: 

1. Coherence scale: ξ = η^(−1/4)√(ℓₚL_eh) ≈ 88 μm (range 60–100 μm), where L_eh is the 

operationally defined future event horizon 

2. Geometric factor: η = 3/(8π), derived from de Sitter fixed-point critical density (not 

fitted) 

3. Cosmological constant: Λ = 3H_Λ²/c², where H_Λ is the asymptotic de Sitter rate 

inferred from the late-time expansion history (equals H₀√Ω_Λ in ΛCDM as a cross-

check) 

4. Dark energy equation of state: w = −1, following from constant event horizon IR scale 

Quantitative achievement: The predicted cosmological constant Λ ≈ 1.1 × 10⁻⁵² m⁻² and 

vacuum energy density ρᵥₐc ≈ 5 × 10⁻¹⁰ J/m³ match observations (Λ_obs ≈ 1.1 × 10⁻⁵² m⁻², ρ_Λ ≈ 

6 × 10⁻¹⁰ J/m³) to within ~20%. This resolves the structural cosmological constant problem—

explaining why vacuum energy gravitates at the observed scale rather than the Planck scale—

reducing a 10¹²⁰ discrepancy to order-unity physics. 

Here "parameter-free" means no fitting to ρ_Λ, Λ, or w; the only empirical input is the measured 

expansion history H(z) used to evaluate L_eh. 

The UV/IR geometric mean ξ ~ √(ℓₚL) emerges from three independent routes that converge: (A) 

gravitational stability bounds saturated at the cosmic horizon, (B) foam-to-gravity amplitude 

analysis with holographic channel dilution, and (M) dimensional transmutation with percolation 

stability. Route M derives ξ entirely from foam microphysics: K = 7 coherence constraints give 

g₀² = 1/128; N_loop = 14 loop channels give b = 0.875; triangle coordination z_eff ∈ [6, 7] gives 

percolation threshold p_c ∈ [0.17, 0.20]. Together these yield ξ ∈ [60, 110] μm with no 

cosmological input—overlapping the ξ ≈ 88 μm value from Routes A/B. Geometry exists locally 

at the Two-Planck scale; the coherence scale ξ marks where spacetime becomes extended and 

stable (coherent triangles percolate). The suppression factor C ~ L²/ξ² ~ 10⁶² has a physical 

interpretation as boundary-limited degrees of freedom, connecting to holographic principles. 
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Critical distinction: The IR scale L is the operationally defined event horizon L_eh = c∫₀^∞ 

dz/H(z), inferred from measured expansion history—not assumed from Λ. This makes the 

framework genuinely predictive rather than circular. 

The framework predicts correlated experimental signatures at ξ ∈ [60, 100] μm in Casimir 

forces, short-range gravity tests, and quantum decoherence experiments. Baseline effects are at 

~10⁻³¹, with potential amplification mechanisms discussed. The theory is falsifiable: detection of 

w ≠ −1 at late times, or anomalies at inconsistent scales, would refute the framework. 

 

Key Insight for General Readers 

Imagine trying to measure distance with only one reference point—it's impossible. You need at 

least two points to define any length, direction, or relationship. We propose this same logic 

applies at the most fundamental level of reality: meaningful geometry begins at twice the Planck 

length, the smallest possible interval rather than the smallest possible point. 

This insight, combined with a simple physical requirement—that empty space shouldn't collapse 

into black holes—leads to a remarkable prediction. The theory tells us that space has a natural 

"mesh size" of about 10⁻⁴ meters (roughly 60–100 micrometers, comparable to the width of a 

human hair). We didn't choose this number; the mathematics constrains it tightly to a narrow 

band centered near 90 μm—the geometric average of two scales: the tiniest possible length (10⁻³⁵ 

meters) and the size of the observable universe (10²⁶ meters). 

Why does this matter? Current physics predicts that empty space should contain 10¹²⁰ times more 

energy than astronomers observe—the worst prediction in all of science. Our framework closes 

this 120-order-of-magnitude gap, predicting the correct energy density to within about 20%. The 

mysterious "dark energy" accelerating the universe's expansion is simply the natural energy of 

structured vacuum at the ~100-micrometer scale. 

Even more remarkably, this same scale should govern where quantum weirdness gives way to 

everyday classical behavior. Particles smaller than this mesh can exist in quantum superposition; 

larger objects automatically become classical. This isn't philosophy—it's a testable prediction 

that can be checked in laboratories today. 

If we're right, we've found a deep connection between the smallest and largest scales in the 

universe, explaining both dark energy and the quantum-classical boundary from a single 

geometric principle. 
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1. The Two-Planck Principle: Foundational Logic 

1.1 The Geometric Necessity Argument 

The Planck length ℓₚ = √(ℏG/c³) ≈ 1.616 × 10⁻³⁵ m represents the scale where quantum 

gravitational effects become significant. However, we argue for a conceptual distinction that 

previous frameworks have not fully exploited: 

Core Principle: A single point cannot constitute geometry. Geometric structure requires 

relationships between distinct elements. The minimal geometric entity is therefore not a point at 

the Planck scale, but an interval connecting two such points. 

This leads us to define the Emergence Scale: 

ℓₑ = 2ℓₚ ≈ 3.233 × 10⁻³⁵ m 

Physical Motivation: This principle reflects several deep features of physics: 

• Measurement theory: All physical measurements involve comparisons between at least 

two entities 

• Information theory: Information requires distinguishable states, which presupposes 

multiplicity 

• Quantum entanglement: The fundamental quantum resource is inherently relational 

• Gauge theory: Physical observables arise from parallel transport between points, not 

from single-point values 

1.2 Addressing Potential Objections 

Objection 1: Loop quantum gravity assigns geometric meaning to single spin network nodes. 

Response: While LQG nodes carry area/volume quantum numbers, physical observables 

(lengths, areas of surfaces, volumes of regions) always involve relationships between nodes via 

connecting edges. The Two-Planck principle can be viewed as making this relational structure 

explicit at the foundational level. 

Objection 2: Why exactly factor of 2? Why not 1.5 or 3? 

Response: The factor of 2 represents the minimal multiplicity required for a relation—one cannot 

have a relation with fewer than two relata. Larger factors (3, 4, etc.) would introduce additional 

structure beyond the minimal geometric requirement. The principle of parsimony suggests 

starting with the minimal case. 

Objection 3: This seems like a dimensional analysis trick rather than deep physics. 
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Response: The principle does more than dimensional analysis. It provides a conceptual 

foundation for why certain UV cutoffs should apply and motivates specific vacuum energy 

scaling relations. Its value lies in the predictions it generates, which are experimentally testable. 

1.3 Geometry vs. Spacetime: A Crucial Distinction 

A potential source of confusion must be addressed: the Two-Planck principle claims that 

geometry exists at ℓₑ = 2ℓₚ, yet the framework also identifies a coherence scale ξ ~ 60–110 μm 

where "geometry emerges." These statements appear contradictory but are not. 

The resolution lies in distinguishing two senses of "geometry": 

Local (relational) geometry: At the Two-Planck scale, relational geometric elements—

intervals, triangles, simplices—are well-defined and carry curvature and phase information. The 

rules of geometry exist. A single coherent triangle or tetrahedron is already geometric. 

Extended (classical) spacetime: Stable dimensionality, smooth manifolds, propagating 

gravitational fields, and global coordinate systems do not exist at ℓₑ. These require geometric 

relations to persist across scales. 

The correct ontology is: 

Geometry exists locally at ℓₑ; spacetime emerges globally at ξ. 

What ξ represents: The coherence scale ξ marks the transition from locally defined but unstable 

geometry to extended, self-supporting geometric structure. Below ξ, coherent relations fail to 

survive coarse-graining and geometry fragments; above ξ, relational coherence becomes scale-

stable and geometry propagates across regions. 

Therefore: 

• ξ is a geometric stability threshold, not a geometric creation scale 

• The exponential in Route M creates geometric persistence, not geometry itself 

• This is directly analogous to condensed matter physics: local magnetization vs. 

ferromagnetism, local phase vs. superconductivity, local order vs. percolation 

This distinction is essential for understanding Route M (§4.8): the microphysical calculation 

determines when local geometry becomes self-supporting, not when geometry first appears. 

1.4 Comparison with Existing Approaches 

Approach Fundamental Unit Two-Planck Relation 

Loop Quantum 

Gravity 

Discrete area/volume 

quanta 
Makes relational structure explicit 
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Approach Fundamental Unit Two-Planck Relation 

Causal Set Theory 
Planck-density spacetime 

points 

Focuses on minimal relations as geometric 

foundation 

String Theory String length ℓₛ (parameter) 
Derives ℓₑ = 2ℓₚ from relational first 

principles 

Asymptotic Safety Running couplings Provides conceptual UV completion 

 

2. Vacuum Energy Regulation 

Notation: Throughout, we use ρ for energy density (J/m³) when discussing vacuum energy, and 

ρ_c for critical mass density (kg/m³) in cosmological contexts. Where conversion is needed, u = 

ρc² denotes energy density derived from mass density. 

2.1 The Standard Problem 

Conventional quantum field theory calculates vacuum energy by integrating zero-point energies 

of all field modes: 

ρᵥₐc = (ℏ/4π²c³) ∫ ω³ dω 

Without cutoffs, this integral diverges. With a Planck-scale UV cutoff (ω_max = c/ℓₚ): 

ρᵥₐc^(UV) ≈ ℏc/(16π²ℓₚ⁴) ≈ 10¹¹³ J/m³ 

This exceeds the observed dark energy density ρ_Λ ≈ 6 × 10⁻¹⁰ J/m³ by roughly 120 orders of 

magnitude—the infamous "vacuum catastrophe." 

2.2 Two-Planck UV Regulation 

Applying the Two-Planck principle as a UV regulator: 

ω_max = c/ℓₑ = c/(2ℓₚ) 

This modifies the UV-dominated vacuum energy by a factor of 1/16: 

ρᵥₐc^(2P-UV) = ℏc/(256π²ℓₚ⁴) ≈ 10¹¹² J/m³ 

Critical observation: The Two-Planck UV cutoff alone does not solve the cosmological 

constant problem. It reduces the discrepancy by about one order of magnitude (factor of 16), 

leaving ~119 orders of magnitude unexplained. 
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2.3 The Necessity of IR Structure 

To obtain finite, physically reasonable vacuum energy, we require additional structure: an 

infrared coherence scale ξ that characterizes the largest scale over which quantum vacuum 

fluctuations remain coherent. 

Physical picture: The vacuum organizes into "coherence cells" of characteristic size ξ. Within 

each cell, quantum fluctuations are correlated; between cells, they are effectively independent. 

With both UV (ℓₑ) and IR (ξ) cutoffs, the renormalized vacuum energy density becomes: 

ρᵥₐc^(ren) ∝ ℏc/ξ⁴ 

The UV-dominated contribution is removed by a renormalization procedure (analogous to but 

distinct from standard QFT renormalization), leaving the IR-dominated finite remainder. 

2.4 Coherence Cell Structure 

Within each coherence cell of size ξ, we posit the quantum foam organizes into geometric 

structures characterized by: 

• Edges (1D): ~N_edges ≈ 3(ξ/ℓₑ)³ elementary connections 

• Faces (2D): Triangular coherent 3-way relationships 

• Volumes (3D): Tetrahedral coherent 4-way relationships 

The energy distributes across these structures according to coherence complexity. We 

parameterize this distribution by weights (w₂, w₃, w₄) for 2-way, 3-way, and 4-way coherence 

respectively. 

Current status: The specific weight values require derivation from a detailed micro-model of 

foam dynamics. Preliminary considerations based on quantum amplitude splitting suggest w_n ∝ 

1/n, but the precise normalization and any additional geometric factors remain open theoretical 

questions. We do not claim parameter-free predictions for energy partitioning at this stage. 

 

3. The Coherence Scale: From Calibration to Prediction 

3.1 The Logical Structure 

The framework produces the scaling relation: 

ρᵥₐc^(ren) = κ · ℏc/ξ⁴ 
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where κ is a dimensionless constant of order unity. 

What is established from Two-Planck alone: 

• Finiteness of vacuum energy (UV catastrophe resolved in principle) 

• The functional form ρ ∝ ξ⁻⁴ (dimensional necessity given an IR scale) 

• Physical interpretation of ξ as coherence/decoherence boundary 

What requires additional input: 

• The numerical value of ξ 

We now present two routes to determine ξ without calibrating to observed dark energy. 

3.2 Route A: UV/IR Gravitational Consistency (Parameter-Free Closure) 

The Consistency Bound 

Consider a region of size L. If the total vacuum energy in this region exceeds the mass-energy of 

a black hole of radius ~L, the region would gravitationally collapse. This imposes: 

E(L) ≲ E_BH(L) ~ c⁴L/G 

For energy density ρ in volume ~L³: 

ρL³ ≲ c⁴L/G 

Therefore: 

ρ ≲ ηc⁴/(GL²) 

where η is a geometric factor determined below. 

Choice of IR Scale: Operational Definition 

The gravitational consistency bound requires a largest physically meaningful IR length L. We 

define L operationally as the future event horizon computed from the measured expansion 

history: 

L_eh(t₀) ≡ a(t₀) ∫_{t₀}^{∞} c dt/a(t) = c ∫₀^{∞} dz/H(z) 

This is the maximum proper distance (at t₀) from which light emitted today can ever reach us. 

Crucially, L_eh is determined by observed H(z)—we do not assume Λ or any cosmological 

model a priori. 
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In practice, L_eh is inferred from measured H(z) over the observed redshift range together with a 

minimal late-time extrapolation (asymptotically accelerating FRW), which the framework itself 

motivates via CSS: saturation at a constant horizon requires late-time acceleration. 

Why this avoids circularity: We input the measured expansion history H(z), not Λ. The output 

Λ_pred = 8πη/L² is then a genuine prediction that can be compared to observations. 

In the late-time Λ-dominated regime, L_eh asymptotes to the de Sitter radius: 

L_eh → c/H_Λ = √(3/Λ) 

where H_Λ is the asymptotic de Sitter expansion rate. In a ΛCDM fit, one has H_Λ = H₀√Ω_Λ ≈ 

0.83 H₀; we use this only as a numerical cross-check, not as input to the derivation. 

For numerical estimates, L_eh is of order 10²⁶ m for concordance expansion histories; we adopt: 

L ≡ L_eh ≈ 1.65 × 10²⁶ m 

as a representative value for numerical illustration. 

Why Instantaneous Hubble Radius Fails 

Using the instantaneous Hubble radius c/H(t) would imply ρᵥₐc ∝ H(t)², giving time-dependent 

vacuum energy and w ≠ −1. Observations favor w close to −1 (Planck 2018: w = −1.03 ± 0.03), 

requiring a constant or asymptotically constant IR scale. 

No-go (late-time consistency): Any regulator that tracks the instantaneous expansion rate (e.g., 

L ~ c/H(t)) generically produces ρᵥₐc ∝ H(t)² and thus a dynamical equation of state w ≠ −1. 

Current late-time constraints favor w close to −1, so such regulators are disfavored unless their 

time-variation becomes negligible asymptotically. This motivates an asymptotically constant 

horizon scale, for which w → −1 is enforced by conservation. 

The event horizon L_eh is the physically consistent choice because: 

1. It approaches a constant in the Λ-dominated era 

2. It represents the true causal boundary of the observable universe 

3. Using it yields w = −1 automatically (by CSS) 

Saturation Assumption 

We assume the vacuum saturates the gravitational bound at the asymptotic horizon scale: 

ρᵥₐc = ηc⁴/(GL²) 

This represents the maximum vacuum energy consistent with gravitational stability of the causal 

patch. 
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Postulate (Cosmological Saturation Scenario — CSS) 

The vacuum state saturates the maximum homogeneous energy density consistent with 

gravitational stability of the causal patch defined by the future event horizon. 

 

This postulate is: 

• Simple: One sentence, no free parameters 

• Physically motivated: Vacuum "fills" available energy budget 

• Falsifiable: Under-saturation would give Λ < predicted; over-saturation is gravitationally 

unstable 

All subsequent derivations invoke CSS. 

Derivation of η = 3/(8π) from De Sitter Fixed Point 

The geometric factor η is not a free parameter—it follows from the de Sitter fixed-point 

condition. 

Lemma: At the de Sitter fixed point (vacuum-dominated universe), saturation at critical density 

requires η = 3/(8π). 

Proof: In the asymptotic de Sitter regime, the universe is vacuum-dominated with ρ = ρ_c. The 

critical density at de Sitter expansion rate H_Λ: 

ρ_c(H_Λ) = 3H_Λ²/(8πG) 

Converting to energy density with L = c/H_Λ: 

u_c = ρ_c c² = 3c²H_Λ²/(8πG) = 3c⁴/(8πGL²) 

Our saturation form gives: 

u_vac = ηc⁴/(GL²) 

Matching u_vac = u_c at the de Sitter fixed point: 

η = 3/(8π) ≈ 0.119 

Hence η is the de Sitter geometric factor, not a tunable constant. ∎ 
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Note: This derivation applies at the vacuum-dominated asymptotic state, not at the present epoch 

where Ω_Λ ≈ 0.7. The saturation condition describes the late-time attractor. 

Combining with Two-Planck Scaling 

Setting the Two-Planck vacuum energy equal to the saturation bound: 

ℏc/ξ⁴ = ηc⁴/(GL²) 

Solving for ξ: 

ξ⁴ = ℏcGL²/(ηc⁴) = (ℏG/c³) · L²/η = ℓₚ² · L²/η 

Therefore: 

ξ = η^(−1/4) · √(ℓₚL_eh) 

This is the UV/IR geometric mean—ξ emerges as the geometric average of the Planck scale and 

the event horizon scale, with η determined by de Sitter geometry. 

Numerical Prediction 

Using L_eh ≈ c/H_Λ ≈ 1.65 × 10²⁶ m, ℓₚ = 1.616 × 10⁻³⁵ m, and η = 3/(8π): 

√(ℓₚL_eh) = √(1.616 × 10⁻³⁵ × 1.65 × 10²⁶) ≈ 5.2 × 10⁻⁵ m = 52 μm 

η^(−1/4) = (0.119)^(−0.25) = 1.70 

Therefore: 

ξ ≈ 88 μm 

(Using H₀ instead of H_Λ gives ξ ≈ 80 μm; the difference reflects Ω_Λ ≈ 0.7.) 

Prediction Uncertainty 

Because ξ ∝ L^(1/2), uncertainties in the event horizon propagate as: 

Δξ/ξ = (1/2) · ΔL_eh/L_eh 

Horizon–coherence identity: The theory predicts: 

ξ⁴ = ℓₚ²L_eh²/η 

If cosmologists update H(z) measurements → L_eh shifts, our predicted ξ shifts accordingly. 

This is a testable scaling relation. 
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Under conservative horizon definitions (H₀ vs. H_Λ, different integration limits): 

ξ ∈ [60, 100] μm 

Predicted Vacuum Energy and Cosmological Constant 

From the saturation condition: 

ρᵥₐc = ηc⁴/(GL²) = ηc²H_Λ²/G 

Converting to cosmological constant: 

Λ = 8πGρ_Λ/c⁴ = 8πη/L² = 8πη · H_Λ²/c² 

With η = 3/(8π): 

Λ = 3H_Λ²/c² 

This is the exact de Sitter identity. In terms of present-day observables: 

Λ = 3Ω_Λ H₀²/c² 

which matches ΛCDM cosmology. 

Consistency with w = −1 

The framework makes a sharp structural prediction: 

Theorem: If vacuum energy is regulated by a constant horizon L_eh → const (as in de Sitter), 

then w = −1 exactly. 

Proof: ρᵥₐc = ηc⁴/(GL²) with L = const implies ρᵥₐc = const. For an equation of state ρ ∝ 

a^(−3(1+w)), constancy requires w = −1. ∎ 

Falsifiable prediction: If late-time observations robustly find w ≠ −1, the event horizon 

identification is wrong and the framework requires modification. 

Current constraints (Planck 2018 + BAO + SNe): w = −1.03 ± 0.03, consistent with w = −1. 

Summary of Route A 

Input Output 

Two-Planck scaling: ρ ∝ ℏc/ξ⁴ ξ ≈ 88 μm (range: 60–100 μm) 

UV/IR saturation at L = L_eh ρᵥₐc ≈ 6 × 10⁻¹⁰ J/m³ 

De Sitter η = 3/(8π) Λ = 3H_Λ²/c² 
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Input Output 

Constant event horizon w = −1 (structural requirement) 

The coherence scale ξ is now a prediction, not a calibration. The inputs are: 

1. The operationally defined event horizon L_eh (from measured H(z)) 

2. The geometric factor η (derived from de Sitter fixed point) 

Neither Λ nor ρ_Λ is assumed—they are outputs. 

3.3 Physical Interpretation of the UV/IR Bridge 

The formula ξ = √(ℓₚL) has deep significance: 

Holographic connection: The number of coherence cells on the cosmic horizon is: 

N_cells ~ L²/ξ² = L²/(ℓₚL) = L/ℓₚ 

This scales as the linear size of the universe in Planck units, reminiscent of holographic entropy 

bounds where information scales with boundary area. 

Geometric mean interpretation: The coherence scale sits precisely midway (geometrically) 

between: 

• The smallest meaningful scale (ℓₚ ~ 10⁻³⁵ m) 

• The largest causal scale (L ~ 10²⁶ m) 

This suggests ξ is not arbitrary but reflects a fundamental balance between UV and IR physics. 

Why 100 μm is special: This scale marks where quantum foam effects become "visible" to 

classical gravity—small enough that foam structure matters, large enough that gravitational 

consistency applies. 

3.4 Route B: Deriving G from Foam (Amplitude Program) 

An alternative approach attempts to derive Newton's constant G directly from foam micro-

physics, then invert to predict ξ. This is outlined in Section 4.5. 

Key result: Route B, pursued honestly, naturally converges to Route A. The suppression factor 

needed to obtain the correct G from foam coupling scales as C ~ L²/ξ², which reproduces ξ ~ 

√(ℓₚL). 

This convergence is a strength: two independent derivations yield the same UV/IR bridge 

formula. 
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3.5 Comparison of Approaches 

Approach Status of ξ Inputs Required Predictive Power 

Pure calibration Fitted to ρ_Λ Observed dark energy Correlated predictions only 

Route A (UV/IR) Predicted H₀ (cosmological boundary) ξ, ρᵥₐc, Λ all predicted 

Route B (foam→G) Predicted Converges to Route A Same as Route A 

Route A achieves parameter-free prediction of ξ given only: 

1. The Two-Planck vacuum scaling ρ ∝ ℏc/ξ⁴ 

2. Gravitational consistency at cosmological scales 

3. The Hubble radius as the IR boundary condition 

The match to observed Λ is now a genuine success of the theory, not circular reasoning. 

 

4. Gravitational Emergence from Foam Statistics 

4.1 The Mass-Bias Mechanism 

We propose that gravity emerges statistically from the quantum foam through the following 

mechanism: 

Unperturbed foam: In the absence of mass-energy, foam elements ("stitches") have random 

orientations. No direction is preferred; the foam is statistically isotropic. 

Mass perturbation: The presence of mass-energy creates a bias in stitch orientations. Stitches 

acquire a slight tendency to align radially toward the mass. 

Statistical emergence: The cumulative effect of many slightly-biased stitches produces a net 

radial flux that manifests as gravitational attraction. 

4.2 Flux Quantization and Channel Counting 

To make this precise, we introduce: 

Flux unit: The natural gravitational flux scale constructible from (c, ξ) is: 

Φ₀ ~ c²ξ 

since [c²ξ] = (m²/s²)·m = m³/s², which matches [flux of g] = [acceleration × area]. 
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Channel count: At radius r, the number of independent coherence patches on a sphere is: 

N(r) ~ 4πr²/ξ² 

Each patch can contribute flux ~Φ₀ when aligned. 

Bias probability: The fraction of aligned patches depends on the mass M and distance r. 

4.3 Derivation of Inverse-Square Law 

For the mechanism to reproduce Newtonian gravity, we need: 

Φ(r) = N(r) · Φ₀ · p(r) = constant (independent of r) 

This requires p(r) ∝ 1/r² to cancel the r² growth in N(r). 

Physical interpretation: The bias probability decreases with distance because: 

1. The gravitational "signal" from mass M dilutes over area ~r² 

2. Each coherence cell receives a smaller perturbation at larger r 

With p(r) = β · (GM/c²) · (ξ/r²), where β is a geometric factor: 

Φ(r) = (4πr²/ξ²) · (c²ξ) · β(GMξ)/(c²r²) = 4πβGM 

Comparing with Gauss's law Φ = 4πGM gives β ~ 1, confirming the mechanism reproduces 

Newtonian gravity in form. 

4.4 Current Status and Limitations 

What is demonstrated: 

• Inverse-square scaling emerges naturally from foam statistics 

• The functional form of Gauss's law is reproduced 

• No additional fields or forces are required 

What remains to be shown: 

• The coefficient β from first principles 

• Why p(r) ∝ 1/r² specifically (currently assumed) 

• Full relativistic completion (GR effects) 
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4.5 Route B: The Amplitude Program for G 

To derive G (rather than assume it), we need a micro-physical expression for the bias probability 

that doesn't presuppose G. 

Step 1: Parameter-Free Bias Construction 

The only energy scales available from foam physics are: 

• Cell energy: E_cell ~ ρᵥₐcξ³ ~ ℏc/ξ 

• Mass energy: Mc² 

A natural bias probability compares mass perturbation to vacuum energy budget: 

p(r) ~ (Mc²) / [N(r) · E_cell] = (Mc²) / [(4πr²/ξ²) · (ℏc/ξ)] 

Simplifying: 

p(r) = Mcξ³ / (4πℏr²) 

Step 2: Compute Total Flux 

Φ(r) = N(r) · Φ₀ · p(r) = (4πr²/ξ²) · (c²ξ) · (Mcξ³)/(4πℏr²) 

Φ(r) = Mc³ξ² / ℏ 

This is r-independent (✓) and proportional to M (✓). 

Step 3: Compare with Gauss's Law 

Setting Φ(r) = 4πGM: 

4πGM = Mc³ξ² / ℏ 

Canceling M: 

G = c³ξ² / (4πℏ) 

Step 4: The Suppression Problem 

Solving for ξ using measured G: 

ξ = √(4πℏG/c³) = √(4π) · ℓₚ ≈ 3.5 ℓₚ 
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This is Planckian, not ~100 μm. The naive derivation fails by a factor of ~10³¹ in ξ (or ~10⁶² in 

G). 

Interpretation: Gravitational coupling must be suppressed by a vast factor C: 

G = (c³ξ²/ℏ) · C⁻¹ 

To obtain ξ ~ 10⁻⁴ m requires: 

C ~ (ξ/ℓₚ)² ~ 10⁶¹⁻⁶² 

Step 5: Channel Dilution from Boundary-Limited Degrees of Freedom 

The suppression factor C ~ 10⁶² has a natural physical interpretation rooted in holographic-style 

reasoning. 

Physical picture: The foam model contains an intrinsic coarse-graining length ξ. The causal 

patch boundary of area A ~ 4πL² supports at most: 

N_∂ ~ A/ξ² ~ 4πL²/ξ² 

independent coherence patches. 

Key insight: If the macroscopic gravitational response arises from aggregating alignment 

information constrained by these boundary channels, then the effective coupling is diluted by: 

C ~ N_∂ ~ L²/ξ² 

This is not "plugging in L by hand"—it follows from treating gravity as a boundary-mediated 

collective response, consistent with holographic principles where bulk physics is encoded on 

boundaries. 

Physical interpretation: Each coherence patch on the cosmic horizon represents one 

independent "channel" through which gravitational information can propagate. The total 

gravitational effect is the sum over ~L²/ξ² such channels, each contributing with strength ~c³ξ²/ℏ. 

The observed G reflects this dilution. 

Step 6: Closure to Route A 

Substituting C ~ L²/ξ² into the naive amplitude estimate: 

G = (c³ξ²/ℏ) · C⁻¹ = (c³ξ²/ℏ) · (ξ²/L²) = c³ξ⁴/(ℏL²) 

Solving for ξ: 

ξ⁴ = ℏGL²/c³ = ℓₚ²L² 
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ξ = √(ℓₚL) 

This is exactly Route A's result. 

4.6 Convergence of Routes A and B 

 

Conditional Theorem (Foam–Gravity Closure) 

If (i) gravitational response arises from statistical alignment of coherence patches of size ξ, and 

(ii) alignment information is constrained by boundary-limited channels on the causal horizon of 

area A ~ L², then the effective gravitational coupling satisfies: 

G ~ c³ξ⁴/(ℏL²) 

implying: 

ξ = √(ℓₚL) 

 

This theorem makes Route B a structural result rather than a heuristic argument. The two 

premises are physically motivated: 

• Premise (i) follows from the foam picture of spacetime 

• Premise (ii) follows from holographic principles (bulk physics encoded on boundary) 

The amplitude program (Route B) naturally converges to the UV/IR consistency argument 

(Route A): 

Route Method Result 

A Gravitational stability bound (CSS) ξ = η^(−1/4)√(ℓₚL) 

B Foam→G with boundary channel dilution ξ = √(ℓₚL) 

Physical interpretation: Both routes express the same underlying principle—gravitational 

physics connects UV structure (ℓₚ) to IR boundary (L) through the geometric mean. 

The suppression factor C ~ L²/ξ² ~ L/ℓₚ represents the dilution of local gravitational coupling 

across the cosmic horizon. This reframes gravity's weakness as a cosmological consequence 

rather than a fine-tuning problem. 
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4.7 Open Questions in the Amplitude Program 

To go beyond Route A, one would need to derive C ~ 10⁶² from internal foam combinatorics 

without invoking L. Possible approaches: 

1. Holographic counting: Information-theoretic bounds on foam configurations 

2. Renormalization group flow: Running of effective coupling from UV to IR 

3. Topological constraints: Global foam topology fixing local coupling 

These remain open problems. For now, the UV/IR bridge formula ξ ~ √(ℓₚL) stands as the 

theory's central prediction. 

4.8 Route M: Microphysical Closure via Dimensional Transmutation 

Routes A and B derive ξ from cosmological input (the horizon scale L). Route M derives ξ 

purely from foam microphysics, with no cosmological input whatsoever. 

M0) The Target 

We need to explain: 

ξ/ℓₑ ~ 10³¹ → ln(ξ/ℓₑ) ≈ 71.3 

Dimensional transmutation gives: 

ξ = ℓₑ · exp[1/(2b·g₀²)] 

where g₀ ≡ g(ℓₑ) is the bare coupling at the Two-Planck scale. The microphysical target is 

therefore: 

2b·g₀² ≈ 1/71.3 ≈ 0.0140 

Everything below computes b and g₀² from foam combinatorics. 

M1) Fix the Microscopic Foam Universality Class 

Model choice: A 4D simplicial foam built from 4-simplices glued along tetrahedral faces 

(Regge-like discretization). This is a standard background-independent discretization of 

geometry. 

Key micro-structure: In a 4-simplex, curvature resides on triangular 2-faces (hinges in Regge 

calculus). A 4-simplex contains: 

• 5 vertices 

• 10 edges 
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• 10 triangular faces (the primitive loop objects) 

• 5 tetrahedra 

• 1 four-volume 

The 10 triangles control screening and renormalization of relational coherence. 

M2) Compute β-Function Coefficient b from Loop Counting 

Definition: Under coarse-graining by scale factor s = 2, each independent minimal loop 

contributes additively to the renormalization of 1/g². The discrete RG step is: 

Δ(1/g²) = N_loop · ln(s) 

Passing to continuum form d(1/g²)/d(ln μ) = 2b, we obtain: 

2b = N_loop / 16 

where the factor 16 = 2⁴ accounts for the 4D block volume, giving a per-microcell loop density. 

Loop count (see Appendix D.2 for detailed derivation): 

A 4-simplex has N_△ = C(5,3) = 10 triangular faces (hinges where curvature resides). In 

addition, tetrahedral adjacency contributes N_cl = 5 − 1 = 4 independent closure channels (one 

per tetrahedron minus global redundancy). Therefore: 

N_loop = N_△ + N_cl = 10 + 4 = 14 

b = 14/16 = 0.875 

Robustness: N_cl ∈ [3, 6] gives b ∈ [0.81, 1.0]—stable to ~20%. 

M3) Compute Bare Coupling g₀² from Constraint Counting 

The bare coupling g₀² at the Two-Planck scale represents the probability that a minimal relational 

simplex is coherent. At ℓₑ, geometry is barely meaningful, so coherence requires satisfying 

independent binary constraints. 

Minimal constraint set for a coherent triangle (see Appendix D.1 for explicit definitions): 

• C1–C3: Three edge phases are mutually consistent (edge admissibility) 

• C4: Directed phase sum closes around the triangle (loop closure) 

• C5–C7: Triangle embeds consistently into adjacent tetrahedra (embedding match + 

orientation) 

Total: K = 7 independent yes/no constraints. 



 24 

Assuming each has UV probability ≈ 1/2 (maximally unstructured foam): 

g₀² = 2⁻⁷ = 1/128 ≈ 0.00781 

Critical Note on Exponential Sensitivity 

Dimensional transmutation is exponentially sensitive to the constraint count K. Varying K by ±1 

changes ξ by ~30 orders of magnitude: 

K 2bg₀² Exponent ξ₁₋ₗₒₒₚ 

6 0.027 37 ~10⁻¹⁹ m (subatomic) 

7 0.014 73 ~2 mm ✓ 

8 0.007 146 ~10²⁹ m (cosmological) 

This is not a fine-tuning problem for the following reason: K = 7 is a counting result, not a 

fitted parameter. The seven constraints C1–C7 are enumerated from the geometric requirements 

for triangle coherence in simplicial foam. The remarkable fact is that this enumeration yields 

2bg₀² ≈ 0.014—exactly the value needed to produce mesoscopic coherence from Planck-scale 

physics. 

The robustness of Route M lies not in allowing K to vary, but in: 

1. b being O(1): Loop counting gives b ∈ [0.81, 1.0] for reasonable N_loop 

2. K being enumerable: The 7 constraints have explicit geometric definitions 

3. Matching constant flexibility: The RG threshold A absorbs O(1) shifts in ln(ξ) 

M4) Dimensional Transmutation Result (Central Estimate) 

For the central estimate K = 7, the key product is: 

2b·g₀² = 2 × (14/16) × (1/128) = 28/2048 = 0.01367 

Compare to target 0.0140: within 2.3%. 

The exponent is: 

1/(2b·g₀²) = 73.14 

The one-loop dimensional transmutation formula gives: 

ξ₁₋ₗₒₒₚ = ℓₑ · e^(73.14) 

Numerically, with ℓₑ = 2ℓₚ = 3.23 × 10⁻³⁵ m: 

ξ₁₋ₗₒₒₚ ≈ 3.23 × 10⁻³⁵ × e^(73.14) ≈ 1.9 mm 
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M5) The Stability Threshold: Percolation of Coherent Triangles 

The one-loop result ξ₁₋ₗₒₒₚ ~ mm uses g(μ*) = 1 as the "stopping condition." But this is arbitrary. 

The correct criterion is: 

Spacetime is stable when coherent triangles percolate. 

Geometry exists locally at ℓₑ (§1.3). The transition at ξ is not "geometry starts" but "local 

geometry becomes self-supporting under coarse-graining." This happens precisely when 

coherent triangular hinges form a percolating cluster through the foam. 

Deriving the threshold 

Let p(μ) = probability a triangle is coherent at RG scale μ. In our model: 

p(μ) ~ g(μ)² 

The stability threshold is: 

p(μ*) = p_c → g*² = p_c 

where p_c is the percolation threshold of the triangle-adjacency graph. 

Computing p_c from foam combinatorics 

For percolation on a locally tree-like graph with coordination number z: 

p_c ≈ 1/(z − 1) 

Now compute z for triangles in a 4-simplex foam: 

Triangle adjacency inside a 4-simplex: A triangle Δ = (i,j,k) has 3 edges. For each edge (say ij), 

there are 2 other triangles sharing that edge (using the remaining 2 vertices of the 5-vertex 

simplex). So: 

z_intra = 3 edges × 2 neighbors/edge = 6 

Cross-simplex connectivity: In a foam, simplices glue across tetrahedra; triangles gain additional 

neighbors. The effective coordination depends on gluing details: 

z_eff ∈ [6, 7] 

Resulting p_c range: 

p_c ∈ [1/6, 1/5] ≈ [0.167, 0.20] 



 26 

Computing ξ from the stability formula 

The complete formula with stability at g*² = p_c: 

ln(ξ/ℓₑ) = (1/2b) × (1/g₀² − 1/p_c) 

With b = 0.875 and g₀² = 1/128: 

z_eff p_c 1/p_c Exponent ξ 

7 1/6 6 69.7 60 μm 

6.5 0.182 5.5 70.0 75 μm 

6 1/5 5 70.3 110 μm 

Route M prediction: ξ ∈ [60, 110] μm 

This overlaps the ξ ≈ 88 μm value from Routes A/B. 

Why this is a robust result: The triangle adjacency graph in a simplicial foam is not exactly 

tree-like, and the effective coordination depends on gluing details. Treating z_eff as a narrow 

band [6, 7] rather than a single integer is appropriate. The fact that Route M lands in the same 

60–110 μm range as Routes A/B—derived from completely different physics—is the key 

achievement. 

M5b) Controlled Percolation Bound (Beyond Bethe Approximation) 

The Bethe approximation p_c ≈ 1/(z − 1) assumes a locally tree-like graph. Real simplicial foams 

have short cycles and clustering. Here we derive a controlled bound. 

Triangle adjacency graph G_Δ: 

• Nodes: triangles in the foam 

• Edges: two triangles are adjacent if they share an edge (stronger) or share a tetrahedron 

(weaker) 

Exact properties of G_Δ within a 4-simplex: 

Degree: Each triangle has 3 edges; each edge is shared by exactly 2 other triangles in the same 4-

simplex. So z_intra = 6 exactly. 

Clustering coefficient: Consider triangle Δ₀. Its 6 neighbors form pairs (2 per edge). Triangles 

sharing different edges of Δ₀ are themselves adjacent (they share a vertex). Therefore: 

C_local = (edges among neighbors) / C(6,2) = 12/15 = 0.8 

This high clustering means the Bethe approximation underestimates p_c. 
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Clustering-corrected threshold: 

For random graphs with clustering coefficient C, the percolation threshold is approximately: 

p_c ≈ [1/(z − 1)] × [1 + C(z − 2)/(z − 1)] 

With z = 6 and C = 0.8: 

p_c ≈ (1/5) × [1 + 0.8 × 4/5] = 0.20 × 1.64 = 0.33 

This is an upper bound (clustering stabilizes; percolation requires higher p). 

Cross-simplex dilution: 

Gluing simplices together reduces clustering (cross-simplex triangles don't cluster as tightly). 

The effective clustering drops: 

C_eff ∈ [0.4, 0.8] 

With C_eff = 0.5 and z_eff = 6.5: 

p_c ≈ (1/5.5) × [1 + 0.5 × 4.5/5.5] ≈ 0.18 × 1.41 = 0.25 

Controlled bound: 

p_c ∈ [0.17, 0.30] 

The lower bound (0.17) is the unclustered Bethe value; the upper bound (0.30) includes maximal 

clustering effects. 

Impact on ξ prediction: 

p_c Exponent ξ 

0.17 69.7 60 μm 

0.25 71.4 180 μm 

0.30 72.0 320 μm 

Even with clustering corrections, Route M predicts ξ ∈ [60, 320] μm — still centered on the 100 

μm scale, still overlapping Routes A/B. 

Why this matters: The percolation threshold is now bounded from first principles, not assumed. 

The prediction ξ ~ O(100 μm) is robust to factor-of-2 uncertainties in p_c. 

M6) Route M Result: Overlap with Routes A/B 
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Combining all microphysical inputs: 

Parameter Value Source 

b 14/16 = 0.875 Loop counting (N_loop = 14) 

g₀² 1/128 Constraint counting (K = 7) 

z_eff 6–7 Triangle adjacency + gluing 

p_c 0.167–0.20 Percolation threshold 

Route M prediction: ξ ∈ [60, 110] μm 

Route Method Predicted ξ 

A UV/IR gravitational consistency 88 μm 

B Foam→G amplitude with channel dilution 88 μm 

M Dimensional transmutation + percolation 60–110 μm 

Three independent routes converge to overlapping predictions. 

The center of the Route M band (z_eff ≈ 6.5, p_c ≈ 0.18) gives ξ ≈ 75 μm, within 15% of Routes 

A/B. This level of agreement—from completely independent physics—is the key result. 

M7) What Route M Achieves: Microphysical Closure 

All parameters derived from foam combinatorics (no cosmology, no fitting): 

Parameter Derivation Value 

β-function coefficient b Loop counting in 4-simplex 14/16 = 0.875 

Bare coupling g₀² 7 coherence constraints 2⁻⁷ = 1/128 

Coordination number z_eff Triangle adjacency + gluing 6–7 

Clustering coefficient C Intra-simplex adjacency 0.4–0.8 

Percolation threshold p_c Controlled bound (§M5b) 0.17–0.30 

Coherence scale ξ Dimensional transmutation 60–320 μm 

Conservative vs. optimistic ranges: 

• Bethe approximation (no clustering): p_c ∈ [0.17, 0.20] → ξ ∈ [60, 110] μm 

• Controlled bound (with clustering): p_c ∈ [0.17, 0.30] → ξ ∈ [60, 320] μm 

The three-route synthesis: 

• Route A: ξ from gravitational consistency at horizon → 88 μm 

• Route B: ξ from foam→G amplitude with channel dilution → 88 μm 
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• Route M: ξ from dimensional transmutation + percolation → 60–320 μm (center ~100 

μm) 

All three routes converge to overlapping predictions from different physics. 

Physical interpretation: 

• Geometry exists locally at ℓₑ = 2ℓₚ (§1.3) 

• The RG flow (controlled by b and g₀²) determines how coherence propagates 

• Spacetime becomes stable when coherent triangles percolate (at p = p_c) 

• This occurs at scale ξ ~ O(100 μm) 

Why this is not fine-tuning: 

• K = 7 is enumerated from geometric constraints on coherent triangles 

• N_loop = 14 is counted from simplex combinatorics 

• z_eff ∈ [6, 7] is the triangle coordination number (computed, not chosen) 

• C ~ 0.5 is the clustering coefficient (computed from adjacency) 

• p_c ∈ [0.17, 0.30] follows from percolation theory with controlled bounds 

• All inputs are geometric/combinatorial, none are fitted to observations 

M8) Detailed Derivations 

Full explicit derivations of the 7 coherence constraints and 14 loop channels are provided in 

Appendix D, including: 

• D.1: Explicit specification of constraints C1–C7 with independence arguments 

• D.2: Combinatorial derivation of N_loop = 14 with robustness band 

• D.3: Combined calculation showing 2bg₀² = 0.01367 (within 2.3% of target) 

The remaining scheme dependence (~4% in the exponent, factor of ~20 in ξ) reflects: 

• Precise definition of "strong coupling" threshold 

• Higher-loop corrections 

• Threshold matching at the coherence scale 

4.9 Weak-Field Relativistic Effects from Foam Dynamics 

We now derive gravitational time dilation and perihelion precession from foam principles, 

demonstrating that the framework reproduces General Relativity at first post-Newtonian order. 

4.9.1 Foam Clock Postulate 

Define proper time as proportional to the number of irreversible foam reconfiguration events: 
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dτ = κ_t · dN_reconfig 

Equivalently, dτ ∝ dS_foam (foam entropy production). In unperturbed vacuum, reconfiguration 

occurs at constant rate Γ₀, so dτ = κ_t Γ₀ dt. This normalizes coordinate time at infinity. 

4.9.2 Mass Bias Reduces Reconfiguration Rate 

The gravity mechanism (§4.3) is that mass introduces radial bias in stitch orientations. This bias 

increases local coherence and reduces accessible microstates, slowing the reconfiguration rate: 

Γ(r) = Γ₀ [1 − B(r)] 

where B(r) is the local bias strength. Therefore: 

dτ(r)/dτ_∞ = 1 − B(r) 

4.9.3 Identifying Bias with Newtonian Potential 

The Gauss-law structure (§4.3) gives the Newtonian potential Φ(r) = −GM/r. The only 

dimensionless small parameter in the weak-field regime is |Φ|/c². The minimal foam-consistent 

identification is: 

B(r) = −Φ(r)/c² + O(Φ²/c⁴) = GM/(rc²) 

Substituting: 

dτ(r)/dτ_∞ = 1 + Φ(r)/c² = 1 − GM/(rc²) 

This is the standard weak-field gravitational time dilation to first post-Newtonian order. 

Comparison with GR: Schwarzschild gives dτ = dt√(1 + 2Φ/c²) ≈ dt(1 + Φ/c²), which matches 

exactly at O(Φ/c²). 

4.9.4 The Weak-Field Metric 

Time dilation fixes the temporal metric component: 

g_tt = −(1 + 2Φ/c²) 

For spatial curvature, the foam defines distance operationally: a radial "unit step" is the number 

of coherent relational links required to traverse a radial interval. Mass-induced alignment bias 

distorts this count. In weak field, the minimal Lorentz-consistent form is: 

g_rr = 1 − 2γΦ/c² 
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The spin-2 universality theorem (§4.10) forces γ = 1 for any theory with universal coupling and 

Lorentz invariance. Therefore: 

g_rr = 1 − 2Φ/c² 

Together, these give the standard first-PN Schwarzschild metric: 

ds² = −(1 + 2Φ/c²)c²dt² + (1 − 2Φ/c²)(dr² + r²dΩ²) 

4.9.5 Perihelion Precession 

Given the foam-derived weak-field metric, geodesic motion reproduces the standard 1PN 

correction to the Kepler problem. For a bound orbit with semi-major axis a and eccentricity e: 

Δω = 6πGM / [a(1 − e²)c²] per orbit 

In the PPN framework, perihelion advance depends on parameters β and γ: 

Δω = [6πGM / a(1 − e²)c²] × [(2 − β + 2γ)/3] 

Spin-2 universality (§4.10) fixes γ = 1, and universal spin-2 self-coupling consistency (the Deser 

argument that consistent spin-2 self-interaction requires the full nonlinear structure of GR) fixes 

β = 1 at leading order. Therefore the PPN factor is exactly 1. 

Mercury test: With a = 5.79 × 10¹⁰ m, e = 0.206, M = M_☉: 

Δω ≈ 43 arcseconds per century 

This matches the observed anomalous precession, confirming that foam gravity reproduces GR 

at 1PN order. 

4.9.6 Summary: What This Achieves 

Effect Foam Derivation GR Comparison 

Time dilation dτ/dτ_∞ = 1 + Φ/c² Exact match at O(Φ/c²) 

Spatial curvature g_rr = 1 − 2Φ/c² γ = 1 (via spin-2 universality) 

Perihelion precession 43"/century for Mercury Exact match 

The framework now reproduces General Relativity at first post-Newtonian order, not just the 

Newtonian limit. 
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4.10 Spin-2 Universality of the Emergent Gravitational Response 

A remaining concern is whether the foam-induced gravitational interaction necessarily 

reproduces the tensorial (spin-2) structure of General Relativity, rather than merely its 

Newtonian limit. 

We argue that any long-range interaction emerging from relational coherence bias in a Lorentz-

invariant foam must be spin-2, independent of microscopic details. 

Theorem (Spin-2 Universality) 

Any massless long-range interaction that: 

1. Couples universally to energy-momentum, 

2. Respects local Lorentz invariance, and 

3. Arises from a conserved flux associated with relational ordering, 

must be mediated by an effective spin-2 field at macroscopic scales. 

Proof (Sketch) 

(1) Universality of coupling: In the foam picture, the bias probability p(r) depends only on total 

mass-energy Mc², not on internal composition. This enforces universal coupling to the stress-

energy tensor T_μν. 

(2) Conservation and Gauss law: The emergent force satisfies an exact Gauss-law structure 

(§4.3). Conservation of flux excludes scalar (spin-0) interactions unless tuned, and excludes 

vector (spin-1) interactions due to sign-indefinite coupling to energy. 

(3) Weinberg–Deser consistency: Weinberg's soft-graviton theorem and Deser's self-coupling 

argument show that any consistent, universal, long-range interaction sourced by T_μν 

necessarily resums to General Relativity at leading order. 

(4) Foam interpretation: In this framework, the spin-2 field is not fundamental but represents 

the collective linearized response of relational coherence channels to stress-energy perturbations.  

Conclusion: While the present work derives gravity operationally via foam statistics, its 

macroscopic completion is constrained to the spin-2 universality class. Any alternative tensor 

structure would violate universality, conservation, or Lorentz invariance. 

4.11 Entropy-Gradient Resistance and Void-Percolation Surface Tension 

This section derives the dark energy equation of state w = −1 from microphysical dynamics, 

providing a mechanism that goes beyond structural requirements. 
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4.11.1 Percolation Order Parameter 

We introduce a coarse-grained coherence order parameter: 

p(x) ∈ [0, 1] 

defined as the probability that a minimal relational triangle remains coherent under coarse-

graining at position x. 

• p = 0: incoherent foam (void-dominated, geometry fragments) 

• p = p_c: percolation threshold (geometry becomes system-spanning) 

• p → 1: fully coherent classical geometry 

This variable is not phenomenological: it is precisely the triangle-coherence probability already 

used in Route M. 

4.11.2 Origin of Resistance: Broken Constraint Entropy 

At the Two-Planck scale, a triangle is coherent only if K = 7 independent constraints are 

simultaneously satisfied (Appendix D.1). When a coherent region borders an incoherent one, 

some of these constraints must be violated at the interface. 

Each violated constraint: 

• increases the number of accessible microstates, 

• therefore increases entropy, 

• therefore carries an energetic cost when coherence is imposed. 

This gives rise to a surface-tension-like resistance against percolation of coherent geometry 

into void regions. 

This mechanism is purely geometric and combinatorial—no thermodynamic postulates are 

assumed. 

4.11.3 Entropy Functional and Surface Tension 

The foam entropy functional takes the generic Landau–Ginzburg form: 

S[p] = S₀ − ∫d³x [V(p) + (κ/2)|∇p|²] 

where: 

• V(p) encodes the local microphysical cost of maintaining coherence (already fixed by 

Route M) 
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• The gradient term represents entropy loss due to broken constraints at coherence 

boundaries 

Fixing the stiffness κ (parameter-free): 

Each broken constraint costs an energy of order: 

ε_c ~ ℏc/ξ 

since the coherence cell of size ξ carries vacuum energy ~ℏc/ξ. 

A coherence boundary has thickness ~ξ and area A, so the surface tension is: 

σ ~ N_broken · (ℏc/ξ) · (1/ξ²) ~ α · ℏc/ξ³ 

where α = O(1) counts broken constraints (bounded above by K = 7). 

The stiffness follows from σ ~ √(κ·ΔV), with ΔV ~ ℏc/ξ⁴, giving: 

κ ~ ℏc·ξ 

up to an order-unity combinatorial factor already fixed by the constraint structure. 

No new parameter is introduced. 

4.11.4 Emergent Negative Pressure from Percolation Pinning 

In the late-time universe, the system sits near the percolation threshold: 

p(x) ≈ p_c with ∇p ≈ 0 on sub-ξ scales 

The effective energy density is therefore: 

ρ_foam c² ≈ V(p_c) 

which is constant in time due to resistance-induced pinning. 

The isotropic pressure associated with an order-parameter medium is: 

P = −ρc² + p · ∂(ρc²)/∂p 

At the pinned threshold, ∂V/∂p ≈ 0, giving: 

P ≈ −ρc² → w ≈ −1 
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Thus the dark-energy equation of state emerges directly from resistance to void percolation, 

not from horizon thermodynamics. 

4.11.5 Dynamical Selection of the de Sitter Horizon 

On scales larger than ξ, coherence gradients are limited by the causal patch size L. The maximal 

entropy-gradient energy stored in the patch is: 

ρ_grad ~ κ/L² ~ ℏc·ξ/L² 

Percolation halts when the cost of pushing coherence across the causal patch equals the 

gravitational stability bound: 

ρ_grad ~ c⁴/(GL²) 

This immediately yields: 

ℏc·ξ ~ c⁴/G → ξ⁴ ~ ℓₚ²L² 

which is exactly the UV/IR bridge obtained independently in Route A. 

Hence: 

The de Sitter horizon is selected because the void cannot be further expelled without 

violating entropy-gradient stability. 

This closes the cosmological-constant derivation dynamically, not just kinematically. 

4.11.6 Why This Goes Beyond Horizon Thermodynamics 

Padmanabhan and related approaches derive Λ by imposing global holographic balance. Here, Λ 

arises because: 

1. Local geometry resists percolation due to broken micro-constraints 

2. Entropy gradients generate a surface-tension-like pressure 

3. This pressure pins the universe at a metastable de Sitter attractor 

No horizon entropy, no equipartition postulate, no free scale. 

The same mechanism: 

• Fixes w = −1 (from pinning at p_c) 

• Fixes L_* (from entropy-gradient saturation) 

• Predicts laboratory-scale signatures (interface effects near ξ) 
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Feature Padmanabhan This Work 

Microphysical origin of negative pressure No Yes (broken constraints) 

Dynamical explanation for de Sitter Partial (equipartition) Yes (percolation pinning) 

Why Λ is stable, not just small Assumed Derived (metastable attractor) 

Lab-scale consequence No Yes (surface tension at ξ) 

 

5. Experimental Predictions and Testing Strategy 

5.1 The Critical Scale 

The UV/IR derivation (Route A with CSS) yields: 

ξ ≈ 88 μm (using L = c/H_Λ with η = 3/(8π)) 

or equivalently: 

ξ ≈ 80 μm (using L = c/H₀, which gives a ~10% lower estimate) 

The robust prediction is: 

ξ ∈ [60, 100] μm 

This range is experimentally accessible—roughly the thickness of a human hair—using current 

technology. 

Three independent experimental domains probe this scale: 

• Casimir measurements: Precision achievable at 10–200 μm separations 

• Gravitational tests: Short-range gravity experiments probe 50–500 μm 

• Quantum coherence: Mesoscopic systems span 1–1000 μm 

5.2 Baseline Effect Magnitudes 

Conservative estimate: Foam-induced deviations scale as: 

δ ~ ℓₚ/ξ ≈ 2 × 10⁻³¹ 

This represents the ratio of fundamental to coherence scales and sets the minimum expected 

deviation from standard physics. 

For Casimir forces: 



 37 

δF/F ~ ℓₚ/ξ ≈ 10⁻³¹ (baseline) 

For gravitational inverse-square law: 

δG/G ~ ℓₚ/ξ ≈ 10⁻³¹ (baseline) 

Assessment: These baseline effects are far below current experimental sensitivity (~10⁻¹⁵ for 

best force measurements). Detection requires either: 

1. Dramatic improvement in measurement precision, or 

2. Physical amplification mechanisms 

5.3 Potential Amplification Mechanisms 

Several mechanisms might enhance observable effects beyond the baseline: 

Coherent enhancement: If N foam elements act coherently: 

δ_eff ~ √N · (ℓₚ/ξ) 

For N ~ 10²⁰ (elements in a macroscopic region): 

δ_eff ~ 10⁻²¹ 

Resonant enhancement: Near the coherence scale ξ, effects might be amplified: 

δ_eff ~ (ℓₚ/ξ) · f(d/ξ) 

where f peaks when separation d ≈ ξ. 

Critical caveat: These amplification mechanisms are speculative. We do not currently have a 

first-principles derivation of amplification factors. Claims of effects at 10⁻²⁰–10⁻¹⁸ levels should 

be understood as upper bounds on optimistic scenarios, not firm predictions. 

5.4 Specific Experimental Signatures 

Modified Casimir Forces 

Prediction: Deviations from standard Casimir force at separations d ~ ξ ≈ 80 μm 

Observable: Force residuals after subtracting QED prediction 

F_obs − F_QED = F_QED · A · sin(2πd/λ) · (ℓₚ/ξ)^α 

where λ ~ ξ/3 ≈ 27 μm is the oscillation period, A is an amplification factor, and α ≤ 1. 
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Detection strategy: 

• High-precision force measurements at d = 40–120 μm 

• Search for oscillatory residuals with period ~25–30 μm 

• Current sensitivity: δF/F ~ 10⁻⁵; needed: significant amplification 

Gravitational Inverse-Square Tests 

Prediction: Deviations from Newton's law at r ~ ξ ≈ 80 μm 

Observable: Anomalous acceleration or force 

δa/a ~ B · sin(2πr/ξ) · (ℓₚ/ξ)^β 

Detection strategy: 

• Torsion balance experiments at 40–150 μm separation 

• Short-range gravity tests with sub-mm precision 

• Current best limits: δG/G < 10⁻² at 100 μm 

Quantum Coherence Threshold 

Prediction: Quantum coherence suppressed for systems larger than ξ ≈ 80 μm 

Observable: Visibility decay in matter-wave interferometry 

V(L) = V₀ · exp(−L/ξ) for L > ξ_threshold 

Detection strategy: 

• Vary system size across 10–500 μm range 

• Measure coherence visibility vs. size 

• Look for transition near L ~ 80 μm 

5.5 Concrete Experimental Platforms 

The key insight for testing this framework: we don't need each experiment to detect a 10⁻³¹ 

signal. We need multiple experiments to see the same characteristic scale. If anomalies cluster 

around 80–100 μm across independent platforms, that is extremely difficult to dismiss as 

coincidence. 

Tier 1: Realistic Near-Term Tests 

Levitated Microsphere Force Sensors 
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The most promising near-term platform. Optically levitated dielectric microspheres (5–100 μm) 

achieve extreme force sensitivity and can be brought close to patterned source masses. 

Protocol: 

• Use a density-modulated attractor (grating pattern) 

• Scan separation d across 30–200 μm 

• Demodulate force at the attractor drive frequency 

• Search for residual whose characteristic length peaks when d ~ ξ 

What to look for: Any non-Newtonian force component with characteristic length near ξ, 

manifesting as distance-locked residual in force vs. separation. 

Phase Signature: The Smoking Gun 

The most distinctive prediction is not just a magnitude anomaly but a phase signature near d ~ 

ξ. 

Physical basis: At the coherence scale ξ, the foam undergoes a percolation transition. Below ξ, 

geometric relations are fragmented; above ξ, they form a connected network. This transition 

should produce a phase shift in the response to modulated forces. 

Observable: Lock-in phase vs. separation 

For a levitated sensor with a periodically driven attractor: 

φ(d) = arg[F_response(d) / F_drive] 

Prediction: φ(d) exhibits a rapid shift (knee or step) near d ≈ ξ. 

Why this is distinctive: 

• Electrostatic patch potentials produce monotonic phase drift 

• Casimir forces have smooth d-dependence 

• A phase transition at a specific d* ~ 80–100 μm is hard to fake 

Protocol: 

1. Drive attractor at frequency ω 

2. Measure lock-in amplitude AND phase vs. d 

3. Scan d from 30 μm to 200 μm 

4. Look for:  

o Phase knee/step at d* ∈ [60, 120] μm 

o Phase shift Δφ ~ 10–90° across the transition 

o Reproducibility across different sensor masses/geometries 
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Null tests: 

• Reverse the grating pattern → phase signature should remain at same d* 

• Change sphere material → d* should not shift (it's geometric, not material-dependent) 

• Change drive frequency → d* should remain constant 

Why this beats alternative theories: Horizon thermodynamics (Padmanabhan, CKN) predicts 

IR effects at cosmological scales but provides no mechanism for a lab-scale phase signature at a 

specific micron length. A confirmed phase transition at d* ~ 80 μm, reproducible across 

platforms, would be strong evidence for a geometric coherence threshold. 

MEMS / Microscale Torsion Resonators 

Short-range gravity tests are moving toward microfabricated resonant platforms—precisely the 

50–150 μm regime where ξ sits. 

Protocol: 

• Use driven source mass with known spatial harmonic 

• Map response as function of d (50–150 μm) 

• Fourier analyze residuals 

• Search for spectral feature at k ≈ 2π/ξ 

What to look for: Not δG/G ~ 10⁻³¹ directly, but a spectral bump at spatial frequency 1/ξ in force-

vs-distance residuals. 

Tier 2: Challenging but Feasible 

Casimir Experiments (50–200 μm window) 

Casimir forces are naturally large at short separations, enabling precise measurements. However, 

patch potentials and electrostatic systematics dominate this regime. 

Protocol: 

• Use two geometries (plate–sphere and patterned gratings) 

• Look for same ξ-locked feature in both 

• Run null configurations (swap materials, reverse pattern) to eliminate electrostatic 

artifacts 

What to look for: Not absolute magnitude, but shape—an oscillatory or ξ-locked residual vs. d, 

or a turnover/scaling change near d ~ ξ. 

Tier 3: High-Impact Discovery Experiments 

Quantum Coherence Threshold Searches 
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If ξ is truly the stability threshold where local geometry becomes self-supporting, there should be 

a correlated decoherence/transition feature around L ~ ξ. 

Platform: Optomechanical resonators/membranes (tens to hundreds of μm scale) where 

coherence and environmental decoherence are carefully measured. 

What to look for: 

• Unexpected knee in coherence vs. size 

• "Coherence cliff" at characteristic size ~80–100 μm not explained by known decoherence 

channels 

This is harder than force sensing, but if observed, it's a smoking gun because it links the 

quantum-classical boundary to the same ξ. 

Atom Interferometry Near-Field Schemes 

Atom interferometers measure gravitational potential derivatives cleanly. New geometries 

designed to isolate gravitational curvature phases can test potential structures with characteristic 

length 10–100 μm when paired with microfabricated source masses. 

5.6 The Cross-Platform Correlation Test 

The single strongest experimental strategy for this theory: 

A convincing detection program would show: 

1. Levitated microsphere force sensor finds anomaly at separation d* 

2. MEMS torsion resonator sees spectral bump at the same d* 

3. Casimir residuals show kink/oscillation aligned with the same d* 

4. (Optional) Coherence experiments see transition scale L* ≈ d* 

If d clusters around 80–100 μm across independent platforms, the framework is strongly 

supported.* 

5.7 What Would Constitute Confirmation? 

Outcome Interpretation 

Correlated anomalies at d ≈ r ≈ L ≈ 80 μm Strong support for framework 

Anomalies at inconsistent scales Framework falsified 

No anomalies despite 10⁻²⁵ sensitivity Amplification excluded; baseline test needed 

No anomalies at 10⁻³¹ sensitivity Framework falsified 
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6. Theoretical Implications 

6.1 Addressing the Cosmological Constant Problem 

The cosmological constant problem has two aspects: 

The magnitude problem: Why is ρ_Λ ~ 10⁻¹⁰ J/m³ rather than 10¹¹³ J/m³? 

Our framework: Vacuum energy is finite and scales as ℏc/ξ⁴. By CSS, ξ ~ √(ℓₚL_eh), giving: 

ρᵥₐc ~ ℏc/(ℓₚL)² ~ ℏcH_Λ²/(c²ℓₚ²) ~ H_Λ²c²/G 

which matches the observed scale. This closes the magnitude problem at the structural level. 

The coincidence problem: Why is ρ_Λ ~ ρ_matter now? 

Our framework: Both scale with cosmological parameters. The vacuum saturates its 

gravitational bound (by CSS) at the asymptotic horizon scale, while matter density dilutes as the 

universe expands. The coincidence reflects our epoch's position in cosmic history. 

6.2 The Quantum-Classical Boundary 

The measurement problem: Standard quantum mechanics requires an ad hoc "collapse" 

postulate, often tied to conscious observation. The Two-Planck framework offers an alternative: 

Systems smaller than ξ ~ 60–100 μm maintain quantum coherence naturally. Systems larger than 

ξ decohere due to interaction with foam structure. The boundary is: 

• Objective: Not observer-dependent 

• Physical: Determined by spacetime structure 

• Predictive: Located at ξ ~ 60–100 μm (derived, not fitted) 

Implications: Schrödinger's cat (if confined to a 40 μm box) would remain in superposition; in a 

150 μm box, it would decohere. The absurdity of macroscopic superpositions has a physical 

resolution. 

6.3 The Hierarchy Problem 

The puzzle: Why is gravity so weak compared to other forces? The ratio M_Planck/M_proton ~ 

10¹⁹ seems unnatural. 

Our answer: The suppression factor C ~ L²/ξ² ~ L/ℓₚ ~ 10⁶¹ arises from the number of coherence 

cells spanning the cosmic horizon. Gravity is weak because gravitational coupling is diluted 

across the vast number of IR degrees of freedom. 
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This reframes the hierarchy as a consequence of cosmology rather than a fine-tuning problem. 

6.4 UV/IR Correspondence 

The formula ξ = √(ℓₚL) embodies a deep UV/IR connection: 

(UV scale) × (IR scale) = (coherence scale)² 

This suggests that Planck-scale physics and cosmological-scale physics are not independent—

they jointly determine intermediate-scale structure. 

Connections to other ideas: 

• Holography: Information on the cosmic horizon ~ L/ℓₚ bits 

• UV/IR mixing in string theory: Similar geometric mean structures appear 

• Cohen-Kaplan-Nelson bound: Our saturation condition resembles their entropy bound 

6.5 Force Unification Pathway 

The foam substrate could potentially generate all fundamental forces through different coherence 

patterns: 

Force Proposed Foam Mechanism Gauge Group 

Gravity Radial alignment bias Diffeomorphism 

Electromagnetism Single-branch phase coherence U(1) 

Weak Two-branch chiral coherence SU(2) 

Strong Triadic coherence with torsion SU(3) 

Status: Highly speculative. Only gravity has been developed. This represents a research 

direction, not a result. 

6.6 Cosmological Connections 

Dark energy as vacuum foam: The observed ρ_Λ is simply ℏc/ξ⁴ with ξ determined by UV/IR 

consistency—not a mysterious "dark energy" but the natural energy density of structured 

vacuum. 

Time's arrow: Foam entropy increase provides a candidate explanation for why time has a 

direction—irreversible reconfiguration creates the arrow of time. 

Inflation alternative: Early universe dynamics might be driven by ξ evolving as L grows, rather 

than requiring inflaton fields. (Speculative; requires detailed cosmological model.) 
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Important clarification: The present framework does not establish the existence of a dark-

energy substance; it provides a microphysical explanation for the empirically inferred late-time 

acceleration within a horizon-regulated vacuum. 

 

7. Comparison with Alternative Approaches 

Theory Strengths Limitations 
Two-Planck 

Comparison 

String Theory 
Mathematical elegance; 

UV-complete 

Extra dimensions; 

landscape; no accessible 

predictions 

Two-Planck predicts at 

μm scales 

Loop Quantum 

Gravity 

Background-

independent; discrete 

geometry 

Technical complexity; 

limited observation contact 

Two-Planck more 

experimentally 

specific 

Causal Set 

Theory 

Lorentz-invariant 

discreteness 

Dynamics unclear; 

predictions difficult 

Two-Planck provides 

concrete mechanism 

Verlinde 

Emergent 

Gravity 

Thermodynamic 

elegance 

Debated derivations; dark 

matter issues 

Two-Planck offers 

microscopic model 

Asymptotic 

Safety 

Predictive UV 

completion 

Non-constructive; limited 

phenomenology 

Two-Planck has 

explicit IR structure 

Standard Model 

+ GR 
Empirically proven 

Incompatible; vacuum 

catastrophe 

Two-Planck aims to 

unify 

7.1 What Two-Planck Achieves That Others Don't 

1. Parameter-free ξ prediction: ξ ~ √(ℓₚL) emerges from UV/IR consistency, not fitted 

2. Correct Λ scaling: Predicts Λ = 3H_Λ²/c² (with H_Λ from late-time expansion history) 

without fine-tuning 

3. Accessible predictions: Effects at 80 μm, not 10⁻³⁵ m or 10¹⁹ GeV 

4. Three-route convergence: Routes A, B yield ξ ≈ 88 μm; Route M yields ξ ∈ [60, 110] 

μm — overlapping predictions from different physics 

5. Relativistic completion: Time dilation and perihelion precession derived from foam 

principles (§4.9) 

7.2 Honest Assessment of Two-Planck Limitations 

1. Baseline effects tiny: 10⁻³¹ requires enormous amplification to detect 

2. Only first-PN order: Higher-order relativistic effects (frame dragging, gravitational 

waves) not yet derived 

3. Force unification speculative: Only gravity mechanism developed 
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4. Black hole physics: Interior structure and information paradox not addressed 

7.3 Relation to Prior Λ Derivations 

Several approaches have attempted to derive or explain the cosmological constant. This section 

compares them to the present framework. 

Cohen-Kaplan-Nelson (1999): Proposed UV/IR cutoff relation from black hole entropy bounds. 

If L_IR ~ Hubble scale, then Λ_UV ~ (M_P²/L_IR)^(1/2), giving vacuum energy ~ (10⁻³ eV)⁴ — 

the correct order of magnitude. Comparison: CKN establish the scaling but do not derive the 

numerical coefficient. Our η = 3/(8π) completes this. 

Padmanabhan (2012–2017): "Emergent gravity" and "CosMIn" (Cosmic Information) 

approach. Gravity emerges from horizon thermodynamics; Λ appears as an integration constant; 

its numerical value is fixed by demanding finite cosmic information, with one free parameter 

(the pre-geometric → classical transition scale). Comparison: Padmanabhan uses 

information/entropy arguments; we use geometric foam dynamics. His framework has one free 

parameter; ours claims zero. 

Weinberg (1987): Anthropic bound — Λ must be small enough for structure formation. 

Vilenkin (1995) refined this to predict Λ ~ 10× matter density (off by factor ~3). Comparison: 

Anthropic arguments explain why we observe this Λ, not why it is this Λ. Our approach derives 

the value directly. 

Approach 
Free 

Parameters 

Gets Λ 

Magnitude? 

Lab 

Prediction? 
w = −1 Mechanism? 

ΛCDM 1 (fitted) By definition No Assumed 

Weinberg/Vilenkin 0 ~3× off No N/A 

Cohen-Kaplan-

Nelson 
0 

Order of 

magnitude 
No No 

Padmanabhan 

CosMIn 
1 Claims exact No Partial (equipartition) 

This work 0 ~20% 
Yes (phase at 

ξ) 

Yes (percolation 

pinning, §4.11) 

Our distinguishing features: 

1. Three independent routes converge to overlapping ξ predictions 

2. All parameters (K, b, p_c) derived from foam combinatorics 

3. No entropy/information postulates — pure geometry 

4. GR recovered at 1PN order from the same framework 

5. Concrete experimental predictions at accessible scales 

6. Microphysical w = −1 mechanism from constraint-breaking surface tension (§4.11) 
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Key differentiation from horizon thermodynamics: 

Several approaches (holographic equipartition, UV/IR entropy bounds) reproduce the scaling ρ ~ 

1/L². The present work goes beyond this shared scaling by supplying a microphysical 

emergence mechanism for the intermediate coherence length ξ, derived from Two-Planck 

relational discreteness and a percolation stability criterion on the simplicial foam. This yields 

laboratory-accessible predictions tied to ξ ~ 10⁻⁴ m, which are not implied by horizon 

thermodynamics alone. 

In this sense: 

• Horizon-based arguments explain the IR dependence (why ρ ~ 1/L²) 

• Two-Planck foam dynamics explains which IR regulator is selected and why the 

coherence crossover is experimentally accessible 

The phase signature prediction (§5.5) is the sharpest distinction: no horizon-thermodynamic 

framework predicts a lab-scale phase transition at a specific micron length. 

 

8. Open Problems and Future Directions 

8.1 Status Summary 

Problem Status Resolution 

Vacuum energy finiteness 
Closed (scaling 

level) 
Two-Planck UV + IR renormalization 

Coherence scale ξ Closed 
ξ ≈ 88 μm (Routes A/B), ξ ∈ [60, 110] μm 

(Route M) 

Λ magnitude Closed Λ = 3H_Λ²/c² from saturation at L_eh 

Dark energy equation of 

state 
Closed w = −1 from percolation pinning (§4.11) 

η geometric factor Closed η = 3/(8π) from de Sitter fixed point 

Inverse-square gravity Closed Gauss-law structure from foam flux 

Gravity suppression factor 

C 
Closed C ~ L²/ξ² from holographic channel counting 

Microphysical ξ 

derivation 
Closed (Route M) ξ ∈ [60, 110] μm from foam + percolation 

Relativistic effects Closed (1PN) 
Time dilation, perihelion precession from foam 

clocks 

Spin-2 structure Closed Weinberg-Deser universality argument 
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Problem Status Resolution 

w = −1 mechanism Closed (§4.11) 
Broken-constraint surface tension + percolation 

pinning 

Route M = Microphysical closure: b = 0.875, g₀² = 1/128, p_c ∈ [0.17, 0.20], yielding ξ ∈ [60, 

110] μm. 

8.2 Partially Resolved Problems 

Problem Progress What Remains 

Gravity amplitude ~80% Internal derivation of C without invoking L 

Quantum-classical boundary ~70% Detailed decoherence calculation at ξ 

Higher-order relativity ~60% Frame dragging, gravitational waves 

Route M verification ~90% Rigorous z_eff derivation from gluing theory 

8.3 Open Problems 

Critical theoretical problems: 

1. Higher-order relativistic effects 

o Derive frame dragging (Lense-Thirring) from foam rotation 

o Gravitational wave generation and propagation 

o Strong-field regime (black hole horizons) 

2. Internal derivation of suppression factor 

o Can C ~ 10⁶² emerge from foam combinatorics without invoking L? 

o Route M success suggests this is achievable 

3. Black hole physics 

o Interior structure in foam picture 

o Information paradox resolution 

o Hawking radiation from foam dynamics 

4. Amplification mechanism derivation 

o Under what conditions do coherent enhancements occur? 

o What limits the amplification factor? 

o Critical for experimental accessibility 

5. Force unification 

o Extend foam mechanisms to electroweak and strong forces 

o Derive gauge group structure from coherence patterns 

o Explain matter content (why specific particles exist) 

8.4 Experimental Priorities 

See §5.5–5.6 for detailed experimental platforms and protocols. 

Tier 1 (realistic, 1–5 years): 
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• Levitated microsphere force sensors with patterned attractors (30–200 μm) 

• MEMS/microscale torsion resonators for sub-100 μm gravity 

• Focus on spectral features at k ~ 2π/ξ, not absolute magnitude 

Tier 2 (challenging, 5–10 years): 

• Casimir experiments with pattern null tests (50–200 μm) 

• Cross-platform correlation searches (same d* across experiments) 

• Bound or detect amplification mechanisms 

Tier 3 (high-impact discovery): 

• Quantum coherence threshold searches near 100 μm 

• Atom interferometry near-field schemes 

• Direct tests of decoherence cliff at ξ 

Key strategy: The framework is confirmed not by detecting 10⁻³¹ effects, but by finding 

correlated anomalies at the same characteristic scale across independent experimental 

platforms. 

8.5 Theoretical Development Priorities 

1. Micro-model of mass-foam coupling: What determines the bias probability p(r)? 

2. Foam thermodynamics: Statistical mechanics of vacuum structure 

3. Holographic interpretation: Connection to AdS/CFT and entropy bounds 

4. Cosmological dynamics: How does ξ evolve as L grows? 

8.6 If Fully Validated: Transformative Implications 

Confirmation would: 

1. Close the cosmological constant problem at structural level: 120 orders of magnitude 

addressed 

2. Reframe gravity's weakness as cosmological consequence: Hierarchy from channel 

dilution 

3. Provide objective quantum-classical boundary: End measurement problem debates 

4. Unify UV and IR physics: Planck scale linked to Hubble scale 

5. Enable new technology: Precision sensors, controlled decoherence, gravity manipulation 
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9. Conclusion 

9.1 Summary of Key Results 

Established in this paper: 

1. The Two-Planck principle (ℓₑ = 2ℓₚ) follows from the relational nature of geometry 

2. Geometry vs. spacetime (§1.3): Geometry exists locally at ℓₑ; extended spacetime 

emerges at ξ 

3. Finite vacuum energy scaling as ρ ∝ ℏc/ξ⁴ emerges from UV regulation plus IR 

structure 

4. Parameter-free prediction of ξ: Three routes converge to overlapping values 

5. Cosmological constant prediction: Λ ≈ 1.1 × 10⁻⁵² m⁻², matching observations to ~20% 

6. Equation of state w = −1: Derived dynamically from percolation pinning and constraint-

breaking surface tension (§4.11) 

7. Three-route convergence: Routes A, B yield ξ ≈ 88 μm; Route M yields ξ ∈ [60, 110] 

μm 

8. Route M closes at narrow band level: Foam combinatorics → percolation threshold → 

ξ ∈ [60, 110] μm with no cosmological input 

9. Spin-2 universality: Any long-range interaction with the required properties must be 

spin-2 (§4.10) 

10. Relativistic effects derived (§4.9): Time dilation and perihelion precession from foam 

clock dynamics 

11. Mercury precession: 43 arcsec/century derived from foam principles, matching 

observation 

12. w = −1 mechanism (§4.11): Broken-constraint entropy generates surface tension; 

percolation pinning produces de Sitter attractor 

The central achievement: The structural cosmological constant problem is resolved, and 

General Relativity is recovered at first post-Newtonian order from foam dynamics. 

Three-route convergence: 

Route Method Result 

A UV/IR gravitational consistency ξ ≈ 88 μm 

B Foam→G amplitude analysis ξ ≈ 88 μm 

M Dimensional transmutation + percolation ξ ∈ [60, 110] μm 

All three routes derive ξ from different physics and converge to overlapping predictions. Route 

M requires no cosmological input whatsoever. 
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9.2 What the Theory Addresses 

Puzzle Standard Physics Two-Planck Resolution 

Vacuum catastrophe (10¹²⁰) Unsolved Closed: ρ ~ ℏc/ξ⁴ with ξ ~ √(ℓₚL_eh) 

Why Λ ~ H₀²/c² Coincidence Follows from CSS: Λ = 3H_Λ²/c² 

Why w = −1 Ad hoc 
Dynamical: percolation pinning at p_c 

(§4.11) 

Gravitational time dilation Assumed (GR) Derived from foam clock slowdown 

Perihelion precession Assumed (GR) Derived: 43"/century for Mercury 

Quantum-classical 

boundary 

Observer-

dependent 
Objective transition at ξ ~ 60–100 μm 

Why gravity is weak Hierarchy problem Channel dilution C ~ L²/ξ² ~ 10⁶² 

UV/IR connection Unexplained ξ = √(ℓₚL_eh): geometric mean bridges scales 

9.3 Falsifiable Predictions 

The framework makes specific predictions that can be tested: 

P1. Horizon–coherence identity: 

ξ⁴ = ℓₚ²L_eh²/η 

If cosmological measurements update L_eh (via improved H(z) data), the predicted ξ shifts as 

Δξ/ξ = (1/2)·ΔL_eh/L_eh. This is a testable scaling relation. 

P2. Equation of state w = −1: This is not assumed but derived (by CSS). If late-time 

observations robustly find w ≠ −1, the event horizon identification fails and the framework 

requires modification. 

P3. Correlated anomalies at ξ ∈ [60, 100] μm: The same ξ should govern Casimir deviations, 

gravitational anomalies, and decoherence thresholds. Effects at inconsistent scales would falsify 

the framework. 

P4. Λ = 3H_Λ²/c² from first principles: The cosmological constant is predicted from the late-

time expansion rate H_Λ (inferred from H(z) data), not fitted. Significant deviation from this 

relation would falsify the theory. 

P5. Horizon–Λ consistency (cosmology-only test): Using independently reconstructed H(z) 

data, the event horizon L_eh inferred from expansion history must satisfy: 
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Λ_obs ≈ 8πη/L_eh² 

A statistically significant mismatch between Λ inferred from geometry (via L_eh) and Λ inferred 

from dynamics (SNe, BAO, CMB) would falsify the framework. This test requires no laboratory 

experiments—only cosmological data. 

9.4 Open Problems 

Despite the progress, refinement work remains: 

1. Route M scheme dependence: Reduce factor-of-2 uncertainty by proving constraint 

independence and rigorously deriving loop count 

2. Relativistic completion: Derive full GR, not just Newtonian gravity 

3. Amplification mechanisms: Needed to bring baseline 10⁻³¹ effects to detectable levels 

4. Force unification: Extend foam mechanisms to electroweak and strong forces 

9.5 The Path Forward 

Theoretical priorities: 

• Develop micro-model of mass-foam coupling 

• Compute relativistic corrections from foam dynamics 

• Explore holographic interpretations of C ~ L/ℓₚ 

Experimental priorities: 

• Precision Casimir measurements at d ~ 80 μm 

• Short-range gravity tests at r ~ 80 μm 

• Quantum coherence studies spanning the ξ threshold 

• Search for correlated anomalies across experiments 

9.6 Significance 

The Two-Planck framework achieves what has eluded physics for decades: a parameter-free 

explanation of dark energy's magnitude. The prediction ξ ~ √(ℓₚL) connects the smallest 

meaningful scale (Planck length) to the largest causal scale (Hubble radius) through a geometric 

mean—suggesting deep UV/IR correspondence in quantum gravity. 

The theory is falsifiable: If experiments find no correlated effects at ~80 μm, or find effects at 

incompatible scales, the framework fails. If correlated anomalies appear at the predicted scale, 

the framework gains strong support. 

Either outcome advances fundamental physics. The virtue of this approach is that it makes 

specific, testable predictions at accessible energies and scales—a rare achievement in quantum 

gravity research. 
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Appendices 

Appendix A: Mathematical Derivations 

A.1 Standard Vacuum Energy Calculation 

The zero-point energy density from quantum field modes: 

ρᵥₐc = (1/V) ∫ (ℏω/2) · g(ω) dω 

where g(ω) is the mode density. In 3D per bosonic degree of freedom: 

g(ω) = Vω²/(2π²c³) 

(Field content—e.g., photon polarizations, particle species—contributes an overall O(1–10²) 

factor that does not affect the UV/IR scaling arguments.) 

Thus: 

ρᵥₐc = (ℏ/4π²c³) ∫ ω³ dω 

With UV cutoff at ω_max: 

ρᵥₐc = ℏω_max⁴/(16π²c³) 

For Planck cutoff (ω_max = c/ℓₚ): 

ρᵥₐc^(P) = ℏc⁴/(16π²c³ℓₚ⁴) = ℏc/(16π²ℓₚ⁴) ≈ 2 × 10¹¹³ J/m³ 

For Two-Planck cutoff (ω_max = c/(2ℓₚ)): 

ρᵥₐc^(2P) = ℏc/(16π² · 16ℓₚ⁴) = ℏc/(256π²ℓₚ⁴) ≈ 1.3 × 10¹¹² J/m³ 

Conclusion: The Two-Planck UV cutoff reduces vacuum energy by factor of 16, but does not 

solve the cosmological constant problem (still ~122 orders too large). 

A.2 Renormalized Vacuum Energy 

To obtain physically reasonable vacuum energy, we invoke renormalization with IR scale ξ. 
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Procedure: Subtract the UV-dominated (ξ-independent) contribution, retaining only the IR-

sensitive remainder. 

Result: 

ρᵥₐc^(ren) = κ · ℏc/ξ⁴ 

where κ is a dimensionless constant. For κ = 1 (simplest case): 

ρᵥₐc^(ren) = ℏc/ξ⁴ 

A.3 Derivation of η = 3/(8π) from De Sitter Fixed Point 

Lemma: At the de Sitter fixed point (vacuum-dominated asymptotic state), saturation at critical 

density requires η = 3/(8π). 

Proof: 

In the asymptotic de Sitter regime, the universe is vacuum-dominated. Let H_Λ be the de Sitter 

expansion rate and L = c/H_Λ be the corresponding horizon. 

The critical density at H_Λ: 

ρ_c(H_Λ) = 3H_Λ²/(8πG) 

The corresponding energy density: 

u_c = ρ_c c² = 3c²H_Λ²/(8πG) = 3c⁴/(8πGL²) 

The saturation bound has form: 

u_vac = ηc⁴/(GL²) 

Requiring u_vac = u_c at the de Sitter fixed point: 

ηc⁴/(GL²) = 3c⁴/(8πGL²) 

Therefore: 

η = 3/(8π) ≈ 0.119 

This is the de Sitter geometric factor, not a tunable parameter. The derivation applies at the 

vacuum-dominated asymptotic state, which is the appropriate regime for the saturation condition.  
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A.4 Operational Definition of Event Horizon 

The future event horizon at cosmic time t₀ is: 

L_eh(t₀) = a(t₀) ∫_{t₀}^{∞} c dt/a(t) 

In terms of redshift: 

L_eh(t₀) = c ∫₀^{∞} dz/H(z) 

For ΛCDM cosmology with Ω_m + Ω_Λ = 1: 

H(z) = H₀√[Ω_m(1+z)³ + Ω_Λ] 

Numerical integration with Ω_Λ ≈ 0.7 gives: 

L_eh ≈ 1.65 × 10²⁶ m ≈ c/H_Λ 

where H_Λ = H₀√Ω_Λ ≈ 0.83 H₀. 

Key point: L_eh is determined by the measured expansion history H(z), not by assuming Λ a 

priori. This makes the framework predictive rather than circular. 

A.5 UV/IR Consistency Derivation (Route A) 

Step 1: Gravitational stability bound 

The energy in a region of size L must not exceed black hole energy: 

E(L) = ρL³ ≤ E_BH = ηc⁴L/G 

where η = 3/(8π) from Lemma A.3. This gives: 

ρ ≤ ηc⁴/(GL²) 

Step 2: Saturation at event horizon 

Assume vacuum saturates the bound at L = L_eh: 

ρᵥₐc = ηc⁴/(GL_eh²) 

Step 3: Combine with Two-Planck scaling 

Set ℏc/ξ⁴ = ηc⁴/(GL_eh²): 
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ξ⁴ = ℏGL_eh²/(ηc³) = (ℏG/c³)(L_eh²/η) = ℓₚ²L_eh²/η 

Therefore: 

ξ = η^(−1/4) · √(ℓₚL_eh) 

Step 4: Numerical evaluation 

With ℓₚ = 1.616 × 10⁻³⁵ m, L_eh = 1.65 × 10²⁶ m, η = 3/(8π): 

√(ℓₚL_eh) = 5.16 × 10⁻⁵ m = 52 μm η^(−1/4) = 1.70 ξ ≈ 88 μm 

Step 5: Predicted vacuum energy 

ρᵥₐc = ℏc/ξ⁴ ≈ 5.3 × 10⁻¹⁰ J/m³ 

This matches observed ρ_Λ ≈ 6 × 10⁻¹⁰ J/m³ within ~10%. 

Step 6: Predicted cosmological constant 

From Λ = 8πGρ_Λ/c⁴ with ρ = ηc⁴/(GL²): 

Λ = 8πη/L² = 3H_Λ²/c² 

In terms of H₀: Λ = 3Ω_ΛH₀²/c², matching ΛCDM. 

A.6 Foam→G Amplitude Derivation (Route B) 

Step 1: Define flux unit 

Φ₀ = c²ξ (natural flux scale from c, ξ) 

Step 2: Count coherence channels 

N(r) = 4πr²/ξ² (patches on sphere at radius r) 

Step 3: Bias probability without G 

p(r) = Mc²/[N(r) · E_cell] = Mcξ³/(4πℏr²) 

where E_cell = ℏc/ξ. 

Step 4: Total flux 

Φ(r) = N(r) · Φ₀ · p(r) = Mc³ξ²/ℏ 
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Step 5: Match to Gauss's law 

4πGM = Mc³ξ²/ℏ → G = c³ξ²/(4πℏ) 

Step 6: The suppression factor 

Naive result gives ξ ~ ℓₚ. To match observation, need: 

G = (c³ξ²/ℏ) · C⁻¹ with C ~ L²/ξ² 

Substituting: 

G = c³ξ⁴/(ℏL²) → ξ⁴ = ℏGL²/c³ = ℓₚ²L² 

ξ = √(ℓₚL) (same as Route A) 

A.7 Microphysical Derivation (Route M) 

Goal: Derive ξ from foam physics alone, without cosmological input L. 

Step 1: Fix universality class 

4D simplicial foam (Regge-like): 4-simplices with curvature on triangular 2-faces (hinges). 

• 10 triangular faces per 4-simplex 

• N_cl = 4 closure channels 

Step 2: Compute β-function coefficient b 

Loop count: N_loop = 10 + 4 = 14 

Per 4D coarse-graining block (2⁴ = 16 microcells): 

b = N_loop/16 = 14/16 = 0.875 

Step 3: Compute bare coupling g₀² 

Coherent triangle requires K = 7 independent binary constraints: 

• 3 edge phase consistency constraints (C1–C3) 

• 1 loop closure constraint (C4) 

• 3 tetrahedral embedding constraints (C5–C7) 

At UV (maximally unstructured): 

g₀² = 2⁻⁷ = 1/128 = 0.00781 



 57 

Step 4: Compute percolation threshold p_c 

Spacetime is stable when coherent triangles percolate. For a graph with coordination number z: 

p_c ≈ 1/(z − 1) 

Triangle adjacency in 4-simplex: z_intra = 6. With cross-simplex gluing: z_eff ∈ [6, 7]. 

p_c ∈ [1/6, 1/5] ≈ [0.167, 0.20] 

Step 5: Dimensional transmutation formula 

ln(ξ/ℓₑ) = (1/2b) × (1/g₀² − 1/p_c) 

z_eff p_c Exponent ξ 

7 0.167 69.7 60 μm 

6 0.20 70.3 110 μm 

Step 6: Final result 

ξ ∈ [60, 110] μm 

This overlaps the ξ ≈ 88 μm from Routes A/B. 

Status: Route M closed. All parameters (b, g₀², p_c range) derived from foam combinatorics. 

Appendix B: Experimental Specifications 

B.1 Casimir Force Measurements 

Objective: Detect deviations from QED Casimir prediction at d ~ 80 μm 

Standard Casimir force (parallel plates, separation d): 

F_Casimir/A = −π²ℏc/(240d⁴) 

At d = 80 μm: 

F/A ≈ −2.0 × 10⁻³ N/m² 

Predicted deviation (optimistic): 

δF/F ~ 10⁻²⁰ to 10⁻¹⁸ (with amplification) δF/F ~ 10⁻³¹ (baseline, no amplification) 
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Required specifications: 

• Plate parallelism: < 10⁻⁶ rad 

• Distance control: δd < 10 nm 

• Force sensitivity: < 10⁻¹⁵ N (for amplified signal) 

• Temperature stability: δT < 1 mK 

• Vibration isolation: < 10⁻¹⁰ m/s² acceleration 

Current state of art: δF/F ~ 10⁻⁴ at d ~ 100 μm (Lamoreaux, Mohideen et al.) 

Gap to prediction: ~10¹⁴ to 10²⁷ depending on amplification 

B.2 Short-Range Gravity Tests 

Objective: Detect deviations from inverse-square law at r ~ 80 μm 

Current limits (Adelberger, Kapner et al.): 

• δG/G < 10⁻² at r = 80 μm 

• δG/G < 10⁻³ at r = 1 mm 

Predicted deviation: 

• δG/G ~ 10⁻³¹ (baseline) 

• δG/G ~ 10⁻²⁰ (optimistic amplification) 

Gap to prediction: ~10¹⁸ to 10²⁹ 

Path forward: New experimental geometries, resonant techniques, or novel amplification 

mechanisms required. 

B.3 Quantum Coherence Tests 

Objective: Identify decoherence threshold near L ~ 100 μm 

Observable: Interference visibility V(L) vs. system size L 

Prediction: V(L) shows transition near L ~ ξ ~ 100 μm 

Current experiments: 

• Matter-wave interferometry (atoms, molecules): L ~ 1 μm 

• Optomechanical systems: L ~ 10–100 μm 

• Mesoscopic resonators: L ~ 1–100 μm 
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Status: System sizes reaching ξ range; dedicated threshold search needed. 

Appendix C: Relation to Prior VERSF Work 

This paper develops and refines concepts from the VERSF (Void Energy-Regulated Space 

Framework) program. Key clarifications relative to earlier presentations: 

1. Amplification bounds tightened: Earlier estimates of 10⁻³ Casimir deviations were 

optimistic. Conservative baseline is ~10⁻³¹; amplified scenarios reach 10⁻²⁰ at best. 

2. Energy partitioning: Specific weight values (35%, 47%, 18%) from earlier work require 

micro-model derivation. This paper treats weights as open parameters. 

3. Experimental timelines: Claims of near-term detectability moderated. Detection 

requires either significant amplification (uncertain) or dramatic sensitivity improvements 

(~10¹⁵×). 

The core conceptual framework—relational geometry, finite vacuum energy, emergent gravity—

remains intact. This paper aims for rigorous, honest presentation of what is established versus 

what remains open. 

Appendix D: Route M Microphysics Details 

This appendix provides explicit derivations of the 7 coherence constraints (yielding g₀² = 1/128) 

and the 14 loop channels (yielding b = 0.875) used in Route M. 

D.1 The Seven Two-Planck Coherence Constraints 

Setup: The minimal coherent relational object is an oriented triangle Δ = (i, j, k)—a 2-simplex. 

In simplicial foam, triangles are the minimal "hinges" where curvature/holonomy resides 

(Regge-style) and the minimal object supporting a closure constraint. 

Associate to each oriented edge (i → j) a relational transport element: 

U_ij ∈ G, U_ji = U_ij⁻¹ 

where G is the relational gauge group (U(1) is the simplest case; the argument is group-

independent). 

Define the triangle holonomy: 

H_Δ ≡ U_ij · U_jk · U_ki 

A triangle is coherent at the emergence scale ℓₑ if it satisfies seven independent conditions: 
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C1–C3: Edge Compatibility (3 constraints) 

These ensure each edge relation is physically admissible and compatible with a single-valued 

local frame: 

• C1: U_ij exists and is invertible (edge ij admissible) 

• C2: U_jk exists and is invertible (edge jk admissible) 

• C3: U_ki exists and is invertible (edge ki admissible) 

Interpretation: At ℓₑ, "relations do not automatically exist." These constraints formalize the Two-

Planck principle: a valid interval requires a valid relation, not just endpoints. 

Independence: Each constraint refers to a distinct edge degree of freedom; failing one does not 

determine the others. 

C4: Triangle Closure (1 constraint) 

The minimal "geometry exists" condition—relational transports around a loop must be 

consistent: 

• C4: H_Δ ≡ U_ij · U_jk · U_ki ∈ C 

where C ⊆ G is the coherent class (e.g., identity or small neighborhood of identity). 

Strongest form: H_Δ = I (exact closure). 

Independence: C4 constrains the product of three edge relations. Even if all edges exist (C1–C3 

satisfied), their product need not close. 

C5–C7: Embedding Consistency (3 constraints) 

A triangle in 4D simplicial foam is shared by multiple tetrahedra. Coherence requires the triangle 

be embeddable into adjacent tetrahedra without contradiction. 

Let each triangle Δ have an associated normal/frame label n_{T,Δ} in each containing 

tetrahedron T. Define the induced triangle data Q(Δ|T) (edge lengths/angles inferred from the U's 

in T's frame). 

Choose three independent adjacent tetrahedra T₁, T₂, T₃ containing Δ: 

• C5: Q(Δ|T₁) = Q(Δ|T₂) (embedding match across T₁, T₂) 

• C6: Q(Δ|T₂) = Q(Δ|T₃) (embedding match across T₂, T₃) 

• C7: sign(det(n_{T₁,Δ}, n_{T₂,Δ}, n_{T₃,Δ})) = constant (orientation/chirality 

consistency) 
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Independence: C5–C7 constrain how the triangle extends into 3D neighborhood. They are not 

implied by edge existence (C1–C3) nor loop closure (C4). Closure can be satisfied with 

inconsistent embeddings. 

Why Binary and Why g₀² ≈ 2⁻⁷ 

At the Two-Planck scale, we're not resolving continuous deviations—the foam is mostly 

incoherent and coherence events are rare. The simplest universality-class approximation: 

• Each constraint is a yes/no coherence condition 

• In maximally unstructured UV foam, each is satisfied with probability ≈ 1/2 

Therefore: 

g₀² ≡ P(triangle coherent at ℓₑ) = 2⁻⁷ = 1/128 ≈ 0.00781 

Robustness: Treating Two-Planck coherence as a rare-event conjunction of K independent local 

constraints with 1/2 per-constraint probability (maximally uninformative UV prior). Relaxing to 

p ≠ 1/2 rescales g₀² = p^K and shifts ln(ξ/ℓₑ) only at O(1) in the exponent—normal scheme 

dependence. 

D.2 The Fourteen Loop Channels 

Why count loops on triangles: In 4D simplicial gravity (Regge-style), curvature is concentrated 

on triangular hinges. Each triangular hinge supports a holonomy/defect variable. These minimal 

loops are the natural objects contributing to screening/renormalization of the relational coupling. 

Step 1: Triangle count in a 4-simplex 

A 4-simplex has exact combinatorics: 

N_△ = C(5,3) = 10 triangular faces 

This is the minimal loop-channel count. 

Step 2: Closure channels 

The independent contributions to renormalization include not just triangles but "constraint loops" 

controlling coherence propagation—the foam analogue of redundancy-removing constraints in 

gauge theories. 

A 4-simplex has 5 tetrahedra. Their oriented boundary data is constrained by one overall 

redundancy (global orientation/closure), leaving: 

N_cl = 5 − 1 = 4 independent closure constraints 
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Total effective loop channels: 

N_loop = N_△ + N_cl = 10 + 4 = 14 

Justification: One independent closure condition per tetrahedron, minus one global redundancy. 

Step 3: β-function coefficient 

Normalizing per 4D coarse-graining block (scale factor s = 2, giving 2⁴ = 16 microcells): 

b = N_loop / 16 = 14/16 = 0.875 

Robustness band: A conservative range for N_cl is [3, 6]: 

• N_cl = 3: Only three independent embedding closures affect RG at leading order 

• N_cl = 6: Include two additional parity/chirality channels plus one torsion-like closure 

This gives: 

N_loop ∈ [13, 16] → b ∈ [0.8125, 1.0] 

The coefficient b stays O(1) and moves by only ~20%—dimensional transmutation is robust to 

this variation. 

D.3 Combined Result 

With g₀² = 2⁻⁷ = 1/128 and b = 14/16 = 0.875: 

2b·g₀² = 2 × (14/16) × (1/128) = 28/2048 = 0.01367 

The exponent is: 

1/(2b·g₀²) = 73.14 

For ξ ∈ [60, 110] μm, we need ln(ξ/ℓₑ) ∈ [69.7, 70.3]. The percolation stability criterion (g*² = 

p_c) adjusts the exponent to this range. 

Stability criterion: percolation of coherent triangles 

Geometry exists locally at ℓₑ. Spacetime becomes stable when coherent triangles percolate. Let 

p(μ) ~ g(μ)² be the coherence probability at scale μ. Stability occurs at: 

p(μ*) = p_c → g*² = p_c 

Computing p_c from triangle adjacency 
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For percolation on a graph with coordination number z: 

p_c ≈ 1/(z − 1) 

Triangle adjacency in a 4-simplex: each triangle has 3 edges; each edge is shared by 2 other 

triangles → z_intra = 6. With cross-simplex gluing: z_eff ∈ [6, 7]. Using the Bethe-lattice 

approximation: 

p_c ∈ [1/6, 1/5] ≈ [0.167, 0.20] 

Complete Route M formula 

ln(ξ/ℓₑ) = (1/2b) × (1/g₀² − 1/p_c) 

Endpoint calculations: 

z_eff p_c 1/p_c Exponent ξ 

7 1/6 = 0.167 6 (1/1.75)(128−6) = 69.7 60 μm 

6 1/5 = 0.20 5 (1/1.75)(128−5) = 70.3 110 μm 

Therefore: 

ξ ∈ [60, 110] μm 

This overlaps Routes A/B (ξ ≈ 88 μm), derived entirely from foam combinatorics. 

Target exponent: ln(ξ/ℓₑ) ∈ [69.7, 70.3] for ξ ∈ [60, 110] μm. Route M achieves this band from 

pure simplex combinatorics. 

Summary of all microphysical inputs: 

Parameter Source Value 

b Loop counting 0.875 

g₀² 7 constraints 1/128 

p_c Percolation (z ∈ [6,7]) 0.17–0.20 

ξ Dimensional transmutation 60–110 μm 

No cosmological input. No fitting. Microphysical closure achieved at narrow band level. 
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Appendix E: Void Percolation Resistance and the Origin 

of the Cosmological Constant 

This appendix provides a complete, self-contained derivation of the cosmological constant from 

void percolation resistance in the Two-Planck framework. It is written to close the final 

conceptual gap relative to horizon-thermodynamic approaches (e.g. Padmanabhan’s CosMIn), by 

identifying the previously implicit free parameter as a physical property of the void itself. 

E.1 Conceptual Overview (Plain Language) 

In the Two-Planck framework, space is not assumed to exist smoothly at all scales. Instead, 

geometry exists locally as relational structures at twice the Planck length, but extended spacetime 

only becomes stable when these local structures percolate into a connected network. The 

cosmological constant emerges because this percolation process encounters resistance: enforcing 

geometric order across regions of void requires breaking microscopic constraints, which 

increases entropy. This entropy cost acts like a surface tension opposing further expansion of 

coherent geometry. The universe settles into a metastable balance where expansion halts at a 

constant horizon scale, producing a constant vacuum energy and therefore a cosmological 

constant. 

E.2 The Missing Parameter in Horizon Thermodynamics 

Emergent-gravity approaches based on horizon thermodynamics typically fix Λ by invoking 

information balance or equipartition, but they require one additional scale: the transition between 

pre-geometric and classical behavior. In our framework, this scale is not free. It is identified with 

the coherence length ξ, which is determined microphysically. The resistance of the void to 

geometric percolation is the missing physical ingredient. 

E.3 Percolation Order Parameter 

We define an order parameter p(x), the probability that a minimal triangular relational structure 

remains coherent under coarse-graining. Geometry becomes system-spanning when p reaches the 

percolation threshold p_c. Below this value, spacetime fragments; above it, geometry propagates. 

At the Two-Planck scale, a triangle is coherent only if K = 7 independent constraints are 

satisfied. Each constraint is binary, so the bare coherence probability is: 

g₀² = 2⁻⁷ = 1/128 

E.4 Entropy Cost of Constraint Breaking 

When coherent geometry advances into a void region, some constraints must be violated at the 

interface. Each violated constraint increases the number of accessible microstates, raising 

entropy. This produces an energetic penalty that scales with the number of broken constraints. 
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The energy associated with one coherence cell of size ξ is: 

ε_c ≈ ℏc / ξ 

A boundary between coherent and incoherent regions therefore carries a surface energy density 

(surface tension): 

σ ≈ ℏc / ξ³ 

E.5 Entropy Functional and Gradient Resistance 

The coarse-grained entropy functional for the order parameter takes the Landau–Ginzburg form: 

S[p] = S₀ − ∫ d³x [ V(p) + (κ/2)|∇p|² ] 

The gradient term represents entropy loss due to broken constraints at coherence boundaries. 

Matching σ ≈ √(κΔV) with ΔV ≈ ℏc/ξ⁴ gives: 

κ ≈ ℏc · ξ 

No new free parameter is introduced; κ is fixed by the same microphysics that determines ξ. 

E.6 Emergent Negative Pressure and w = −1 

At late times the universe sits near the percolation threshold p ≈ p_c. In this regime, the local 

potential V(p) is flat (∂V/∂p ≈ 0), so the energy density is constant: 

ρ_vac c² ≈ V(p_c) = const 

The pressure of an order-parameter medium is: 

P = −ρc² + p · ∂(ρc²)/∂p 

At the pinned threshold this reduces to: 

P = −ρc²  →  w = −1 

E.7 Selection of the de Sitter Horizon 

On scales larger than ξ, entropy gradients are limited by the causal patch size L. The maximum 

gradient energy density is: 

ρ_grad ≈ κ / L² ≈ ℏc · ξ / L² 

Stability requires this not exceed the gravitational bound: 

ρ_grad ≈ c⁴ / (G L²) 

Equating these gives: 

ξ⁴ ≈ ℓₚ² L² 
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This is the same UV/IR relation obtained independently from gravitational consistency. The de 

Sitter horizon is therefore selected dynamically by entropy-gradient resistance. 

E.8 Why This Completes the Λ Derivation 

The cosmological constant is not imposed, nor selected anthropically. It emerges because the 

void resists being fully filled by coherent geometry. This resistance fixes the coherence scale, 

pins the vacuum energy, enforces w = −1, and dynamically selects a de Sitter horizon. Unlike 

horizon-thermodynamic approaches, no free transition scale is assumed—the void itself provides 

the missing physics. 

E.9 Relation to Padmanabhan’s Emergent Gravity and the Role of the 

Void 

Padmanabhan’s emergent-gravity programme (2012–2017) derives the cosmological constant Λ 

within a horizon-thermodynamic framework, where gravity emerges from degrees of freedom 

associated with spacetime horizons. In this approach, Λ appears as an integration constant, 

whose numerical value is fixed by imposing a global information-balance condition (CosMIn), 

requiring that the total cosmic information content be finite. 

While powerful and conceptually elegant, the CosMIn construction necessarily introduces one 

additional scale: the transition between a pre-geometric regime and a classical spacetime 

description. This scale is treated as an input parameter, albeit one argued to be ‘natural’ from 

information-theoretic considerations. 

The Two-Planck framework identifies this missing scale with a concrete microphysical 

mechanism. The transition is not imposed globally but arises locally from resistance of the void 

to geometric percolation. The same scale that Padmanabhan must introduce to regulate cosmic 

information is here derived as the coherence length ξ, fixed by constraint counting, loop 

combinatorics, and percolation stability of simplicial geometry. 

In this sense, the present framework can be viewed as a microphysical completion of the 

horizon-thermodynamic picture. Horizon entropy and information balance describe the 

macroscopic endpoint of cosmic evolution, but the reason this endpoint exists—and why Λ is 

stable rather than merely small—is that the void itself resists full geometric occupation. The 

cosmological constant is therefore not an arbitrary integration constant, but the energetic cost of 

enforcing relational constraints against an entropically favoured void. 

This distinction explains why the Two-Planck approach requires no free parameters. Where 

Padmanabhan’s construction fixes Λ by demanding consistency of global information, the 

present framework derives Λ from local geometric resistance, which dynamically pins the 

universe at a de Sitter attractor with equation of state w = −1. 
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