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Abstract 

Entropy—the quantity that determines why heat flows from hot to cold, why time seems to move 

forward, and why some processes are irreversible—is traditionally defined by counting 

microscopic arrangements. But this definition leaves a puzzle: what physical process actually 

determines which arrangements are "accessible"? We propose an answer grounded in dynamics 

rather than counting. 

We construct a rigorous framework in which entropy emerges from a primitive dynamical 

quantity: Ticks-Per-Bit (TPB). A tick represents an irreducible micro-event of physical change—

the smallest possible "step" a system can take. A bit represents one unit of objectively 

distinguishable configuration—a measurable difference between states. The central idea is 

simple: systems that can generate distinguishable states efficiently (few ticks per bit) have high 

entropy; systems that require many micro-events to produce distinguishable change have low 

entropy. 

We develop explicit axioms grounded in renewal theory, prove the TPB–entropy identity, derive 

thermodynamic and information-theoretic entropy, establish quantum extensions, and present 

falsifiable predictions—including a specific linear viscosity–entropy relation in glass-forming 

liquids that distinguishes TPB from Adam–Gibbs phenomenology. This edition resolves prior 

issues with ergodicity assumptions, quantum definitions, and partition function derivations. 
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1. Introduction 

1.1 The Problem: What Does Entropy Actually Measure? 

Entropy is one of the most important yet elusive concepts in physics. It governs the direction of 

time, determines the efficiency limits of engines, underlies the capacity of communication 

channels, and even appears in the physics of black holes. Yet for all its importance, the standard 

definition of entropy—S = k_B ln Ω, where Ω counts accessible microstates—raises an 

immediate question: what makes a microstate "accessible"? 

Consider a gas in a box. Statistical mechanics tells us its entropy depends on how many 

microscopic arrangements of molecules are compatible with its macroscopic properties 

(temperature, pressure, volume). But molecules don't simply "exist" in arrangements—they 

move, collide, and constantly transition between configurations. The standard formula counts 

arrangements but says nothing about the dynamical process that connects them. 
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This paper proposes that entropy is fundamentally about dynamics, not static counting. 

Specifically, entropy measures how efficiently a system's microscopic dynamics can generate 

distinguishable macroscopic change. 

1.2 The Core Idea: Ticks-Per-Bit 

Imagine watching a system evolve at the finest possible resolution. Each irreducible step of 

change—each elementary transition that cannot be subdivided further—we call a tick. Now ask: 

how many ticks does it take, on average, for the system to reach a configuration that is 

measurably different from where it started? That measurable difference is one bit of 

distinguishability. 

The ratio of these quantities defines Ticks-Per-Bit (TPB): the mean number of micro-events 

required to produce one bit of distinguishable change. 

The central claim of this paper is: 

Systems with low TPB have high entropy. Systems with high TPB have low entropy. 

This becomes clear when TPB is interpreted literally: TPB counts how many microscopic "ticks" 

the system needs to generate one bit of distinguishable change. 

• A low-TPB system produces distinguishable changes quickly: each microscopic tick is 

"effective," and the system moves easily from one microstate to another. Such a system 

rapidly explores a large region of configuration space, which is precisely the hallmark of 

high entropy. 

• A high-TPB system requires many microscopic ticks to produce even a small change. 

Most ticks are "wasted," in the sense that they fail to generate distinguishable new 

configurations. The system explores configuration space only slowly and inefficiently, 

accessing far fewer microstates. This is the hallmark of low entropy. 

This matches physical intuition: 

• Hot gas → Low TPB → High entropy: Molecules collide frequently, and each collision 

significantly alters the system's microstate. Only a few ticks are needed to produce 

measurable change, so the system rapidly samples many configurations. 

• Crystal → High TPB → Low entropy: Atoms vibrate around fixed lattice positions, 

and most microscopic events do not produce any distinguishable change. Many ticks are 

required before the system moves into a new configuration. 

Thus, TPB provides a mechanistic interpretation of entropy: entropy is high when each tick is 

dynamically productive, and low when ticks are dynamically inefficient. 
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1.3 Why This Matters 

Statistical mechanics defines entropy as S = k_B ln Ω, where Ω counts accessible microstates. 

Yet this definition lacks mechanistic grounding—what physical process determines 

accessibility? We propose that entropy measures the efficiency of microdynamical processes in 

generating distinguishable configurations. 

The central quantity is Ticks-Per-Bit (TPB): the mean number of irreducible transition events 

required to produce one bit of distinguishable change. Systems with low TPB generate 

distinguishability efficiently, corresponding to high entropy; systems with high TPB require 

many transitions per bit, corresponding to low entropy. 

This framework provides three principal contributions: 

1. Mechanistic grounding: Entropy ceases to be a primitive counting exercise and instead 

emerges from dynamical processes 

2. Unification: Thermodynamic, information-theoretic, and quantum entropies arise from a 

single underlying principle 

3. Falsifiability: The framework generates specific, testable predictions, most notably for 

glass transition dynamics 

 

2. Axiomatics of TPB Dynamics 

For the general reader: This section builds the mathematical foundation for TPB. We need to 

precisely define what we mean by "ticks," "bits," and the rules governing how systems transition 

between configurations. The key insight is that if no timescale is special at the microscopic level, 

then the statistics of how long it takes to produce distinguishable change must follow a specific 

mathematical pattern called a "power law." 

2.1 Configuration Space Structure 

Let (𝒞, Σ, μ) be a measurable configuration space with σ-algebra Σ and measure μ. We define: 

• Distinguishability boundary ∂𝒞_dist ⊂ 𝒞: the set of configurations differing by exactly 

one bit from a reference state 

• Transition operator T: 𝒞 → 𝒞: a measurable map representing one tick of 

microdynamical evolution 
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2.2 Fundamental Axioms 

Axiom 1 (Minimal Transition). A tick is the smallest admissible transition such that μ(T(A) △ 

A) > 0 for some measurable A, where △ denotes symmetric difference. 

Axiom 2 (Distinguishability Quantization). The boundary ∂𝒞_dist partitions 𝒞 into 

equivalence classes of configurations indistinguishable within one bit. 

Axiom 3 (Scale-Free Renewal). The first-passage time τ(c) = inf{n ∈ ℕ : Tⁿ(c) ∈ ∂𝒞_dist} has 

an asymptotically scale-free distribution: 

P(τ > t) ∼ C · t⁻ᵅ, α > 0 

as required by time-scale invariance of the underlying microdynamics. 

In plain terms: Axiom 1 says ticks are the smallest possible changes. Axiom 2 says we can 

meaningfully ask "is this configuration distinguishable from that one?" Axiom 3 says the time to 

reach a distinguishable configuration follows a specific statistical pattern—one where there's no 

characteristic timescale built in. This last axiom is crucial: it's what connects microscopic 

dynamics to the macroscopic concept of entropy. 

Standing Assumption (Measure Preservation and Effective Ergodicity). We assume that the 

transition operator T acts as a measure-preserving map on the accessible region of configuration 

space, and that on the coarse-grained scales relevant for entropy, the induced dynamics are 

effectively ergodic: time-averages along typical trajectories coincide with ensemble averages 

over μ. This is the standard assumption underlying both Boltzmannian and Gibbsian statistical 

mechanics. 

Remark (Non-ergodic and glassy systems). For systems that are strongly non-ergodic on 

laboratory timescales—most notably structural glasses—the exact assumptions above are 

violated. In Section 9.5 we therefore switch from "full configuration space" to a coarse-grained 

basin graph picture: TPB is then defined for transitions between basins of attraction rather than 

over the entire phase space. The renewal-theoretic language still applies to this coarse-grained 

dynamics, but the correspondence with the underlying microscopic T is only approximate. All 

glass predictions in Section 9.5 should thus be understood as TPB-based modeling assumptions, 

not consequences of strict microscopic ergodicity. 

2.3 Derivation of Power-Law Form from Time-Scale Invariance 

For the general reader: This section proves something important—we don't have to assume the 

power-law form; it follows automatically from a deeper principle. If physics at the microscopic 

level has no "preferred" timescale (no special duration that matters more than others), then 

mathematics forces the waiting-time distribution to be a power law. This is analogous to how the 

absence of a preferred direction in empty space forces physical laws to be rotationally 

symmetric. 
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The power-law form is not assumed but derived from a deeper principle: 

Principle (No Preferred Timescale). There is no intrinsic microscopic timescale for first-

passage to one-bit distinguishability. 

This means the survival function F(t) = P(τ > t) must be self-similar under time rescaling: 

F(λt) = g(λ) · F(t) for all λ > 0 

for some function g(λ). Taking logarithms and defining f(t) = ln F(t): 

f(λt) = ln g(λ) + f(t) 

Let x = ln t and h(x) = f(eˣ). Then: 

h(x + ln λ) = ln g(λ) + h(x) 

This is Cauchy's functional equation. Under mild regularity (continuity or measurability), the 

only solutions are linear: 

h(x) = −αx + const ⟹ f(t) = −α ln t + const 

Exponentiating: 

F(t) = P(τ > t) ∝ t⁻ᵅ 

Result: Scale-invariant renewal dynamics necessarily produce power-law tails. The exponent α 

is undetermined by the symmetry alone. 

2.4 Absorption of α into the Entropy Scale 

The exponent α appears in the entropy formula as: 

S = k_B ln Ω ∝ k_B ln(TPB⁻ᵅ) = −α k_B ln TPB = k_eff ln(1/TPB) 

where k_eff := α k_B. At the level of equilibrium thermodynamics, only the product k_eff = α 

k_B enters observable quantities (temperature, heat capacities, free energies), not k_B and α 

separately. In this sense α plays the same role as Boltzmann's constant itself: it fixes the 

numerical scale that relates entropy to microscopic structure. A world with some renewal 

exponent α ≠ 1 is empirically indistinguishable from one with α = 1 but a rescaled Boltzmann 

constant. 

Throughout this work we therefore adopt the convention: 

k_eff = k_B ⟺ α = 1 



 10 

as a choice of units for entropy. This removes one free parameter from the notation but does not, 

by itself, constitute a prediction for α; it simply reflects that α and k_B always appear as a 

product in the TPB–entropy identity. 

In particular, throughout this paper we deliberately avoid using α as a separate fit parameter: 

wherever α appears, it is either absorbed into k_eff or drops out of observable equilibrium 

relations, ensuring that no spurious predictive content is attributed to its value. 

2.5 Universality Argument for α ≃ 1 (Conjectural) 

While α can always be absorbed into the entropy scale at the level of static thermodynamics, its 

value still carries dynamical information: it controls the heaviness of renewal tails and the 

sensitivity of TPB to cutoffs. Here we briefly sketch why α ≃ 1 may be dynamically preferred in 

realistic systems. This section is intentionally more speculative than the rest of the paper. 

Aggregated physical systems are built from many subsystems, each with its own local first-

passage time τᵢ. Coarse-graining over sums, minima, or maxima of such times generically drives 

the effective renewal statistics toward stable, heavy-tailed forms. In renewal theory, the case α = 

1 is critical: 

• α < 1: The mean first-passage time diverges strongly; TPB becomes dominated by 

extremely rare events 

• α > 1: Tails thin out and approach exponential behavior; scale-freeness is lost 

• α = 1: A marginal regime where the mean diverges only logarithmically, preserving 

scale-free behavior while remaining compatible with finite effective TPB once physical 

cutoffs are imposed 

Conjecture and status. Aggregated, scale-free renewal processes subject to physical UV/IR 

cutoffs may be attracted to an effective α ≃ 1 fixed point. We emphasize that this is not used 

anywhere in the present paper to extract additional predictions: all of our concrete results (the 

TPB–entropy identity, the information-theoretic derivations, the thermodynamic relations, and 

the glass predictions) remain valid for arbitrary α once k_eff = αk_B is fixed. The α ≃ 1 

hypothesis should therefore be read as a prospective universality claim and research 

direction, not as a parameter that is being quietly tuned to match data. A quantitative derivation 

of α from more microscopic dynamics, or a direct extraction of α from measured first-passage 

tails in specific systems, is left for future work. 

 

3. The TPB–Entropy Theorem 

For the general reader: This is the heart of the paper. We prove that entropy—the quantity 

physicists have used for 150 years—is mathematically equivalent to (the logarithm of) the 

inverse of TPB. High entropy means low TPB (efficient generation of distinguishable states); low 
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entropy means high TPB (sluggish dynamics). This isn't just a reinterpretation; it's a 

mathematical identity that follows from our axioms. 

3.1 Definition of TPB 

Definition. For configuration c ∈ 𝒞, the Ticks-Per-Bit is: 

TPB(c) = 𝔼[τ(c)] 

where τ(c) is the first-passage time to ∂𝒞_dist starting from c. 

3.2 Accessible Microstate Measure 

Lemma. Under scale-free renewal (Axiom 3), the measure of configurations reachable within n 

ticks satisfies: 

μ(T⁻ⁿ(∂𝒞_dist)) ∝ n⁻ᵅ 

Proof. By renewal theory, the expected number of renewals (visits to ∂𝒞_dist) by time n is: 

𝔼[N(n)] ∼ n / 𝔼[τ] 

The measure of pre-images under T⁻ⁿ equals the density of configurations that reach ∂𝒞_dist in 

exactly n steps. (More precisely: under the invariant measure μ and our ergodicity assumption, 

μ(T⁻ⁿ(∂𝒞_dist)) equals the probability that a trajectory first hits ∂𝒞_dist at or after step n; for a 

renewal process this is the tail Σ_{t≥n} u(t).) For renewal processes with P(τ > n) ∼ C·n⁻ᵅ, the 

renewal density satisfies: 

u(n) = P(τ = n) ∼ αC·n⁻⁽ᵅ⁺¹⁾ 

Integrating over paths reaching ∂𝒞_dist at or after time n: 

μ(T⁻ⁿ(∂𝒞_dist)) ∝ ∫ₙ^∞ u(t) dt ∝ n⁻ᵅ ∎ 

3.3 Main Theorem 

Theorem (TPB–Entropy Identity). Under Axioms 1–3: 

Ω(c) ∝ TPB(c)⁻ᵅ 

S(c) = k_eff ln(1/TPB(c)) + S₀ 

where k_eff = α k_B and S₀ is a normalization constant. 
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Proof. The accessible microstate count Ω(c) is the measure of configurations reachable from c 

before distinguishability is achieved: 

Ω(c) = μ(T⁻ᵀᴾᴮ⁽ᶜ⁾(∂𝒞_dist)) ∝ TPB(c)⁻ᵅ 

Taking logarithms: 

S = k_B ln Ω = k_B ln(TPB⁻ᵅ) = −α k_B ln TPB = k_eff ln(1/TPB) + S₀ 

Since only the product k_eff = α k_B appears in predictions, we adopt the convention k_eff = 

k_B (equivalently α = 1), yielding S = k_B ln(1/TPB). ∎ 

3.4 Interpretation 

The theorem states that entropy measures inverse tick-efficiency: 

• High entropy (large Ω): Few ticks needed per bit → low TPB → each tick is 

dynamically productive, rapidly generating distinguishable configurations 

• Low entropy (small Ω): Many ticks needed per bit → high TPB → most ticks are 

"wasted," failing to produce distinguishable change 

To build further intuition: Consider the difference between shuffling a deck of cards (high 

entropy process) versus trying to "shuffle" a brick (low entropy). With cards, each manipulation 

produces a measurably different arrangement—low TPB. With a brick, you can shake it all day 

and it remains the same brick—astronomically high TPB. The TPB framework says this 

difference in dynamical productivity is precisely what entropy measures. 

3.5 TPB as a Dual to Microstate Counting 

For the general reader: This subsection shows that TPB isn't competing with the standard 

entropy formula—it's the same thing viewed from a different angle. Traditional stat mech counts 

how many microstates exist; TPB counts how many steps it takes to move between them. Kac's 

recurrence theorem provides the bridge: the number of microstates equals the average number 

of steps to return to any given one. 

In the microcanonical ensemble, entropy is defined as S = k_B ln Ω, where Ω is the number of 

accessible microstates. Here we show that this is equivalent to the TPB formulation S = k_B 

ln(1/TPB) up to a constant. 

Consider a measure-preserving ergodic dynamical system on a finite set of Ω equiprobable 

microstates. Each microstate corresponds to a cell A of measure p = 1/Ω. By Kac's recurrence 

lemma, the mean return time to A satisfies: 

𝔼[τ_A] = 1/p = Ω 
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Thus the microstate count Ω is equal to the mean number of ticks required to revisit a given 

microstate. This reveals that microstate counting already contains a hidden dynamical statement: 

"If there are Ω equally likely microstates, it takes Ω ticks on average to return to any given one." 

In the TPB framework we are not concerned with the recurrence time to a specific microstate, 

but with the first-passage time to a one-bit distinguishability boundary ∂𝒞_dist. This boundary is 

a union of many microstates and therefore has measure p_dist that increases with Ω. By the same 

recurrence logic, the mean first-passage time to this boundary scales as: 

TPB ≡ 𝔼[τ_dist] ∝ 1/p_dist 

For uniform microcanonical states, p_dist ∝ Ω, so: 

Ω ∝ 1/TPB 

Substituting into Boltzmann's formula: 

S = k_B ln Ω = k_B ln(1/TPB) + S₀ 

which reproduces the TPB–entropy identity with a constant offset S₀. 

The duality: Microstate counting and ticks-per-bit counting are dual descriptions of the same 

underlying structure: 

• Microstate counting asks: "How many distinct configurations exist?" 

• TPB counting asks: "How many ticks does it take to move between them?" 

Kac's lemma shows these questions have the same answer (up to constants). The TPB framework 

thus does not replace statistical mechanics—it reveals its dynamical content. 

 

4. Information-Theoretic Entropy 

For the general reader: Claude Shannon invented information theory in 1948, defining entropy 

as a measure of uncertainty or "surprise" in a message. Remarkably, his formula looks identical 

to the one physicists use for thermodynamic entropy. This section shows that the connection isn't 

a coincidence—both arise from TPB. The "cost" of distinguishing rare symbols (in information 

terms) equals the number of ticks needed to physically isolate that symbol's corresponding state. 

4.1 The Information-Dynamics Correspondence 

We now derive (not postulate) that physical tick-costs for symbol resolution are proportional to 

optimal code lengths. 
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Theorem (Information-Dynamics Correspondence). For a discrete source emitting symbols sᵢ 

with probabilities pᵢ, the tick-cost τᵢ to physically resolve symbol sᵢ satisfies: 

τᵢ = L · (−ln pᵢ) 

where L is a system-dependent tick-per-nat conversion factor. 

4.2 Derivation from Basin Geometry 

Setup: Distinguishing symbol sᵢ requires driving the system into a basin of configurations 

corresponding to that symbol. Let: 

pᵢ = μ(basinᵢ) 

be the measure of the basin for symbol i. 

Hierarchical partition structure: Physical configuration spaces typically admit hierarchical 

(multiplicative) partitions. To isolate symbol sᵢ requires traversing kᵢ levels of partition, where 

probability shrinks multiplicatively: 

pᵢ ∼ r^kᵢ ⟹ kᵢ = (−ln pᵢ)/(ln r) 

The number of transitions to isolate the symbol scales with the number of levels: 

τᵢ ∝ kᵢ ∝ −ln pᵢ 

Result: The logarithmic tick-cost emerges from the geometric property of multiplicative 

partition refinement in configuration space. 

4.3 Derivation from Optimal Distinguishability 

Kraft's inequality: If physical dynamics must implement a prefix-free (distinguishable) code in 

configuration space, then: 

Σᵢ e⁻τᵢ/L ≤ 1 

For optimal distinguishability (no wasted microstates), equality holds. 

Shannon's source coding theorem: The unique prefix-free code achieving minimal average 

length has: 

τᵢ = L(−ln pᵢ) 

Result: Physical distinguishability governed by TPB automatically produces Shannon code 

lengths under maximal efficiency constraints. 
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4.4 Derivation from Landauer's Principle 

Landauer's bound: Erasing one bit requires energy k_B T ln 2. 

Distinguishing rare outcomes: Symbol sᵢ reduces uncertainty by −ln pᵢ nats, requiring 

proportional erasure of prior possibilities. 

Tick-energy correspondence: Let each tick correspond to a fixed micro-amount of dissipated 

energy ΔE. The energy required to distinguish symbol i is: 

Eᵢ = k_B T (−ln pᵢ) = τᵢ · ΔE 

Solving for τᵢ: 

τᵢ = (k_B T / ΔE)(−ln pᵢ) 

Result: The same functional form emerges directly from thermodynamic irreversibility. 

4.5 Shannon Entropy as Mean Tick-Cost 

Theorem. Under the Information-Dynamics Correspondence: 

H = TPB_eff / L 

where H is Shannon entropy and TPB_eff is the mean tick-cost. 

Proof. The mean tick-cost per symbol is: 

TPB_eff = Σᵢ pᵢ τᵢ = Σᵢ pᵢ · L · (−ln pᵢ) = L · H 

Rearranging: H = TPB_eff / L. ∎ 

The effective accessible symbol-space volume per tick is: 

Ω_eff ∝ exp(H) = exp(TPB_eff / L) 

Thus Shannon entropy measures the logarithm of typical sequences accessible per unit tick-cost. 

 

5. Thermodynamics from TPB 

For the general reader: Thermodynamics—the science of heat, work, and energy—was 

developed in the 1800s to understand steam engines. Its key concepts (temperature, heat 
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capacity, free energy) were later explained by statistical mechanics. Here we show these same 

concepts emerge naturally from TPB. Temperature, for instance, measures how quickly TPB 

changes as you add energy to a system. 

5.1 Temperature 

Given S(E) = k_B ln(1/TPB(E)), temperature emerges from: 

1/T = ∂S/∂E = −k_B · (1/TPB) · (∂TPB/∂E) 

Physical interpretation: Adding energy typically opens new dynamical pathways, reducing 

TPB. Thus ∂TPB/∂E < 0, ensuring T > 0. 

5.2 Partition Functions: Corrected Treatment 

The standard partition function Z = Σⱼ exp(−βEⱼ) counts microstates weighted by Boltzmann 

factors. We now incorporate tick-dynamics correctly. 

Key insight: Dwell times τⱼ affect the kinetic accessibility of states but not their equilibrium 

statistical weight. The Boltzmann distribution emerges from maximizing entropy subject to 

energy constraints, independent of kinetics. 

TPB-Corrected Formulation: Define the dynamically-weighted partition function: 

Z_dyn = Σⱼ [e⁻βEⱼ / (τⱼ/τ₀)] 

where τ₀ is a reference timescale. This weights states by both their Boltzmann probability and 

their dynamical accessibility. 

For systems in true equilibrium, detailed balance ensures that dynamical weights cancel in 

expectation values, recovering standard thermodynamics. We emphasize that in true equilibrium, 

thermodynamic quantities are governed by the standard partition function Z; the dynamically 

weighted Z_dyn is introduced only to describe how tick-dynamics modulate the accessibility of 

states in metastable and driven regimes. 

We emphasize that TPB does not modify equilibrium statistical mechanics. 

TPB corrections via Z_dyn become significant for: 

• Metastable states 

• Glassy systems 

• Non-equilibrium steady states 

Entropy from Z_dyn: 
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S = k_B ln Z_dyn + k_B T (∂ ln Z_dyn / ∂T) 

This reduces to standard thermodynamics when τⱼ = τ₀ (uniform tick-costs) and provides 

corrections otherwise. 

 

6. Quantum TPB 

For the general reader: Quantum mechanics complicates the picture because quantum systems 

don't have definite configurations until measured. A quantum system can be in a "superposition" 

of many states simultaneously. How do we define TPB when there's no single trajectory through 

configuration space? The answer involves "purity"—a measure of how mixed or spread-out a 

quantum state is. A pure quantum state (like a single photon with definite polarization) has TPB 

= 1. A maximally mixed state (like unpolarized light) has TPB equal to the number of possible 

states. Decoherence—the process by which quantum systems become classical—shows up as 

increasing TPB. 

6.1 Definition via Purity 

For density operator ρ on Hilbert space ℋ with dim(ℋ) = d, define: 

• Purity: P = Tr(ρ²) = Σᵢ λᵢ² 

• Effective dimension: d_eff = 1/P 

• Quantum TPB: TPB_q = d_eff = 1/Tr(ρ²) 

6.2 Operational Interpretation 

In the classical setting, TPB literally counts the expected number of micro-transitions required to 

reach one-bit distinguishability. For a quantum system described by a mixed state ρ, there is no 

unique underlying trajectory; instead, distinguishability is mediated by decoherence and 

measurement. 

In that context, we interpret: 

TPB_q = 1/Tr(ρ²) 

as an effective tick-count proxy: it measures how many orthogonal "branches" are required to 

support the observed mixed state. Each decoherence event can be viewed as a quantum "tick" 

that increases the number of effectively distinct branches. More precisely, the rate of purity loss 

dP/dt tracks an effective tick-rate, though the "tick" picture is necessarily approximate for 

continuous environmental coupling. 
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Thus TPB_q tracks how many such branches are needed to represent ρ, even though the 

underlying unitary evolution does not decompose into literal, discrete ticks in a unique way. The 

classical "ticks to distinguishability" picture should therefore be read as an intuition pump in the 

quantum case, not as a microscopic model of wavefunction collapse. 

Status of Quantum TPB. In the classical setting, TPB counts literal micro-transitions required 

to reach one-bit distinguishability. In quantum mechanics, however, there is no underlying 

trajectory and no unique notion of "micro-events." For this reason the identification TPB_q = 

1/Tr(ρ²) should be understood as an operational interpretation rather than a microscopic 

derivation. Purity quantifies the number of orthogonal components ("branches") needed to 

represent the state; decoherence increases this effective branch count; and distinguishability 

emerges only after decoherence provides classical records. 

The TPB_q definition therefore expresses the minimal number of effectively distinguishable 

sectors required to support ρ, not the number of literal ticks. A fully microscopic derivation of 

quantum ticks would require a theory of discrete dynamical events in open quantum systems and 

is left for future work. In this paper we adopt TPB_q as the quantum quantity that plays the same 

operational role as classical TPB, while explicitly acknowledging that it is interpretive rather 

than fundamental. 

6.3 Properties 

• Pure states (ρ = |ψ⟩⟨ψ|): P = 1, TPB_q = 1 (one tick per bit of distinguishability) 

• Maximally mixed (ρ = I/d): P = 1/d, TPB_q = d (d ticks per bit) 

• Decoherence: Increases TPB_q as off-diagonal elements decay 

6.4 Entropy Bounds 

Theorem. Von Neumann entropy satisfies: 

ln(TPB_q) ≤ S_vN/k_B ≤ ln d 

where d = dim(ℋ) is the Hilbert space dimension. 

Proof. The lower bound follows from the Rényi-2 entropy: 

S₂ = −ln Tr(ρ²) = ln(d_eff) = ln(TPB_q) 

The standard inequality S₂ ≤ S_vN gives the lower bound. 

The upper bound S_vN ≤ k_B ln d is saturated by the maximally mixed state ρ = I/d. Since d_eff 

= TPB_q ≤ d always, this completes the bound. ∎ 

Special case: For states with equal nonzero eigenvalues (maximally mixed on their support of 

dimension d_eff = TPB_q), we have: 
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S_vN/k_B = ln(TPB_q) 

Thus TPB_q directly determines the entropy for this important class of states, which includes 

thermal states of systems with degenerate energy levels. 

 

7. Gravitational TPB and Black Hole Entropy 

For the general reader: One of the most surprising discoveries in theoretical physics is that 

black holes have entropy—and enormous amounts of it. A black hole the mass of the Sun has 

more entropy than all the ordinary matter in the observable universe. Even more surprisingly, 

this entropy is proportional to the black hole's surface area, not its volume. This section asks: 

can TPB explain why? The answer involves gravitational time dilation. Near a black hole's 

horizon, time slows down dramatically, which in TPB terms means the "tick rate" (as seen from 

far away) becomes extremely high. This concentration of tick-dynamics at the horizon explains 

why entropy lives on the surface rather than being distributed throughout the volume. 

7.1 Background: Standard Horizon Thermodynamics 

The thermodynamics of black holes is one of the most robust achievements of semiclassical 

gravity. Without any reference to TPB, one already knows that: 

1. Stationary black holes obey analogues of the four laws of thermodynamics 

2. Including quantum fields yields the Hawking temperature T_H = κ/2π and the 

Bekenstein–Hawking entropy: 

S_BH = A / 4ℓ_P² 

where A is the horizon area. 

3. Wald's Noether-charge construction shows that, for a wide class of diffeomorphism-

invariant Lagrangians, black hole entropy is determined by the gravitational action 

In this section TPB does not attempt to re-derive or supersede these results. Instead, we ask a 

narrower question: given the existence of horizon thermodynamics, can TPB provide a 

microscopic interpretive layer that explains why entropy localizes on the horizon and scales with 

area, in terms of distinguishability and tick-efficiency? 

7.2 TPB Field Near the Horizon 

For a static, spherically symmetric black hole, write the metric in Schwarzschild-like 

coordinates: 
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ds² = −f(r) dt² + f(r)⁻¹ dr² + r² dΩ², f(r_s) = 0 

Let χᵃ = (∂/∂t)ᵃ be the timelike Killing vector outside the horizon. Define the TPB density as seen 

by an asymptotic observer: 

TPB_∞(r) ∝ 1/|χ| = 1/√f(r) 

Physical reasoning: Proper time near the horizon relates to coordinate time by dτ = √f(r) dt. 

From infinity, local "ticks" near the horizon are infinitely redshifted—the number of coordinate-

time ticks per local physical event diverges as 1/√f(r). 

(The divergence is frame-dependent: TPB_∞ measures tick-cost in coordinate time seen from 

infinity. The local tick-efficiency near the horizon remains saturated and determines the area 

scaling.) 

7.3 Distinguishability Current and Horizon Flux 

Define a distinguishability current: 

Jᵃ = (1/TPB) uᵃ 

where uᵃ is the 4-velocity of static observers just outside the horizon. The flux of 

distinguishability through a surface Σ is: 

Φ_Σ = ∫_Σ Jᵃ dΣₐ 

At the horizon: 

• uᵃ becomes null and tangent to the horizon generator 

• Ingoing/outgoing directions collapse: one-sided flow aligned with null generators 

• The flux per unit area is maximized because transverse directions are fixed by the 2-

sphere geometry, and radial distinguishability channels "pile up" against the null surface 

due to extreme redshift 

Key result: The horizon is the unique 2-surface where the distinguishability flux, per unit area 

and per unit Killing time, is extremal (maximal). 

7.4 Area Law from TPB 

Impose a UV cutoff at proper length ℓ_cut (later identified with O(ℓ_P)). The number of 

distinguishable states supported by the horizon flux up to this cutoff determines the entropy: 

S_H ∝ A / ℓ_cut² 

Derivation: 
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• Distinguishability is counted per "cell" on the horizon 

• Each cell has area ℓ_cut² (from UV cutoff + focusing) 

• Each cell carries O(1) bits (saturated TPB density at the horizon) 

• Total entropy = (number of cells) × (bits per cell) ∝ A/ℓ_cut² 

This gives area scaling robustly from TPB principles alone. 

7.5 Coefficient Matching 

TPB fixes the functional dependence S ∝ A and provides a conceptual framework for why 

entropy localizes on a null 2-surface (the maximal distinguishability surface). The 

proportionality constant is not determined purely from TPB. 

Instead, it is fixed by demanding consistency with semiclassical gravity: the same horizon area 

variation that produces Hawking temperature T_H = κ/2π must satisfy the first law: 

dM = T_H dS + ⋯ 

This matching yields: 

S = A / 4ℓ_P² 

which we interpret as fixing the effective horizon cell area: 

ℓ_cut² = 4ℓ_P² 

7.6 Summary 

What TPB provides What GR fixes 

Entropy lives on the horizon — 

Entropy scales with area — 

Horizon = maximal distinguishability surface — 

— Numerical coefficient A/4ℓ_P² 

— Identification ℓ_cut = 2ℓ_P 

TPB provides a conceptual interpretive layer consistent with semiclassical gravity; semiclassical 

gravity provides the calibration. 

Scope of Gravitational Application. The gravitational results in this section are intended purely 

as a consistency check, not as new predictions or modifications of semiclassical gravity. TPB 

offers an interpretive mechanism for why black hole entropy localizes on the horizon and scales 

with area, but the quantitative results S = A/4ℓ_P², the Hawking temperature, and the Noether-

charge construction remain entirely those of standard GR and quantum field theory in curved 

spacetime. 
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This section should therefore be viewed as establishing that TPB is compatible with known 

gravitational thermodynamics and as identifying conceptual parallels (e.g., redshifted tick-rates 

and horizon-localized distinguishability). Developing a full TPB-based dynamical account of 

gravitational entropy would require a theory of microscopic ticks in curved spacetime and is 

beyond the scope of the present work. 

 

8. Worked Examples 

For the general reader: Theory is only as good as its applications. This section works through 

several systems—starting with a simple toy model that explicitly demonstrates the TPB–entropy 

identity, followed by classic thermodynamic systems—showing that TPB reproduces the standard 

entropy formulas in each case. These aren't new predictions; they're consistency checks showing 

that TPB agrees with established physics. 

8.1 Toy Model: Explicit TPB Extraction from Dynamics 

This example provides a concrete numerical demonstration that entropy can be computed 

directly from TPB extracted from dynamics. 

System: A 2-bit register with states (b₁, b₂) ∈ {00, 01, 10, 11}, giving Ω = 4 microstates. 

Dynamics (ticks): At each tick, both bits are re-randomized independently. Each of the 4 

configurations is chosen with equal probability 1/4, irrespective of the previous state. This 

represents maximally mixing dynamics. 

Macroscopic observable: We ask only whether the second bit has flipped relative to its initial 

value. Starting in state 00: 

• Macrostate "0": second bit is 0 → states {00, 10} 

• Macrostate "1": second bit is 1 → states {01, 11} 

The standard macro-entropy of this 1-bit observable is S_macro = k_B ln 2. 

Step 1: Define the distinguishability boundary. Starting from configuration 00, we define: 

∂𝒞_dist = {01, 11} 

Crossing this boundary means gaining one bit of distinguishable information ("the second bit has 

flipped"). The probability of being in ∂𝒞_dist at any tick is p_dist = 2/4 = 1/2. 

Step 2: Extract TPB from dynamics. Let τ be the first-passage time to ∂𝒞_dist starting from 

00: 
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τ = inf{n ≥ 1 : state at tick n ∈ {01, 11}} 

Since each tick is an independent trial with success probability p_dist = 1/2, τ is geometrically 

distributed: 

P(τ = n) = (1/2)^(n-1) · (1/2) 

The mean first-passage time is: 

𝔼[τ] = 1/p_dist = 2 

So TPB = 2 ticks per bit. On average it takes 2 microscopic ticks to produce 1 bit of 

distinguishable change. 

Step 3: Compute entropy from TPB. Using the TPB–entropy identity S = k_B ln(1/TPB) + S₀ 

with TPB = 2: 

S_TPB = k_B ln(1/2) + S₀ = k_B(−0.693) + S₀ 

Matching to the known macro-entropy S_macro = k_B ln 2 ≈ k_B(0.693): 

S₀ = k_B ln 2 − k_B ln(1/2) = k_B ln 4 

Verification (setting k_B = 1): 

Quantity Value 

TPB 2 

ln(1/TPB) −0.693 

S₀ ln 4 ≈ 1.386 

S_TPB = ln(1/TPB) + S₀ −0.693 + 1.386 = 0.693 

S_macro = ln 2 0.693 

The TPB-derived entropy exactly matches the standard result. 

Interpretation: The additive constant S₀ = k_B ln 4 is the baseline entropy of the underlying 2-

bit system (4 microstates). The TPB-dependent part ln(1/TPB) captures how much entropy is 

associated with the specific coarse-grained question ("has the second bit flipped?"). This 

demonstrates concretely that the TPB framework extracts the correct entropy from purely 

dynamical considerations. 

8.2 Ideal Gas 

Setup: N non-interacting particles in volume V with total energy E. 
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Configuration space: 𝒞 = {(q₁, ..., q_N, p₁, ..., p_N) : Σ|pᵢ|²/2m = E} 

Transition operator: T represents molecular collisions redistributing momentum while 

preserving total energy. 

Distinguishability: ∂𝒞_dist consists of configurations differing by one bit in the coarse-grained 

position-momentum description. 

TPB calculation: The number of accessible microstates is: 

Ω = (V^N / N!) · (2πmE)^(3N/2) / [h^(3N) Γ(3N/2)] 

For fixed E and N, Ω ∝ V^N. In the TPB framework, increasing V opens more dynamical 

pathways, so: 

TPB ∝ 1/V^N 

Thus: 

S = k_B ln(1/TPB) = k_B ln V^N + const = Nk_B ln V + const 

matching the Sackur-Tetrode equation's volume dependence. 

8.3 Quantum Harmonic Oscillator 

Setup: 1D oscillator with frequency ω at temperature T. 

Density matrix: ρ = Σₙ pₙ |n⟩⟨n| with pₙ = (1 − e⁻βℏω) e⁻ⁿβℏω 

Purity: 

P = Σₙ pₙ² = (1 − e⁻βℏω)² Σₙ e⁻²ⁿβℏω = (1 − e⁻βℏω)/(1 + e⁻βℏω) = tanh(βℏω/2) 

Quantum TPB: 

TPB_q = 1/P = coth(βℏω/2) 

High-temperature limit (βℏω ≪ 1): 

TPB_q ≈ 2/(βℏω) = 2k_B T/(ℏω) 

S ≈ k_B ln(TPB_q) = k_B ln(2k_B T/ℏω) 

matching the classical result S ∝ ln T. 
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8.4 Two-Level System 

Setup: States |0⟩, |1⟩ with probabilities p, 1−p. 

Shannon entropy: H(p) = −p ln p − (1−p) ln(1−p) 

Tick-costs: Under the Information-Dynamics Correspondence: 

• τ₀ = L(−ln p) 

• τ₁ = L(−ln(1−p)) 

Mean TPB: 

TPB_eff = p · L(−ln p) + (1−p) · L(−ln(1−p)) = L · H(p) 

Verification: H = TPB_eff/L, confirming the Shannon–TPB equivalence. 

Quantum case: For ρ = p|0⟩⟨0| + (1−p)|1⟩⟨1|: 

TPB_q = 1/(p² + (1−p)²) 

At p = 1/2: TPB_q = 2, S_vN = k_B ln 2. At p = 0 or 1: TPB_q = 1, S_vN = 0. 

 

9. Falsifiable Predictions 

For the general reader: A theory that can't be tested isn't science—it's philosophy. This section 

presents specific, quantitative predictions that distinguish TPB from existing theories. The most 

developed prediction concerns glass-forming liquids (Section 9.5), where TPB makes a sharp 

claim: viscosity and configurational entropy should be related by a straight line on a log plot, 

not the curved relationship predicted by the standard Adam-Gibbs theory. This is a genuine 

experimental test that could prove or disprove the TPB framework. 

9.1 Reaction Kinetics 

Prediction: For reactions with multiple pathways, the entropy change ΔS correlates with the 

ratio of mean dwell times: 

ΔS = k_B ln(TPB_initial / TPB_final) = k_B ln(τ_final / τ_initial) 

Test: Compare catalyzed vs. uncatalyzed reactions. Catalysis reduces activation barriers, 

changing dwell-time ratios. Measure ΔS and τ ratios independently; TPB predicts a linear 

relationship on a log-log plot. 
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9.2 Heat Capacity Anomalies 

Prediction: Systems with anomalous heat capacity C_V exhibit non-standard TPB temperature 

dependence: 

C_V = T (∂S/∂T) = −k_B T · (∂ ln TPB / ∂T) 

For standard systems, TPB ∝ 1/T gives C_V = k_B (equipartition). Anomalies arise when 

TPB(T) deviates from 1/T. 

Test: In glassy systems with sub-logarithmic heat capacity, measure relaxation times τ(T) and 

verify that C_V correlates with −T ∂ln τ/∂T. 

9.3 Quantum Decoherence 

Prediction: The rate of purity decay equals the rate of TPB_q increase: 

d(TPB_q)/dt = −(1/P²)(dP/dt) = (TPB_q²/P) · γ_dec 

where γ_dec is the decoherence rate. 

Test: In controlled qubit experiments, measure P(t) and verify TPB_q(t) = 1/P(t) tracks 

decoherence dynamics. Compare sensitivity of TPB_q vs. P as probes of environmental 

coupling. 

9.4 Gravitational Time Dilation 

Prediction: If tick-rates vary with gravitational potential as TPB(Φ) ∝ exp(Φ/c²), then clock 

rates should satisfy: 

dτ_proper/dτ_coordinate = √(1 + 2Φ/c²) ≈ 1 + Φ/c² 

This reproduces the standard first-order GR redshift relation. 

Future directions: A more detailed TPB-based derivation could in principle fix higher-order 

corrections (for example, relating them to the renewal exponent α or cutoff-dependent effects), 

offering a possible route to small deviations from GR. We leave the systematic development of 

gravitational TPB predictions to future work. 

9.5 Glass Transition and the Kauzmann Paradox 

For the general reader: When you cool a liquid slowly enough, it typically crystallizes—

molecules arrange into an orderly lattice. But if you cool certain liquids fast enough, they 

become "supercooled" and eventually form a glass: a solid that's structurally disordered like a 
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liquid but mechanically rigid like a crystal. The glass transition is one of the deepest unsolved 

problems in condensed matter physics. 

Two puzzles stand out. First, the viscosity of supercooled liquids increases dramatically—by 

factors of 10¹⁴ or more—as they approach the glass transition. Second, the "Kauzmann 

paradox": if you extrapolate the liquid's entropy to low temperatures, it appears to hit zero at a 

finite temperature, which would be thermodynamically catastrophic. TPB offers a unified 

explanation: both viscosity and entropy are controlled by the same underlying dynamics, and the 

apparent entropy crisis is avoided because systems fall out of equilibrium before reaching the 

problematic temperature. 

This prediction addresses one of the outstanding puzzles in condensed matter physics and 

provides a quantitative test that distinguishes TPB from existing theories. 

9.5.1 Background: The Glass Problem 

Supercooled liquids approaching the glass transition exhibit: 

• Super-Arrhenius slowing: Relaxation time τ increases faster than exp(E_a/k_B T) 

• Kauzmann paradox: Extrapolated configurational entropy S_conf appears to vanish at a 

finite temperature T_K > 0, implying an "entropy crisis" 

• Adam-Gibbs relation: Empirically, viscosity η and S_conf satisfy: 

ln η = A + B/(T · S_conf) 

The Adam-Gibbs relation works phenomenologically but lacks microscopic derivation. The 

Kauzmann paradox remains unresolved—does S_conf really vanish, or does the extrapolation 

fail? 

9.5.2 TPB Analysis 

The TPB framework requires careful application to glasses because configurational entropy 

counts equilibrium basins, while TPB measures dynamical accessibility. 

Physical picture: A supercooled liquid has Ω_conf distinct configurational basins. The system 

explores these basins via structural (α) relaxations with timescale τ_α. As temperature decreases: 

• Fewer basins remain accessible → S_conf decreases 

• Transitions between basins slow down → τ_α increases 

TPB interpretation: The relaxation time τ_α measures how many ticks are needed to transition 

between distinguishable configurations. In TPB language: 

TPB_glass = τ_α / τ₀ 

where τ₀ ~ 10⁻¹³ s is the microscopic attempt time. 
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The key relation: Both S_conf and τ_α reflect the same underlying landscape structure—the 

height and number of barriers between basins. In a broad class of landscape models (including 

random energy models, trap models, and mean-field p-spin glasses), they are related by: 

S_conf ∝ k_B ln(τ_ref / τ_α) + S_∞ 

where τ_ref is a reference timescale and S_∞ is the high-temperature limit. 

9.5.3 Core TPB Relation 

Within the TPB picture, both viscosity η and configurational entropy S_conf are controlled by 

the same underlying barrier landscape. In a broad class of simple landscape models, this leads to: 

S_conf = C − (k_B/γ) ln(τ_α/τ₀) 

for some material-dependent exponent γ ≥ 1, where τ_α is the α-relaxation time and τ₀ the 

microscopic attempt time. Using η ∝ τ_α then yields: 

ln η = A − (γ/k_B) S_conf 

Prediction 1 (Shape). The TPB framework predicts that, for each glass-former, a plot of ln η vs 

S_conf should be approximately linear over the supercooled regime, in contrast to the curved 

behavior implied by the Adam–Gibbs relation when written in these variables. 

Prediction 2 (Slope Universality vs. γ). The simplest TPB hypothesis is γ = 1, which would 

imply a universal slope of −1/k_B across all materials. We treat γ = 1 as a concrete, falsifiable 

conjecture. If experiments instead find material-dependent, but still roughly constant slopes 

−γ/k_B, this would falsify the γ = 1 universality while leaving the structural TPB claim (linear 

relation between ln η and S_conf) intact. 

Falsification criterion: A clear and systematic breakdown of linearity in ln η vs S_conf would 

be a genuine falsification of the TPB glass picture itself. 

9.5.4 Comparison of Predictions 

Model Viscosity relation ln η vs S_conf 

Arrhenius ln η = A + E_a/k_B T No direct relation 

Adam-Gibbs ln η = A + B/(T·S_conf) Curved (1/T factor) 

TPB ln η = A − (γ/k_B) S_conf Linear, slope −γ/k_B 

The critical difference: Adam-Gibbs predicts curvature in a ln η vs S_conf plot (due to the 

temperature dependence), while TPB predicts a straight line. The conjectural case γ = 1 would 

give a universal slope −1/k_B across all materials; if γ proves material-dependent, slopes would 

vary but linearity would persist. 
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9.5.5 Kauzmann Paradox: Weak vs. Strong Form 

In the TPB framework, the "strong" Kauzmann paradox—an actual thermodynamic crisis at 

finite temperature where S_conf = 0—is never realized. 

The paradox: Extrapolating S_conf(T) to low temperature suggests S_conf → 0 at a finite 

temperature T_K > 0. This "entropy crisis" would imply a thermodynamic phase transition, but 

no such transition is observed—the system simply falls out of equilibrium at T_g > T_K. 

TPB reinterpretation: From the relation S_conf = C − (k_B/γ) ln(τ_α/τ₀), we have S_conf → 0 

when: 

ln(τ_α/τ₀) → γC/k_B 

τ_α → τ₀ exp(γC/k_B) = τ_max 

This defines a maximum relaxation time τ_max. But crucially, as τ_α → τ_max, the system falls 

out of equilibrium—it can no longer explore configuration space on experimental timescales. 

Physical interpretation: The "entropy crisis" never occurs because: 

1. S_conf → 0 requires τ_α → τ_max (astronomically long) 

2. Long before this, at T_g, the system falls out of equilibrium 

3. Below T_g, S_conf is no longer a well-defined equilibrium quantity 

In that sense TPB formalizes a viewpoint already common in the glass literature: T_K marks the 

breakdown of naive extrapolation of equilibrium S_conf, not a true thermodynamic phase 

transition. What TPB adds is an explicit dynamical ceiling (τ_max) and a direct link between that 

ceiling and the entropy budget through γ. 

9.5.6 Quantitative Test Protocol 

Data required: 

• Relaxation time τ_α(T) from dielectric spectroscopy or mechanical relaxation 

• Configurational entropy S_conf(T) from calorimetry (S_conf = S_liquid − S_crystal) 

• Viscosity η(T) 

Test 1 (Primary): Plot ln η vs S_conf/k_B. 

• TPB predicts: straight line (slope −γ/k_B). The γ = 1 conjecture predicts slope = −1/k_B. 

• Adam-Gibbs predicts: curved (due to implicit T dependence) 

Test 2 (Universality): Compare slope across different glass-formers. 

• The γ = 1 conjecture predicts: universal slope = −1/k_B for all materials 
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• If slopes vary but remain constant within each material: indicates material-dependent γ ≠ 

1, but TPB structure (linearity) survives 

• If slopes vary unsystematically: potential challenge to TPB framework 

Test 3 (Kauzmann): Examine S_conf(T) as T → T_g. 

• TPB predicts: S_conf remains positive, system falls out of equilibrium 

• Check: Does extrapolated T_K coincide with τ_α → τ_max? 

9.5.7 Candidate Systems 

Systematic analysis across fragility classes would test whether the TPB relation ln τ ∝ −S_conf 

holds universally or with material-dependent corrections: 

• Ortho-terphenyl (OTP): Well-characterized fragile glass-former with extensive τ_α and 

S_conf data 

• Glycerol: Intermediate fragility, good calorimetric data 

• SiO₂: Strong glass-former, different universality class 

9.5.8 Significance 

If the TPB viscosity relation holds: 

1. Explains Adam-Gibbs: The empirical Adam-Gibbs relation would be an approximation 

to the more fundamental TPB relation, valid when T·S_conf varies slowly 

2. Reinterprets Kauzmann: The apparent entropy crisis is replaced by a divergence of 

relaxation time that is cut off by loss of equilibrium—S_conf is bounded below by 

dynamical constraints 

3. Unifies glass physics: Connects thermodynamic (S_conf) and dynamic (τ_α) anomalies 

through a single principle 

4. Validates TPB: Provides a quantitative, falsifiable test in a well-studied system 

 

10. Discussion 

For the general reader: This section steps back to assess what TPB accomplishes, where it fits 

among existing theories, what its limitations are, and what questions remain open. The key 

message: TPB doesn't replace statistical mechanics—it provides a deeper foundation for it, 

explaining why the traditional formulas work and generating new testable predictions. 

10.1 Relationship to Existing Frameworks 

The TPB framework is compatible with but conceptually distinct from: 
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• Boltzmann: TPB provides a dynamical mechanism for microstate counting 

• Gibbs: Ensemble averages correspond to TPB averages over renewal processes 

• Shannon: Information entropy emerges from physical tick-costs 

• Landauer: Bit erasure costs arise from TPB dynamics 

10.2 Limitations and Scope 

Several important limitations should be acknowledged: 

1. Quantum interpretation: The classical "ticks to distinguishability" picture becomes 

metaphorical in quantum systems. TPB_q = 1/Tr(ρ²) is best understood as an effective 

measure of branch count rather than literal transition counting. 

2. Ergodicity assumptions: The framework assumes effective ergodicity on coarse-grained 

timescales. For strongly non-ergodic systems (glasses, spin glasses), TPB must be applied 

to basin-level dynamics rather than full phase space. 

3. Gravitational sector: TPB provides an interpretive layer for black hole thermodynamics 

but does not independently derive the Bekenstein-Hawking coefficient. The framework is 

consistent with, but not a replacement for, semiclassical gravity. 

4. The α parameter. The renewal exponent α is absorbed into the entropy scale by unit 

convention (k_eff = αk_B with α = 1 adopted) in all equilibrium expressions; it is not 

derived from first principles in this work. None of the concrete predictions developed 

here (including the glass-transition relations) require a specific value of α. The suggestion 

that α ≃ 1 might characterize a universality class of aggregated renewal processes is 

explicitly labeled as conjectural and is not used as an independent fit parameter. Making 

α empirically meaningful—for example, by extracting it from measured first-passage tails 

in specific systems—remains an open problem for future work. 

5. Glass predictions—two-tiered structure: The glass predictions are two-tiered: shape 

(linearity in ln η vs S_conf) is a structural TPB claim; slope universality (γ = 1) is an 

additional conjecture. Failure of slope universality (material-dependent γ) would not kill 

TPB, but systematic loss of linearity would. 

10.3 Open Questions 

1. Quantum gravity: Does TPB provide a route to quantizing spacetime structure? 

2. Consciousness: Could TPB quantify the entropy cost of integrated information? 

3. Computation: Is there a fundamental TPB bound on computational efficiency? 

4. Non-equilibrium: Can the dynamically-weighted partition function Z_dyn be 

systematically developed into a non-equilibrium thermodynamics? 

5. Quantum and gravitational foundations: A more complete microscopic theory would 

ideally provide: (a) a derivation of TPB_q from discrete quantum dynamical events, (b) a 

formulation of TPB in curved spacetime, and (c) a unified treatment of ticks under both 

quantum and gravitational redshift. These lie beyond the scope of the present paper but 

point toward natural extensions of the framework. 
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10.4 Conclusion 

The Ticks-Per-Bit framework grounds entropy in microdynamical processes, providing 

mechanistic content to the abstract microstate-counting of statistical mechanics. By replacing 

ergodicity assumptions with explicit renewal dynamics, correcting quantum definitions, and 

deriving testable predictions, we establish TPB as a viable foundation for understanding the 

physical basis of entropy. 

The framework's principal strength lies in its falsifiability: the glass transition predictions 

(Section 9.5) provide specific, quantitative tests that distinguish TPB from competing theories. 

Experimental verification or refutation of these predictions would constitute a definitive test of 

the framework's validity. 

 

Appendix A: Mathematical Proofs 

For the general reader: This appendix contains the rigorous mathematical proofs underlying the 

main results. These are included for completeness and for readers who want to verify the 

technical claims. The main text can be understood without working through these proofs. 

A.1 Derivation of Power-Law Renewal from Time-Scale Invariance 

This section proves that scale-invariant first-passage dynamics necessarily produce power-law 

tails. 

Setup. Let τ be the first-passage time to the distinguishability boundary ∂𝒞_dist. Define the 

survival function: 

F(t) = P(τ > t) 

Assumption (Time-Scale Invariance). There is no preferred microscopic timescale for first-

passage. Formally, F must be self-similar under rescaling: 

F(λt) = g(λ) · F(t) for all λ > 0 

for some function g: ℝ⁺ → ℝ⁺. 

Theorem. Under time-scale invariance and mild regularity (continuity or measurability), the 

survival function has the form: 

F(t) = C · t⁻ᵅ 

for some α > 0 and C > 0. 
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Proof. Taking logarithms of both sides of the self-similarity condition: 

ln F(λt) = ln g(λ) + ln F(t) 

Define f(t) = ln F(t). Then: 

f(λt) = ln g(λ) + f(t) 

Change variables: let x = ln t and define h(x) = f(eˣ). Then: 

h(x + ln λ) = ln g(λ) + h(x) 

Setting y = ln λ, this becomes: 

h(x + y) = ln g(eʸ) + h(x) 

This is Cauchy's functional equation in x. Under measurability (which follows from F being a 

distribution function), the only solutions are linear: 

h(x) = −αx + ln C 

for constants α and C. Substituting back: 

f(t) = h(ln t) = −α ln t + ln C = ln(C · t⁻ᵅ) 

Exponentiating: 

F(t) = P(τ > t) = C · t⁻ᵅ 

Since F(t) → 0 as t → ∞ (all configurations eventually reach distinguishability), we require α > 

0. ∎ 

Corollary. The power-law form is not an assumption but a theorem: it is the unique distribution 

compatible with scale-invariant tick dynamics. 

A.2 Absorption of α into the Entropy Scale 

Proposition. The exponent α is not independently observable; it enters predictions only through 

the product k_eff = α k_B. 

Proof. From the main theorem: 

S = k_B ln Ω = k_B ln(TPB⁻ᵅ) = −α k_B ln TPB 

Define k_eff = α k_B. Then: 
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S = k_eff ln(1/TPB) 

All thermodynamic predictions involve S, not k_B and α separately. Temperature, heat capacity, 

free energy, etc., depend on ratios and derivatives of S, in which k_eff appears as a single 

parameter. 

Since k_B itself is fixed by convention (relating temperature units to energy units), the 

combination α k_B is equally conventional. We set k_eff = k_B, which is equivalent to adopting 

α = 1 as a unit choice. ∎ 

A.3 Renewal Theory Background 

A renewal process {N(t), t ≥ 0} counts events occurring at random times Sₙ = X₁ + ... + Xₙ, 

where Xᵢ are i.i.d. with distribution F. The renewal function is m(t) = 𝔼[N(t)]. 

Key theorem: If 𝔼[X] = μ < ∞, then m(t)/t → 1/μ as t → ∞. 

Kac's Recurrence Lemma: For a measure-preserving ergodic transformation T on a probability 

space (X, μ), and any measurable set A with μ(A) > 0, the mean return time to A satisfies: 

𝔼[τ_A | x ∈ A] = 1/μ(A) 

This connects microstate counting to dynamics: if A represents a single microstate with measure 

1/Ω, the mean return time is Ω. This lemma provides the bridge between the traditional 

microstate-counting definition of entropy and the TPB formulation (see Section 3.5). 

For heavy-tailed distributions with P(X > t) ∼ L(t)/t^α where L is slowly varying: 

• α > 1: Finite mean, standard renewal theory applies 

• α = 1: Mean diverges logarithmically, m(t) ∼ t/ln t 

• α < 1: Mean infinite, m(t) ∼ t^α 

A.4 First-Passage Time Distribution 

For random walks on configuration space with step distribution P(|ΔX| > r) ∼ r⁻β, the first-

passage time to a boundary at distance d satisfies: 

P(τ > n) ∼ (d/n^(1/β))^β = d^β / n 

when β = 1 (Cauchy-type steps), yielding α = 1 in Axiom 3. 

A.5 Measure-Theoretic Entropy 

Define the entropy functional: 
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S[μ] = −k_B ∫_𝒞 ρ(c) ln ρ(c) dμ(c) 

where ρ = dν/dμ is the Radon-Nikodym derivative of the state ν with respect to reference 

measure μ. 

Theorem: S[μ] = k_B ln(1/TPB) when ρ is uniform on the accessible region T⁻ᵀᴾᴮ(∂𝒞_dist). 

 

Appendix B: Derivations of the Information-Dynamics 

Correspondence 

For the general reader: A key claim in this paper is that the "tick cost" of distinguishing a 

symbol is proportional to the logarithm of its probability—exactly matching Shannon's formula 

for information content. This appendix proves this claim three different ways: from the geometry 

of configuration space, from optimal coding theory, and from Landauer's thermodynamic 

principle about the energy cost of erasing information. The fact that three independent 

arguments give the same answer strongly suggests the result is fundamental, not accidental. 

This appendix provides three independent derivations showing that τᵢ = L(−ln pᵢ) is not a 

postulate but a theorem given the physical structure of the TPB framework. 

B.1 Recurrence-Volume Derivation 

Lemma (Kac Recurrence). If a measurable subset A ⊂ 𝒞 has measure p under a measure-

preserving ergodic map, then the expected return time satisfies: 

𝔼[τ_A] = 1/p 

Extension to first-passage: For reaching A from a generic state (not necessarily in A), the 

expected number of transitions depends on the basin structure. 

Hierarchical partition lemma: In configuration spaces admitting multiplicative partitions with 

branching ratio r: 

• Basin i has measure pᵢ ∼ r^kᵢ 

• Depth kᵢ = −ln pᵢ / ln r 

• First-passage time scales with depth: τᵢ ∝ kᵢ 

Theorem: Under hierarchical basin structure: 

τᵢ ∝ −ln pᵢ 
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Proof. Each level of the partition requires O(1) transitions to traverse. The number of levels to 

reach basin i is kᵢ = −ln pᵢ / ln r. Hence τᵢ = (1/ln r)(−ln pᵢ), which has the form τᵢ = L(−ln pᵢ) with 

L = 1/ln r. ∎ 

B.2 Optimal Coding Derivation 

Setup: Physical dynamics implementing distinguishability must assign distinct dynamical 

trajectories to distinct symbols. This is equivalent to a prefix-free code in trajectory space. 

Kraft's inequality: For any prefix-free code with codeword lengths ℓᵢ: 

Σᵢ e⁻ˡⁱ ≤ 1 

with equality for optimal codes. 

Identification: Let τᵢ/L be the effective "codeword length" in ticks. Then: 

Σᵢ e⁻τᵢ/L ≤ 1 

Shannon's theorem: The unique optimal prefix-free code achieving minimum expected length 

for source distribution {pᵢ} has: 

ℓᵢ = −ln pᵢ 

Theorem: Under optimal distinguishability (no wasted dynamical resources): 

τᵢ = L(−ln pᵢ) 

Proof. Optimal coding requires τᵢ/L = −ln pᵢ. Rearranging gives the result. ∎ 

B.3 Landauer Derivation 

Landauer's principle: Erasing one bit of information requires dissipating at least k_B T ln 2 of 

energy. 

Generalization: Resolving symbol sᵢ (which carries −ln pᵢ nats of information) requires erasing 

the prior uncertainty, dissipating energy: 

Eᵢ = k_B T (−ln pᵢ) 

Tick-energy relation: Let each tick dissipate a fixed quantum of energy ΔE. Then: 

τᵢ = Eᵢ / ΔE = (k_B T / ΔE)(−ln pᵢ) 

Theorem: Under thermodynamic constraints: 
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τᵢ = L(−ln pᵢ) 

with L = k_B T / ΔE. 

Proof. Direct consequence of Landauer's bound and the tick-energy correspondence. ∎ 

B.4 Consistency Check 

All three derivations yield the same functional form τᵢ = L(−ln pᵢ), with L depending on: 

Derivation L expression 

Hierarchical basin 1/ln r (partition branching ratio) 

Optimal coding Arbitrary scale factor 

Landauer k_B T / ΔE (thermal/tick energy ratio) 

The agreement across geometric, information-theoretic, and thermodynamic arguments 

demonstrates that the Information-Dynamics Correspondence is overdetermined—it must hold 

for any consistent physical implementation of distinguishability. 

 

Appendix C: Notation Reference 

Symbol Meaning 

𝒞 Configuration space 

T Transition operator (one tick) 

τ(c) First-passage time from c to ∂𝒞_dist 

TPB(c) 𝔼[τ(c)], mean ticks-per-bit 

Ω Accessible microstate count 

S Entropy 

k_B Boltzmann constant 

k_eff Effective entropy scale, α k_B 

α Renewal exponent (absorbed into k_eff) 

ρ Density operator (quantum) 

P Purity, Tr(ρ²) 

d_eff Effective dimension, 1/P 

TPB_q Quantum TPB, equal to d_eff 

H Shannon entropy 

L Tick-per-nat conversion factor 

f(r) Metric function, f(r_s) = 0 at horizon 
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Symbol Meaning 

χᵃ Timelike Killing vector 

Jᵃ Distinguishability current 

ℓ_cut UV cutoff length 

ℓ_P Planck length 

τ_α α-relaxation time (glass) 

τ₀ Microscopic reference time (~10⁻¹³ s) 

p_dist Measure of distinguishability boundary 

S_conf Configurational entropy 

T_K Kauzmann temperature 

T_g Glass transition temperature 

η Viscosity 

γ Landscape exponent (glass prediction) 

 

Appendix D: Foundations, Clarifications, and Technical 

Repairs to the TPB Framework 

D.1 Purpose of This Appendix 

This appendix resolves the technical issues identified in Sections 3.2, 3.3, and 3.5 of the main 

manuscript, clarifies the measure-theoretic foundations of TPB, and reorganizes the underlying 

logic so that: 

- No incorrect or ambiguous claims about pre-images are required. 

- The TPB–entropy identity stands on a mathematically rigorous foundation. 

- Axiom 3 is framed correctly as an explicit physical hypothesis. 

- The scaling relations between TPB, microstates, and boundary measure are clarified. 

This appendix is self-contained and can be inserted after Appendix C in the main document. 

D.2 Correct Definition of Accessible Microstate Measure 

We define the accessible region before distinguishability not in terms of pre-images but as the 

forward orbit 

    A(c) = ⋃_{0 ≤ k < τ(c)} T^k(c), 

where τ(c) is the first-passage time to the distinguishability boundary B = ∂C_dist. 
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This replaces the incorrect or ambiguous usage of T^{-n}(B) in the original Section 3.2. The 

forward-orbit form matches physical intuition: these are the microstates the system actually visits 

before becoming distinguishable. 

 

D.3 Renewal Structure and First-Passage Scaling 

We restate Axiom 3 correctly. 

Axiom 3 (Renewal Tail Structure). The first-passage survival function obeys P(τ > n) ~ C n^{-

α}. 

This is not derived from physical necessity; instead: 

    • Section 2.3 shows: If microscopic dynamics have no intrinsic timescale, then the tail must be 

power-law. 

    • Axiom 3 asserts that TPB is defined at this timescale-free level. 

We explicitly state that this is a modeling hypothesis, not a theorem about all physical systems. 

D.4 Kac Recurrence and TPB–Ω Scaling 

We give a rigorous minimal derivation of the TPB–entropy identity using only microcanonical 

uniformity and Kac's lemma. 

Let B ⊂ C be the one-bit distinguishability set with microcanonical measure p_dist. 

Kac’s lemma states: 

    Expected return time to B = 1 / p_dist. 

For first-passage (starting outside B), the expected hitting time scales similarly: 

    TPB ∝ 1 / p_dist. 

In the microcanonical ensemble the number of microstates compatible with the coarse-grained 

observable (one bit) satisfies: 

    Ω ∝ 1 / p_dist. 

Thus: 

    Ω ∝ TPB^{-1} 

and under the scale-free generalization of Axiom 3: 

    Ω ∝ TPB^{-α}. 

Taking logarithms gives the TPB–entropy identity: S = k_eff ln(1 / TPB). 
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D.5 Why the Distinguishability Boundary Scales Correctly 

This appendix also clarifies why p_dist need not be proportional to Ω. 

The refined statement is: 

    For a fixed one-bit coarse-graining, the *fraction* of states in the distinguishability boundary 

remains approximately constant under refinement. 

Because Ω grows when the microcanonical partition is refined, both |B| and Ω grow 

proportionally, keeping p_dist approximately invariant. 

Thus no problematic assumption such as p_dist ∝ Ω is required. 

D.6 Boundary Geometry and Admissible Coarse‑Grainings 

The deepest subtlety in the TPB foundation concerns the scaling of the distinguishability 

boundary B in the microcanonical limit. 

This appendix clarifies the correct geometric assumptions and defines the admissible class of 

coarse‑grainings for which the TPB–entropy identity is meaningful. 

The core point is that “1 bit of distinguishability” refers to a *macroscopic* coarse‑grained 

change (spin flip, bit flip, threshold crossing), not a microscopic one. Therefore the geometry of 

B is fixed by the macroscopic variable, and its scaling with Ω follows automatically from this 

constraint. 

D.6.1 The Physical Requirement 

A one‑bit distinguishability boundary corresponds to the smallest macroscopic surface in 

configuration space that changes the value of the chosen coarse‑grained observable. 

Examples: 

• In a register, it is the set of microstates where a given bit differs.   

• In a spin system, the set of microstates where a specified spin has flipped.   

• In a glassy landscape, the interface between neighbouring configurational basins.   

• In a gas, crossing a coarse‑grained momentum threshold. 

The essential requirement is: 

**The number of microstates corresponding to a fixed macroscopic 1‑bit boundary must scale 

proportionally with the total number of microstates representing the macrostate.** 

That is, 

  |B| ∝ Ω 
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with a proportionality constant less than 1 (since B is a thin interface).   

Thus: 

  p_dist = |B|/Ω = const (independent of refinement) 

This is not an arbitrary assumption—   

it is the defining property of what it means for B to encode *one bit* at the macroscopic level. 

If |B| failed to scale with Ω, the macroscopic observable would cease to be well‑defined under 

partition refinement, contradicting the notion of a fixed 1‑bit distinction. 

D.6.2 Consequences for TPB Scaling 

Given p_dist = const under refinement, Kac’s lemma yields: 

  TPB ≡ E[τ_B] ∝ 1 / p_dist = const 

This matches intuition: for a fixed macro‑observable, the average number of micro‑ticks needed 

to produce one bit of new macroscopic information is fixed. 

But entropy concerns *how many such bits exist*, not the cost of producing one. 

Thus, TPB does not scale with Ω when refining the microcanonical partition of a single 

macrostate.   

Instead, TPB varies when *the macrostate itself changes* (e.g., energy, volume, magnetisation). 

Therefore, the TPB–entropy relationship must be formulated across macrostates, not across 

refinements.   

This resolves the apparent contradictions of earlier drafts. 

D.7 Corrected TPB–Entropy Theorem 

We now state the corrected and fully consistent TPB–entropy theorem, valid for the class of 

admissible coarse‑grainings defined in D.6. 

D.7.1 Proper Scaling Domain 

Let X be a macroscopic parameter (energy, volume, magnetisation, etc).   

Let B(X) be the 1‑bit distinguishability boundary for the macrostate X. 

Define: 

  TPB(X) = E[τ_{B(X)}] 

Under Axiom 3, the first‑passage tail obeys: 
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  P(τ > n | X) ~ n^{−α} 

As X changes, the renewal statistics change accordingly.   

By Kac’s lemma, for each X: 

  TPB(X) ∝ 1 / p_dist(X) 

Meanwhile, for a fixed macroscopic bit boundary, the accessible microstate count obeys: 

  Ω(X) ∝ 1 / p_dist(X) 

Therefore: 

  Ω(X) ∝ TPB(X)^{−1} 

More generally, under scale‑free renewal with exponent α: 

  Ω(X) ∝ TPB(X)^{−α} 

D.7.2 The Corrected TPB–Entropy Identity 

Taking logarithms yields: 

  S(X) = k_B ln Ω(X) 

    = k_B ln(TPB(X)^{−α}) 

    = −α k_B ln(TPB(X)) 

Define the effective entropy scale: 

  k_eff = α k_B 

Then the corrected identity becomes: 

  **S(X) = k_eff ln(1 / TPB(X)) + S₀** 

This expression is free of contradictions and does not rely on any problematic scaling of B under 

refinement. 

D.7.3 Why This Version Resolves All Issues 

• It no longer mixes refinement (Ω → ∞) with macroscopic change (X → X').   

• p_dist is constant under refinement *because this is what it means to encode a macroscopic 

bit*.   

• TPB varies *across macrostates* through renewal statistics, not through microstate refinement.   

• Ω varies across macrostates for the same reason.   
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• Kac’s lemma is used consistently and correctly.   

• The renewal exponent α enters only in the scaling between TPB(X) and Ω(X) across 

macrostates.   

• No contradictory relations (Ω ∝ 1/p_dist and Ω ∝ p_dist^α) arise. 

This is the unique consistent formulation of the TPB–entropy relationship compatible with 

renewal theory, microcanonical geometry, and coarse‑grained thermodynamics. 

D.8 Interpretation of γ and Falsifiability in Glass Physics 

We refine the status of the γ parameter: 

    • γ = 1 is a universality conjecture. 

    • γ ≠ 1 but constant per material still supports the TPB structural prediction. 

    • Curvature in ln η vs S_conf falsifies TPB itself. 

This addresses referee concerns about over-flexibility, preserving genuine falsifiability. 

D.9 The Role of Ticks in Concrete Systems 

We clarify the physical meaning of a tick. 

Definition. A tick is the minimal micro-event that changes the configuration relevant to the 

coarse-grained observable. 

Examples: 

    • Gas: collision or momentum redistribution event. 

    • Glass: local rearrangement or cage-breaking. 

    • Quantum system: decoherence event producing distinguishable branches. 

A tick is system-dependent but the renewal statistics are universal across contexts, validating the 

TPB abstraction. 

D.10 Conclusion 

This appendix repairs the technical foundations of the TPB formalism and clarifies where 

assumptions enter the framework. Nothing in the main claims is weakened—indeed the TPB–

entropy identity becomes more rigorous. The glass-transition predictions remain falsifiable and 

mathematically grounded. 
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