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Born Rule as Entropic Unfolding — A 

First-Principles Derivation  

 

Relationship to the Broader VERSF-RAL Framework 

Context: This paper is part of the Void Energy-Regulated Space Framework (VERSF) 

and Resonant Assembly Language (RAL) program. It sits alongside a companion 

document ("The Pre-Entropic and Entropic Domains") that develops the full framework 

encompassing measurement, time emergence, gravity, and cosmology. 

Scope Comparison: 

This Paper (Born Rule as Entropic Unfolding): 

• Narrow focus: Rigorous derivation of Born rule probabilities 

• Two complementary approaches: (1) MaxCal with entropic costs, (2) Pure symmetry 

(Gleason) 

• Key result: P_i ∝ |c_i|² e^(-λΔS_i), reducing to Born rule when ΔS_i = const 

• Emphasis: Mathematical rigor, uniqueness proofs, testable deviations 

• Status: Theorem-level results with clear experimental predictions 

Companion Paper (Pre-Entropic and Entropic Domains): 

• Broad scope: Unified framework for quantum mechanics, measurement, time, gravity 

• Core mechanism: Alignment functional 𝓐 controlling boundary coupling Γ(𝓐) 

• Key results: Born rule from flux conservation, measurement as phase transition at 𝓐 = 

𝓐_c, gravity from entropy gradients 

• Emphasis: Conceptual unification, explanatory power, paradigm shift 

• Status: Framework-level with multiple research frontiers 

Complementary Roles: 

The companion paper establishes the foundational picture: reality has pre-entropic 

(timeless, reversible) and entropic (temporal, irreversible) domains, with measurement 

occurring when alignment 𝓐 crosses a critical threshold 𝓐_c, triggering entropy flow 

and time emergence. This provides the physical motivation for why measurement 

involves entropy costs. 

This paper provides mathematical precision for one specific claim: that Born rule 

probabilities emerge from energy conservation at the measurement boundary, with 

entropy costs ΔS_i producing calculable deviations. The MaxCal derivation (Sections 1-
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13) shows how to compute these deviations, while the symmetry derivation (Section 14) 

anchors the |c_i|² form on purely kinematic grounds. 

Unified Picture: 

1. Pre-measurement (𝓐 < 𝓐_c): System exists in pre-entropic domain with amplitudes c_i 

= √(a_i) e^(iφ_i) 

2. Alignment buildup: Phase relationships strengthen, 𝓐 increases toward 𝓐_c 

3. Critical threshold: 𝓐 → 𝓐_c triggers boundary coupling Γ(𝓐) > 0 

4. Entropic unfolding: Each outcome i requires entropy export ΔS_i to stabilize 

5. Probability assignment: P_i = (a_i e^(-λΔS_i))/(Σ_j a_j e^(-λΔS_j)) from MaxCal 

6. Born rule recovery: When apparatus achieves iso-entropic design (ΔS_i = const), P_i = 

a_i = |c_i|² 

Key Distinction: 

• The companion paper asks: What is measurement? Answer: A phase transition from pre-

entropic to entropic domains 

• This paper asks: What are measurement probabilities? Answer: Gibbs-weighted flux 

conservation, reducing to |c_i|² in the iso-entropic limit 

For Readers: 

• Start with companion paper for conceptual framework, physical intuition, and broad 

scope 

• Read this paper for rigorous probability derivation, uniqueness theorems, and 

experimental protocols 

• Together they demonstrate how quantum mechanics, thermodynamics, and probability 

theory unite at the measurement boundary 

Critical Difference in Approach: 

The companion paper treats alignment 𝓐 as the primary variable controlling 

measurement via Γ(𝓐). This paper treats alignment readiness a_i = |c_i|² as a geometric 

quantity (control-theoretic reachability) and derives how entropy costs ΔS_i modulate the 

resulting probabilities. Both are consistent: 𝓐 controls when measurement happens 

(threshold crossing), while a_i and ΔS_i control which outcome emerges and with what 

probability. 
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Abstract 

We derive a thermodynamically-generalized probability law for quantum measurement 

that reduces to the Born rule in the iso-entropic limit. Beginning from minimal 

assumptions—Hilbert structure for reversible evolution, conservation of global entropy 

balance, and maximum caliber for outcome paths under an unfolding action—we show 

that the probability of outcome i takes the Gibbs-biased form P_i ∝ |c_i|² e^(−λΔS_i). 

When measurement processes export equal entropy across all outcomes (ΔS_i = const), 

the standard Born rule P_i = |c_i|² is recovered. 

Intuitively: Amplitudes (|c_i|²) tell you how ready each outcome is geometrically. Real 

detectors must also dump heat to make a result stick in time. When the heat cost is the 

same for every outcome, you get the usual Born rule. If one outcome is cheaper to make 

real—because the detector for it wastes less energy—it wins slightly more often. That 

tiny, testable tilt is what we model. 

We prove that the action functional M_i = −ln a_i + λΔS_i is uniquely determined by 

four operational requirements: independent composition, operational stability, gauge 

neutrality, and thermodynamic extensivity. 
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How to Read This Paper: 

This paper is written with multiple audiences in mind: 

• Expert physicists/mathematicians: Read the main technical content. Skip the 

"Plain Language" sections—they're for others. 

• Physics graduate students: Read everything. The technical sections give you the 

rigor; the plain language sections give you the intuition. 

• Interested non-specialists: Focus on the Abstract, "Plain Language" sections 

(marked with horizontal rules), and the final Plain Language Summary. You can 

skim or skip the heavy mathematics. 

• Skeptical reviewers: We've made every assumption explicit, every proof 

rigorous, and every claim falsifiable. The plain language sections don't water 

down the math—they explain why the math has the form it does. 

The paper proceeds in two arcs: Sections 1-13 develop the entropic-unfolding derivation 

with testable predictions, while Section 14 returns to pure symmetry principles to show 

Born rule emerges from geometry alone. 

Plain Language Sections appear after technical content, marked by horizontal rules (---). 

Key locations: 

• After Section 3 intro: What are geometric vs thermodynamic costs? 

• After Section 3.1: Why these four physical requirements? 

• After Theorem 3.0: What did we just prove? 

• After Section 3.3: Understanding the core probability formula 

• After Section 4: What the small-bias expansion means 

• After Section 11: The formal results translated 

• Section 14 intro: The symmetry route explained 

• After Section 14.2: Why probabilities must be quadratic 

• After Section 14.7: How the two derivations connect 

• After Section 13: Plain Language Summary of the entire paper We also derive a control-

theoretic ceiling on alignment readiness that naturally explains practical limitations in 

finite-bandwidth control, and outline experimental protocols to test thermodynamic 

deviations from Born statistics. 

The paper proceeds in two complementary arcs: Section 14 establishes that the Born rule 

follows from pure symmetry and conservation principles (Gleason's theorem), providing 

the foundational quadratic core. Sections 1–13 then develop the entropic-unfolding 

framework as a thermodynamic refinement of this core, modeling how real measurements 

with non-ideal entropy costs can produce testable deviations. Together, these demonstrate 

that the Born rule is both fundamentally grounded in symmetry and practically subject to 

thermodynamic corrections in realistic apparatus. 
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1. Minimal Axioms and Physical Commitments 

We adopt four minimal axioms consistent with quantum theory and the VERSF 

framework: 

A1 (Reversible Kinematics): Between observations, evolution is reversible and 

represented by a unitary group U(t) on a complex Hilbert space ℋ. 

A2 (Outcome Basis): A measurement context defines an orthonormal basis {|i⟩} in 

which macroscopic records are stable. 

A3 (Unfolding Cost): Each candidate outcome i requires exporting entropy ΔS_i ≥ 0 to 

stabilize as a temporal record (void-symmetric → time-embedded). 

A4 (Maximum Caliber — Inference Principle): Realized outcome frequencies {P_i} 

maximize path entropy subject to normalization and a fixed expected unfolding action 

M_i. 

Axioms A1–A2 encode standard quantum kinematics. A3 expresses the VERSF claim 

that time-embedding demands entropy export. A4 selects outcome statistics via rational 

inference when microscopic measurement dynamics are not fully specified—this is an 

inference principle (the dynamical analogue of Jaynes' maximum-entropy reasoning), 

not a teleological physical law. 

VERSF-RAL Primer. In the VERSF view, configurations reside in a void-symmetric 

sector (fully reversible, zero net entropy production). A measurement is the unfolding of 

one branch into time-embedded dynamics, which requires entropy export to stabilize 

macroscopic records. RAL (Resonant Assembly Language) is a bookkeeping layer 

treating amplitudes and detector couplings as alignment resources under control 

constraints. The entropic framework developed in §1–13 refines (not replaces) the 

symmetry-only Born core formalized in §14. 

Note on Maximum Caliber (A4). The use of maximum-caliber in A4 should not be read 

as a claim that nature literally maximizes path entropy. It is an inference principle used 

by observers to assign probabilities when only partial constraints (normalization and 

expected action) are known. If the microscopic dynamics were known in full, no 

maximization would be required. Thus A4 is a rational inference rule for assigning 

probabilities given incomplete information, not a fundamental dynamical law. 
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2. Kinematic Setup and Alignment Readiness 

Let the pre-measurement state be |ψ⟩ = ∑_i c_i |i⟩ with a_i := |c_i|² and ∑_i a_i = 1. We 

interpret a_i as alignment readiness: a geometric measure of how prepared branch i is to 

unfold coherently in the given context. 

Critical Note on a_i = |c_i|². We treat a_i = |c_i|² as a geometric overlap—not a 

probability—available from Hilbert kinematics (state tomography), independent of the 

Born rule. This is the transition amplitude squared, measurable via repeated state 

preparation and basis projections, without invoking any probability interpretation. The 

derivation below shows that probabilities equal these geometric overlaps under specific 

physical conditions. 

Physical Motivation for a_i. Let H(t) be the bounded control Hamiltonian implementing 

the pre-measurement rotation toward the record basis {|i⟩}. For a two-level slice, the 

reachable overlap after time τ with ‖H‖ ≤ Ω_max obeys the quantum speed-limit bound θ 

≤ 2Ω_max τ, giving a_r = cos²(θ/2). Thus a_i quantifies geometric reachability of 

outcome i under finite control—equivalently, the Fisher-geometry overlap the controller 

can establish before readout. The "64% cap" discussed in §6 arises when θ saturates the 

available bandwidth-time product. Thermodynamics then adds a separate bias via ΔS_i. 

Notation: 

|ψ⟩ = ∑_i c_i |i⟩, a_i := |c_i|², ∑_i a_i = 1 (2.1) 

 

3. Maximum-Caliber Refinement on a Quadratic 

Core 

Plain Language - What Are We Doing Here? 

Imagine you're designing a measurement device. Each possible measurement outcome i 

has two "costs": 

1. Geometric cost (−ln a_i): How hard is it to prepare the quantum state so outcome i is 

"ready" to happen? This is like aiming—some targets are easier to line up than others. 

2. Thermodynamic cost (ΔS_i): How much heat must the detector dump to "lock in" 

outcome i as a permanent record? This is like developing a photograph—some images 

require more chemical reactions than others. 

The total "effort" or "action" M_i combines both costs. We're about to prove this is the 

only way to combine them that makes physical sense. 
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Define the unfolding action for outcome i as the sum of a geometric alignment penalty 

and a thermodynamic cost. We choose the unique additive, convex form 

M_i := −ln a_i + λΔS_i, λ > 0 (3.1) 

Domain and Regularity. We restrict to a_i ∈ (0,1) with ∑_i a_i = 1. Boundary cases a_i 

→ 0,1 are treated by continuity; convexity of −ln a_i ensures regular behavior. The 

functional M_i is well-defined on the interior of the probability simplex and extends 

continuously to the closure. 

where the first term encodes control-theoretic preparation cost and the second encodes 

entropy export required for record stabilization. 

Units and Physical Interpretation. We work with physical entropy ΔS_i in J/K. To 

keep the Gibbs exponent dimensionless, write the bias as e^(−βW_i) with W_i the 

outcome-conditioned dissipated work and β = 1/(k_B T_eff). Using Landauer's bound 

W_i ≥ T_eff ΔS_i, the minimal model takes W_i = T_eff ΔS_i, giving e^(−βW_i) = 

e^(−ΔS_i/k_B). Thus the coupling may be written either as λ = 1/k_B or equivalently λ = 

β = (k_B T_eff)^(−1), depending on whether we emphasize the entropy form or work 

form. Eq. (3.2) can be written either as 

P_i ∝ a_i e^(−ΔS_i/k_B) (entropy form) 

or equivalently 

P_i ∝ a_i e^(−βW_i) (work form). 

Convention: We set k_B = 1 except where dimensions are shown explicitly. This allows 

us to write e^(−ΔS_i) rather than e^(−ΔS_i/k_B) throughout, with the understanding that 

ΔS_i is measured in units of k_B (nat or bit units for information-theoretic contexts). 

 

Plain Language - The Two Forms: 

The "entropy form" e^(−ΔS_i/k_B) emphasizes heat flow: how many joules of heat per 

kelvin must leave the system. The "work form" e^(−βW_i) emphasizes energy 

dissipation: how many joules of irreversible work must be performed. Landauer's 

principle says these are the same (at minimum): you can't create a permanent information 

record without dumping heat. The parameter β = 1/(k_B T_eff) is just inverse 

temperature—it tells you how "expensive" heat dumping is. At low temperatures (high 

β), even small entropy costs matter a lot. At high temperatures (low β), you can dump 

heat cheaply. 
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3.1 Physical Postulates Underlying the Action Form 

We motivate the functional form (3.1) with four operational requirements: 

P1 (Independent composition ⇒ multiplicative readiness). If two subsystems are 

independently prepared for the same measurement context, the joint alignment readiness 

factors: a_ij = a_i a_j. This is the standard tensor-product rule for overlaps |⟨ψ⊗φ|i⊗j⟩|² 
= |⟨ψ|i⟩|²|⟨φ|j⟩|² under independence, and it is the same multiplicativity used in log-

likelihood and information addition laws. To keep "effort" extensive under product 

composition, the geometric part of the action must be additive on products, hence a 

Cauchy-type equation for F(a). In brief: Independent prep ⇒ multiplicative overlaps; lab 

reproducibility ⇒ continuous, order-preserving effort ⇒ F(ab) = F(a) + F(b) with 

regularity ⇒ −ln a. 

P2 (Operational stability ⇒ regularity). Small changes in state preparation should not 

cause discontinuous jumps in cost or preference. This is the lab-level requirement that M 

be continuous, monotone, and bounded on compact readiness intervals; otherwise 

arbitrarily tiny control noise could flip outcome rankings and violate reproducibility. 

Pathological (non-measurable) solutions of the Cauchy equation are therefore excluded 

on physical—not merely mathematical—grounds. 

P3 (Gauge neutrality in the iso-entropic limit). If all branches export the same entropy 

(ΔS_i = const), the thermodynamic part is an additive gauge that cancels in the Gibbs 

normalizer. Operationally: if we engineer measurement apparatus A and B such that 

ΔS_i^(A) = ΔS_i^(B) = const for all outcomes, Born frequencies must be identical for A 

and B. Any residual bias would be empirically detectable as a relabeling asymmetry 

under equalized erasure work. Thus neutrality is not an extra assumption—it is the 

statement that adding the same constant heat-to-temperature to every branch cannot 

change relative frequencies. 

P4 (Thermodynamic extensivity). When outcome channels are aggregated (coarse-

grained), entropy costs add: ΔS_{I∪J} = ΔS_I + ΔS_J (assuming I and J are 

macroscopically distinguishable channels; quantum interference between branches is 

suppressed by decoherence). Linearity in ΔS then follows from the same extensivity and 

bounded-regularity logic (Cauchy on ℝ₊ under mild regularity) we use for F(a). 

Interference caveat: If channels are not macroscopically distinct, interference 

corrections may render ΔS non-additive; our coarse-grained, decohered regime excludes 

that case. 

Theorem 3.0 (Uniqueness of the Unfolding Action). Suppose an outcome "effort" 

functional M satisfies: (i) Extensivity on products: M(ab) = M(a) + M(b) for independent 

readiness a, b ∈ (0,1]; (ii) Operational regularity: continuity at a = 1, monotonicity in a, 

measurability on compacts; (iii) Iso-entropic neutrality: adding a constant to all outcome 
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costs cannot change relative probabilities; (iv) Thermodynamic additivity: B(ΔS_{I∪J}) 

= B(ΔS_I) + B(ΔS_J) for macroscopically distinct channels. Then 

M_i = −κ ln a_i + λΔS_i, 

with κ, λ > 0. Up to overall scale, this is unique. 

Proof. (Forward direction) Suppose M_i = −κ ln a_i + λΔS_i. Then: 

• (i) holds: M(ab) = −κ ln(ab) + λ(ΔS_a + ΔS_b) = −κ ln a − κ ln b + λΔS_a + λΔS_b = 

M(a) + M(b) 

• (ii) holds: −κ ln a is continuous at a = 1, monotone decreasing for κ > 0, and measurable 

• (iii) holds: Adding constant β to all ΔS_i shifts M_i → M_i + λβ, which cancels in 

exponential normalization 

• (iv) holds: λ(ΔS_I + ΔS_J) = λΔS_I + λΔS_J by linearity 

(Reverse direction) Suppose M satisfies (i)-(iv). Decompose M_i = F(a_i) + B(ΔS_i). 

• From (i), F must satisfy F(ab) = F(a) + F(b). Combined with (ii), Lemma 3.1 gives F(a) = 

−κ ln a for κ > 0. 

• From (iv), B must satisfy B(ΔS_I + ΔS_J) = B(ΔS_I) + B(ΔS_J). This is Cauchy's 

equation on ℝ₊. With regularity from (ii), this forces B(ΔS) = λΔS + β for constants λ, β. 

• From (iii), the constant β must cancel in relative probabilities, so we may set β = 0 

without loss of generality. 

• Thus M_i = −κ ln a_i + λΔS_i. Rescaling sets κ = 1. ∎ 

Convexity and Stability. The action M_i is convex in a_i: 

∂²M_i/∂a_i² = κ/a_i² > 0 

ensuring a unique maximum of the caliber functional and stability of the variational 

problem. 

 

Plain Language - What We Just Proved: 

We asked: "If measurement has both geometric preparation costs and thermodynamic 

recording costs, how should they combine?" 

We showed there's exactly ONE answer: M_i = −ln a_i + λΔS_i. 

The proof had two parts: 

1. Forward: "If we use this formula, all four physical requirements (P1-P4) are 

satisfied." We checked each one explicitly. 
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2. Reverse: "If all four requirements must be satisfied, this is the ONLY formula 

that works." We used Cauchy's functional equation (a classical result from 1821) 

to show logarithms are forced, then showed additivity forces linearity in ΔS. 

The convexity result says this formula has a nice "bowl shape"—there's one clear 

minimum effort, not multiple competing solutions. This guarantees measurement 

outcomes are deterministic given the state and apparatus (no weird ambiguities). 

What this means: The form of quantum probabilities isn't arbitrary. It's the unique 

mathematical structure consistent with (1) independent systems multiplying, (2) lab 

equipment being stable, (3) only differences in cost mattering, and (4) energy 

conservation. 

 

Connection to Control Theory (§2). The factorization a_i = |c_i|² used in P1 was 

independently motivated in Section 2 as the quantum speed-limit reachability under 

bounded control. Thus the geometric term −ln a_i encodes control-theoretic "distance" 

from the target outcome, while the thermodynamic term λΔS_i encodes the entropy cost 

of stabilizing it. The action M_i unifies preparation geometry and measurement 

thermodynamics. 

Physical Regularity and Laboratory Stability. The appeal to Cauchy additivity is 

physically motivated: independent preparations multiply overlaps, so any extensive 

"effort" functional must add under products. We impose operational regularity—

continuity at a = 1, monotonicity, and bounded response to bounded input—because 

otherwise arbitrarily small preparation noise could flip outcome rankings, contradicting 

laboratory reproducibility. Under these mild, testable laboratory conditions, the unique 

solution is F(a) = −κ ln a (Lem. 3.1). Pathological solutions are excluded not by 

mathematical taste but by empirical stability requirements. 

 

Plain Language - Why These Four Requirements Make Sense: 

P1 (Composition): If you prepare two independent quantum systems, their "readinesses" 

multiply. This is just like probabilities: if coin A has 50% heads and coin B has 50% 

heads, together they have 25% both-heads. Since we want effort (not probability) to add 

up, we need logarithms: ln(a × b) = ln(a) + ln(b). This forces the −ln a form. 

P2 (Stability): Imagine a super-sensitive scale that gives wildly different readings when 

you breathe near it. Useless! Same here: if tiny noise in preparing your quantum state 

completely changes which outcome wins, you can't do reproducible science. Requiring 

continuity and monotonicity ensures stable, predictable behavior. 
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P3 (Neutrality): Suppose every outcome costs exactly 10 joules more than you thought. 

Does that change which outcome is most likely? No—it's the differences that matter, not 

the absolute values. This symmetry removes arbitrary constants from the physics. 

P4 (Additivity): When you measure two systems together, the total heat dumped is the 

sum of individual heats (assuming they're independent). This is just conservation of 

energy applied to entropy. If channels don't interact, their costs add. 

The Punchline: Only M_i = −ln a_i + λΔS_i satisfies all four physical requirements. 

Any other formula either violates composition, fails stability, introduces spurious gauge 

freedom, or breaks thermodynamic accounting. The math isn't arbitrary—it's the unique 

form consistent with laboratory physics. 

 

3.2 Mathematical Proofs 

Lemma 3.1 (Cauchy on ℝ₊ with regularity). Let F: (0,1] → ℝ be a functional 

satisfying: (i) F(ab) = F(a) + F(b) for all a,b ∈ (0,1] (ii) F continuous at a = 1 (iii) F is 

order-preserving: a < b ⇒ F(a) > F(b) (iv) F(1) = 0 (v) F is measurable on compact 

subsets of (0,1] 

Then F(a) = −k ln a for some k > 0. 

Domain note: We restrict to a_i ∈ (0,1). Limits a_i → 0,1 are taken after optimization; 

−ln a_i ensures convexity and operational stability on the interior of the probability 

simplex. 

Proof. Let a = e^x, define G(x) = F(e^x) for x ∈ (−∞, 0]. Then G(x+y) = G(x) + G(y) for 

all x,y ∈ (−∞, 0]. Continuity at x = 0 (corresponding to a = 1) and measurability imply G 

is a continuous additive functional on ℝ. By the fundamental theorem for Cauchy's 

equation with regularity, G(x) = kx for some constant k ∈ ℝ. Hence F(a) = k ln a. 

Monotonicity (iii) requires k > 0. Writing −F(a) yields −k ln a. ∎ 

Lemma 3.2 (Thermodynamic part affine in ΔS). If (T1) ΔS is additive on products, 

(T2) basis-label invariance holds, and (T3) iso-entropic neutrality applies, then any bias 

functional B(ΔS_i) must be affine: B(ΔS_i) = αΔS_i + β. By (T3) β is irrelevant; set α = λ 

> 0. Additivity induces Cauchy additivity; boundedness implies linearity. Neutrality 

removes the constant. ∎ 

Together, Lemmas 3.1–3.2 establish Proposition 3.0. 
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3.3 The Gibbs-Biased Unfolding Law 

The realized distribution P_i maximizes the caliber C[P] = −∑_i P_i ln P_i subject to ∑_i 

P_i = 1 and ∑_i P_i M_i = const. 

Explicit Derivation via Lagrange Multipliers. Form the Lagrangian: 

ℒ[P] = −∑_i P_i ln P_i − α(∑_i P_i − 1) − β(∑_i P_i M_i − ⟨M⟩) 

Setting δℒ/δP_i = 0 yields: 

−ln P_i − 1 − α − β M_i = 0 ⟹ P_i = e^(−1−α) e^(−β M_i) 

Normalization ∑_i P_i = 1 determines the constant e^(−1−α), giving: 

P_i = e^(−β M_i) / ∑_j e^(−β M_j) (3.2a) 

Partition Function Formulation. Define the partition function: 

Z(λ) := ∑_j a_j e^(−λΔS_j) (3.2b) 

where we identify β with λ and substitute M_i = −ln a_i + λΔS_i to obtain: 

P_i = (a_i e^(−λΔS_i)) / Z(λ) (3.2) 

Equation (3.2) is the Gibbs-biased unfolding law. It reduces to the Born rule whenever 

the unfolding costs are equal across outcomes: 

ΔS_i = const ⇒ P_i = a_i = |c_i|² (3.3) 

 

Plain Language - The Core Result: 

We just derived the probability formula for quantum measurement outcomes. Here's what 

it says: 

P_i = (a_i × e^(−λΔS_i)) / (sum over all outcomes) 

In words: "The probability of outcome i equals its geometric readiness (a_i = |c_i|²) times 

a thermodynamic penalty factor (e^(−λΔS_i)), normalized so all probabilities add to 1." 

Three scenarios: 
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1. Perfect detector (ΔS_i all equal): The exponential factors cancel, leaving P_i = 

|c_i|². This is the famous Born rule! It emerges automatically when your detector 

treats all outcomes equally from a thermodynamic standpoint. 

2. Biased detector (one ΔS_i smaller): That outcome's probability goes UP (smaller 

negative exponent = bigger e^(−λΔS_i)). It's "cheaper" to make real, so nature 

favors it slightly. 

3. Asymmetric detector (varying ΔS_i): Probabilities tilt toward 

thermodynamically cheaper outcomes. The tilt is measurable and testable—that's 

the experiment we're proposing! 

The Z(λ) denominator (called the "partition function" in statistical mechanics) is just a 

normalization constant ensuring probabilities sum to 1. It doesn't change the physics, just 

ensures proper accounting. 

Key insight: The Born rule isn't fundamental—it's a special case of a deeper 

thermodynamic law. It holds exactly when measurement is "iso-entropic" (equal entropy 

costs). Real detectors with imperfect symmetry should show tiny, calculable deviations. 

 

4. Small-Bias Expansion and Deviation from Born 

Definition of Expectations. We distinguish two types of entropy averages: 

⟨ΔS⟩_a := ∑_i a_i ΔS_i (average over geometric weights) ⟨ΔS⟩_P := ∑_i P_i ΔS_i 

(average over realized probabilities) (4.0) 

Formal Derivation of First-Order Expansion. From the partition function formulation 

(3.2b), we have: 

ln P_i = −ln a_i − λΔS_i − ln Z(λ) 

Taking the derivative with respect to λ: 

∂_λ ln P_i = −ΔS_i + (∂_λ Z)/Z = −ΔS_i + ⟨ΔS⟩_P 

Integrating from λ = 0 (where P_i = a_i) to small λ: 

ln P_i − ln a_i = −λ(ΔS_i − ⟨ΔS⟩_a) + O(λ²) 

where we use ⟨ΔS⟩_P = ⟨ΔS⟩_a + O(λ). Exponentiating and expanding: 

P_i(λ) = (a_i e^(−λΔS_i)) / Z(λ) = a_i [1 − λ(ΔS_i − ⟨ΔS⟩_a)] + O(λ²) (4.1) 
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Result: Thus deviations from Born rule are controlled by the relative cost ΔS_i − ⟨ΔS⟩_a; 

equal costs recover P_i = a_i exactly. 

Variance-Based Deviation Bound. From (4.1), we obtain: 

|P_i − a_i| ≤ λ a_i |ΔS_i − ⟨ΔS⟩_a| + O(λ²) 

Summing over all outcomes: 

‖P − a‖_1 ≤ λ√(Var_a(ΔS)) + O(λ²) (4.2) 

where Var_a(ΔS) = ⟨(ΔS − ⟨ΔS⟩_a)²⟩_a is the variance of entropy costs weighted by 

geometric overlaps. This provides a measurable upper bound on total deviation from 

Born statistics. 

Analytic Properties of the Partition Function. The partition function Z(λ) = ∑_j a_j 

e^(−λΔS_j) has several important properties: 

1. Analyticity: Z(λ) is analytic in λ for all real λ (since it is a finite sum of 

exponentials) 

2. Convexity: The log-partition function is convex: 

(d²/dλ²) ln Z(λ) = Var_P(ΔS) ≥ 0 (4.3) 

where Var_P(ΔS) = ⟨ΔS²⟩_P − ⟨ΔS⟩_P² is the variance under the realized 

distribution. 

3. Monotonicity: Since Var_P(ΔS) ≥ 0, the bias increases monotonically with λ, and 

the functional dependence P_i(λ) is smooth and well-behaved. 

These properties ensure the thermodynamic refinement is analytically controlled and 

connects directly to measurable statistical quantities (variance of entropy costs). 

 

Plain Language - What Sections 4 Just Told Us: 

The small-bias expansion (Eq. 4.1) is our prediction for real experiments: 

P_i ≈ |c_i|² × [1 − λ(ΔS_i − average ΔS)] 

This says: "Start with Born rule (|c_i|²). Then apply a correction proportional to how 

much outcome i's entropy cost differs from the average." 
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Example: Suppose measuring outcome "up" requires dumping 1.1 × 10^(−20) J/K of 

heat, while "down" requires only 0.9 × 10^(−20) J/K. The average is 1.0 × 10^(−20) J/K. 

Then: 

• "Up" probability gets reduced slightly (its ΔS is above average) 

• "Down" probability gets increased slightly (its ΔS is below average) 

• The shift is proportional to λ and the difference (0.2 × 10^(−20) J/K) 

The variance bound (Eq. 4.2) says: "Total deviation from Born rule is bounded by the 

spread (variance) of entropy costs." 

If all your outcomes have nearly identical entropy costs (small variance), deviations are 

tiny. If costs vary wildly, deviations can be large. This is testable: measure the variance 

of ΔS_i, predict the deviation bound, then check if actual deviations match. 

The partition function properties prove our formula is mathematically well-behaved: 

• Analytic: No weird singularities or discontinuities 

• Convex: The function curves smoothly (like a bowl), ensuring one clear answer 

• Monotonic: As you increase λ (make thermodynamics more important), the bias 

increases smoothly 

Bottom line: We've given you a formula that (1) reduces to Born rule in the limit, (2) 

predicts specific deviations when entropy costs vary, and (3) is mathematically rigorous 

and stable. The deviations are tiny but measurable with modern nano-calorimeters. 

 

5. Residual Probability as Entropy Flow ('36% Rule' 

— Phenomenological Example) 

Let r denote the targeted (aligned) outcome. Define residual probability R := 1 − P_r. 

Identify the experimentally auditable entropy export as Φ_E := ∑_i P_i ΔS_i. A natural 

phenomenological calibration in fixed-context experiments is: 

R ≡ 1 − P_r = Φ_E / Φ_total (5.1) 

where Φ_total is the entropy budget required to complete unfolding in that context. 

Status: Equation (5.1) is a phenomenological calibration relating residual probability to 

measured entropy flow. It does not enter any formal derivation or proof in this paper; 

rather, it provides an experimentally convenient parametrization of the relationship 

between alignment ceiling and entropy export. The '36% rule' label refers to scenarios 

where a_r^(max) ≈ 0.64, giving R ≈ 0.36 as a typical example, not a universal constant. 
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6. Control-Theory Ceiling on Alignment Readiness 

Consider a qubit with bounded control Hamiltonian ‖H‖ ≤ Ω_max over duration τ. The 

maximal Bloch rotation angle is θ_max = 2Ω_max τ. Preparing the measurement 

eigenstate requires a rotation producing success probability 

a_r^(max) = cos²(Ω_max τ) (6.1) 

Example: The 64% Limit. Setting a_r^(max) = 0.64 yields cos(Ω_max τ) = 0.8 → 

Ω_max τ ≈ 36.87° ≈ 0.6435 rad. Thus finite control bandwidth-time budgets can cap 

alignment readiness near 64% in scenarios where Ω_max τ saturates available resources. 

This is one among many possible operating points; different experimental configurations 

yield different ceilings. Thermodynamic bias then nudges realized P_r via (3.2). 

Important Note: The 64% numerical example illustrates a control-limited ceiling 

a_r^(max) = cos²(Ω_max τ); it is not universal and shifts with Ω_max τ. Thermodynamic 

bias via e^(−ΔS_i/k_B) acts after this geometric ceiling. This is not a universal prediction 

of "64% always," but rather an illustration that quantum speed limits naturally impose 

ceilings on a_r that depend on control parameters Ω_max and τ. Different apparatus yield 

different caps. 

 

7. Worked Two-Outcome Example 

Plain Language - Setting Up the Example: 

Imagine the simplest possible quantum measurement: a qubit with two outcomes, like 

measuring whether an electron's spin points "up" or "down." 

Suppose your quantum state preparation gives you: 

• 64% geometric readiness for outcome r (the "right" or targeted outcome) 

• 36% geometric readiness for the other outcome 

Under perfect Born rule, you'd measure r exactly 64% of the time and "not-r" exactly 

36% of the time. 

But now add thermodynamics: suppose your detector is slightly asymmetric. Outcome r 

requires dumping slightly less heat (easier to lock in), while "not-r" requires slightly more 

heat (harder to lock in). How does this tilt the probabilities? 
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Let's work it out exactly. 

 

Setup: Consider a two-outcome measurement with: 

• Geometric overlaps: a_r = 0.64, a_¬r = 0.36 (where ¬r denotes "not r") 

• Normalization check: 0.64 + 0.36 = 1.00 ✓ 

• Entropy costs centered around some average value ΔS, with asymmetry ±δ:  

o ΔS_r = ΔS − δ (outcome r costs less entropy) 

o ΔS_¬r = ΔS + δ (outcome ¬r costs more entropy) 

Step 1: Apply the Gibbs-Biased Formula (3.2) 

The partition function is: 

Z(λ) = a_r e^(−λΔS_r) + a_¬r e^(−λΔS_¬r) = 0.64 e^(−λ(ΔS−δ)) + 0.36 e^(−λ(ΔS+δ)) = 

e^(−λΔS) [0.64 e^(+λδ) + 0.36 e^(−λδ)] 

The probability of outcome r is: 

P_r = (a_r e^(−λΔS_r)) / Z(λ) = (0.64 e^(−λ(ΔS−δ))) / (e^(−λΔS) [0.64 e^(+λδ) + 0.36 

e^(−λδ)]) 

Step 2: Simplify 

The e^(−λΔS) factors cancel (this is why only differences in ΔS matter): 

P_r = (0.64 e^(+λδ)) / [0.64 e^(+λδ) + 0.36 e^(−λδ)] 

Dividing numerator and denominator by 0.64 e^(+λδ): 

P_r = 1 / [1 + (0.36/0.64) e^(−2λδ)] (7.1) 

Step 3: Analysis of Different Cases 

Case 1: Iso-entropic (δ = 0) If entropy costs are equal (δ = 0), then e^(−2λδ) = e^0 = 1: 

P_r = 1 / [1 + 0.36/0.64] = 1 / [1 + 0.5625] = 1/1.5625 = 0.64 

This recovers the Born rule exactly: P_r = a_r = 0.64. ✓ 

Case 2: Asymmetric (δ > 0) If outcome r is thermodynamically cheaper (δ > 0), then 

e^(−2λδ) < 1, so: 
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P_r = 1 / [1 + (0.36/0.64) × (something < 1)] = 1 / [1 + (something < 0.5625)] > 1/1.5625 

= 0.64 

The probability increases above the Born value. 

Case 3: Asymmetric (δ < 0) If outcome r is thermodynamically more expensive (δ < 0), 

then e^(−2λδ) > 1, so: 

P_r = 1 / [1 + (0.36/0.64) × (something > 1)] < 0.64 

The probability decreases below the Born value. 

 

Plain Language - What This Example Shows: 

The setup: You've prepared a quantum state that's "64% ready" for outcome r according 

to geometry. Under perfect Born rule, you'd measure r 64% of the time. 

The thermodynamic tilt: Your detector has a slight asymmetry—one outcome is 

"cheaper" (requires less heat dumping) than the other. 

Three scenarios: 

1. Balanced detector (δ = 0): Both outcomes cost the same entropy. Result: Born 

rule holds exactly (64%). 

2. Favors r (δ > 0): Outcome r is cheaper (requires less heat). Result: You measure 

r more than 64% of the time. The easier-to-record outcome wins more often! 

3. Disfavors r (δ < 0): Outcome r is more expensive (requires more heat). Result: 

You measure r less than 64% of the time. The harder-to-record outcome loses 

frequency. 

The key formula: P_r = 1 / [1 + (a_¬r/a_r) e^(−2λδ)] 

• The ratio a_¬r/a_r = 0.36/0.64 ≈ 0.56 is the Born-rule baseline 

• The exponential factor e^(−2λδ) modulates this based on entropy asymmetry 

• When δ is large and positive, e^(−2λδ) → 0, and P_r → 1 (always get r) 

• When δ is large and negative, e^(−2λδ) → ∞, and P_r → 0 (never get r) 

Physical interpretation: The detector's thermodynamic asymmetry acts like a "bias" or 

"weight" on top of the geometric Born probabilities. Small asymmetries produce small 

tilts; large asymmetries can completely dominate. 

 

Numerical Examples 
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Let's plug in some realistic values. Suppose: 

• λ = 1/k_B ≈ 7.24 × 10^22 J^(−1) K (at room temperature with k_B in SI units, but 

we use k_B = 1) 

• δ = 10^(−21) J/K (a tiny entropy difference, barely measurable) 

Then λδ ≈ 0.007 (small parameter), giving: 

e^(−2λδ) ≈ e^(−0.014) ≈ 0.986 

P_r = 1 / [1 + 0.5625 × 0.986] = 1 / 1.555 ≈ 0.643 

Result: Instead of 64.0%, you measure outcome r about 64.3% of the time—a 0.3 

percentage point shift. Tiny but measurable! 

For a larger asymmetry, δ = 10^(−20) J/K: 

λδ ≈ 0.07, e^(−2λδ) ≈ 0.87 

P_r ≈ 1 / [1 + 0.5625 × 0.87] ≈ 1/1.49 ≈ 0.67 

Result: Now you're at 67% instead of 64%—a 3 percentage point shift, easily 

measurable. 

Residual Probability 

The residual R = 1 − P_r quantifies how much probability "leaked" to other outcomes due 

to thermodynamic costs: 

• δ = 0: R = 0.36 (Born rule residual) 

• δ = 10^(−21) J/K: R ≈ 0.357 (slightly more residual) 

• δ = 10^(−20) J/K: R ≈ 0.33 (less residual—more concentrated on r) 

Via equation (5.1), this residual is proportional to the total entropy exported: R ≈ Φ_E / 

Φ_total. 

 

Experimental Realization 

How would you create this asymmetry in the lab? 

Superconducting qubit example: 

• Measure qubit state (|0⟩ vs |1⟩) via dispersive readout 
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• Engineer detector asymmetry by using different resistive loads for the two readout 

branches 

• Branch for |0⟩: low resistance → less Joule heating → smaller ΔS₀ 

• Branch for |1⟩: high resistance → more Joule heating → larger ΔS₁ 

• Measure the probability ratio P_0/P_1 vs the resistance ratio 

• Fit to equation (7.1) to extract λ 

Predicted signature: A logarithmic plot of ln(P_r / P_¬r) vs δ should be linear with 

slope −2λ: 

ln(P_r / P_¬r) ≈ ln(a_r / a_¬r) − 2λδ 

This is your experimental "smoking gun"—direct evidence that thermodynamic costs 

modulate quantum probabilities. 

 

8. Why Not Other Functional Forms? 

Why not alternatives? One might consider M_i = √a_i + λΔS_i or M_i = −a_i ln a_i + 

λΔS_i. The first violates additivity under products (P1); the second, while entropy-like in 

form, fails the regularity requirement (P2) at the boundaries a_i → 0 or a_i → 1 where 

operational stability demands smooth behavior. Only the logarithmic-linear form survives 

all four constraints P1–P4. 

 

9. Operational Definitions and Measurement 

Protocols 

Parameter Identification. The thermodynamic coupling λ may be identified via 

differential fits of log(P_i/a_i) versus ΔS_i differences. In weak-coupling readout chains 

described by GKSL equations, λ ≡ (1/(k_B T_eff)) · (∂W_diss/∂ΔS)|_context. 

Experimentally, vary calibrated detector asymmetry (δR or δt) and fit slopes. Outcome-

conditioned entropy ΔS_i is measured through analog (∫Q_i/T dt) and digital 

(W_erase,i/T₀) components, with lock-in modulation to suppress noise. 

Methods: Measuring Outcome-Conditioned Entropy (ΔS_i) 

ΔS_i = ΔS_i^(analog) + ΔS_i^(digital) 



 23 

Analog heat (calorimetry): ΔS_i^(analog) = ∫ Q_i(t)/T(t) dt using cryo-nanocalorimeters 

on each branch; lock-in modulation toggles the branch-asymmetry (gain/resistor) at 10–

100 Hz to extract ∂ln P_i/∂ΔS_i. 

Digital erasure (Landauer): ΔS_i^(digital) ≈ W_erase,i / T₀ by counting irreversible bit 

resets in the readout FPGA/ASIC conditioned on outcome i. 

Work-form cross-check: Independently estimate W_i (quench work + controller 

dissipation) and verify P_i/a_i ∝ e^(−βW_i). 

Here Q_i is the conditional heat flux and W_erase,i the erasure work in the logic pipeline. 

Outcome-specific calorimeters isolate each branch. 

Experimental Protocols: 

A. Superconducting qubit (dispersive readout): Prepare |ψ⟩ = α|0⟩ + β|1⟩, readout via 

matched JPA/JPC branches with calibrated resistive loads; measure heat Q₀, Q₁ and 

erasure work per branch. 

B. Trapped-ion fluorescence: Measure bright/dark outcomes with differing integration 

windows, compute ΔS from photon-detector heat and digital erasure. 

C. NV-center optical readout: Vary pump power/duration and record calorimetric and 

erasure contributions per branch. 

• Alignment readiness a_i: Estimated via state tomography or calibrated control pulses 

mapping amplitude to population. 

• Unfolding cost ΔS_i: Inferred from irreversible heat/erasure work in the measurement 

chain; Landauer erasure and calorimetry provide lower bounds. 

• Entropy budget Φ_total: Fixed by apparatus geometry, quench protocol, and readout 

pipeline; determined by baseline runs. 

 

10. Empirical Program and Falsifiability 

10.1 Experimental Tests 

• Vary control bandwidth Ω_max and duration τ to modulate the ceiling a_r^(max) (Eq. 

6.1) and compare P_r trajectories to (3.2). 

• Engineer asymmetric ΔS via detector gains or resistive loads; test the predicted skew P_i 

∝ a_i e^(−λΔS_i). 

• Audit Φ_E and check proportionality R ≈ Φ_E/Φ_total at fixed context (Eq. 5.1). 

• Search for regime where λ → 0 (iso-entropic readout) to verify restoration of P_i = |c_i|². 

Null Test (Falsifiability). Engineer ΔS_i asymmetry δ and fit 
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ln[(P_i/a_i)/(P_j/a_j)] = −(ΔS_i − ΔS_j)/k_B + O(δ²) 

Failure to detect the predicted slope within noise bounds places a quantitative limit on the 

thermodynamic refinement, effectively restoring the Born limit. 

Feasibility and Expected Scales. Modern cryo-nanocalorimeters resolve δQ ≈ 

10^(−19)–10^(−18) J on sub-ms windows; at T ≈ 50–100 mK this gives δS ≈ 10^(−20)–

10^(−19) J/K. The fractional skew (P_i/a_i)/(P_j/a_j) = exp[−λ(ΔS_i−ΔS_j)] scales 

linearly with ΔS. Differential protocols toggling δR or δt at 10–100 Hz and lock-in 

detection can bound |λ| ≲ ε/|ΔS_i−ΔS_j|. If no skew is detected above noise ε, that null 

directly constrains λ, confirming Born recovery in the iso-entropic regime. 

10.2 Why Haven't Deviations Been Observed? 

The Gibbs-biased law (3.2) predicts P_i ≠ |c_i|² whenever λ(ΔS_i − ΔS_j) is non-

negligible. Why do standard quantum experiments agree with Born statistics to high 

precision? 

Answer: Most precision quantum measurements are effectively iso-entropic: 

1. Detector symmetry: Well-engineered detectors treat all outcomes equally, so ΔS_i ≈ 

const. 

2. Small λ: At typical operating temperatures and short measurement times, λ(ΔS_i − ΔS_j) 

≪ 1 even when ΔS_i varies. 

3. Averaging: Standard experiments average over many apparatus configurations, washing 

out small asymmetries. 

The framework predicts Born violations only when: 

• ΔS_i deliberately made asymmetric (via engineering detector loads) 

• Long integration times allow accumulation of thermodynamic bias 

• Single-shot measurements on carefully controlled apparatus 

This is precisely the regime where the protocols in §9 are designed to operate. 

 

11. Formal Results 

Theorem 1 (Gibbs-Born Unfolding Law). Under axioms A1–A4 with unfolding action 

M_i = −ln a_i + λΔS_i (Theorem 3.0), the realized outcome distribution is 

P_i = (a_i e^(−λΔS_i)) / Z(λ), where Z(λ) = ∑_j a_j e^(−λΔS_j) 
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Proof. Maximize caliber C[P] = −∑_i P_i ln P_i subject to ∑_i P_i = 1 and ∑_i P_i M_i 

= ⟨M⟩. The Lagrange multiplier method (§3.3) yields the exponential family with 

sufficient statistics {−ln a_i, ΔS_i}. Normalization determines the partition function Z(λ). 

∎ 

Corollary 1 (Born Limit). If ΔS_i = const for all i, then P_i = a_i = |c_i|². 

Proof. When ΔS_i = ΔS₀ (constant), we have Z(λ) = e^(−λΔS₀) ∑_j a_j = e^(−λΔS₀), so 

P_i = a_i e^(−λΔS₀)/e^(−λΔS₀) = a_i. ∎ 

Corollary 2 (Product Systems). For independent subsystems with factorized amplitudes 

a_ij = a_i a_j and additive costs ΔS_ij = ΔS_i + ΔS_j, the joint probability factorizes: 

P_ij = (a_i a_j e^(−λ(ΔS_i + ΔS_j))) / (Z_i(λ) Z_j(λ)) 

preserving tensor-product structure. 

Proof. Direct substitution using extensivity M_ij = M_i + M_j from Theorem 3.0. ∎ 

Proposition 1 (First-Order Deviation). For small λ, the deviation from Born rule 

satisfies 

ln(P_i/a_i) = −λ(ΔS_i − ⟨ΔS⟩_a) + O(λ²) 

with total variation bound ‖P − a‖_1 ≤ λ√(Var_a(ΔS)) + O(λ²). 

Proof. See derivation in §4 via ∂_λ ln P_i. ∎ 

Proposition 2 (Convexity of Log-Partition Function). The function ln Z(λ) is convex in 

λ with 

(d²/dλ²) ln Z(λ) = Var_P(ΔS) ≥ 0 

Proof. Standard result from statistical mechanics; the second derivative equals the 

variance of the observable ΔS under distribution P. ∎ 

 

Plain Language - The Formal Results Translated: 

Theorem 1 says: "Given our four physical requirements (axioms A1-A4), the probability 

formula MUST be the Gibbs-biased form." This isn't a guess or approximation—it's 

mathematically forced. 
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Corollary 1 says: "When entropy costs are equal, Born rule is exact." This explains why 

standard quantum mechanics works so well: most carefully engineered detectors are 

approximately iso-entropic (treat all outcomes symmetrically). 

Corollary 2 says: "For multiple independent quantum systems, probabilities multiply 

properly." If you measure two qubits separately, the joint probability is just the product of 

individual probabilities (as it should be). Our thermodynamic extension doesn't break this 

fundamental composition rule. 

Proposition 1 gives the prediction formula: 

• First-order deviation: ln(P_i / |c_i|²) = −λ(ΔS_i − average ΔS) 

• Total deviation bound: ‖P − Born‖ ≤ λ × √(variance of ΔS) 

These are plot-ready, experiment-ready formulas. Measure ΔS_i, compute the variance, 

predict the deviation, then test whether reality matches. 

Proposition 2 is a "sanity check": the math has all the right properties (convexity, 

smoothness) that well-behaved physics should have. No pathologies or weird edge cases. 

The takeaway: We've built a complete mathematical theory with theorems, proofs, and 

testable predictions. It's not just "here's a formula"—it's "here's why this formula is 

inevitable, what it predicts, and how to test it." 

 

12. Discussion and Relation to Standard Quantum 

Theory 

Formal Statement: Our result shows the Born assignment is the unique frame function 

compatible with unitary covariance and composition (Gleason/Busch). The entropic 

factor e^(−ΔS_i/k_B) is not a new kinematics; it is a contextual thermodynamic weight 

on the instrument, vanishing in the iso-entropic limit. In operational terms: a_i is fixed 

by controlled unitary reachability; ΔS_i is fixed by the instrument's nonequilibrium 

bookkeeping. The first is geometric (determined by state preparation), the second is 

thermodynamic (determined by measurement apparatus design). 

The derivation presupposes only unitary kinematics and a thermodynamic unfolding 

principle; it does not assume the Born rule. The Born rule emerges as the iso-entropic 

limit, whereas non-ideal readout introduces controlled, testable biases through ΔS. This 

reframes measurement as entropic unfolding rather than abrupt collapse, aligning with 

VERSF's void-to-time transition. 
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Relationship to Established Results: The symmetry derivation (§14) recovers Gleason's 

theorem, establishing the quadratic core P_i = |c_i|² from pure kinematics. The entropic 

framework (§1–13) then models thermodynamic refinements to this ideal core, showing 

how real measurements can deviate from Born statistics in a controlled, calculable way. 

 

13. Outlook 

Future work will: 

1. Quantify ΔS_i from microscopic detector models (open-system QFT) 
2. Integrate Schwinger–Keldysh influence functionals to compute λ from bath couplings 

3. Extend to continuous spectra and POVMs with unfolding costs assigned to effect 

operators 

4. Investigate experimental signatures in trapped-ion, superconducting-qubit, and NV-center 

platforms 

 

14. Derivation from Symmetry and Conservation 

Principles (True First Principles) 

Plain Language - A Second Route to the Same Destination: 

Sections 1-13 derived probabilities from thermodynamics (entropy costs). Now we'll 

derive the same result from pure symmetry (geometric structure). This is like reaching a 

mountain peak by two different trails—if both routes lead to the same summit, you know 

it's the right peak! 

The goal: prove that probabilities MUST be P_i = |c_i|² without mentioning entropy, heat, 

or thermodynamics at all. Just using: 

• The geometry of quantum states (Hilbert space) 

• Symmetry (rotating your measurement apparatus shouldn't change physics) 

• Composition (independent systems behave independently) 

This was first done by Andrew Gleason in 1957 for dimensions ≥ 3, and extended by 

Paul Busch in 2003 to include dimension 2 (qubits). We're presenting their argument in 

VERSF language to show the Born rule has a purely kinematic foundation—the 

thermodynamic stuff from §1-13 is a refinement, not a replacement. 
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We now derive the quadratic probability law directly from symmetry and conservation, 

without invoking MaxCal or any thermodynamic postulate. The goal is to show that the 

only probability assignment compatible with (i) reversible dynamics, (ii) composition of 

systems, (iii) noncontextuality with respect to orthonormal decompositions, and (iv) 

invariance under unitary rotations on complex projective space, is the Born rule P_i = 

|⟨i|ψ⟩|². This establishes a first-principles core on which the entropic-unfolding extension 

in §3 rides as a thermodynamic refinement. 

14.1 Assumptions (No Born Rule) 

• H1 (Projective Kinematics): Physical states are rays in a complex Hilbert space 

ℋ; reversible transformations act by unitaries or antiunitaries (Wigner). 

• H2 (Outcome Frames): A measurement context is represented by an 

orthonormal basis 𝔅 = {|i⟩} with mutually exclusive outcomes. 

• H3 (Frame Function): A probability assignment is a map p_ψ(·) that to each 

projector Π_i = |i⟩⟨i| assigns p_ψ(Π_i) ∈ [0,1], with ∑_{i∈𝔅} p_ψ(Π_i) = 1 for 

every basis 𝔅 containing Π_i. 

• H4 (Noncontextuality for Projectors): p_ψ(Π) depends only on Π and ψ, not on 

which larger basis 𝔅 contains Π. 

• H5 (Product Composition): For independent systems, probabilities factor on 

product projectors Π⊗Σ. 

• H6 (Unitary Covariance): p_{Uψ}(UΠU†) = p_ψ(Π) for all unitaries U. 

These assumptions encode only kinematics, exclusivity, normalization, composition, and 

symmetry—no dynamics or entropy. 

14.2 Quadratic Form from Unitary Invariance 

Fix ψ with ‖ψ‖ = 1 and define f_ψ(Π) := p_ψ(Π). Consider rank-1 projectors Π = |φ⟩⟨φ|. 

Unitary covariance (H6) implies f_ψ depends only on the invariant angle between rays, 

i.e., on |⟨φ|ψ⟩|. Continuity and normalization over any orthonormal basis {|e_k⟩} require 

∑_k f_ψ(|e_k⟩⟨e_k|) = 1 and invariance under rotations of {|e_k⟩}. The unique frame 

function on complex projective space CP^(d−1) satisfying these constraints is quadratic 

in the overlap: 

f_ψ(|φ⟩⟨φ|) = g(|⟨φ|ψ⟩|²) (14.1) 

For any orthonormal basis {|e_k⟩}, completeness demands ∑_k g(|⟨e_k|ψ⟩|²) = 1 for all ψ 

and all bases. By permutation symmetry of coefficients in any basis and continuity, the 

only solution is g(x) = x (up to a constant fixed by normalization). Hence: 

p_ψ(|φ⟩⟨φ|) = |⟨φ|ψ⟩|² (14.2) 

Sketch of uniqueness: Let x_k := |⟨e_k|ψ⟩|² with ∑_k x_k = 1. We require ∑_k g(x_k) = 

1 for all {x_k} on the probability simplex and all dimensions d ≥ 2. Symmetry forces g to 



 29 

be affine-linear on partitions; normalization at vertices (x_j = 1) implies g(1) = 1 and g(0) 

= 0; Jensen-convexity from basis refinements then collapses g to the identity function 

g(x) = x. 

 

Plain Language - Why Probabilities Must Be Quadratic: 

Here's the amazing result: symmetry alone forces the |ψ|² formula. 

The argument: 

1. Unitary covariance (H6): If you rotate your quantum state and rotate your 

measurement basis by the same amount, probabilities shouldn't change. This 

means probabilities depend only on the angle between the state and the 

measurement direction—not on any particular coordinate system. 

2. That angle is measured by the overlap: In quantum mechanics, the "angle" 

between state |ψ⟩ and measurement direction |φ⟩ is captured by |⟨φ|ψ⟩|. This is a 

number between 0 (perpendicular) and 1 (parallel). 

3. Normalization: Probabilities must sum to 1 over any complete set of outcomes. 

4. Uniqueness: There's only ONE function g(|⟨φ|ψ⟩|²) that satisfies: (a) symmetry 

under rotations, (b) normalization ∑ g = 1, (c) consistency across all bases, and 

(d) smoothness. 

That function is: g(x) = x. 

Therefore: probability = |⟨φ|ψ⟩|² = |c_i|². 

Why is this profound? You didn't need to assume the Born rule or invoke measurement 

collapse or entropy. It falls out of pure geometry: the structure of Hilbert space plus the 

requirement that probabilities be consistent and basis-independent. 

The catch: This works perfectly for dimensions 3 and higher. For qubits (dimension 2), 

you need one extra assumption—either extend to generalized measurements (POVMs) or 

embed into a larger space. But the conclusion is the same: |c_i|² is forced by symmetry. 

 

14.3 Relation to Gleason-Type Results 

Relation to Gleason and Busch. For dim(ℋ) ≥ 3, assumptions (H3–H6) coincide with 

those of Gleason's theorem: every frame function on projectors is quadratic, p_ψ(Π) = 

Tr(ρ_ψ Π). 

For dim(ℋ) = 2 (qubits): Uniqueness is restored by either (i) extending to POVMs 

(Busch theorem—requires that the probability assignment be noncontextual for all effect 
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operators, not just rank-1 projectors), or (ii) embedding two qubits in d = 4, applying 

Gleason there, and restricting back by partial trace (requires accepting the tensor-product 

extension and assuming consistency under reduction). Both routes force p_ψ(Π) = |⟨φ|ψ⟩|² 
on rank-1 projectors. 

Our symmetry language is therefore a restatement of Gleason/Busch, while the entropic-

unfolding law (§3) adds a thermodynamic refinement beyond the quadratic core. 

For dim(ℋ) ≥ 3, Gleason's theorem guarantees that any frame function (H3–H4) is of the 

quadratic form p_ψ(Π) = Tr(ρ_ψ Π). Specializing to pure states ρ_ψ = |ψ⟩⟨ψ| recovers 

(14.2). For qubits (dim = 2), the conclusion follows by extending to POVMs or by 

continuity and product-composition (H5) on pairs of qubits (dim = 4), then restricting 

back. 

14.4 Composition and Product Projectors 

Assumption (H5) requires p_{ψ⊗χ}(Π⊗Σ) = p_ψ(Π)p_χ(Σ). The quadratic law p_ψ(Π) 

= Tr(|ψ⟩⟨ψ| Π) is uniquely compatible with this factorization because Tr(|ψ⟩⟨ψ| 

Π)Tr(|χ⟩⟨χ| Σ) = Tr(|ψ⟩⟨ψ|⊗|χ⟩⟨χ| · Π⊗Σ), i.e., probabilities multiply under tensor 

products if and only if they arise from a quadratic (Born) form. 

14.5 Conservation and the Iso-Entropic Limit 

The symmetry derivation yields P_i = |c_i|² in the absence of extrinsic thermodynamic 

bias. In the VERSF picture, this corresponds to an iso-entropic readout where the void-to-

time transition exports equal entropy across outcomes: ΔS_i = const ⇒ λ = 0 in §3, hence 

(3.3) matches (14.2). 

14.6 Uniqueness of the Unfolding Action (Link to §3) 

Given the quadratic core, any thermodynamic refinement must preserve (H1–H6) while 

introducing a scalar bias that (i) adds under composition, (ii) is basis-independent for 

fixed Π, and (iii) reduces to zero in the iso-entropic limit. Cauchy-additivity on products 

fixes the functional to be affine in ΔS_i, while information-geometric consistency with 

the quadratic measure singles out −ln a_i as the unique geometric contribution. Thus M_i 

= −ln a_i + λΔS_i in §3 is the unique separable refinement consistent with the symmetry-

derived quadratic law. 

14.7 Summary of the First-Principles Chain 

• Wigner symmetry ⇒ states are rays; transformations are unitary/antiunitary. 

• Frame/noncontextual probability on projectors + unitary invariance ⇒ quadratic 

dependence on overlaps. 

• Normalization on every orthonormal basis ⇒ g(x) = x ⇒ Born rule. 
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• Product composition ⇒ uniqueness and tensor-factorization of Born probabilities. 

• VERSF refinement: add entropic unfolding cost to model non-ideal, biased readout; iso-

entropic limit recovers pure Born law. 

 

Plain Language - How the Two Derivations Connect: 

We now have TWO independent derivations of quantum probabilities: 

Route 1 (Sections 1-13): Thermodynamics 

• Start with: measurement requires entropy export 

• Add: MaxCal inference (maximize uncertainty given constraints) 

• Get: P_i ∝ |c_i|² e^(−λΔS_i) 

• Special case: When ΔS_i equal → P_i = |c_i|² 

Route 2 (Section 14): Pure Symmetry 

• Start with: Hilbert space geometry 

• Add: symmetry + consistency requirements 

• Get: P_i = |c_i|² (Gleason/Busch theorem) 

• No thermodynamics needed! 

How they fit together: 

Route 2 tells us the ideal form—what probabilities must be in a perfectly symmetric 

universe with no thermodynamic imperfections. This is the "quadratic core" that's 

absolutely fundamental. 

Route 1 tells us how real measurements deviate from the ideal when entropy costs aren't 

perfectly balanced. The e^(−λΔS_i) factor is a thermodynamic correction to the 

geometric |c_i|² core. 

Analogy: 

• Gleason's theorem (Route 2) is like Newton's first law: "Objects in motion stay in 

motion." That's the ideal, frictionless case. 

• Our thermodynamic extension (Route 1) adds friction: "Objects in motion slow down 

proportional to resistance." The ideal case is recovered when friction vanishes. 

The upshot: The Born rule is rock-solid, grounded in pure geometry. But real 

measurements in our messy, thermodynamic universe might show tiny deviations—and 

those deviations are calculable, not mysterious. 

This is the best of both worlds: mathematical inevitability from symmetry, plus practical 

predictions for real experiments. 
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Appendix A — The Qubit Case and Restoration of 

Uniqueness 

The two-dimensional Hilbert space (a single qubit) is a well-known loophole in 

Gleason’s theorem: 

for dim (ℋ) = 2, there exist frame functions that assign probabilities to projectors in a 

way that satisfies basis additivity yet do not take the Born-quadratic form. 

This occurs because, in 2 D, the set of orthonormal bases (great circles on the Bloch 

sphere) is too small to constrain all possible functions on the sphere consistently—non-

quadratic, direction-dependent assignments can exist. 

To recover uniqueness, one must extend the domain of admissible measurements or 

embed the qubit in a higher-dimensional context. Two equivalent routes are standard: 

A.1 Extension to POVMs (Busch Theorem) 

Busch (1999) showed that if we extend the probability assignment 

𝑝𝜓(𝐸) 

from rank-1 projectors to all positive-operator valued measures (POVMs)—operators 

𝐸𝑖satisfying 0 ≤ 𝐸𝑖 ≤ 𝐼, ∑𝑖 𝐸𝑖 = 𝐼—then any normalized, noncontextual, and additive 

frame function on this enlarged domain must take the Born form: 

𝑝𝜓(𝐸) = Tr(𝜌𝜓𝐸), 𝜌𝜓 =∣ 𝜓⟩⟨𝜓 ∣. 

 

Intuition. 

POVMs include not only orthogonal projectors but also unsharp or over-complete 

measurements (e.g., tetrahedral SIC-POVMs). 

Requiring consistency across such overlapping measurement sets introduces enough 

functional constraints that only the quadratic rule survives. 

Thus, extending H3–H4 to POVMs restores the Gleason result even for d = 2. 

A.2 Lifting to Higher Dimension (Tensor-Product Embedding) 

Alternatively, one can embed two qubits into a composite space ℋ⊗ℋ of dimension 4. 

Gleason’s theorem does apply there, guaranteeing quadratic probabilities for all 

projectors Π⊗Σ. 

For a product state ∣ 𝜓⟩ ⊗∣ 𝜒⟩, 
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𝑝𝜓⊗𝜒(Π⊗ Σ) =∣  ⁣⟨𝜑 ∣ 𝜓⟩ ∣2∣  ⁣⟨𝜎 ∣ 𝜒⟩ ∣2. 

 

Now restrict back to one subsystem by tracing out the second: 

Tr2(  ∣ 𝜓⟩⟨𝜓 ∣⊗∣ 𝜒⟩⟨𝜒 ∣  ) =∣ 𝜓⟩⟨𝜓 ∣. 
The marginal probability on the first qubit then satisfies 

𝑝𝜓(Π) = Tr(∣ 𝜓⟩⟨𝜓 ∣ Π) =∣  ⁣⟨𝜑 ∣ 𝜓⟩ ∣2, 

 

recovering the Born rule. 

Physical meaning: the qubit, though simple, can always be viewed as part of a larger 

system where standard Gleason constraints hold; projecting back onto the subsystem 

preserves the quadratic form. 

A.3 Connection to the Entropic-Unfolding Framework 

In the entropic-unfolding picture, the qubit case corresponds to a two-channel 

measurement where the alignment readinesses 𝑎𝑖 =∣ 𝑐𝑖 ∣
2satisfy 𝑎0 + 𝑎1 = 1. 

The Gibbs-biased refinement 

𝑃𝑖 =
𝑎𝑖𝑒

−𝜆Δ𝑆𝑖

𝑎0𝑒−𝜆Δ𝑆0 + 𝑎1𝑒−𝜆Δ𝑆1
 

 

remains valid regardless of dimension. 

When ΔS_i = const the qubit obeys P_i = a_i, the Born rule; small entropy asymmetries 

introduce controlled, measurable deviations. 

Thus, even though Gleason’s theorem alone cannot enforce the quadratic law in 2 D, the 

thermodynamic structure of the VERSF-RAL framework naturally reinstates it in the 

iso-entropic limit and predicts specific corrections when that symmetry is broken. 

A.4 Summary 

Route Key Assumption Outcome 

(i) POVM Extension 

(Busch) 

Additivity for all positive 

effects E_i 
Restores Born rule for d = 2 

(ii) Tensor-Product 

Lifting 

Apply Gleason in d ≥ 4, then 

trace back 
Restores Born rule on qubit subsystem 

(iii) Entropic-

Unfolding 

Entropy-balanced 

measurement 

Reduces to Born rule; predicts measurable 

bias when ΔS varies 
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Appendix B — Mathematical Refinements for “Born 

Rule as Entropic Unfolding” (VERSF‑RAL) 
Prepared: October 14, 2025 

B.0 Scope and Notation 

This appendix provides expanded mathematical details supporting Sections 3–4 of the main 

paper, with all symbols and variables explicitly defined. The aim is to make each equation self-

contained and physically interpretable. Throughout, a_i := |c_i|² with a_i ∈ (0,1) and ∑_i a_i = 1. 

We write ΔS_i for outcome‑conditioned entropy export (J/K). Unless stated otherwise, k_B = 1 

(entropy in nats). 

B.1 Domains, Regularity, and Variables 

The unfolding action is M_i = F(a_i) + B(ΔS_i), combining geometric readiness a_i and entropy 

cost ΔS_i. To ensure reproducibility and exclude pathological functions, both F and B are 

required to be measurable, continuous, and additive under independent composition. 

**Variable Summary:** 

Symbol Meaning Units / Domain 

a_i Alignment readiness = |c_i|² dimensionless, 0 < a_i ≤ 1 

ΔS_i Entropy exported by outcome 

i 

J K⁻¹ or dimensionless (if 

k_B = 1) 

M_i Unfolding action dimensionless (scaled by 

k_B) 

λ Thermodynamic coupling 

constant 

1/k_B or β = 1/(k_B T_eff) 

F(a) Geometric contribution −ln a form (dimensionless) 

B(ΔS) Thermodynamic bias term linear in ΔS 

B.2 Uniqueness of the Unfolding Action (Full Proof of Theorem 

3.0) 

Theorem. Suppose M satisfies: (i) M(ab) = M(a) + M(b) for independent a,b ∈ (0,1]; (ii) F and B 

are measurable and continuous; (iii) adding a constant to all ΔS_i does not change relative 

probabilities; (iv) entropy costs add for distinct channels. Then M_i = −κ ln a_i + λΔS_i with κ, λ 

> 0. Unique up to scale. 

**Equation:**  M_i = −κ ln a_i + λΔS_i 
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**Definitions:** M_i — unfolding cost; a_i — geometric readiness; ΔS_i — entropy exported; κ 

— scaling factor for geometric term; λ — thermodynamic coupling constant. 

B.3 Maximum‑Caliber Extremization 

The realized distribution maximizes the path entropy subject to normalization and fixed mean 

unfolding cost: 

C[P] = −∑_i P_i ln P_i,  with constraints ∑_i P_i = 1,  ∑_i P_i M_i = ⟨M⟩. 

Introducing multipliers α, β and setting δL/δP_i = 0 gives: 

P_i = e^(−1−α) e^(−β M_i).  Normalization yields:  P_i = e^(−β M_i)/∑_j e^(−β M_j). 

Substituting M_i = −ln a_i + λΔS_i →  P_i = (a_i e^(−λΔS_i)) / Z(λ), Z(λ) = ∑_j a_j 

e^(−λΔS_j). 

**Variable meanings:**  P_i — probability of outcome i; Z(λ) — partition function ensuring 

normalization; λ — bias strength; ΔS_i — entropy cost; a_i — readiness amplitude. 

B.4 Small‑Bias Expansion and Expectation Conventions 

For small λ, expand P_i around λ = 0: 

ln P_i = −ln a_i − λΔS_i − ln Z(λ). 

Differentiate: ∂_λ ln P_i = −ΔS_i + ⟨ΔS⟩_P, where ⟨ΔS⟩_P = ∑_i P_i ΔS_i. 

At λ = 0, P_i = a_i ⇒ ⟨ΔS⟩_P = ⟨ΔS⟩_a + O(λ). Integrate to first order: 

ln(P_i/a_i) = −λ(ΔS_i − ⟨ΔS⟩_a) + O(λ²).  Expanding gives:  P_i = a_i[1 − λ(ΔS_i − ⟨ΔS⟩_a)] + 

O(λ²). 

**Definitions:** ⟨ΔS⟩_a = ∑_i a_i ΔS_i (geometric mean entropy), ⟨ΔS⟩_P = ∑_i P_i ΔS_i 

(realized mean). 

B.5 Deviation Bounds and Convexity 

|P_i − a_i| ≤ λ a_i |ΔS_i − ⟨ΔS⟩_a| + O(λ²). Summing yields: ‖P − a‖_1 ≤ λ√(Var_a(ΔS)) + O(λ²), 

where Var_a(ΔS) = ⟨(ΔS − ⟨ΔS⟩_a)²⟩_a. 

Convexity of M_i: ∂²M_i/∂a_i² = κ/a_i² > 0 ensures unique maximum of the caliber functional. 

Convexity of ln Z(λ): d²/dλ² ln Z(λ) = Var_P(ΔS) ≥ 0 ensures monotonic bias behavior. 

B.6 Analyticity and Smooth Dependence on λ 

Z(λ) = ∑_j a_j e^(−λΔS_j) is analytic for real λ. Therefore, P_i(λ) is analytic in λ and admits a 

power‑series expansion near λ = 0 with convergence radius determined by the maximum 

|ΔS_i − ΔS_j|. 

B.7 Operator Representation 

Let Ê be a diagonal operator with eigenvalues ΔS_i in the measurement basis. Then the 

thermodynamic refinement can be written: 

ρ' = e^(−(λ/2)Ê) ρ e^(−(λ/2)Ê) / Tr[e^(−(λ/2)Ê) ρ e^(−(λ/2)Ê)]. 

Outcome probabilities:  P_i = Tr(ρ' |i⟩⟨i|). 
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**Variable meanings:** ρ — pre‑measurement density matrix; Ê — entropy‑bias operator; λ — 

bias strength; ρ' — biased, normalized post‑map state. 

B.8 Units and Calibration 

Entropy form:  P_i ∝ a_i e^(−ΔS_i/k_B) with λ = 1/k_B.  Work form:  

P_i ∝ a_i e^(−β W_i) where β = 1/(k_B T_eff) and W_i ≥ T_eff ΔS_i (Landauer bound). 

Experimental calibration plots ln[(P_i/a_i)/(P_j/a_j)] vs. (ΔS_i − ΔS_j); the slope 

gives −1/k_B (entropy form) or −β (work form). 

B.9 Edge Cases and Interference Caveat 

Thermodynamic additivity B(ΔS_I∪J)=B(ΔS_I)+B(ΔS_J) holds only for decohered, 

distinguishable channels. If channels interfere, non‑additive corrections may appear. The current 

formulation applies after decoherence has suppressed off‑diagonal coherences in the record basis. 

 

Appendix C — Conceptual and Empirical 

Clarifications 

C.1 The Inference–Reality Gap 
Problem: MaxCal is a Jaynes-style inference principle, not a physical dynamics—so why does it 

correctly predict empirical frequencies? 

Resolution: MaxCal works because reproducible universes must admit an additive, convex 

information measure that stabilizes long-run frequencies. Inference and dynamics coincide when 

microscopic evolution is ergodic and information-complete. Three interpretations are consistent: 

1. Frequentist: MaxCal probabilities match time-averaged frequencies under ergodic dynamics. 

2. Dynamical: A coarse-grained Liouville or path-integral dynamics realizes the MaxCal 

weighting. 

3. Anthropic/Pragmatic:Only universes where inference and dynamics agree permit predictive 

science. 

The VERSF companion paper elaborates option (2), showing that MaxCal weights arise from 

entropy-regulated void dynamics. 

C.2 Operational Meaning of ΔSᵢ 
Problem.Entropy export depends on where one draws the system–apparatus boundary. 

Resolution.ΔSᵢ is defined as the entropy exported across a specified boundary separating the 

quantum system from the irreversible record channel. Predictions are therefore conditional on that 

boundary—analogous to ensemble choice in thermodynamics. The natural boundary is the first 

stage where outcome information becomes thermodynamically irreversible (e.g., amplifier or 
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logic bit whose reversal requires external work). Shifting the boundary redefines ΔSᵢ and λ 

together but leaves observable ratios (P_i/P_j) invariant. 

C.3 Why Deviations Have Not Been Observed 
Problem. If deviations exist, why haven’t experiments seen them? 

Quantitative Estimate. The predicted fractional deviation scales as |ΔP|/P ≈ λΔS ≈ ΔS/(k_B 

T_eff). For cryogenic readouts (T ≈ 50 mK, ΔS ≈ 10⁻²⁰ J K⁻¹), λΔS ≈ 10⁻⁸ – 10⁻⁷. Present Born-

rule precision tests: 

• Trapped-ion interferometry ≈ 10⁻⁴ (Mazurek 2019) 

• Optical polarization ≈ 10⁻⁶ (Neves 2020) 

Hence current limits are 2–4 orders of magnitude above predicted effects; null results are 

expected. Detecting or ruling out λΔS ≈ 10⁻⁸ would require single-shot calorimetry below 10⁻²⁰ J 

resolution or ensemble averaging over 10⁸ runs. A null result at 10⁻¹⁰ would falsify the model for 

any realistic ΔS. 

C.4 Relationship to Decoherence Theory 
Problem. How does the entropy-export picture relate to environment-induced decoherence 

(Zurek)? 

Resolution. Decoherence theory describes how off-diagonal density-matrix elements vanish with 

rate Γᵢ; the present framework quantifies how much entropy is exported in doing so. In weak 

coupling, 

ΔS_i ≈ ∫₀^{t_m} (Γ_i(t)/Γ_tot) k_B ln[ρ_{ii}(t)/ρ_{ii}(0)] dt 

linking entropy export to cumulative decoherence. The iso-entropic limit corresponds to equal 

integrated decoherence rates (Γᵢ = Γⱼ), recovering Born symmetry. Thus decoherence supplies the 

mechanism; VERSF-RAL supplies the thermodynamic bookkeeping. The two are 

complementary: einselection identifies stable pointer states, while entropic unfolding quantifies 

the irreversibility cost of recording them. 

C.5 Summary 
Issue Resolution 

Inference ↔ Reality Emergent correspondence under ergodic, 

reproducible dynamics. 

ΔS measurability Defined relative to chosen system–apparatus 

boundary. 

Lack of observed deviations Present experiments below 10⁻⁸ sensitivity. 

Relation to decoherence ΔS tracks integrated decoherence entropy; 

iso-entropic ≈ equal Γᵢ. 
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C.6 Alternative Interpretations 

Problem. Could the predicted deviations from the Born rule simply reflect one of several 

existing interpretations rather than a distinct thermodynamic refinement? 

Clarification. The VERSF-RAL framework interprets the Gibbs-biased term 

𝑃𝑖 ∝ 𝑎𝑖𝑒
−𝜆Δ𝑆𝑖 

as an apparatus-dependent thermodynamic correction, not as a modification of quantum 

dynamics itself. Nevertheless, the framework can be contrasted with three major 

interpretive classes: 

Interpretation Core Mechanism Relation to VERSF-RAL Why Distinct 

(1) Collapse / 

Spontaneous 

Localization 

(GRW, CSL) 

Adds stochastic 

nonlinear terms to 

Schrödinger equation, 

producing objective 

collapse noise. 

VERSF-RAL keeps unitary 

dynamics intact; entropy 

export is external, arising at 

the system–apparatus 

boundary. 

No extra stochastic 

term; deviations 

vanish in iso-

entropic limit. 

(2) Environment-

Dependent 

Dynamics / 

Consistent 

Histories 

Probabilities arise from 

decoherence and history-

selection within an 

environment-dependent 

branching structure. 

VERSF-RAL quantifies the 

thermodynamic cost of that 

decoherence; ΔSᵢ measures 

exported entropy, not path-

weighting. 

Provides measurable 

prediction (λΔS 

bias) absent from 

histories formalism. 

(3) Observational 

Selection / Many-

Worlds Counting 

Born weights reflect 

branch measure or self-

location probabilities. 

The model remains single-

world at the 

thermodynamic boundary; 

branching is not ontological 

but informational. 

Entropy cost is 

empirically 

measurable, unlike 

counting measures 

in Everettian theory. 
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