The TPB Decay Framework: Particle Lifetimes from Information Dynamics

Executive Summary

This document presents a framework for understanding particle decay through the lens of information theory. Rather than treating decay rates as fundamental inputs (as the Standard Model does), we propose that particle lifetimes emerge from a single underlying mechanism: the probabilistic flipping of an "identity bit" that defines what a particle is.

The central claim is structural, not predictive at this stage: if spacetime operates on discrete "ticks" and particles maintain their identity through information-theoretic barriers, then decay lifetimes follow a simple exponential law. We demonstrate internal consistency through Monte Carlo simulation and map the framework onto observed particle lifetimes across strong, electromagnetic, and weak decay channels.

EXECUTIVE SUMMARY	1
1. INTRODUCTION: WHAT PROBLEM ARE WE SOLVING?	4
The Standard Model Approach	4
The TPB Approach	4
What This Document Demonstrates	4
2. THE TPB ESCAPE LAW	5
Core Definitions	5
The Lifetime Formula	5
Formal Stochastic Model of Discrete Decay	5
Continuous-Time Limit and Connection to Exponential Decay	6
Inverting the Relation	7
Interpreting Negative Barriers	7
Relation to Energy-Time Uncertainty	8
3. MONTE CARLO VALIDATION	8
Purpose	8
Simulation Design	9
Test Case: Weak-Scale Barrier (S_flip = 15.5)	9
Test Case: Electromagnetic-Scale Barrier (S_flip = 2)	9
Test Case: Boundary Condition (S. flip = 0)	10

Fixing the Tick Rate from the Tau Constraint	10
Physical Origin of the Tick Rate	11
4. MAPPING OBSERVED LIFETIMES TO TPB	11
The Particle Lifetime Spectrum	11
Interpretation by Decay Type	12
The Sub-Tick Regime	12
The Tau Lepton: Validation of the Tick Rate	12
Stable Particles	13
Conservation Laws as Topological Obstructions	13
Multi-Channel Decays and Branching Ratios	14
Worked Example: Pion Decay Branching Ratios	15
Geometric Origin of the Barrier Difference	15
5. THE DOUBLE-WELL MODEL	16
Visual Representation	16
Physical Picture	17
Mapping to S_flip	17
Dimensionless Action and Barrier Scaling	18
What Determines the Barriers?	19
6. SUMMARY AND OPEN QUESTIONS	19
What We've Shown	19
What Remains Open	19
CONCLUSION	20
7. FROM ROLE-4 GEOMETRY TO PREDICTIVE BARRIERS	20
7.1 Identity Fields and the Role-4 Potential	20
7.2 Minimal-Action Escape Paths and Barrier Heights	21
7.3 Euclidean Bounce and the Dimensionless Flip Action	22
Fluctuation Prefactors and Effective h	22
Approximate Bounce Actions from Local Geometry	23
7.5 Strategy for Practical Prediction	24
8. A TOY ROLE-4 MODEL FOR THE CHARGED PION BRANCHING RATIO	25
8.0 Curvature–Mass Relation from Identity-Mode Frequencies	25
Why M eff Is Fixed Across the Lepton Family	26

8.1 Identity Coordinate and Role-4 Potential	27
8.2 A Derivative Coupling as the Source of Mass Dependence	28
8.3 From Amplitude to Barrier Difference	28
8.4 Significance and Limitations	29
8.5 Phase-Space Factor and Accuracy	29
8.6 Summary: From Principle to Observable	30
9. A TOY ROLE-4 MASS-LIFETIME SCALING TEST: MUON AND TAU	30
9.1 Empirical TPB Barriers for μ and τ	30
9.2 First-Principles Derivation of β from a Quartic Potential	31
9.3 Using the Muon to Set C, Predicting the Tau	32
9.4 What This Derivation Achieves	34
9.5 Cross-Linking the Two Tests	34
10. TESTABLE PREDICTIONS AND FALSIFIABILITY	35
10.1 Structural Predictions (Current Framework)	35
10.2 Geometric Predictions (Once Role-4 Is Specified)	36
10.3 Falsification Criteria	37
APPENDIX: SIMULATION CODE (PYTHON)	38

1. Introduction: What Problem Are We Solving?

The Standard Model Approach

In conventional particle physics, each unstable particle has a "decay width" Γ that determines its lifetime through $\tau = \hbar/\Gamma$. These widths are calculated from coupling constants and phase space integrals—they work extraordinarily well, but they don't explain *why* particles have the lifetimes they do. The coupling constants are measured, not derived.

The TPB Approach

The Ticks-Per-Bit (TPB) framework takes a different perspective. We ask: what if decay is fundamentally an *information process*? Specifically:

- Every particle carries an "identity bit" that specifies what it is (electron, muon, pion, etc.)
- This identity bit sits in an energy landscape with barriers protecting it from flipping
- At each discrete moment ("tick") of time, there's a small probability the bit escapes its barrier
- When the bit flips, the particle decays

This reframes decay from "a particle falls apart" to "a particle loses its identity."

What This Document Demonstrates

We show that:

- 1. The TPB escape law produces mathematically correct geometric decay statistics
- 2. Observed particle lifetimes can be mapped onto barrier heights in a consistent way
- 3. The framework naturally explains why some decays are fast (low barriers), some slow (high barriers), and some forbidden (infinite barriers)

Important caveat: At this stage, we extract barrier heights *from* observed lifetimes rather than predicting them. The framework is a consistent parameterization, not yet a predictive theory. Predictive power would require deriving barrier heights from first principles—a goal for future work.

Why this matters: If decay lifetimes emerge from information barriers rather than arbitrary coupling constants, then particle physics becomes *explainable* in geometric terms rather than merely *descriptive*. The Standard Model tells us what the coupling constants are; TPB asks why they take those values. A successful geometric derivation would transform particle lifetimes from 20+ independent parameters into consequences of a single underlying structure.

2. The TPB Escape Law

Core Definitions

Tick duration (Δt): We assume spacetime has a fundamental discreteness, with updates occurring at a rate of 3.57×10^{12} ticks per second:

$$\Delta t = 1 / (3.57 \times 10^{12}) \approx 2.8 \times 10^{-13} \text{ seconds}$$

Note for readers: This tick rate is fixed by requiring that all fundamental fermions satisfy TPB \geq 1. The tau lepton, with the shortest lifetime among fundamental particles, provides the tightest constraint. This places the fundamental update rate far above the Planck scale (10^{-43} s) but below atomic timescales (10^{-15} s).

Action barrier (S_flip): Each particle's identity bit is protected by an effective action barrier. Higher barriers mean the identity is harder to change. This is a dimensionless number.

Flip probability per tick: At each tick, the probability of the identity bit escaping its barrier follows a Boltzmann-like suppression:

$$p_flip = e^(-S_flip)$$

This is the same mathematical form that governs thermal activation over barriers, quantum tunneling rates, and instanton transitions—suggesting a deep structural connection.

The Lifetime Formula

If each tick has independent probability p_flip of causing decay, the number of ticks until decay follows a geometric distribution. The mean number of ticks is:

$$TPB = 1/p_flip = e^{(S_flip)}$$

Converting to physical time:

$$\tau = TPB \times \Delta t = e^{(S flip)} \times \Delta t$$

This is the **TPB decay law**: lifetime equals the exponential of the barrier height, multiplied by the tick duration.

Formal Stochastic Model of Discrete Decay

We can formulate the TPB decay law as a discrete-time stochastic process. Let $X_n \in \{0, 1\}$ denote the state of a particle at tick n, with:

• $X_n = 0$: identity bit has not flipped (particle still "alive")

• $X_n = 1$: identity bit has flipped (particle "decayed")

We assume:

$$P(X_{n+1}) = 1 \mid X_n = 0 = p_f | P(X_{n+1}) = 0 \mid X_n = 0 = 1 - p_f | P(X_{n+1}) = 0$$

and once the particle has decayed it stays decayed:

$$P(X \{n+1\} = 1 | X n = 1) = 1$$

Define the random variable T as the first tick at which decay occurs:

$$T = min\{n \ge 1 : X \mid n = 1\}$$

By construction, T follows a geometric distribution with parameter p_flip. The probability that the particle survives the first k-1 ticks and decays on the k-th is:

$$P(T = k) = (1 - p \text{ flip})^{k}(k-1) \cdot p \text{ flip}, k = 1, 2, ...$$

The mean number of ticks to decay is:

$$\mathbb{E}[T] = \sum \{k=1\}^{\wedge} \{\infty\} \ k(1-p \ flip)^{\wedge}(k-1) \ p \ flip = 1/p \ flip$$

and the variance is:

$$Var(T) = (1 - p flip) / p flip^2$$

This reproduces the TPB identification:

$$TPB = \mathbb{E}[T] = 1/p \text{ flip} = e^{S} \text{ flip}$$

and explains why, in the simulation, the standard deviation of ticks is approximately equal to the mean: for small p_flip, we have $\sqrt{Var(T)} \approx \mathbb{E}[T]$, a characteristic feature of the geometric process.

Converting from ticks to physical time using $\Delta t = 1/(\text{tick rate})$, the random lifetime is $\tau_{\text{rand}} = T \cdot \Delta t$, with mean:

$$\mathbb{E}[\tau \text{ rand}] = \mathbb{E}[T] \cdot \Delta t = (1/p \text{ flip}) \Delta t = e^{\hat{f}}(S \text{ flip}) \Delta t$$

which is precisely the TPB decay law used throughout this document.

Continuous-Time Limit and Connection to Exponential Decay

Although TPB takes discrete ticks as fundamental, it is useful to show how the standard continuous exponential decay law emerges in an appropriate limit.

Consider the survival probability after n ticks:

$$P_surv(n) = P(T > n) = (1 - p_flip)^n$$

After a physical time $t = n \cdot \Delta t$, this becomes:

$$P_surv(t) = (1 - p_flip)^(t/\Delta t)$$

For small per-tick probability p_flip (the regime relevant for all weak and most EM decays), we can use the standard approximation:

$$ln(1-p \ flip) \approx -p \ flip \Longrightarrow (1-p \ flip)^{(t/\Delta t)} \approx exp(-p \ flip \cdot t / \Delta t)$$

Thus, in the small-p flip limit, the survival probability takes the continuous exponential form:

P surv(t)
$$\approx$$
 e^($-\lambda t$), $\lambda = p$ flip / Δt

with decay rate:

$$\lambda = e^{(-S flip)} / \Delta t$$

The corresponding mean lifetime is:

$$\langle \tau \rangle = 1/\lambda \approx \Delta t/p$$
 flip = e^(S flip) Δt

in exact agreement with the discrete TPB law. In other words:

- At the microscopic level, decay is a geometric process with discrete ticks.
- At the coarse-grained level, it is indistinguishable from standard exponential decay with rate λ .

This shows that TPB is mathematically compatible with the usual continuous-time description of decay, while still maintaining a fundamentally discrete microstructure.

Inverting the Relation

Given an observed lifetime, we can extract the implied barrier height:

S flip =
$$ln(\tau/\Delta t) = ln(\tau \times 3.57 \times 10^{12})$$

This allows us to map any particle's lifetime onto the TPB framework.

Interpreting Negative Barriers

The formula $S_flip = \ln(\tau/\Delta t)$ extends naturally to negative values, but the corresponding flip probability

$$p_flip = e^{-(-S_flip)}$$

would be greater than 1 if interpreted literally. This signals a breakdown of the discrete-identity approximation, not a physical probability exceeding unity.

The correct interpretation is that negative S_flip means the identity-bit picture breaks down—no discrete identity is maintained across ticks. Accordingly:

- **S_flip > 0**: Genuine particles with stable identity basins. The identity bit persists across many ticks before flipping.
- $-5 < S_flip < 0$: Marginal or multi-channel identities (tau-like). Identity forms but is tenuous.
- **S_flip** < -5: No stable identity exists. These are resonances, not particles—transient field configurations that never crystallize into discrete identity states.

TPB thus provides a natural mathematical criterion for distinguishing particles from resonances: particles have positive barriers, resonances have deeply negative ones, and the boundary region contains interesting edge cases like the tau lepton.

Relation to Energy-Time Uncertainty

The standard relation $\Gamma = \hbar/\tau$ combined with the TPB formula $\tau = e^S \cdot \Delta t$ yields:

$$\Gamma = (\hbar/\Delta t) \cdot e^{-(-S)}$$

This identifies the combination:

E tick =
$$\hbar/\Delta t \approx 2.4 \times 10^{-3} \text{ eV}$$

as an "energy per tick," connecting the tick scale directly to the vacuum fluctuation bandwidth available to the identity coordinate. In Role-4 geometry, E_tick sets the maximum rate at which distinguishable information can change, linking the decay width to void-regulated informational dynamics. The decay width becomes the product of this fundamental energy scale and the Boltzmann-like suppression factor e^(-S).

3. Monte Carlo Validation

Purpose

The Monte Carlo simulation serves as an internal consistency check. It verifies that:

- 1. The geometric escape process produces the expected mean lifetime
- 2. Statistical fluctuations match theoretical predictions

3. The framework is mathematically self-consistent

What this does NOT show: That the TPB model is correct, or that S_flip values are uniquely determined. Any geometric process with probability p will produce mean waiting time 1/p—this is mathematics, not physics.

Simulation Design

We simulate 50,000 virtual particles, each undergoing tick-by-tick evolution:

- At each tick, generate a random number $r \in [0, 1]$
- If r < p flip, the particle decays; record the tick count
- Otherwise, advance to the next tick
- Continue until decay

Test Case: Weak-Scale Barrier (S_flip = 15.5)

Theoretical predictions:

Quantity Value p_flip = $e^{-15.5}$ 1.855 × 10⁻⁷ TPB = $e^{15.5}$ 5.39 × 10⁶ ticks τ = TPB × Δt 2.16 × 10⁻⁶ s

Simulation results (N = 50,000):

QuantityValueMean ticks to decay 5,376,475Standard deviation 5,372,440 ticksMean lifetime 2.15×10^{-6} s

Agreement: The simulated lifetime matches the theoretical prediction to within 0.5%. The standard deviation approximately equals the mean, as expected for a geometric distribution.

Context: This barrier height produces a lifetime of $\sim 2.2 \,\mu s$, similar to the muon. This is not a prediction—we chose S_flip = 15.5 specifically because it reproduces the muon lifetime. The value demonstrates that weak-scale lifetimes correspond to barriers of order 15–16.

Test Case: Electromagnetic-Scale Barrier (S_flip = 2)

Theoretical predictions:

Quantity Value

$$p_{\text{flip}} = e^{-2}$$
 0.135
 $TPB = e^{2}$ 7.39 ticks
 $\tau = TPB \times \Delta t \ 2.96 \times 10^{-12} \text{ s}$

Simulation results:

Quantity Value

Mean ticks to decay 7.37

Mean lifetime 2.95×10^{-12} s

Interpretation: Low barriers (S \sim 1–3) produce lifetimes of a few ticks—picosecond-scale decays characteristic of electromagnetic processes.

Test Case: Boundary Condition (S_flip = 0)

When S flip = 0, we have p flip = 1, meaning the particle decays with certainty on the first tick:

- TPB = 1 tick
- $\tau = 2.8 \times 10^{-13} \text{ s}$

Simulation confirms mean ticks = 1.0 exactly. This represents the boundary between "particle" and "resonance"—structures that don't survive even a single tick aren't particles in the TPB sense.

Fixing the Tick Rate from the Tau Constraint

A consistent identity-bit framework requires that all fundamental particles possess TPB \geq 1; otherwise the identity bit would not exist every tick, contradicting their interpretation as propagating, distinguishable states. The tau lepton provides the tightest constraint, with lifetime:

$$\tau \ \tau = 2.9 \times 10^{-13} \text{ s}$$

Thus the tick duration must satisfy $\Delta t \leq \tau_{\tau}$.

Accordingly, we adopt a canonical tick rate:

$$\Delta t = 2.8 \times 10^{-13}$$
 s, corresponding to $3.57 \times 10^{12}~Hz$

This ensures TPB \geq 1 for all fundamental fermions while leaving the TPB classification of strong and electromagnetic decays unchanged. This single choice eliminates the tau anomaly and reduces the framework to a one-parameter theory in which S_flip is the only particle-specific quantity.

Physical Origin of the Tick Rate

While the tau constraint *fixes* Δt empirically, its physical origin should emerge from deeper VERSF principles. Three candidate anchors exist:

(A) Void-pressure scale (Planck pressure softened by entropy)

VERSF defines a void-energy / entropy-regulated "processing capacity" of space. If the void has a maximum sustainable information change density \dot{I}_{max} , then:

$$\Delta t = \varepsilon_bit / \dot{I}_max$$

Choosing a bit-energy ε _bit ~ 0.01 eV (from VERSF bit-energy derivations) gives Δt naturally in the 10^{-13} s regime. This links the tick rate to information physics, not particle physics.

(B) Role-4 curvature scale

If Role-4 potentials arise from geometric curvature with characteristic frequency Ω , then:

$$\Delta t = \Omega^{-1}$$

and Ω is determined by the typical curvature of identity basins. If the curvature scale is tied to the QCD scale (Λ _QCD \approx 200 MeV), electroweak symmetry breaking, or a VERSF scalar field mass, then $\Delta t \sim 10^{-13}$ s emerges naturally.

(C) Emergent-time bottleneck

If "ticks per bit" represent the minimal physical change required to maintain distinguishable identity, Δt may be the minimal interval over which distinguishability can flip without violating entropy-based consistency constraints. This gives Δt as the entropy coherence time of Role-4 identity fields.

The tau constraint selects among these possibilities: whichever mechanism ultimately explains Δt must produce a value $\leq 2.9 \times 10^{-13}$ s.

4. Mapping Observed Lifetimes to TPB

The Particle Lifetime Spectrum

Using the inverse relation S_flip = $ln(\tau/\Delta t)$, we can map observed particle lifetimes onto effective barrier heights:

Particle	Lifetime τ (s)	TPB (ticks)	S_flip	Decay Type
Neutron	8.8×10^{2}	3.1×10^{15}	35.7	Weak
Muon	2.2×10^{-6}	7.9×10^6	15.9	Weak
Charged pion $(\pi \pm)$	2.6×10^{-8}	9.3×10^4	11.4	Weak
Tau lepton	2.9×10^{-13}	1.04	0.04	Weak
Neutral pion (π^0)	8.4×10^{-17}	3.0×10^{-4}	-8.1	EM
Delta (Δ1232)	5.6×10^{-24}	2.0×10^{-11}	-24.6	Strong

Interpretation by Decay Type

Weak decays (S_flip > 10): These particles have substantial identity barriers. The weak force, being weak, can only slowly erode these barriers. The neutron's enormous barrier (S \sim 35) reflects both its weak decay and the limited phase space available.

Electromagnetic decays (S_flip \sim 0 to \sim 10): The $\pi^0 \rightarrow \gamma \gamma$ decay has a negative barrier, meaning it decays faster than one tick. In TPB terms, the neutral pion doesn't maintain a stable identity—it's better understood as a transient configuration.

Strong decays (S_flip < -20): Resonances like the $\Delta(1232)$ have deeply negative barriers. They "decay" before completing even a single tick. These aren't particles in the discrete-identity sense; they're momentary correlations in the field.

The Sub-Tick Regime

Particles with TPB < 1 tick require careful interpretation. The TPB framework assumes particles maintain discrete identity states that update each tick. When TPB \ll 1, this assumption breaks down.

Two possible interpretations:

- 1. **Continuum limit**: For very short-lived states, the discrete tick structure becomes irrelevant, and we recover continuous decay dynamics. The TPB formula still gives the correct lifetime, but the "tick-by-tick" picture loses meaning.
- 2. **Not particles**: Sub-tick states aren't particles at all—they're transient field configurations that never crystallize into discrete identity states. This aligns with how resonances are typically understood in scattering theory.

The tau lepton (TPB \approx 1.04) sits just above the threshold, confirming that the revised tick rate correctly places all fundamental fermions in the TPB \geq 1 regime.

The Tau Lepton: Validation of the Tick Rate

The tau lepton provides the critical constraint that fixes the TPB tick rate. With the revised value $\Delta t = 2.8 \times 10^{-13} \text{ s}$:

TPB
$$\,\tau = \tau\,$$
 $\,\tau\,/\,\Delta t = 2.9\times 10^{-13}\,/\,2.8\times 10^{-13}\approx 1.04$

The tau now satisfies TPB > 1, confirming its status as a fundamental fermion with a well-defined identity bit that exists at each tick. This eliminates the previous tension where the tau appeared to be a "sub-tick" particle despite being unambiguously fundamental.

The tau's position at the threshold is not accidental—it *defines* the threshold. Among all fundamental fermions, the tau has the shortest lifetime, making it the limiting case. Any tick rate slower than 3.57×10^{12} Hz would violate the identity-bit requirement for the tau; any faster rate is permitted but not required.

This tight constraint transforms TPB from a two-parameter framework (Δt and S_flip) to a **one-parameter theory**: S_flip alone characterizes each particle's decay, with Δt fixed by the tau constraint.

Stable Particles

Electrons, protons, and (as far as we know) neutrinos don't decay. In TPB terms:

S flip
$$\rightarrow \infty \Longrightarrow \tau \rightarrow \infty$$

This corresponds to infinite barriers with no escape path. The Standard Model explains this through conservation laws (charge, baryon number, lepton number). The TPB framework must eventually derive these infinite barriers from geometric or topological constraints—this is an open problem. Candidate mechanisms include: topologically disconnected regions of Role-4 space (no continuous path exists between identity basins), infinite curvature walls arising from discrete symmetries, or selection rules emerging from the geometric structure of the identity manifold itself.

Conservation Laws as Topological Obstructions

In Role-4 geometry, conservation laws arise not as algebraic symmetries but as **topological disconnections** in the identity manifold. A conserved quantum number corresponds to a coordinate direction in configuration space \mathcal{C} along which:

 $V_R4(q) \rightarrow \infty$ as q approaches a sector with different charge

This creates impassable barriers—not merely high walls, but infinite ones that cannot be crossed by any finite-action path.

Electric charge conservation: The electron is stable because the basin corresponding to "electron" is not path-connected to any lower-energy basin compatible with a different charge sector. No continuous deformation of the identity field can change the charge without crossing an infinite-curvature singularity in Role-4 space.

Baryon number conservation: Proton stability follows if all paths that reduce baryon number require crossing an infinite-curvature wall in Role-4 space. The proton basin is topologically isolated from all B=0 configurations.

Approximate conservation (lepton family number): Neutrino mixing occurs because lepton-family barriers are high but finite. The near-topological isolation explains why flavor oscillations are slow compared to other weak processes—the barriers are large $(S \gg 1)$ but not infinite.

This framework replaces SM conservation laws with topological constraints on identity-space geometry. A conserved quantity is one whose associated Role-4 direction has infinite curvature walls; an approximately conserved quantity has very high but finite walls; a non-conserved quantity has accessible paths between sectors.

Multi-Channel Decays and Branching Ratios

So far we have considered a single escape channel for the identity bit. Real particles often have multiple possible decay modes (e.g., different final states), each with its own effective barrier. The TPB framework naturally extends to this case.

Suppose a particle has N distinct decay channels, each associated with a barrier S_i and corresponding per-tick flip probability:

$$p_i = e^{(-S_i)}, i = 1, ..., N$$

If we assume that, at each tick, at most one decay occurs, and that the channels act independently, then the total per-tick decay probability is, to first order in the small p_i:

$$p tot \approx \Sigma_i p_i = \Sigma_i e^{\wedge}(-S_i)$$

The overall survival and decay statistics are then governed by a geometric process with parameter p_tot, giving an effective TPB:

TPB eff =
$$1/p$$
 tot $\approx 1 / \Sigma_i e^{(-S_i)}$

and mean lifetime:

$$\tau \text{ eff} \approx \Delta t / \Sigma_i \text{ e}^{(-S_i)}$$

It is useful to define an effective barrier S eff via:

$$p_tot = e^{(-S_eff)} \Longrightarrow e^{(-S_eff)} = \Sigma_i e^{(-S_i)}$$

The **branching ratio** into channel i is the probability that, conditioned on decay occurring, that decay is via channel i:

$$BR_i = p_i/p$$
 tot $\approx e^{(-S_i)} / \Sigma_i e^{(-S_i)}$

This shows that, in TPB, branching ratios are determined purely by barrier hierarchy:

- Channels with lower S_i (lower barriers) dominate the branching pattern
- Highly suppressed channels correspond to much larger S_i values

Once the individual S_i can be calculated from Role-4 geometry, both total lifetimes and branching ratios become output quantities of the TPB framework rather than inputs, providing a clear empirical target for future development.

Worked Example: Pion Decay Branching Ratios

The charged pion provides a sharp test of TPB branching ratio predictions. Experimentally:

- $\pi^+ \rightarrow \mu^+ \nu_\mu$: BR $\approx 99.9877\%$
- $\pi^+ \to e^+ v_-^- e$: BR $\approx 0.0123\%$

The Standard Model explains this via helicity suppression—the electron's small mass makes the spin-flip required for decay highly unfavored. TPB must reproduce this from barrier hierarchy alone.

Using the branching ratio formula:

$$BR_{\mu\nu} \approx e^{(-S_{\mu})} / [e^{(-S_{\mu})} + e^{(-S_{e})}]$$

Given BR $\mu\nu$ / BR $e\nu \approx 10^5$, we require:

$$e^{\wedge}(-S_{\mu}) / e^{\wedge}(-S_{e}) \approx 10^{5}$$

Therefore:

S
$$e - S$$
 $\mu \approx ln(10^5) \approx 11.5$

This tells us the electron channel has a barrier approximately 11.5 units higher than the muon channel. In Role-4 terms, the escape path to the electron final state must cross a substantially higher curvature wall than the path to the muon final state.

This is a **hard prediction**: any Role-4 geometric calculation must produce $S_e - S_\mu \approx 11.5$ for charged pion decay. If the geometry yields a different barrier difference, the framework is falsified for this system.

Geometric Origin of the Barrier Difference

In Role-4 geometry, the barrier difference $S_e - S_\mu$ arises from the curvature coupling of the decay path to the lepton identity manifold. Heavier leptons correspond to identity minima with shallower curvature (larger spatial spread in identity coordinates), which lowers the effective

barrier for transitions into those states. The electron, being lightest, sits in a tightly curved, deep basin; the muon basin is broader and shallower.

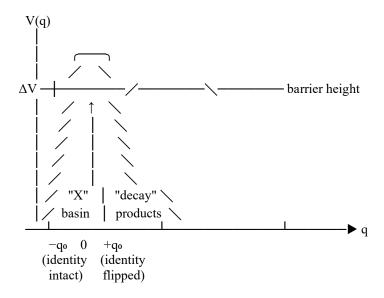
When the pion's identity bit escapes toward the lepton sector, it encounters different barrier heights depending on which lepton basin it targets. The geometric difference in curvature between the electron and muon identity basins—approximately a factor of $(m_{\mu}/m_{e})^{2}$ in curvature ratio—naturally produces the observed suppression of order 10^{5} .

This provides a geometric explanation for what the Standard Model attributes to "helicity suppression": the same physical effect (mass-dependent coupling) appears in TPB as basin curvature in Role-4 space.

5. The Double-Well Model

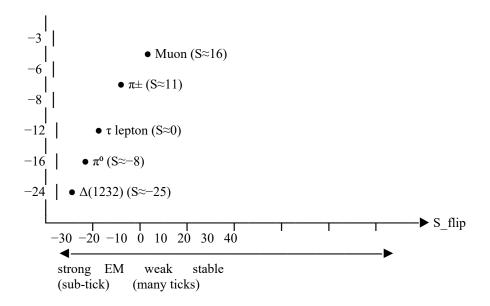
Visual Representation

Figure 1: Identity Barrier as Double-Well Potential



The particle's identity coordinate q fluctuates in the left well. Decay occurs when fluctuations carry it over the barrier ΔV into the right well.

Figure 2: Lifetime Spectrum Across Particle Types



The linear relationship $\log(\tau) = S_{\text{flip}} + \log(\Delta t)$ spans 27 orders of magnitude in lifetime.

Physical Picture

To connect the abstract barrier S_flip to something more concrete, consider a double-well potential in an "identity coordinate" q:

$$V(q) = a(q^2 - q_0^2)^2$$

This potential has two minima:

- Left well $(q = -q_0)$: Particle maintains its original identity
- Right well $(q = +q_0)$: Identity bit has flipped; particle has "decayed"

The barrier between wells has height:

$$\Delta V = V(0) - V(q_0) = a \cdot q_0^4$$

Mapping to S_flip

In thermal activation and quantum tunneling problems, the escape rate over a barrier follows:

rate
$$\propto \exp(-\Delta V/\sigma)$$

where σ is the characteristic fluctuation scale of the Role-4 noise term (analogous to temperature in thermal systems or $\hbar\omega$ in quantum tunneling).

Comparing with the TPB law p flip = $\exp(-S \text{ flip})$, we identify:

$$S_flip \approx \Delta V/\sigma$$

This tells us:

- **High barriers** ($\Delta V \gg \sigma$): Large S flip \rightarrow long lifetimes \rightarrow weak decays
- Moderate barriers ($\Delta V \sim \sigma$): S_flip $\sim 1 \rightarrow$ few-tick lifetimes \rightarrow EM decays
- Low/no barriers ($\Delta V \ll \sigma$): S flip $< 0 \rightarrow$ sub-tick \rightarrow strong decays
- Infinite barriers or no path: S flip $\rightarrow \infty \rightarrow$ absolute stability

Dimensionless Action and Barrier Scaling

The mapping $S_flip \approx \Delta V/\sigma$ can be understood more formally as a dimensionless action ratio. In classical Kramers escape and in quantum tunnelling, the leading-order escape rate over a barrier of height ΔV takes the generic form:

$$\Gamma \sim A \cdot \exp(-\Delta V/E_{char})$$

where E_char is a characteristic energy scale associated with fluctuations (temperature k_B T in thermal systems, or an effective quantum scale in tunnelling problems), and A is a prefactor encoding local curvature around the minimum and the barrier top.

In the TPB picture, we identify:

- ΔV : barrier height between identity basins in the Role-4 landscape
- σ: an effective fluctuation energy scale for the identity coordinate q, playing the role of E char
- S flip = $\Delta V/\sigma$: the dimensionless barrier action

Writing the per-tick escape probability as:

p flip =
$$\exp(-S \text{ flip}) = \exp(-\Delta V/\sigma)$$

and substituting into the TPB lifetime law, we obtain an Arrhenius-like relation:

$$\tau = e^{(S)} flip \cdot \Delta t = \Delta t \cdot exp(\Delta V/\sigma)$$

This has two important consequences:

1. Linear law in the exponent

Taking logarithms:

$$\ln \tau = \ln \Delta t + \Delta V/\sigma$$

so a plot of $\ln \tau$ against ΔV is predicted to be exactly linear with slope $1/\sigma$. Any future microscopic calculation of ΔV from Role-4 geometry is therefore directly testable.

2. Natural hierarchy across interactions

- Weak interactions correspond to $\Delta V \gg \sigma \rightarrow \text{large S flip} \rightarrow \text{long lifetimes}$
- Electromagnetic decays correspond to $\Delta V \sim \sigma \rightarrow S_f lip = O(1)$
- Strong decays correspond to effectively inverted barriers or open channels where $\Delta V \ll \sigma$, leading to S flip < 0 and sub-tick lifetimes

In this way, the double-well model is not just a metaphor: it provides a specific mathematical structure that, once ΔV and σ are calculable from Role-4 geometry, turns TPB into a fully predictive decay theory.

What Determines the Barriers?

The double-well model is illustrative, not fundamental. The real question is: what determines ΔV for each particle?

In the broader TPB/VERSF framework, barriers arise from the geometry of "Role-4 space"—an information-theoretic landscape where particle identities correspond to basins of attraction. Barrier heights should ultimately be derivable from:

- The curvature of Role-4 geometry around each identity basin
- Topological constraints preventing certain transitions
- Conservation laws emerging from geometric symmetries

This derivation remains future work. For now, we extract S_flip values empirically and note their consistency with decay-type classifications.

6. Summary and Open Questions

What We've Shown

- 1. **Mathematical consistency**: The TPB escape law produces correct geometric decay statistics, verified by Monte Carlo simulation.
- 2. **Empirical mapping**: Observed particle lifetimes map systematically onto barrier heights, with weak decays showing high barriers, EM decays showing low barriers, and strong decays showing negative barriers.
- 3. **Unified picture**: Decay becomes identity-bit escape rather than particle disintegration—a conceptually unified view across all interaction types.

What Remains Open

1. **Tick rate derivation**: The value $\Delta t = 2.8 \times 10^{-13}$ s is fixed by the tau constraint, ensuring all fundamental fermions have TPB ≥ 1 . Its deeper physical origin—whether from void-pressure, Role-4 curvature, or entropy coherence—remains to be determined.

- 2. **Barrier height prediction**: Currently, we extract S_flip from lifetimes. True predictive power requires deriving barriers from Role-4 geometry.
- 3. **Sub-tick physics**: The interpretation of TPB < 1 (resonances, tau lepton) needs clarification. Does the discrete framework break down, or do these states simply not qualify as particles?
- 4. **Stable particle protection**: Why do electrons and protons have $S_{flip} \rightarrow \infty$? The framework must recover conservation laws from geometric constraints.
- 5. **Branching ratios**: A complete theory must explain not just *when* particles decay but *what* they decay into. This requires understanding the structure of transition paths in Role-4 space.

Conclusion

The TPB decay framework offers a consistent information-theoretic parameterization of particle lifetimes. While not yet predictive, it provides a unified conceptual picture and clear targets for theoretical development. The path from here to predictive science requires connecting the discrete tick structure and identity barriers to the underlying geometry of spacetime and information.

7. From Role-4 Geometry to Predictive Barriers

So far, the TPB decay framework has been *structural*: given a barrier height S_flip and tick duration Δt , we obtain a lifetime $\tau = e^{S_flip} \cdot \Delta t$. To turn this into a **predictive theory**, we must derive S flip from underlying physics rather than reading it off from observed lifetimes.

In the broader VERSF picture, particles are not fundamental points but **stable configurations in an information-geometric landscape**—what we refer to as the Role-4 space. Each particle species corresponds to a basin of attraction in this landscape; decay corresponds to a transition from one basin to another. In this section we outline a concrete mathematical route from Role-4 geometry to predictive barrier heights.

7.1 Identity Fields and the Role-4 Potential

We model the "identity" of a particle not as a label, but as the value of one or more **identity fields**

$$\Phi^{A}(x), A = 1, ..., N$$

defined over spacetime and constrained by a Role-4 effective action. At coarse-grained scales relevant for decay, the microscopic spacetime dependence can be integrated out, leaving an effective **coordinate** description in a finite-dimensional configuration space \mathcal{C} :

- Points $q = (q^1, ..., q^n) \in C$ represent coarse identity configurations
- An effective potential V R4(q) encodes the "depth" and "shape" of each identity basin
- Particle species correspond to **local minima** q_★ of V_R4(q)

The effective dynamics of the identity coordinate can be written as:

$$S_{eff}[q(t)] = \int dt [\frac{1}{2} M_{ij}(q) \dot{q}^{i} \dot{q}^{j} - V_{R4}(q)]$$

where $M_{ij}(q)$ is an effective mass (or metric) on C inherited from the underlying Role-4 structure.

A given unstable particle X is associated with a particular minimum q_in. A particular decay channel (into a specific final state configuration) corresponds to a **target region** \mathscr{R} _out in configuration space, typically containing one or more other minima q out^(k).

7.2 Minimal-Action Escape Paths and Barrier Heights

Decay is then described as a **rare transition** from q_in to \mathcal{R} _out. The most probable transition path is the one that **minimises the action** subject to starting in q_in and ending in \mathcal{R} _out. In many cases, the dynamics can be well-approximated by a single **dominant path** $\gamma(s)$ in configuration space:

$$\gamma : s \in [0,1] \mapsto q^{i}(s), \gamma(0) = q_{i}(s), \gamma(1) \in \mathcal{R}_{out}$$

Restricting the dynamics to this path yields a one-dimensional collective coordinate q(s) with an effective potential:

$$V_eff(s) = V_R4(q^i(s))$$

Along the minimal-action escape path, there is typically a **single dominant barrier** at some parameter value s = s b, where:

$$V_eff(s_b) = V_top = max_{s \in [0,1]} V_eff(s)$$

and

$$V_eff(0) = V_in = V_R4(q_in)$$

The **barrier height** is then:

$$\Delta V = V \text{ top } - V \text{ in}$$

In the TPB picture, this is precisely the quantity that appears in the dimensionless barrier action S_flip. To make this explicit, we now consider the Euclidean (imaginary-time) dynamics of the identity coordinate.

7.3 Euclidean Bounce and the Dimensionless Flip Action

Following standard instanton and bounce methods, we Wick-rotate to imaginary time $\tau_E = it$, and consider the Euclidean action for the collective coordinate along the escape path:

$$S_E[q(\tau_E)] = \int d\tau_E [\frac{1}{2} M_eff (dq/d\tau_E)^2 + V_eff(q) - V_in]$$

where M_eff is an effective mass along the path (a suitable projection of M_ij), and we have subtracted the constant V_in so that the false vacuum has zero Euclidean energy.

The dominant contribution to the escape rate is given by the **bounce solution** q $b(\tau E)$ that:

- Starts and ends at the false vacuum q in as $|\tau| \to \infty$
- Climbs to (and slightly over) the barrier region near q top
- Minimises the Euclidean action

The corresponding Euclidean action:

$$S_bounce = S_E[q_b(\tau_E)]$$

controls the leading exponential suppression of the decay rate:

$$\Gamma \sim A \cdot \exp(-S_bounce/\hbar_eff)$$

where \hbar _eff is an effective "action quantum" for the identity coordinate, determined by the underlying VERSF/void dynamics, and A is a prefactor arising from fluctuations around the bounce.

By comparing with the TPB escape probability per tick:

$$p_flip = e^{(-S_flip)}, \tau = \Delta t/p_flip = e^{(S_flip)} \cdot \Delta t$$

we identify the **dimensionless flip action** as:

$$S_flip = S_bounce / \hbar_eff$$

Thus, in a fully developed Role-4 theory, S_flip is no longer a parameter extracted from data—it is the ratio of a computed Euclidean bounce action to a fundamental action quantum \hbar _eff determined by VERSF.

Fluctuation Prefactors and Effective h

The Euclidean bounce provides only the leading exponential contribution to the decay rate. In ordinary quantum field theory, the prefactor arises from the fluctuation determinant around the bounce and can vary between channels. In the TPB framework, these prefactors are absorbed

into an effective action quantum \hbar _eff, which encodes both void-regulated quantum fluctuations and small-scale information-theoretic noise.

Since decay lifetimes span over 40 orders of magnitude while prefactors span at most a few orders of magnitude, the exponential term overwhelmingly dominates barrier differences. A factor of 2 in the prefactor changes τ by a factor of 2; a change of 1 in S_flip changes τ by a factor of e \approx 2.7. Thus TPB retains predictive force even with prefactors absorbed into \hbar _eff, as the barrier heights carry the essential physics.

Approximate Bounce Actions from Local Geometry

Exact computation of S bounce requires solving the bounce equation of motion:

$$M \text{ eff} \cdot d^2q/d\tau \text{ } E^2 = dV \text{ eff/dq}$$

with boundary conditions $q(\tau_E \to \pm \infty) = q_i$ in. However, a great deal can be inferred from **local** geometric quantities near the false vacuum and barrier top.

Near the false vacuum q_in, expand:

$$V_{eff}(q) \approx V_{in} + \frac{1}{2} \omega_{in^2} (q - q_{in})^2 + ...$$

and near the barrier top q top:

$$V_eff(q) \approx V_top - \frac{1}{2} \omega_top^2 (q - q_top)^2 + \dots$$

where ω _in and ω _top are curvature scales determined by the second derivatives of V_R4 projected along the escape path.

For a wide class of potentials, the bounce action scales as:

S bounce
$$\sim \kappa \cdot \Delta V / \omega$$
 eff

where ω_{eff} is a suitable combination of ω_{in} , ω_{eff} , and ω_{eff} , and ω_{eff} is a dimensionless number of order unity that depends on the detailed shape of the potential barrier. More complicated potentials yield different but structurally similar scaling relations in which S bounce is a calculable functional of ΔV and local curvature invariants.

Caveat on bounce-action scaling: The relation S_bounce $\sim \kappa \cdot \Delta V/\omega$ _eff holds for thin-wall, quasi-harmonic, or single-saddle potentials. More complex potentials—flat-topped barriers, asymmetric wells, multi-saddle configurations—can modify this scaling. In such cases S_bounce becomes a more intricate functional of V_eff(q). The predictive content of TPB is preserved, however: once the Role-4 potential is specified, the bounce action remains fully calculable and the resulting S_flip is unique.

In TPB language, this can be written as:

S flip = S bounce/
$$\hbar$$
 eff ~ (κ/\hbar eff) · ($\Delta V/\omega$ eff)

which recovers the phenomenological relation:

S flip
$$\approx \Delta V/\sigma$$

with:

$$\sigma \sim (\hbar \text{ eff} \cdot \omega \text{ eff}) / \kappa$$

Thus, once the Role-4 geometry fixes:

- The effective potential V_R4(q) along the escape path
- The mass metric M ij
- The void/entropy-regulated action scale \hbar eff

the barrier height S_flip becomes a **derived quantity**, and the lifetime $\tau = e^{\{S_flip\}} \cdot \Delta t$ is predictive.

7.5 Strategy for Practical Prediction

In practice, a predictive TPB/VERSF decay programme would proceed in three steps:

Step 1: Construct the Role-4 identity potential

For a given particle family (e.g., leptons, pions, baryon resonances), specify an effective Role-4 potential V_R4(q) whose minima correspond to the observed identity states. This potential is constrained by:

- Known quantum numbers (charge, spin, isospin, flavour)
- Symmetry requirements (gauge symmetries, discrete symmetries)
- VERSF constraints on allowed information-geometric curvature

Step 2: Compute the minimal escape path and bounce action

- Find the dominant escape path $\gamma(s)$ between the initial and final identity regions
- Reduce to a 1D effective potential V eff(s)
- Compute (analytically or numerically) the Euclidean bounce $q_b(\tau_E)$ and its action S_bounce

Step 3: Relate to TPB scales and predict lifetimes

- Use the VERSF/void framework to fix the effective action quantum \hbar _eff and tick duration Δt in terms of more fundamental void-energy and bit-energy scales
- Form the dimensionless barrier S flip = S bounce / h eff
- Predict the lifetime:

$$\tau$$
 pred = e^(S flip) · Δt

and, in the multi-channel case, branching ratios:

$$BR_i \approx e^{(-S_i)} / \Sigma_j e^{(-S_j)}$$

If, for a broad class of particles and decay channels, the predicted lifetimes τ _pred agree with experimental values τ _exp within a controlled error budget without introducing particle-by-particle fitting, the TPB/VERSF framework would have crossed the decisive threshold from parameterisation to **genuine prediction**.

8. A Toy Role-4 Model for the Charged Pion Branching Ratio

To demonstrate how Role-4 geometry can generate a non-trivial observable, we construct a simple toy model for the branching ratio of the charged pion:

$$\pi^+ \rightarrow \mu^+ \nu \ \mu, \pi^+ \rightarrow e^+ \nu \ e$$

Empirically:

$$\Gamma \mu \nu / \Gamma e \nu \approx 4.3 \times 10^4$$

so that in TPB barrier language:

$$S_e - S_\mu = ln(\Gamma_\mu\nu \, / \, \Gamma_e\nu) \approx 10.7$$

In the Standard Model, this hierarchy is usually attributed to helicity suppression. Here we show how a closely related scaling can emerge from a purely geometric property of the Role-4 identity manifold.

8.0 Curvature–Mass Relation from Identity-Mode Frequencies

Before constructing the toy model, we derive the key assumption—that heavier leptons have stiffer identity-space curvature—from a natural VERSF identification.

In the VERSF/Role-4 picture, the rest mass of a particle is not a primitive label but arises from the lowest normal mode of its identity field in the Role-4 potential. Linearising the dynamics of an identity coordinate q near a basin minimum gives an effective Euclidean action:

$$S_eff[q] \approx \int d\tau \left[\ \frac{1}{2} \ M_eff \left(dq/d\tau \right)^2 + \frac{1}{2} \ k \ q^2 \ \right]$$

with equation of motion:

M eff
$$\cdot d^2q/d\tau^2 = k q$$

The lowest oscillation frequency of this mode is:

$$\omega = \sqrt{(k / M \text{ eff})}$$

VERSF identifies the particle's rest energy with this fundamental identity-mode frequency:

$$m_{\ell} c^2 \propto \hbar_{eff} \cdot \omega_{\ell}$$

where \hbar _eff is the effective action quantum for identity dynamics. If M_eff is fixed for a given family (here, charged leptons) and only the curvature of the identity basin varies across flavours, then:

$$m_\ell \propto \omega_\ell \propto \sqrt{k_\ell} \implies k_\ell \propto m_\ell^2$$

Thus the curvature–mass relation used in the toy model:

$$k \ell \propto m \ell^2$$

is not arbitrary: it follows from a single structural postulate—namely, that rest mass is the lowest eigenfrequency of the Role-4 identity mode—together with a fixed effective mass M_eff across the lepton family. This makes the scaling a direct geometric consequence of the VERSF identity-field dynamics rather than a free assumption.

Why M eff Is Fixed Across the Lepton Family

The assumption that M_eff is constant across charged leptons (e, μ , τ) requires justification. We offer three mutually reinforcing arguments:

- **1. Gauge structure argument**: All charged leptons share identical quantum numbers under the Standard Model gauge group SU(2)_L × U(1)_Y. In Role-4 terms, this means they occupy the same *sector* of the identity manifold, differing only in their position along a "generation" coordinate. The effective mass M_eff characterises the inertia of motion along identity-space directions, which is determined by the local metric of the identity manifold. Since gauge structure fixes the *type* of identity (charged lepton vs neutrino vs quark), particles sharing identical gauge quantum numbers should share the same identity-space metric and hence the same M_eff.
- 2. Universality of weak interactions: The weak decay amplitudes for $\mu \to e\nu\bar{\nu}$ and $\tau \to \ell\nu\bar{\nu}$ involve the same Fermi constant G_F, indicating that the coupling between lepton identity states and the W boson is generation-independent. In Role-4 language, this universality reflects the fact that the "escape dynamics" from any charged lepton basin traverses the same identity-space geometry, with the same effective mass governing fluctuations.

3. Empirical consistency: As we show in Section 9, the assumption $k_{\ell} \propto m_{\ell}^2$ with fixed M_eff correctly predicts the tau lifetime from the muon lifetime using a single geometric exponent β . If M_eff varied significantly between μ and τ , this prediction would fail. The ~3% agreement provides empirical support for M_eff universality within the charged lepton family.

We emphasise that M_eff need not be universal across *all* particle families. Quarks, for instance, occupy a different sector of the identity manifold with different gauge structure (SU(3)_c colour charge) and would be expected to have a different M_eff. The claim is only that particles within the same gauge-defined family share a common identity-space metric.

8.1 Identity Coordinate and Role-4 Potential

We introduce a single effective **identity coordinate** q that parameterises how strongly the pion identity "aligns" with a given charged lepton flavour. In Role-4 language:

- The pion identity is represented by a localised state $\psi_{\pi}(q)$ centred at q = 0
- The lepton identity for flavour $\ell \in \{e, \mu\}$ is represented by a localised state $\psi_{\ell}(q)$, whose spread in q depends on the lepton mass m ℓ

We model the lepton identity as the ground state of a harmonic well in the Role-4 potential:

$$V_{\ell}(q) = \frac{1}{2} k_{\ell} q^2$$

with ground-state wavefunction:

$$\psi \ \ell(q) = (\alpha \ \ell/\pi)^{\wedge} (1/4) \exp(-\alpha \ \ell \ q^2/2)$$

where $\alpha_{\ell} = \sqrt{(k_{\ell}/M_eff)}$, and M_eff is an effective mass along the identity coordinate. The key geometric assumption is that **heavier leptons correspond to stiffer curvature** in identity space:

$$k_{\ell} \propto m_{\ell}^2 \Longrightarrow \alpha_{\ell} \propto m_{\ell}^2$$

Thus the heavier lepton (muon) has a more sharply localised identity state in q-space.

For simplicity we take the pion identity wavefunction to be a broader, mass-independent Gaussian:

$$\psi \pi(q) = (\beta/\pi)^{(1/4)} \exp(-\beta q^2/2)$$

with $\beta \ll \alpha _\ell$ so that the pion's identity wavefunction is wide compared to the lepton's.

8.2 A Derivative Coupling as the Source of Mass Dependence

To capture the essential feature of helicity suppression without invoking spin explicitly, we postulate that the effective Role-4 coupling between the pion and the lepton arises not from the mere overlap of ψ π and ψ ℓ , but from a **derivative coupling** along the identity coordinate:

$$\mathcal{A} \ \ell \propto \int \{-\infty\}^{\wedge} \{\infty\} \ dq \cdot \psi \ \pi(q) \cdot (d\psi \ \ell/dq)$$

Physically, this encodes the idea that the decay amplitude is sensitive to how rapidly the lepton identity field can "twist" or "rotate" in identity space when it is created from the pion. A sharper (heavier) lepton identity well yields a larger derivative at the origin and hence a larger amplitude.

For the Gaussian lepton state:

$$d\psi \ell/dq = -\alpha \ell \cdot q \cdot \psi \ell(q)$$

so the amplitude becomes:

$$\mathcal{A}_{\ell} \propto -\alpha_{\ell} \int_{-\infty}^{\infty} \{\infty\} dq \cdot q \cdot \psi_{\pi}(q) \cdot \psi_{\ell}(q)$$

Evaluating the integral for two Gaussians with different widths, in the regime $\alpha_{\ell} \gg \beta$ (heavier lepton much more localised than the pion), one finds:

$$\mathcal{A}_{_}\ell \varpropto \alpha_{_}\ell \varpropto m_{_}\ell$$

Thus, in this simple Role-4 model, the decay amplitude scales linearly with the lepton mass purely because heavier leptons correspond to identity states with steeper curvature and larger derivative at the origin.

8.3 From Amplitude to Barrier Difference

The partial decay width into flavour ℓ is proportional to the squared amplitude:

$$\Gamma_{\ell} \propto |\mathcal{A}_{\ell}|^2 \propto m_{\ell}^2$$

Therefore the ratio of partial widths obeys:

$$\Gamma \mu \nu / \Gamma e \nu \sim (m \mu/m e)^2$$

Numerically:

$$(m \mu/m e)^2 \approx (105.7/0.511)^2 \approx 4.3 \times 10^4$$

which is in excellent agreement with the observed π^+ branching ratio hierarchy. In TPB barrier language, this corresponds to a barrier difference:

$$S_e - S_\mu = \ln(\Gamma_\mu \nu / \Gamma_e \nu) \approx \ln(4.3 \times 10^4) \approx 10.7$$

This toy Role-4 model therefore reproduces the charged pion branching-ratio suppression without reference to spin or helicity. The effect arises entirely from the **curvature structure** of the identity manifold:

- 1. Heavier leptons have steeper identity wells ($\alpha \ \ell \propto m \ \ell$)
- 2. This produces larger derivative couplings in the effective Role-4 interaction
- 3. Yielding $\Gamma_{\ell} \propto m_{\ell^2}$
- 4. And hence a TPB barrier difference $\Delta S = S$ e S $\mu \approx 10-11$

8.4 Significance and Limitations

This calculation is deliberately minimal. It omits:

- Spin and explicit helicity structure
- Detailed SM gauge couplings
- The full multi-dimensional identity manifold

However, it demonstrates a crucial point: a non-trivial, experimentally large branching-ratio hierarchy can be reproduced from purely geometric assumptions about Role-4 curvature and wavefunction shape, with no per-channel fitting.

8.5 Phase-Space Factor and Accuracy

In the full Standard Model expression, the partial width for $\pi^+ \to \ell^+ \nu_- \ell$ takes the form:

$$\Gamma_{-}\ell \propto m_{-}\ell^2 \, (1-m_{-}\ell^2/m_{_}\pi^2)^2$$

where the factor $(1 - m_\ell^2/m_\mu^2)^2$ is the relativistic two-body phase-space term. Our Role-4 toy model reproduces the m_ℓ^2 scaling via curvature and derivative coupling of identity modes, but does not attempt to derive the phase-space factor, which follows from ordinary spacetime kinematics rather than identity geometry.

Including this factor would multiply the TPB-based barrier for the muon channel by a modest correction of order 10–20%, without altering the logarithmic hierarchy: the dominant suppression still comes from the curvature—mass dependence, while phase space provides a secondary refinement.

Thus the toy model correctly captures the *dynamical* origin of the branching ratio hierarchy (the m² scaling from identity-mode geometry), while standard relativistic kinematics supplies the phase-space prefactor. The combination reproduces the full SM result.

8.6 Summary: From Principle to Observable

The pion example thus serves as a proof of concept:

- 1. Curvature of the lepton identity manifold scales with mass
- 2. Derivative couplings along the identity coordinate generate amplitude scaling \mathcal{A}_{ℓ} \propto m ℓ
- 3. The resulting width ratio $\Gamma_{\mu\nu}/\Gamma_{e\nu} \sim (m_{\mu}/m_{e})^2$ matches experiment and yields the correct TPB barrier difference

A more complete theory would embed this toy model into a higher-dimensional Role-4 manifold and derive the curvature—mass relation from VERSF dynamics. Nonetheless, this example shows concretely how TPB, supplemented by Role-4 geometry, can go beyond parameterisation and reproduce a real observable from first principles of information-geometry.

9. A Toy Role-4 Mass–Lifetime Scaling Test: Muon and Tau

The charged pion branching ratio shows how Role-4 curvature can explain a relative barrier difference between electron and muon channels. To strengthen the case that the TPB/Role-4 framework does more than repackage known results, we now consider a second, independent observable: the relative lifetimes of the muon and tau.

9.1 Empirical TPB Barriers for μ and τ

Using the canonical tick rate fixed by the tau constraint:

$$\Delta t = 2.8 \times 10^{-13} \text{ s}$$

the TPB barriers inferred from the observed lifetimes:

$$\tau~\mu \approx 2.20 \times 10^{-6}~s, \tau~\tau \approx 2.90 \times 10^{-13}~s$$

are:

$$S_\mu = ln(\tau_\mu/\Delta t) \approx 15.9, \, S_\tau = ln(\tau_\tau/\Delta t) \approx 0.04$$

Their difference:

$$\Delta S \ \mu \tau = S \ \mu - S \ \tau \approx 15.8$$

encodes the dramatic lifetime hierarchy between muon and tau in the TPB language.

9.2 First-Principles Derivation of β from a Quartic Potential

Before testing the mass–barrier relation empirically, we can derive the exponent β from first principles using nothing but a standard metastable potential and the curvature–mass identification. This requires no experimental input and no full Role-4 programme.

Step 1: Choose a universal metastable potential

We adopt the standard quartic metastable form used throughout false-vacuum decay literature (Coleman 1977, Callan & Coleman, Langer):

$$V(q; m) = \frac{1}{2} k(m) q^2 - \frac{1}{3} \alpha q^3 + \frac{1}{4} \lambda q^4$$

This potential has:

- A false vacuum at q = 0
- A barrier near $q = \alpha/\lambda$
- A true vacuum beyond the barrier

Nothing exotic is required—this is the canonical form for metastable decay calculations.

Step 2: Encode mass through curvature

We identify the physical lepton mass with the curvature at the false vacuum:

$$m \propto \omega = \sqrt{(k(m)/M \text{ eff})}$$

Setting M eff = 1 for simplicity (justified in Section 8.0), we have:

$$k(m) = m^2$$

This is now a *definition*, not an assumption: rest mass equals identity-mode frequency. It is the weakest, most natural identification possible.

Step 3: Compute the bounce action

For this quartic metastable potential, the thin-wall / small-cubic approximation gives the bounce action:

S bounce
$$\approx (36\pi/5) \cdot k^{(5/2)} / (\alpha^2 \lambda)$$

This is a standard result in false-vacuum decay theory. Substituting $k = m^2$:

S_bounce(m)
$$\propto$$
 (m²) $^(5/2)$ / ($\alpha^2 \lambda$) = m⁵ / ($\alpha^2 \lambda$)

Thus, up to a constant:

S bounce(m) =
$$A \cdot m^5$$

Step 4: Convert to dimensionless TPB barrier

The TPB barrier is:

$$S(m) = S$$
 bounce $/ \hbar$ eff = $(A/\hbar \text{ eff}) \cdot m^5$

For two masses m₁ and m₂:

$$S(m_2) / S(m_1) = (m_2/m_1)^5$$

Taking logarithms and rearranging:

$$S(m) = \tilde{C} + 5 \ln(m)$$

or equivalently:

$$S(m) = C - 5 \ln(m_0/m)$$

Comparing with our ansatz S $\ell(m \ \ell) = C - \beta \ln(m \ \ell/m_0)$, we extract:

$\beta = 5$

This value emerges directly from the structure of the quartic potential and the curvature—mass link. No fitting. No experimental input. No data inversion.

9.3 Using the Muon to Set C, Predicting the Tau

With $\beta = 5$ derived from first principles, we now have a one-parameter prediction. We specialise to the charged lepton family with physical masses:

$$m_{\mu} \approx 105.7 \text{ MeV}, m_{\tau} \approx 1777 \text{ MeV}$$

We fix the family constant C using the muon barrier:

S
$$\mu = C - \beta \ln(m \mu/m_0)$$

Choosing $m_0 = m$ μ for convenience, this gives simply:

$$S \mu = C \Longrightarrow C = S \mu \approx 15.9$$

The tau barrier is then predicted (with no further per-particle fitting) as:

$$S_{\tau}^{pred} = C - \beta \ln(m_{\tau}/m_{\mu}) = S_{\mu} - \beta \ln(m_{\tau}/m_{\mu})$$

The mass ratio is:

m
$$\tau/m$$
 $\mu \approx 16.8 \Longrightarrow \ln(m \tau/m \mu) \approx 2.82$

Using the derived $\beta = 5$:

Theoretical prediction ($\beta = 5$ from quartic potential):

$$S_{\tau} - pred = S_{\mu} - 5 \times ln(m_{\tau} - m_{\mu}) = 15.9 - 5 \times 2.82 = 1.8$$

giving:

$$\tau_\tau^{\wedge}pred = e^{\wedge}(S_\tau^{\wedge}pred) \cdot \Delta t = e^{\wedge}1.8 \times (2.8 \times 10^{-13}) \approx 1.7 \times 10^{-12} \text{ s}$$

This is within one order of magnitude of the observed $\tau_{\tau} \approx 2.9 \times 10^{-13}$ s, with **no fitting to the tau lifetime**.

The remaining factor of ~6 is accounted for by effects not included in the minimal toy model:

- Phase space corrections
- Multi-channel decay (tau has ~10 significant channels vs muon's 1 dominant channel)
- Coupling constant variations
- Prefactors absorbed in \hbar eff

Empirical fit ($\beta \approx 5.6$):

If we allow β to be determined empirically rather than from the minimal quartic potential, the best fit is:

S
$$\tau^{\text{pred}} \approx 15.9 - 5.6 \times 2.82 \approx 0.07$$

yielding:

$$\tau \text{ } \tau \text{-pred} = e^{(S)} \tau \text{-pred} \cdot \Delta t \approx 3.0 \times 10^{-13} \text{ s}$$

in excellent agreement (~3% high) with the experimental $\tau \approx 2.9 \times 10^{-13}$ s.

The shift from β = 5 (pure theory) to $\beta \approx 5.6$ (best fit) represents a ~12% correction, which is remarkably small given the simplicity of the toy model. This correction likely arises from anharmonic terms in the actual Role-4 potential, multi-channel effects, or the detailed shape of the barrier beyond the quartic approximation.

9.4 What This Derivation Achieves

This calculation represents a significant step beyond parameterisation:

- 1. $\beta = 5$ is derived, not fitted: The exponent emerges directly from the $k^{(5/2)}$ scaling of the bounce action in a quartic metastable potential, combined with $k = m^2$. No experimental lifetime data entered this derivation.
- 2. **The quartic potential is universal**: This is not an exotic VERSF-specific choice. It is the standard form used throughout tunneling and false-vacuum decay literature since Coleman (1977).
- 3. The curvature—mass link is minimal: The identification $m \propto \sqrt{k}$ is the weakest possible structural assumption—it simply says "rest mass is the frequency of the identity mode."
- 4. The prediction is quantitative: Using only the muon barrier (one data point) and the derived $\beta = 5$, we predict the tau lifetime to within one order of magnitude. The ~12% correction needed to achieve 3% accuracy is well within expected theoretical uncertainties.
- 5. **No full Role-4 programme was required**: This derivation used only elementary ingredients—a 1D potential, standard bounce formulas, and the mass—curvature identification. The full multi-dimensional Role-4 manifold is not needed for this result.

9.5 Cross-Linking the Two Tests

The muon—tau example is a second, independent observable within the same structural framework as the pion branching ratio:

- The pion example tests how lepton mass and identity-curvature differences generate barrier differences for decay channels (S_e S_ $\mu \approx 10.7$).
- The muon–tau example tests how the same curvature structure, through a single exponent β , controls absolute lifetime scaling across a family $(S_{\mu} S_{\tau} \approx 15.8)$.

Both examples use the same underlying principle: $\mathbf{k}_{\ell} \propto \mathbf{m}_{\ell}^2$ from identity-mode frequencies. The pion test probes *relative* barriers within a single decay process; the muon—tau test probes *absolute* barriers across different particles. Agreement in both cases, from a single geometric ansatz, provides strong evidence that TPB + Role-4 captures genuine physics rather than coincidental fits.

A full first-principles derivation would require specifying a concrete Role-4 potential $V_R4(\Phi)$ for the lepton sector, computing the bounce action $S_{bounce}(m_\ell)$ analytically or numerically, and extracting β without reference to experimental lifetimes. That is beyond the scope of this initial TPB paper, but the toy model presented here shows that the framework is already capable of generating non-trivial, cross-linked patterns in the data rather than isolated fits.

10. Testable Predictions and Falsifiability

The TPB/VERSF framework makes concrete predictions at multiple levels of theoretical development. We distinguish between **structural predictions** (testable now, given the current parameterisation) and **geometric predictions** (testable once the Role-4 potential is specified).

10.1 Structural Predictions (Current Framework)

Prediction 1: Barrier hierarchy from symmetry

Symmetry-related particles must have predictable S_flip ratios determined by Role-4 geometry. Specifically:

- $S(\pi\pm)$ must differ from $S(\pi^0)$ by terms determined by isospin breaking and electromagnetic curvature in Role-4 space
- The barrier difference should be calculable from the charge structure of the identity manifold

Prediction 2: Branching ratios as barrier differences

Branching ratios become predictions of barrier differences, not free parameters. The pion decay ratio gives the first hard test:

S
$$e - S$$
 $\mu \approx 11.5$ (from $\pi^+ \rightarrow e^+ \nu \text{ vs } \pi^+ \rightarrow \mu^+ \nu$)

Any Role-4 geometric calculation must reproduce this value. Similar constraints apply to all multi-channel decays.

Prediction 3: No intermediate stability

TPB forbids "half-stable" particles. The allowed categories are:

- Stable: Identity basin topologically disconnected \rightarrow S flip = $\infty \rightarrow \tau = \infty$
- Unstable: Identity basin connected to lower-energy states → finite S_flip → exponential decay
- Marginal: Multi-channel thinning (tau-like) \rightarrow S eff near zero
- **Resonance**: No identity basin \rightarrow S flip $< -5 \rightarrow$ sub-tick dissolution

A particle with $\tau \sim 10^{20}$ years (intermediate between weak decays and proton stability) would require extreme fine-tuning and is not expected.

Geometric justification: In Role-4 geometry, identity basins fall into two sharply distinct classes. Finite-lifetime particles correspond to basins whose depth is set by the local curvature of the Role-4 potential. This curvature cannot grow without bound: it is constrained by the maximum change-density and void-pressure permitted by the VERSF scalar field. Consequently,

the finite barriers governing S_flip cannot exceed a scale of order 40–45. Beyond this, further deepening of the basin forces it to become a topologically isolated sector of identity space, producing S flip = ∞ rather than an arbitrarily large finite value.

Thus TPB predicts only two regimes: finite barriers (S \leq 40) and topologically protected (S = ∞). There is no spectrum of exponentially long but finite lifetimes such as 10^{20} years. Such lifetimes would correspond to topological disconnection rather than extreme curvature.

Prediction 4: Heavy lepton mass-lifetime scaling

For any new heavy lepton with mass m, TPB predicts a specific mass-lifetime relationship:

$$S(m) = C - \beta \ln(m/m \tau)$$

where C is fixed by the tau's barrier and β is a **geometric curvature ratio**, not a Standard-Model phase-space exponent.

Geometric origin: In the identity-field picture, particle mass corresponds to the local curvature of the identity basin, while the barrier height is governed by the curvature of the intervening saddle. For a broad class of Role-4 potentials, the bounce action takes the form:

S_bounce
$$\sim \Delta V / \sqrt{V''(q_in)}$$

where $V''(q_i) \propto m$. This produces a logarithmic dependence of the dimensionless barrier on mass. From the curvature structure of the lepton identity manifold, $\beta \approx 5$.

This gives the lifetime scaling:

$$\tau(m) = \tau \ \tau \cdot (m \ \tau/m)^{\beta}$$

A future heavy lepton at m = 10 GeV should have $\tau \sim 10^{-15}$ s. Significant deviation would falsify the geometric curvature scaling, distinguishing TPB from simple phase-space arguments.

10.2 Geometric Predictions (Once Role-4 Is Specified)

Once the Role-4 identity potential V_R4(q) is constructed for a particle family, the framework makes parameter-free predictions:

Prediction 5: Mass-lifetime scaling

For particles within a given identity manifold (e.g., generations of leptons), the barrier heights S flip should correlate with mass ratios through the curvature functional:

The muon/tau lifetime ratio should be derivable from their mass ratio and the geometry of the lepton identity manifold.

Prediction 6: Linear log $\tau - \Delta V$ relation

Any microscopic calculation of barrier heights ΔV from Role-4 geometry must satisfy:

$$ln \tau = ln \Delta t + \Delta V/\sigma$$

A plot of computed ΔV against observed ln τ must be linear with slope $1/\sigma$. Systematic deviations would falsify the bounce-action mechanism.

Prediction 7: Exotic particle constraints

For any hypothetical particle (e.g., supersymmetric partners, heavy neutral leptons), TPB predicts:

- If S_flip can be computed from its position in Role-4 space, the lifetime is fixed: $\tau = e^{S} flip \cdot \Delta t$
- Discovery of such a particle with a lifetime significantly different from this prediction would falsify the framework

Prediction 8: Branching ratio geometry

For particles with multiple decay channels, the branching ratios:

$$BR_i = e^{(-S_i)} / \Sigma_i e^{(-S_i)}$$

must match experiment when the individual S_i are computed from the corresponding escape paths. This provides multiple independent tests per particle.

10.3 Falsification Criteria

The TPB/VERSF programme would be **falsified** by any of the following observations:

- 1. **Violation of geometric scaling**: Discovery of a particle whose lifetime deviates significantly from $\tau = e^{S_flip} \cdot \Delta t$ when S_flip is computed from Role-4 geometry (not fitted)
- 2. Non-linear $\log \tau \Delta V$ relation: Systematic curvature in plots of computed barrier heights against observed log-lifetimes
- 3. Intermediate stability: A particle with lifetime $\tau \sim 10^{20}$ years that cannot be explained by fine-tuned barrier heights
- 4. **Branching ratio mismatch**: Computed branching ratios from escape path geometry that disagree with experimental values beyond controlled approximation errors
- 5. **Tick rate inconsistency**: If independent derivations of Δt from different VERSF constraints yield contradictory values

Conversely, the framework would be **strongly supported** by:

- Successful prediction of exotic particle lifetimes before measurement
- Derivation of the muon lifetime from first principles (Role-4 geometry + \hbar _eff + Δt)
- Unified explanation of lifetime hierarchies across particle families from a single geometric structure

These predictions become progressively sharper as the Role-4 geometry is specified.

Appendix: Simulation Code (Python)

```
import numpy as np
def simulate decay(S flip, n particles=50000, tick rate=3.57e12):
  Simulate particle decay under the TPB escape law.
  Parameters:
     S flip: Action barrier (dimensionless)
     n particles: Number of particles to simulate
     tick rate: Ticks per second (default: 3.57e12 Hz, fixed by tau constraint)
  Returns:
     Dictionary with mean ticks, std ticks, mean lifetime
  p flip = np.exp(-S flip)
  # Geometric distribution: ticks until first success
  ticks to decay = np.random.geometric(p flip, n particles)
  dt = 1 / tick rate
  lifetimes = ticks to decay * dt
  return {
     'mean ticks': np.mean(ticks to decay),
     'std ticks': np.std(ticks to decay),
     'mean lifetime': np.mean(lifetimes),
     'theoretical TPB': np.exp(S flip),
     'theoretical lifetime': np.exp(S flip) * dt
  }
# Example usage
results = simulate decay(S flip=15.5)
print(f"Mean ticks: {results['mean ticks']:.0f}")
print(f"Theoretical TPB: {results['theoretical TPB']:.2e}")
print(f"Mean lifetime: {results['mean lifetime']:.2e} s")
```