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TPB/VERSF Three-Body Dynamics: 

Emergent Time, Distinguishability, and 

Information-Bounded Chaos 

 

Abstract 

We reformulate the classical gravitational three-body problem within the Ticks-Per-Bit (TPB) 

and Void-Energy-Regulated Space Framework (VERSF), in which physical time is not 

fundamental but emerges only when a dynamical system generates at least one bit of new 

distinguishable information. Rather than assuming continuous time, we posit that microdynamic 

evolution occurs at a fine-grained "microtick" scale Δt, while physical time advances in discrete 

informational steps called bit-events. We construct this framework explicitly for the 1D collinear 

three-body case and generalise to 2D, 3D, and arbitrary N-body systems. The resulting dynamics 

constitute a discrete informational trajectory rather than a continuous chaotic flow. We derive 

scaling relations connecting the TPB information rate to classical Lyapunov exponents and 

Kolmogorov-Sinai entropy, including a toy computation showing how emergent time modifies 

effective Lyapunov behaviour. Four quantitative, computationally falsifiable predictions 

distinguish TPB dynamics from standard formulations. This work establishes the first complete 

application of emergent informational time to multi-body gravitational chaos. 

General Reader Summary  

This paper explores a surprising idea: what if time only moves forward when the universe 

becomes more distinguishable? In classical physics, especially in the notoriously unsolvable 

three-body problem, we assume that time flows smoothly and every tiny change matters. But 

the TPB/VERSF framework proposes something different: time advances only when the system 

generates at least one new bit of information. Instead of watching the three bodies evolve in an 

endlessly chaotic blur, the system becomes a sequence of informational “snapshots” taken only 

when something truly new happens. This doesn’t magically solve the three-body problem in the 

traditional sense, but it changes the rules of the game: the chaotic motion becomes a discrete, 

information-driven process that can be followed, analysed, and even predicted using new tools. 

Close encounters produce bursts of new bits; quiet phases generate almost none — giving us a 

clean, structured way to track and quantify chaos. This reframing transforms the three-body 

problem from an infinitely delicate system into one that is computationally and 

informationally solvable, revealing hidden order beneath one of physics’ wildest dances. 
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1. Introduction 

The Newtonian three-body problem stands as one of the foundational examples of deterministic 

chaos. Its continuous-time evolution exhibits extreme sensitivity to initial conditions, fractal 

phase-space structure, and the absence of closed-form solutions. These features rest on implicit 

assumptions: that time flows continuously, that spatial precision is unbounded, and that 

arbitrarily small differences in configuration are physically meaningful. 

The TPB/VERSF framework challenges these assumptions. In this picture, time is not a 

background parameter but an emergent quantity that advances only when a system produces at 

least one bit of distinguishable change relative to finite resolution scales. Microphysical 

processes unfold at a fine-grained timescale Δt (the "microtick"), but a new moment of physical 

time is declared only when the system's configuration differs—at finite observational 

resolution—by at least one bit from the previous recorded state. 

This creates a fundamentally different picture of dynamical evolution: 

• Microticks represent raw deterministic state updates governed by the equations of 

motion. 

• Bit-events mark the emergence of new distinguishable information and define physical 

moments. 

• TPB (Ticks-Per-Bit) counts how many microticks are required to generate one bit of 

new information. 

1.1 Resolution Scales in TPB 

Central to the TPB framework are finite resolution parameters εₓ (position) and εᵥ (velocity) that 

define the threshold for distinguishability. These parameters admit three possible interpretations: 

1. Fundamental scales: If εₓ ~ ℓ_Planck and εᵥ ~ c (or appropriate Planck-scale quantities), 

then distinguishability reflects fundamental physical limits and emergent time is 

observer-independent. 

2. Effective scales: If εₓ, εᵥ represent the resolution of a particular measurement apparatus 

or coarse-graining procedure, then different observers may experience different emergent 

time flows—analogous to renormalisation group flow, where physics at different scales 

exhibits different effective dynamics. 

3. Phenomenological parameters: The scales may be treated as free parameters to be 

constrained by matching TPB predictions to observational or computational data. 

The mathematical framework developed here applies in all three cases. The interpretation chosen 

determines the ontological status of emergent time but not its formal structure. 



 5 

1.2 Goals and Structure 

This paper achieves four main goals. First, it presents the first fully explicit construction of TPB 

emergent time for a multi-body dynamical system. Second, it defines a resolution-based 

information functional that governs bit-events. Third, it derives scaling relations connecting TPB 

information growth to classical chaos indicators. Fourth, it proposes concrete, computationally 

testable predictions. This elevates TPB/VERSF from philosophical framework to quantitative 

dynamical model. 

The paper is organised as follows. Section 2 establishes the microdynamic evolution equations. 

Section 3 defines the information measure and distinguishability criteria. Section 4 constructs 

emergent time via bit-events. Section 5 addresses collision regularisation. Section 6 provides a 

worked example. Sections 7–8 connect TPB to classical chaos theory and present falsifiable 

predictions. Section 9 generalises to N-body systems. Sections 10–11 discuss implications and 

conclude. 

 

2. Microdynamic Evolution 

We begin with standard Newtonian gravitational dynamics, but treat it as microdynamic: a fine-

grained deterministic update that does not itself constitute physical time. 

2.1 The Microtick Timescale 

The microtick interval Δt represents the fundamental update rate of the underlying dynamics. In 

the VERSF framework, this scale is not arbitrary but tied to the information-processing capacity 

of the void substrate. The void supports a maximum information throughput determined by the 

bit-energy relation: 

E_bit = k_B T_void ln 2 

where T_void is the effective temperature of the void's informational degrees of freedom. 

Combined with the characteristic energy scale of gravitational interactions, this yields a natural 

tick rate. In previous TPB applications to particle physics, this rate has been estimated at 

approximately ν_tick ~ 3 × 10¹² Hz, corresponding to Δt ~ 3 × 10⁻¹³ s. 

For the classical three-body problem studied here, the absolute value of Δt is less critical than the 

ratio Δt/τ_dyn, where τ_dyn is the dynamical timescale of the system. We require Δt ≪ τ_dyn to 

ensure the microtick evolution accurately captures the continuous Newtonian dynamics. In this 

paper, ν_tick sets a reference scale; all emergent-time phenomena depend primarily on the 

ratio Δt/τ_dyn and on the resolution parameters εₓ, εᵥ. The specific numerical value of ν_tick 

affects only the absolute calibration of emergent time, not its qualitative structure or the 

predictions derived below. 
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2.2 The 1D Collinear System 

Consider three point masses constrained to a line with positions x₁, x₂, x₃ ∈ ℝ, velocities v₁, v₂, 

v₃, and masses m₁, m₂, m₃. The gravitational acceleration on mass i is: 

aᵢ = −G ∑_{j≠i} mⱼ · sgn(xᵢ − xⱼ) / (|xᵢ − xⱼ|² + δ²) 

where δ is a softening length that regularises close encounters (see Section 5). The sgn function 

provides the correct directional structure for 1D gravity. 

Evolution proceeds via symplectic Euler integration at microtick k: 

vᵢ⁽ᵏ⁺¹⁾ = vᵢ⁽ᵏ⁾ + aᵢ⁽ᵏ⁾ Δt 

xᵢ⁽ᵏ⁺¹⁾ = xᵢ⁽ᵏ⁾ + vᵢ⁽ᵏ⁺¹⁾ Δt 

Define the full microstate: 

X⁽ᵏ⁾ = (x₁⁽ᵏ⁾, x₂⁽ᵏ⁾, x₃⁽ᵏ⁾, v₁⁽ᵏ⁾, v₂⁽ᵏ⁾, v₃⁽ᵏ⁾) 

This produces a deterministic map X⁽ᵏ⁺¹⁾ = F(X⁽ᵏ⁾). At this level, the system is classical 

Newtonian mechanics. The TPB/VERSF structure enters through the distinguishability criterion. 

2.3 Extension to Higher Dimensions 

In 2D or 3D, positions become vectors rᵢ ∈ ℝᵈ and the acceleration takes the standard form: 

aᵢ = −G ∑_{j≠i} mⱼ (rᵢ − rⱼ) / (|rᵢ − rⱼ|² + δ²)³ᐟ² 

All subsequent constructions generalise directly by replacing scalar separations with vector 

norms. 

 

3. Distinguishability and the Information Measure 

Physical time advances when the system's configuration becomes distinguishably different. We 

formalise this through an information measure defined at finite resolution. 

3.1 Pairwise Invariants 

Define the pairwise separations and relative velocities: 
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dᵢⱼ = |xᵢ − xⱼ| 

uᵢⱼ = |vᵢ − vⱼ| 

In higher dimensions, these become dᵢⱼ = |rᵢ − rⱼ| and uᵢⱼ = |vᵢ − vⱼ|. 

3.2 The Information Functional 

Define the truncated logarithm: 

log₂(z)₊ = 0 if z ≤ 1; log₂(z) if z > 1 

The configuration information is: 

I(X) = ∑_{i<j} [ log₂(dᵢⱼ/εₓ)₊ + log₂(uᵢⱼ/εᵥ)₊ ] 

Interpretation: Each pairwise separation or velocity difference that exceeds the resolution 

threshold contributes log₂(ratio) bits. Quantities below threshold contribute zero—they are 

indistinguishable from coincidence. 

Note on zero velocities: When all velocities vanish, uᵢⱼ = 0 for all pairs. Since 0/εᵥ = 0 < 1, the 

truncated logarithm returns 0. This is well-defined and physically sensible: stationary particles 

carry no velocity information. 

3.3 I(X) as an Upper Bound on Distinguishability 

The information functional I(X) is intentionally defined as an upper bound on distinguishability 

rather than a minimal coding length. Because gravity couples each mass pair independently, 

using all three pairwise separations yields a symmetric and dynamically meaningful measure, 

even if some terms are not independent in 1D. In one dimension with ordered particles x₁ < x₂ < 

x₃, the separation d₁₃ = d₁₂ + d₂₃ introduces redundancy. We retain all three terms because (a) it 

treats all particle pairs symmetrically, (b) it generalises naturally to higher dimensions where no 

such constraint exists, and (c) the overcounting is systematic and does not affect the bit-event 

dynamics qualitatively. In 2D and 3D the redundancy disappears entirely. A minimal 

representation using only N−1 independent separations could alternatively be employed for 1D 

systems requiring strict information-theoretic accounting. 
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4. Bit-Events and Emergent Physical Time 

4.1 The Bit-Event Rule 

Let n = 0, 1, 2, ... index bit-events, the emergent moments of physical time. Let k index 

microticks. 

Initialise: 

• X₀ = X⁽⁰⁾ (initial microstate) 

• I₀ = I(X₀) (initial information) 

• k₀ = 0 

At each microtick k, compute I(X⁽ᵏ⁾). A new bit-event occurs when: 

|I(X⁽ᵏ⁾) − Iₙ| ≥ 1 

Upon triggering, record: 

kₙ₊₁ = k, Xₙ₊₁ = X⁽ᵏ⁾, Iₙ₊₁ = I(X⁽ᵏ⁾) 

The ticks-per-bit and emergent time increment are: 

TPBₙ₊₁ = kₙ₊₁ − kₙ 

ΔTₙ₊₁ = TPBₙ₊₁ · Δt 

Cumulative emergent time: 

Tₙ = ∑ₘ₌₁ⁿ ΔTₘ 

4.2 Symmetric vs. Asymmetric Triggering 

The symmetric threshold |ΔI| ≥ 1 is chosen because bit-events correspond to resolvable state 

changes, irrespective of whether structure becomes more complex or more compact. If only 

increases were considered, collapsing structures (e.g., infalling particles) would be "time-frozen," 

which is unphysical. The symmetric rule ensures time flows for all resolvable change. 

An alternative asymmetric rule (ΔI ≥ +1 only) would treat time as recording only growth of 

distinguishability. This may be appropriate in contexts where the second law of thermodynamics 

plays a foundational role, but we adopt the symmetric rule here as the more general choice. 
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4.3 Information Echoes in Periodic Systems 

In bound oscillatory systems, the configuration may return to previously visited information 

values. Under the symmetric rule, each threshold crossing generates a new bit-event, even if the 

system is retracing earlier structure. This produces "information echoes"—repeated bit-events at 

similar I values. 

This is not a defect but a feature: the system is genuinely producing distinguishable change as it 

oscillates. An observer watching the system would perceive time passing even during periodic 

motion. However, for systems exhibiting exact periodicity, a refinement could be introduced 

wherein identical configurations (within resolution) do not generate new bit-events. We defer 

this extension to future work. 

4.4 The Physical Meaning of Emergent Time 

TPB time is best interpreted as an informational analogue of proper time: it measures how much 

new, resolvable structure the system has produced. Coordinate time continues to govern 

microphysics, but emergent time encodes the physically relevant, coarse-grained evolution. In 

this sense, TPB time is neither arbitrary nor subjective—it reflects the finite-information 

character of real physical systems. Just as proper time in relativity depends on the worldline 

traversed, TPB time depends on the informational trajectory through configuration space. 

 

5. Collision Regularisation 

Newtonian gravity diverges as dᵢⱼ → 0. While the information measure handles this gracefully 

(small separations contribute zero bits), the acceleration becomes singular. 

We adopt Plummer softening: 

aᵢ ∝ 1 / (dᵢⱼ² + δ²)³ᐟ² (3D) 

aᵢ ∝ 1 / (dᵢⱼ² + δ²) (1D) 

where δ is a softening length. 

5.1 Justification for δ ~ εₓ 

By setting the gravitational softening length equal to the spatial distinguishability scale, δ = εₓ, 

the model becomes self-consistent: the regime in which gravity becomes non-Newtonian 

coincides precisely with the regime in which separations cannot be distinguished at all. In this 

way the informational coarse-graining and the dynamical coarse-graining align, preventing 



 10 

physical divergences in a region where fine structure is not physically meaningful. This is not 

merely a computational convenience but reflects a coherent physical picture in which resolution 

limits apply uniformly to both dynamics and observation. 

 

6. Worked Example: Symmetric Three-Body 

Configuration 

6.1 Initial Conditions 

• Positions: x₁ = −1, x₂ = 0, x₃ = +1 

• Velocities: v₁ = v₂ = v₃ = 0 

• Masses: m₁ = m₂ = m₃ = 1 

• Resolution: εₓ = 0.5, εᵥ = 0.1 

• Microtick: Δt = 0.01 

• Units: G = 1 

6.2 Initial Information Content 

Pairwise separations: d₁₂ = 1, d₂₃ = 1, d₁₃ = 2. 

Position contributions: 

• log₂(1/0.5) = log₂(2) = 1 bit (for d₁₂) 

• log₂(1/0.5) = 1 bit (for d₂₃) 

• log₂(2/0.5) = log₂(4) = 2 bits (for d₁₃) 

Velocity contributions: All uᵢⱼ = 0, so all terms vanish. 

Total: I₀ = 4 bits. 

6.3 Early Evolution 

After one microtick, gravitational acceleration is approximately: 

• a₁ ≈ +1.25 (pulled rightward by m₂, m₃) 

• a₂ ≈ 0 (symmetric) 

• a₃ ≈ −1.25 (pulled leftward) 

Velocity changes: Δv ~ 0.0125. 

Position changes: Δx ~ 1.25 × 10⁻⁴. 
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The change in d₁₂ is ~ 10⁻⁴, giving: 

Δlog₂(d₁₂/εₓ) ≈ Δd₁₂ / (d₁₂ · ln 2) ≈ 10⁻⁴ bits 

Since ΔI ≪ 1, no bit-event occurs. Emergent time remains frozen. 

6.4 Eventual Bit-Event 

As the outer masses accelerate inward, velocities grow and separations shrink. Eventually the 

cumulative change in I(X) reaches 1 bit, triggering the first bit-event. The elapsed microticks 

give TPB₁, and emergent time begins to flow. 

In chaotic phases (near close approaches), bit-events cluster rapidly. In quiescent phases, many 

microticks pass without bit-events. 

 

7. Connection to Classical Chaos Theory 

7.1 Lyapunov Exponents and Phase-Space Divergence 

The maximal Lyapunov exponent λ characterises the exponential rate at which nearby 

trajectories diverge: 

|δX(t)| ~ |δX(0)| eλt 

In classical mechanics, this divergence occurs at all scales. In TPB, only divergence that crosses 

resolution thresholds is registered. 

7.2 How TPB Modifies Continuous Chaos 

In TPB, the exponential divergence of nearby trajectories still occurs at the microdynamic level, 

but only divergences large enough to cross informational thresholds contribute to emergent time. 

As a result, the effective Lyapunov behaviour is piecewise rather than continuous: the system's 

"observable" divergence is discretised into bit-level increments. Fine-grained chaos persists in 

the microticks, but emergent time samples this chaos only when it produces resolvable change. 

7.3 Toy Lyapunov Computation: Emergent-Time Exponent 

We can make the modification of Lyapunov behaviour explicit through a simple computation. 

Consider two nearby trajectories X(t) and X'(t) = X(t) + δX(t), both evolving under the same 

microdynamics. 
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Classical case: The Lyapunov exponent in coordinate time is: 

λ = lim_{t→∞} (1/t) ln(|δX(t)| / |δX(0)|) 

TPB case: Define the emergent-time Lyapunov exponent by measuring divergence at bit-events: 

λ_TPB = lim_{n→∞} (1/Tₙ) ln(|δXₙ| / |δX₀|) 

where δXₙ = Xₙ − X'ₙ is the separation at bit-event n, and Tₙ is the cumulative emergent time. 

Relationship: At bit-event n, the coordinate time is tₙ = kₙ Δt. The actual phase-space separation 

|δXₙ| equals |δX(tₙ)| from the continuous evolution. Thus: 

λ_TPB = (tₙ/Tₙ) · (1/tₙ) ln(|δX(tₙ)| / |δX(0)|) = (tₙ/Tₙ) · λ 

The ratio tₙ/Tₙ measures how coordinate time relates to emergent time. When bit-events are 

frequent (low TPB, highly chaotic regime), Tₙ ≈ tₙ and λ_TPB ≈ λ. When bit-events are sparse 

(high TPB, regular regime), emergent time undersamples the continuous evolution. 

Key result: The sampled trajectory {Xₙ} exhibits piecewise-exponential divergence rather than 

continuous exponential growth. The divergence appears in discrete jumps of at least εₓ or εᵥ, 

occurring at irregular emergent-time intervals. 

Effective coarse-grained exponent: A more useful quantity is the rate at which resolvable 

divergence accumulates. If two trajectories must differ by at least ε to be distinguished, then the 

time to first distinguishable separation is: 

t_sep ≈ (1/λ) ln(ε / |δX(0)|) 

The TPB framework naturally enforces this: trajectories closer than ε contribute zero bits and 

generate no emergent time difference. This provides an operational, resolution-dependent 

definition of chaos. 

Summary: In practice, λ_TPB should be interpreted as a coarse-grained, resolution-dependent 

Lyapunov exponent. It matches the classical λ in strongly chaotic regions where bit-events are 

dense, and is effectively reduced in regular regions where emergent time skips long 

microdynamic intervals. The TPB framework thus provides a natural bridge between infinite-

precision chaos theory and finite-resolution physical observation. 

7.4 Kolmogorov-Sinai Entropy 

The Kolmogorov-Sinai (KS) entropy h_KS measures the rate of information production in phase 

space: 

h_KS = ∑_{λᵢ > 0} λᵢ 
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where the sum runs over positive Lyapunov exponents. For typical chaotic systems, h_KS 

quantifies how many bits of new information the system generates per unit time at infinite 

resolution. 

7.5 The TPB Information Rate 

We define the TPB information rate: 

h_TPB = lim_{n→∞} (n / tₙ) 

where tₙ = kₙ · Δt is the coordinate (microtick) time at bit-event n. This measures bits generated 

per unit coordinate time at resolution (εₓ, εᵥ). 

Scaling relation: For a system with KS-entropy h_KS, we expect: 

h_TPB(ε) ~ h_KS · f(ε / ℓ_char) 

where ℓ_char is a characteristic length scale (e.g., mean separation) and f is a function satisfying: 

• f(0) → 1 (infinite resolution recovers h_KS) 

• f(x) → 0 as x → ∞ (coarse resolution suppresses information) 

A plausible functional form is f(x) ~ 1/(1 + x²) or exponential cutoff, but determining the exact 

form requires numerical study. 

7.6 TPB as a Coarse-Grained KS-Entropy 

The TPB framework provides a natural regularisation of KS-entropy. Classical h_KS assumes 

infinite precision; h_TPB is the information rate accessible at finite resolution. This connects to 

the physical intuition that real observers cannot access arbitrarily fine phase-space structure. 

Key insight: High Lyapunov exponents produce frequent bit-events (fast emergent time); low 

Lyapunov regions produce sparse bit-events (slow emergent time). TPB time flows fastest where 

chaos is strongest. 

 

8. Falsifiable Predictions 

The following predictions distinguish TPB dynamics from standard continuous-time 

formulations and are computationally testable. 

Prediction 1 (Resolution Scaling) 
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For a given three-body trajectory, compute h_TPB at two resolutions ε and ε'. The ratio satisfies: 

h_TPB(ε) / h_TPB(ε') = g(ε/ε', λ) 

where g depends on the Lyapunov exponent λ. Specifically, for ε' = αε with α > 1: 

h_TPB(ε) / h_TPB(αε) > 1 

and the ratio should increase monotonically with λ. Systems with larger Lyapunov exponents are 

more sensitive to resolution changes. 

Test: Simulate ensembles of three-body systems with varying degrees of chaos (controlled by 

energy or angular momentum). Verify that the resolution-ratio of h_TPB correlates positively 

with measured Lyapunov exponents. 

Prediction 2 (Pericenter Bursts) 

Near close approaches (pericenter passages), the rate of bit-events should spike dramatically. 

Define the local bit-rate: 

β(t) = dn/dt 

evaluated over a sliding window. Then β(t) should peak at times when min_{i≠j}(dᵢⱼ) reaches 

local minima. 

Test: Track bit-event times and correlate with minimum pairwise separation. The correlation 

coefficient between β(t) and 1/min(dᵢⱼ) should be significantly positive. 

Prediction 3 (Time-Average Divergence) 

Define an observable O(X) (e.g., total kinetic energy, moment of inertia). Compute: 

• Coordinate-time average: ⟨O⟩_t = (1/t_N) ∫₀^{t_N} O(X(t)) dt 

• Emergent-time average: ⟨O⟩_T = (1/N) ∑ₙ₌₁ᴺ O(Xₙ) 

In regimes where TPB varies significantly (e.g., chaotic scattering), these averages will differ: 

|⟨O⟩_T − ⟨O⟩_t| / ⟨O⟩_t > ε_obs 

for some observable threshold ε_obs. 

Test: Run long integrations of chaotic three-body systems. Compute both averages for standard 

observables. Quantify the systematic difference and verify it exceeds numerical noise. 

Prediction 4 (Resonance Transitions) 
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When a three-body system transitions between resonant and non-resonant configurations, h_TPB 

should exhibit characteristic changes. Resonant motion (quasi-periodic) produces lower h_TPB; 

chaotic motion produces higher h_TPB. 

Test: Initialise systems near resonance boundaries. Track h_TPB as the system evolves. 

Transitions into chaos should correlate with sustained increases in h_TPB. 

 

9. Generalisation to N-Body Systems 

The TPB framework extends naturally to arbitrary N-body gravitational systems. This section 

summarises the generalisation. 

9.1 Microdynamics 

For N masses with positions r₁, ..., r_N ∈ ℝ³ and velocities v₁, ..., v_N, the acceleration on mass i 

is: 

aᵢ = −G ∑_{j≠i} mⱼ (rᵢ − rⱼ) / (|rᵢ − rⱼ|² + δ²)³ᐟ² 

The microstate X⁽ᵏ⁾ now has dimension 6N. 

9.2 Information Functional 

The pairwise information measure generalises to: 

I(X) = ∑_{i<j}^{N} [ log₂(dᵢⱼ/εₓ)₊ + log₂(uᵢⱼ/εᵥ)₊ ] 

The sum runs over all N(N−1)/2 particle pairs. Each pair contributes independently, maintaining 

the symmetric treatment of gravitational interactions. 

9.3 Bit-Events and Emergent Time 

The bit-event rule |ΔI| ≥ 1 applies unchanged. As N increases, the system has more degrees of 

freedom and more pairwise interactions, generically producing more frequent bit-events. The 

TPB timescale should decrease roughly as N increases, reflecting the greater informational 

complexity of larger systems. 
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9.4 Computational Implementation 

The information functional requires O(N²) pairwise computations per microtick, the same scaling 

as the gravitational force calculation. Thus TPB introduces no additional computational 

complexity beyond standard N-body methods. 

Practical note: N-body simulations can use TPB as a post-processing layer on top of existing 

Newtonian trajectories, without modifying integrators. Given a stored trajectory {X(t)}, one 

simply evaluates I(X(t)) at each saved timestep and identifies bit-events where |ΔI| ≥ 1. This 

makes TPB analysis straightforward to apply to existing simulation data. 

This confirms that the TPB/VERSF framework is fully general and applies to gravitational 

systems of arbitrary size, from binary stars to galactic dynamics. 

 

10. Discussion 

10.1 Summary of Results 

We have constructed a complete TPB/VERSF formulation of the gravitational three-body 

problem and its N-body generalisation. The key elements are: 

1. Microdynamic evolution: Standard Newtonian mechanics at the microtick level, with Δt 

providing a reference scale while emergent phenomena depend on Δt/τ_dyn and εₓ, εᵥ. 

2. Finite-resolution information measure: Configuration information I(X) defined via 

pairwise separations and velocities, serving as an upper bound on distinguishability. 

3. Bit-event rule: Physical time advances when |ΔI| ≥ 1 bit, with symmetric triggering for 

both increases and decreases. 

4. TPB sequence: The number of microticks between bit-events characterises the rate at 

which the system generates distinguishability. 

5. Scaling relations: h_TPB connects to classical Lyapunov exponents and KS-entropy 

through resolution-dependent suppression. 

6. Self-consistent regularisation: Softening length δ ~ εₓ aligns dynamical and 

informational coarse-graining. 

7. Emergent-time Lyapunov exponent: The toy computation shows how continuous chaos 

becomes piecewise-exponential divergence in emergent time, with λ_TPB serving as a 

coarse-grained, resolution-dependent chaos measure. 

10.2 Physical Interpretation 

The central insight is that time flows only when the universe becomes more distinguishable. 

Applied to chaotic systems: 
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• Chaos becomes information-bounded rather than infinitely fine-grained. 

• Emergent time adapts dynamically to system complexity. 

• Rapid chaotic motion compresses into bursts of bit-events. 

• Slow, regular motion produces long intervals with no emergent time. 

This reinterprets classical deterministic chaos as a process of finite-rate information production, 

filtered through observational or fundamental resolution limits. 

10.3 Relation to VERSF Foundations 

In the broader VERSF framework, emergent time is tied to entropy gradients and the flow of 

distinguishability from the void substrate. The three-body construction demonstrates that TPB 

applies coherently to multi-body gravitational systems, providing a concrete dynamical model 

for emergent time in classical contexts. The microtick rate ν_tick ~ 3 × 10¹² Hz, derived from bit-

energy considerations in particle physics applications, provides a candidate fundamental 

timescale, though the present analysis depends primarily on resolution parameters rather than the 

absolute tick rate. This complements VERSF work on quantum measurement, spacetime 

emergence, and entropy transport. 

10.4 Limitations and Future Work 

Several extensions merit investigation: 

• Numerical implementation: Full computational studies are needed to determine the 

function f(ε/ℓ_char) relating h_TPB to h_KS. 

• Large-N scaling: How does h_TPB scale with particle number? Does emergent time 

become effectively continuous as N → ∞? 

• Quantum analogue: Applying TPB to quantum three-body systems (e.g., Helium atom) 

could connect emergent time to quantum information. 

• Relativistic extension: Incorporating relativistic corrections and eventually full general 

relativity remains an open challenge. 

• Alternative information measures: The pairwise log-sum is one natural choice; mutual 

information or other functionals could be explored. 

• Periodic refinement: Systems with exact periodicity may warrant modified bit-event 

rules to avoid overcounting information echoes. 

 

11. Conclusion 

We have demonstrated that the TPB/VERSF framework applies coherently to the classical three-

body problem and generalises naturally to N-body systems, producing a well-defined emergent 

time structure from finite-resolution distinguishability. The resulting dynamics are discrete, 

informationally bounded, and connected to classical chaos measures through explicit scaling 
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relations and a toy Lyapunov computation. Four quantitative predictions distinguish this 

formulation from standard continuous-time mechanics and are amenable to computational 

testing. 

This work establishes emergent informational time as a viable framework for gravitational 

dynamics and opens pathways for exploring chaos, entropy, and the foundations of time in multi-

body systems. 
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