TPB/VERSF Three-Body Dynamics:
Emergent Time, Distinguishability, and
Information-Bounded Chaos

Abstract

We reformulate the classical gravitational three-body problem within the Ticks-Per-Bit (TPB)
and Void-Energy-Regulated Space Framework (VERSF), in which physical time is not
fundamental but emerges only when a dynamical system generates at least one bit of new
distinguishable information. Rather than assuming continuous time, we posit that microdynamic
evolution occurs at a fine-grained "microtick" scale At, while physical time advances in discrete
informational steps called bit-events. We construct this framework explicitly for the 1D collinear
three-body case and generalise to 2D, 3D, and arbitrary N-body systems. The resulting dynamics
constitute a discrete informational trajectory rather than a continuous chaotic flow. We derive
scaling relations connecting the TPB information rate to classical Lyapunov exponents and
Kolmogorov-Sinai entropy, including a toy computation showing how emergent time modifies
effective Lyapunov behaviour. Four quantitative, computationally falsifiable predictions
distinguish TPB dynamics from standard formulations. This work establishes the first complete
application of emergent informational time to multi-body gravitational chaos.

General Reader Summary

This paper explores a surprising idea: what if time only moves forward when the universe
becomes more distinguishable? In classical physics, especially in the notoriously unsolvable
three-body problem, we assume that time flows smoothly and every tiny change matters. But
the TPB/VERSF framework proposes something different: time advances only when the system
generates at least one new bit of information. Instead of watching the three bodies evolve in an
endlessly chaotic blur, the system becomes a sequence of informational “snapshots” taken only
when something truly new happens. This doesn’t magically solve the three-body problem in the
traditional sense, but it changes the rules of the game: the chaotic motion becomes a discrete,
information-driven process that can be followed, analysed, and even predicted using new tools.
Close encounters produce bursts of new bits; quiet phases generate almost none — giving us a
clean, structured way to track and quantify chaos. This reframing transforms the three-body
problem from an infinitely delicate system into one that is computationally and
informationally solvable, revealing hidden order beneath one of physics’ wildest dances.
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1. Introduction

The Newtonian three-body problem stands as one of the foundational examples of deterministic
chaos. Its continuous-time evolution exhibits extreme sensitivity to initial conditions, fractal
phase-space structure, and the absence of closed-form solutions. These features rest on implicit
assumptions: that time flows continuously, that spatial precision is unbounded, and that
arbitrarily small differences in configuration are physically meaningful.

The TPB/VERSF framework challenges these assumptions. In this picture, time is not a
background parameter but an emergent quantity that advances only when a system produces at
least one bit of distinguishable change relative to finite resolution scales. Microphysical
processes unfold at a fine-grained timescale At (the "microtick"), but a new moment of physical
time is declared only when the system's configuration differs—at finite observational
resolution—by at least one bit from the previous recorded state.

This creates a fundamentally different picture of dynamical evolution:

e Microticks represent raw deterministic state updates governed by the equations of
motion.

o Bit-events mark the emergence of new distinguishable information and define physical
moments.

o TPB (Ticks-Per-Bit) counts how many microticks are required to generate one bit of
new information.

1.1 Resolution Scales in TPB

Central to the TPB framework are finite resolution parameters & (position) and &, (velocity) that
define the threshold for distinguishability. These parameters admit three possible interpretations:

1. Fundamental scales: If &, ~ {_Planck and &, ~ ¢ (or appropriate Planck-scale quantities),
then distinguishability reflects fundamental physical limits and emergent time is
observer-independent.

2. Effective scales: If ,, &, represent the resolution of a particular measurement apparatus
or coarse-graining procedure, then different observers may experience different emergent
time flows—analogous to renormalisation group flow, where physics at different scales
exhibits different effective dynamics.

3. Phenomenological parameters: The scales may be treated as free parameters to be
constrained by matching TPB predictions to observational or computational data.

The mathematical framework developed here applies in all three cases. The interpretation chosen
determines the ontological status of emergent time but not its formal structure.



1.2 Goals and Structure

This paper achieves four main goals. First, it presents the first fully explicit construction of TPB
emergent time for a multi-body dynamical system. Second, it defines a resolution-based
information functional that governs bit-events. Third, it derives scaling relations connecting TPB
information growth to classical chaos indicators. Fourth, it proposes concrete, computationally
testable predictions. This elevates TPB/VERSF from philosophical framework to quantitative
dynamical model.

The paper is organised as follows. Section 2 establishes the microdynamic evolution equations.
Section 3 defines the information measure and distinguishability criteria. Section 4 constructs
emergent time via bit-events. Section 5 addresses collision regularisation. Section 6 provides a
worked example. Sections 7-8 connect TPB to classical chaos theory and present falsifiable
predictions. Section 9 generalises to N-body systems. Sections 10—11 discuss implications and
conclude.

2. Microdynamic Evolution

We begin with standard Newtonian gravitational dynamics, but treat it as microdynamic: a fine-
grained deterministic update that does not itself constitute physical time.

2.1 The Microtick Timescale

The microtick interval At represents the fundamental update rate of the underlying dynamics. In
the VERSF framework, this scale is not arbitrary but tied to the information-processing capacity
of the void substrate. The void supports a maximum information throughput determined by the
bit-energy relation:

E bit=k BT voidIn2

where T void is the effective temperature of the void's informational degrees of freedom.
Combined with the characteristic energy scale of gravitational interactions, this yields a natural
tick rate. In previous TPB applications to particle physics, this rate has been estimated at
approximately v_tick ~ 3 x 10'2 Hz, corresponding to At ~3 x 107"*s.

For the classical three-body problem studied here, the absolute value of At is less critical than the
ratio At/t_dyn, where t_dyn is the dynamical timescale of the system. We require At <« t_dyn to
ensure the microtick evolution accurately captures the continuous Newtonian dynamics. In this
paper, v_tick sets a reference scale; all emergent-time phenomena depend primarily on the
ratio At/T_dyn and on the resolution parameters &,, €. The specific numerical value of v_tick
affects only the absolute calibration of emergent time, not its qualitative structure or the
predictions derived below.



2.2 The 1D Collinear System

Consider three point masses constrained to a line with positions xi, X2, X3 € R, velocities vi, va,
v3, and masses mi, mz, ms. The gravitational acceleration on mass 1 is:

a=-G Y _{j#} m; - sgn(xi —x)) / ()i — xj* + &)

where 0 is a softening length that regularises close encounters (see Section 5). The sgn function
provides the correct directional structure for 1D gravity.

Evolution proceeds via symplectic Euler integration at microtick k:
Vi) = vi®) 4 2,00 At

XD = x,(0 + () At

Define the full microstate:

X = (x:109, x50, %309, v, v, v

This produces a deterministic map X&) = F(X®). At this level, the system is classical
Newtonian mechanics. The TPB/VERSEF structure enters through the distinguishability criterion.

2.3 Extension to Higher Dimensions

In 2D or 3D, positions become vectors r; € R¢ and the acceleration takes the standard form:
ai=—G 2 {7} m(ri—r)/ (Iri—rj* + 82

All subsequent constructions generalise directly by replacing scalar separations with vector
norms.

3. Distinguishability and the Information Measure

Physical time advances when the system's configuration becomes distinguishably different. We
formalise this through an information measure defined at finite resolution.

3.1 Pairwise Invariants

Define the pairwise separations and relative velocities:



dij = [xi — x{
Ui = [Vi — Vj
In higher dimensions, these become di; = |r; — rj| and uij = |vi — vjl.

3.2 The Information Functional

Define the truncated logarithm:

log2(z)+ =01fz<1; logx(z) if z> 1

The configuration information is:

I(X) =) {1} [ loga(difex)+ + loga(uij/ey)- |

Interpretation: Each pairwise separation or velocity difference that exceeds the resolution
threshold contributes logz(ratio) bits. Quantities below threshold contribute zero—they are
indistinguishable from coincidence.

Note on zero velocities: When all velocities vanish, u;; = 0 for all pairs. Since 0/e, =0 < 1, the
truncated logarithm returns 0. This is well-defined and physically sensible: stationary particles
carry no velocity information.

3.3 I(X) as an Upper Bound on Distinguishability

The information functional I(X) is intentionally defined as an upper bound on distinguishability
rather than a minimal coding length. Because gravity couples each mass pair independently,
using all three pairwise separations yields a symmetric and dynamically meaningful measure,
even if some terms are not independent in 1D. In one dimension with ordered particles xi1 < x2 <
X3, the separation dis = di2 + d23 introduces redundancy. We retain all three terms because (a) it
treats all particle pairs symmetrically, (b) it generalises naturally to higher dimensions where no
such constraint exists, and (c) the overcounting is systematic and does not affect the bit-event
dynamics qualitatively. In 2D and 3D the redundancy disappears entirely. A minimal
representation using only N—1 independent separations could alternatively be employed for 1D
systems requiring strict information-theoretic accounting.



4. Bit-Events and Emergent Physical Time
4.1 The Bit-Event Rule

Letn=0, 1, 2, ... index bit-events, the emergent moments of physical time. Let k index
microticks.

Initialise:
e Xo =X (initial microstate)
e o= I(Xo) (initial information)
e ko=0
At each microtick k, compute [(X®). A new bit-event occurs when:
[I(X®) — I, > 1
Upon triggering, record:
ko1 = K, Xpe1 = XO, [ = [(X®)
The ticks-per-bit and emergent time increment are:
TPBu1 = ko1 — ki
ATy = TPBp - At

Cumulative emergent time:

T,= Zm=1n AT
4.2 Symmetric vs. Asymmetric Triggering

The symmetric threshold |AI| > 1 is chosen because bit-events correspond to resolvable state
changes, irrespective of whether structure becomes more complex or more compact. If only
increases were considered, collapsing structures (e.g., infalling particles) would be "time-frozen,"
which is unphysical. The symmetric rule ensures time flows for all resolvable change.

An alternative asymmetric rule (Al > +1 only) would treat time as recording only growth of
distinguishability. This may be appropriate in contexts where the second law of thermodynamics
plays a foundational role, but we adopt the symmetric rule here as the more general choice.



4.3 Information Echoes in Periodic Systems

In bound oscillatory systems, the configuration may return to previously visited information
values. Under the symmetric rule, each threshold crossing generates a new bit-event, even if the
system is retracing earlier structure. This produces "information echoes"—trepeated bit-events at
similar I values.

This is not a defect but a feature: the system is genuinely producing distinguishable change as it
oscillates. An observer watching the system would perceive time passing even during periodic
motion. However, for systems exhibiting exact periodicity, a refinement could be introduced
wherein identical configurations (within resolution) do not generate new bit-events. We defer
this extension to future work.

4.4 The Physical Meaning of Emergent Time

TPB time is best interpreted as an informational analogue of proper time: it measures how much
new, resolvable structure the system has produced. Coordinate time continues to govern
microphysics, but emergent time encodes the physically relevant, coarse-grained evolution. In
this sense, TPB time is neither arbitrary nor subjective—it reflects the finite-information
character of real physical systems. Just as proper time in relativity depends on the worldline
traversed, TPB time depends on the informational trajectory through configuration space.

5. Collision Regularisation

Newtonian gravity diverges as dij — 0. While the information measure handles this gracefully
(small separations contribute zero bits), the acceleration becomes singular.

We adopt Plummer softening:
aioc 1/ (di? + 822 (3D)

ai « 1/ (di# + 6% (1D)

where 0 is a softening length.

5.1 Justification for o ~ &

By setting the gravitational softening length equal to the spatial distinguishability scale, 6 = &,
the model becomes self-consistent: the regime in which gravity becomes non-Newtonian
coincides precisely with the regime in which separations cannot be distinguished at all. In this
way the informational coarse-graining and the dynamical coarse-graining align, preventing



physical divergences in a region where fine structure is not physically meaningful. This is not
merely a computational convenience but reflects a coherent physical picture in which resolution
limits apply uniformly to both dynamics and observation.

6. Worked Example: Symmetric Three-Body
Configuration

6.1 Initial Conditions

Positions: xi1 =—1,x2=0, x3 =+1
Velocities: vi=v2=vz =0
Masses: mi =mz2=ms = 1
Resolution: & = 0.5, &, =0.1
Microtick: At=0.01

Units: G=1

6.2 Initial Information Content

Pairwise separations: diz=1, ds =1, diz = 2.
Position contributions:

e logx(1/0.5) =1log2(2) = 1 bit (for di2)
e logx(1/0.5) =1 bit (for d23)
e logx(2/0.5) =log2(4) = 2 bits (for dis)

Velocity contributions: All u;; = 0, so all terms vanish.

Total: Io = 4 bits.
6.3 Early Evolution

After one microtick, gravitational acceleration is approximately:
e a1 =+1.25 (pulled rightward by mz, ms)
e a =0 (symmetric)
e a3~—1.25 (pulled leftward)

Velocity changes: Av ~ 0.0125.

Position changes: Ax ~ 1.25 x 107,

10



The change in diz is ~ 1074, giving:
Aloga(diz/ex) = Adi2/ (diz - In 2) = 107 bits

Since Al « 1, no bit-event occurs. Emergent time remains frozen.
6.4 Eventual Bit-Event

As the outer masses accelerate inward, velocities grow and separations shrink. Eventually the
cumulative change in I(X) reaches 1 bit, triggering the first bit-event. The elapsed microticks
give TPB1, and emergent time begins to flow.

In chaotic phases (near close approaches), bit-events cluster rapidly. In quiescent phases, many
microticks pass without bit-events.

7. Connection to Classical Chaos Theory
7.1 Lyapunov Exponents and Phase-Space Divergence

The maximal Lyapunov exponent A characterises the exponential rate at which nearby
trajectories diverge:

ISX(0)] ~ [5X(0)] et

In classical mechanics, this divergence occurs at all scales. In TPB, only divergence that crosses
resolution thresholds is registered.

7.2 How TPB Modifies Continuous Chaos

In TPB, the exponential divergence of nearby trajectories still occurs at the microdynamic level,
but only divergences large enough to cross informational thresholds contribute to emergent time.
As a result, the effective Lyapunov behaviour is piecewise rather than continuous: the system's
"observable" divergence is discretised into bit-level increments. Fine-grained chaos persists in
the microticks, but emergent time samples this chaos only when it produces resolvable change.

7.3 Toy Lyapunov Computation: Emergent-Time Exponent

We can make the modification of Lyapunov behaviour explicit through a simple computation.
Consider two nearby trajectories X(t) and X'(t) = X(t) + dX(t), both evolving under the same
microdynamics.

11



Classical case: The Lyapunov exponent in coordinate time is:

A=1lim_{t—oo} (1/t) In(|0X(t)| / [6X(0)])

TPB case: Define the emergent-time Lyapunov exponent by measuring divergence at bit-events:
A _TPB =lim {n—oo} (1/T,) In(|6Xa| / [6Xo|)

where 0X, = X, — X's is the separation at bit-event n, and T, is the cumulative emergent time.

Relationship: At bit-event n, the coordinate time is t, = k, At. The actual phase-space separation
|0X4| equals |0 X(t,)| from the continuous evolution. Thus:

A TPB = (t/Th) - (1/t2) In(|8X(t)] / |3X(0)]) = (ta/Ts) - A

The ratio t,/T, measures how coordinate time relates to emergent time. When bit-events are
frequent (low TPB, highly chaotic regime), T, = t, and A_TPB = A. When bit-events are sparse
(high TPB, regular regime), emergent time undersamples the continuous evolution.

Key result: The sampled trajectory {X,} exhibits piecewise-exponential divergence rather than
continuous exponential growth. The divergence appears in discrete jumps of at least & or &,
occurring at irregular emergent-time intervals.

Effective coarse-grained exponent: A more useful quantity is the rate at which resolvable
divergence accumulates. If two trajectories must differ by at least € to be distinguished, then the
time to first distinguishable separation is:

t sep = (1/A) In(e / [8X(0)))

The TPB framework naturally enforces this: trajectories closer than € contribute zero bits and
generate no emergent time difference. This provides an operational, resolution-dependent
definition of chaos.

Summary: In practice, A_TPB should be interpreted as a coarse-grained, resolution-dependent
Lyapunov exponent. It matches the classical A in strongly chaotic regions where bit-events are
dense, and is effectively reduced in regular regions where emergent time skips long
microdynamic intervals. The TPB framework thus provides a natural bridge between infinite-
precision chaos theory and finite-resolution physical observation.

7.4 Kolmogorov-Sinai Entropy

The Kolmogorov-Sinai (KS) entropy h_KS measures the rate of information production in phase
space:

h KS=Y >0} &

12



where the sum runs over positive Lyapunov exponents. For typical chaotic systems, h KS
quantifies how many bits of new information the system generates per unit time at infinite
resolution.

7.5 The TPB Information Rate

We define the TPB information rate:
h TPB =1lim {n—oo} (n/t,)

where t, =k, - At is the coordinate (microtick) time at bit-event n. This measures bits generated
per unit coordinate time at resolution (&, &).

Scaling relation: For a system with KS-entropy h KS, we expect:
h TPB(g) ~h KS - f(¢/ £ char)
where {_char is a characteristic length scale (e.g., mean separation) and f'is a function satisfying:

e f(0) — 1 (infinite resolution recovers h_KS)
e f(x) — 0 as x — oo (coarse resolution suppresses information)

A plausible functional form is f(x) ~ 1/(1 + x?) or exponential cutoff, but determining the exact
form requires numerical study.

7.6 TPB as a Coarse-Grained KS-Entropy

The TPB framework provides a natural regularisation of KS-entropy. Classical h_ KS assumes
infinite precision; h_ TPB is the information rate accessible at finite resolution. This connects to
the physical intuition that real observers cannot access arbitrarily fine phase-space structure.
Key insight: High Lyapunov exponents produce frequent bit-events (fast emergent time); low

Lyapunov regions produce sparse bit-events (slow emergent time). TPB time flows fastest where
chaos is strongest.

8. Falsifiable Predictions

The following predictions distinguish TPB dynamics from standard continuous-time
formulations and are computationally testable.

Prediction 1 (Resolution Scaling)

13



For a given three-body trajectory, compute h_ TPB at two resolutions € and €'. The ratio satisfies:
h TPB(ge) /h TPB(g") = g(e/e', A)

where g depends on the Lyapunov exponent A. Specifically, for €' = ae with o> 1:

h TPB(g)/h TPB(ag) > 1

and the ratio should increase monotonically with A. Systems with larger Lyapunov exponents are
more sensitive to resolution changes.

Test: Simulate ensembles of three-body systems with varying degrees of chaos (controlled by
energy or angular momentum). Verify that the resolution-ratio of h TPB correlates positively

with measured Lyapunov exponents.

Prediction 2 (Pericenter Bursts)

Near close approaches (pericenter passages), the rate of bit-events should spike dramatically.
Define the local bit-rate:

B(t) = dn/dt

evaluated over a sliding window. Then B(t) should peak at times when min_ {i#j}(d;j) reaches
local minima.

Test: Track bit-event times and correlate with minimum pairwise separation. The correlation
coefficient between B(t) and 1/min(d;j) should be significantly positive.

Prediction 3 (Time-Average Divergence)

Define an observable O(X) (e.g., total kinetic energy, moment of inertia). Compute:

« Coordinate-time average: (O) t=(1/t N) [o* {t N} O(X(t)) dt
e Emergent-time average: (O) T = (I/N) >N O(X,)

In regimes where TPB varies significantly (e.g., chaotic scattering), these averages will differ:
|{O) T —(O) t|/{O) t>¢ obs
for some observable threshold ¢ obs.

Test: Run long integrations of chaotic three-body systems. Compute both averages for standard
observables. Quantify the systematic difference and verify it exceeds numerical noise.

Prediction 4 (Resonance Transitions)

14



When a three-body system transitions between resonant and non-resonant configurations, h TPB
should exhibit characteristic changes. Resonant motion (quasi-periodic) produces lower h TPB;
chaotic motion produces higher h TPB.

Test: Initialise systems near resonance boundaries. Track h TPB as the system evolves.
Transitions into chaos should correlate with sustained increases in h_ TPB.

9. Generalisation to N-Body Systems

The TPB framework extends naturally to arbitrary N-body gravitational systems. This section
summarises the generalisation.

9.1 Microdynamics

For N masses with positions ri, ..., r N € R3 and velocities v, ..., v. N, the acceleration on mass 1
1S:

ai=—G 3 {j#} m(ri—r)/ (jri—rf+ %)
The microstate X now has dimension 6N.

9.2 Information Functional

The pairwise information measure generalises to:
I[(X)=Y {i<G}™M{N} [ loga(difex)+ + loga(uijey)+ ]

The sum runs over all N(N—1)/2 particle pairs. Each pair contributes independently, maintaining
the symmetric treatment of gravitational interactions.

9.3 Bit-Events and Emergent Time

The bit-event rule |AI| > 1 applies unchanged. As N increases, the system has more degrees of
freedom and more pairwise interactions, generically producing more frequent bit-events. The
TPB timescale should decrease roughly as N increases, reflecting the greater informational
complexity of larger systems.

15



9.4 Computational Implementation

The information functional requires O(N?) pairwise computations per microtick, the same scaling
as the gravitational force calculation. Thus TPB introduces no additional computational
complexity beyond standard N-body methods.

Practical note: N-body simulations can use TPB as a post-processing layer on top of existing
Newtonian trajectories, without modifying integrators. Given a stored trajectory {X(t)}, one
simply evaluates [(X(t)) at each saved timestep and identifies bit-events where |Al| > 1. This
makes TPB analysis straightforward to apply to existing simulation data.

This confirms that the TPB/VERSF framework is fully general and applies to gravitational
systems of arbitrary size, from binary stars to galactic dynamics.

10. Discussion
10.1 Summary of Results

We have constructed a complete TPB/VERSF formulation of the gravitational three-body
problem and its N-body generalisation. The key elements are:

1. Microdynamic evolution: Standard Newtonian mechanics at the microtick level, with At
providing a reference scale while emergent phenomena depend on At/t_dyn and &, ..

2. Finite-resolution information measure: Configuration information I(X) defined via
pairwise separations and velocities, serving as an upper bound on distinguishability.

3. Bit-event rule: Physical time advances when |AI| > 1 bit, with symmetric triggering for
both increases and decreases.

4. TPB sequence: The number of microticks between bit-events characterises the rate at
which the system generates distinguishability.

5. Scaling relations: h_ TPB connects to classical Lyapunov exponents and KS-entropy
through resolution-dependent suppression.

6. Self-consistent regularisation: Softening length 6 ~ & aligns dynamical and
informational coarse-graining.

7. Emergent-time Lyapunov exponent: The toy computation shows how continuous chaos
becomes piecewise-exponential divergence in emergent time, with A TPB serving as a
coarse-grained, resolution-dependent chaos measure.

10.2 Physical Interpretation

The central insight is that time flows only when the universe becomes more distinguishable.
Applied to chaotic systems:

16



e Chaos becomes information-bounded rather than infinitely fine-grained.
o Emergent time adapts dynamically to system complexity.

o Rapid chaotic motion compresses into bursts of bit-events.

e Slow, regular motion produces long intervals with no emergent time.

This reinterprets classical deterministic chaos as a process of finite-rate information production,
filtered through observational or fundamental resolution limits.

10.3 Relation to VERSF Foundations

In the broader VERSF framework, emergent time is tied to entropy gradients and the flow of
distinguishability from the void substrate. The three-body construction demonstrates that TPB
applies coherently to multi-body gravitational systems, providing a concrete dynamical model
for emergent time in classical contexts. The microtick rate v_tick ~ 3 x 10'> Hz, derived from bit-
energy considerations in particle physics applications, provides a candidate fundamental
timescale, though the present analysis depends primarily on resolution parameters rather than the
absolute tick rate. This complements VERSF work on quantum measurement, spacetime
emergence, and entropy transport.

10.4 Limitations and Future Work

Several extensions merit investigation:

e Numerical implementation: Full computational studies are needed to determine the
function f(¢/C_ char) relating h TPB to h_KS.

e Large-N scaling: How does h TPB scale with particle number? Does emergent time
become effectively continuous as N — oo?

e Quantum analogue: Applying TPB to quantum three-body systems (e.g., Helium atom)
could connect emergent time to quantum information.

o Relativistic extension: Incorporating relativistic corrections and eventually full general
relativity remains an open challenge.

e Alternative information measures: The pairwise log-sum is one natural choice; mutual
information or other functionals could be explored.

e Periodic refinement: Systems with exact periodicity may warrant modified bit-event
rules to avoid overcounting information echoes.

11. Conclusion

We have demonstrated that the TPB/VERSF framework applies coherently to the classical three-
body problem and generalises naturally to N-body systems, producing a well-defined emergent
time structure from finite-resolution distinguishability. The resulting dynamics are discrete,
informationally bounded, and connected to classical chaos measures through explicit scaling
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relations and a toy Lyapunov computation. Four quantitative predictions distinguish this
formulation from standard continuous-time mechanics and are amenable to computational
testing.

This work establishes emergent informational time as a viable framework for gravitational
dynamics and opens pathways for exploring chaos, entropy, and the foundations of time in multi-
body systems.
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