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Abstract for General Readers 

We take for granted that objects move smoothly through three-dimensional space as time flows 

forward. But why three dimensions? Why does time flow at all? And why does gravity pull 

things together with a strength that weakens as the square of distance? 

This paper proposes that these familiar features of reality are not built into the universe from the 

start. Instead, they emerge from something simpler: the accumulation of distinctions. 

Imagine reality as a process of decisions. Before a quantum measurement, an electron might be 

"here" or "there"—the distinction hasn't been made yet. When the measurement happens, the 

universe commits to one option. We call each such commitment a "bit" of realised information. 

Between these commitments, the universe explores possibilities through "ticks" of logical 

ordering. 

The ratio of ticks to bits—how much exploring happens before each decision—turns out to be 

crucial. Where this ratio is moderate, things behave normally: time flows, objects move 

smoothly, and physics works as expected. Where the ratio becomes extreme (near black holes, or 

at the moment of quantum measurement), ordinary physics breaks down. 

The central contribution of this paper is a new mathematical framework called Dimensional 

Emergence Calculus (DEC). Standard calculus assumes continuous time and space already 

exist; DEC shows how they can arise from a simpler two-dimensional "ordering space" that 

tracks exploration and commitment separately. The key mechanism is the "lift"—a mathematical 

map that converts steps in ordering space into movement through physical space. When this lift 

has a particular geometric property (non-integrability, or "curl"), it generates forces. Objects 

don't just move; they accelerate. 

We show that when you set up DEC with minimal assumptions—the simplest possible rules 

consistent with symmetry—inverse-square gravity emerges as a natural limit rather than an 

independent postulate. The mathematics that Newton invented to describe gravity turns out to be 
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a special case of DEC, valid only when information is being processed smoothly and 

continuously. 

This matters because it suggests gravity isn't a fundamental force that needs its own explanation. 

It's a natural consequence of how information organises itself into spatial structure. The paper 

identifies specific conditions where gravity should deviate from Newton's law—providing 

concrete predictions that future observations could test. 

In essence: DEC reveals how the calculus of motion, three-dimensional space, and gravity may 

all be what information looks like when there's enough of it, organised in the right way. 

 

Abstract 

We develop a differential calculus appropriate to frameworks in which time and space are not 

fundamental but emerge from deeper informational structures. Starting from the Ticks-Per-Bit 

(TPB) primitive—a ratio of causal ordering steps to irreversible distinguishability 

commitments—we construct differential operators that reduce to standard calculus only in 

appropriate coarse-grained limits. We then extend this to a two-channel ordering space (TPB²), 

where reversible exploration and irreversible commitment constitute independent ordering 

parameters. Overlap and quantum phase are modelled as a U(1) fiber bundle over this base 

space, with connection curvature encoding interference geometry. The central construction is the 

Dimensional Emergence Calculus (DEC), which provides a geometric "lift" mapping two-

dimensional ordering into three-dimensional spatial displacement. We demonstrate that the non-

integrability of this lift—the differentiation curl—generates force-like effects in emergent space. 

As a concrete application, we show that inverse-square gravitational scaling follows under 

minimal symmetry assumptions: radial alignment of the lift with a harmonic void field satisfying 

Laplace's equation. The framework thus provides a falsifiable route from informational 

foundations toward observable gravitational phenomenology, with explicit conditions under 

which non-Newtonian corrections would arise. 

 

Scope 

This paper is a mathematical construction and consistency demonstration. Except where 

explicitly stated (e.g., the three assumptions in §10), it does not assert unique microphysical 

laws, only minimal structures sufficient to recover standard limits. The goal is to establish that a 

coherent calculus exists in which time, space, and Newtonian gravity emerge from informational 

ordering—not to claim that nature must implement this particular structure. 
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1. Introduction 

1.1 The Problem of Assumed Continuity 

Standard differential calculus presupposes the existence of a continuous time parameter along 

which physical quantities evolve smoothly. This assumption, inherited from Newton and 

Leibniz, has proven extraordinarily successful across classical mechanics, electromagnetism, and 

general relativity. Yet the assumption itself is never derived—it is simply posited as part of the 

mathematical infrastructure. 

Several lines of contemporary inquiry suggest this assumption may be contingent rather than 

fundamental. Quantum gravity approaches frequently encounter discreteness at the Planck scale 

[14, 15]. Information-theoretic reconstructions of quantum mechanics point toward 

distinguishability as a primitive concept [10, 11, 12]. Black hole thermodynamics implies deep 

connections between geometry, entropy, and information [6, 20, 21]. These developments invite 

the question: can we construct a calculus that does not assume continuous time, but instead 

derives temporal and spatial continuity as emergent phenomena? 

1.2 The VERSF Framework 

The Void Energy-Regulated Space Framework (VERSF) proposes that spacetime emerges from 

a more primitive informational substrate characterised by two fundamental fields: the void field 

φ (representing proximity to the zero-entropy void substrate) and the entropy density field s 

(representing realised distinguishability). In this framework, what we experience as continuous 

space and time arises through the accumulation and organisation of distinguishability. 

The present paper develops the mathematical machinery required to make this emergence 

precise. We introduce a calculus based on ordering and commitment rather than space and time, 

show how standard calculus emerges as a limiting case, and demonstrate that gravitational 

phenomena arise naturally from the geometry of this deeper structure. 

1.3 Overview 

Section 2 introduces the primitive measures—ticks and bits—and defines the fundamental TPB 

ratio. Section 3 constructs differential operators on these measures and establishes the chain rule 

connecting them. Section 4 shows how ordinary time and the standard derivative d/dt emerge 

through calibration. Section 5 presents a toy model illustrating the breakdown of standard 

calculus at crystallisation events. Section 6 develops the covariant formulation suitable for field-

theoretic treatment. Section 7 extends to two-channel ordering (TPB²), distinguishing reversible 

exploration from irreversible commitment. Section 8 models overlap and phase as a U(1) fiber 

bundle over TPB². Section 9 introduces the Dimensional Emergence Calculus proper, defining 

the lift from ordering space to physical displacement. Section 10 recovers the Newtonian 

inverse-square law under explicit assumptions. Section 11 summarises the integrated framework. 

Section 12 discusses the relationship to classical calculus. Section 13 presents DEC-specific 



 7 

predictions, discusses the deeper significance of treating calculus as a physical phenomenon, and 

concludes. 

1.4 Notation 

Symbol Definition First appears 

T Tick measure (causal ordering count) §2 

B Bit measure (irreversible commitments) §2 

τ TPB ratio: ΔT/ΔB (or dT/dB in continuum limit) §2 

Tᵣ Reversible ordering parameter §7 

Tᵢ Irreversible ordering parameter §7 

κ Calibration constant (time per bit) §4 

φ Void field (proximity to zero-entropy substrate) §6 

s Entropy density field §6 

A U(1) connection on TPB² §8 

F Curvature two-form of connection A §8 

χ Overlap-validity function §8 

𝐞ᵣ, 𝐞ᵢ DEC lift vectors §9 

𝛀 Differentiation curl (lift non-integrability) §9 

 

 

2. TPB Primitives and Measures 

Along any physical history γ through configuration space, we define two monotone measures 

that capture distinct aspects of change. 

Definition 2.1 (Tick measure). The tick measure T: γ → ℤ≥₀ is a count of causal ordering steps. 

Ticks establish the sequence in which events occur—they answer the question "what comes 

before what?"—without themselves constituting irreversible change. Ticks may be thought of as 

the minimal units of logical or causal precedence. 

Definition 2.2 (Bit measure). The bit measure B: γ → ℤ≥₀ is a count of realised 

distinguishability, or equivalently, of irreversible commitments. Each increment of B 

corresponds to a crystallisation event—an irreversible transition from reversible superposition to 

definite, irretrievable outcome (referred to as "Fold crystallisation" in the broader VERSF 

framework). Bits answer the question "what has been decided?" 

These measures satisfy the following axioms: 

Axiom 2.1 (Monotonicity). Both T and B are monotonically non-decreasing along any history γ: 



 8 

T(γ(s₁)) ≤ T(γ(s₂)) and B(γ(s₁)) ≤ B(γ(s₂)) for all s₁ < s₂ 

Axiom 2.2 (Ordering precedence). Each bit commitment requires at least one ordering step: 

ΔB ≥ 1 ⟹ ΔT ≥ ΔB 

Motivation (status of Axiom 2.2). Axiom 2.2 is taken as a definitional constraint on what we 

mean by "ordering": a crystallisation event is an irreversible commitment that must be preceded 

by at least one ordering step, otherwise commitment would occur without any causal precedence 

structure. In this sense, T is not merely a counter of events but the minimal carrier of logical 

precedence. Alternative conventions are possible—for example, allowing ΔB > 0 with ΔT = 0 

would correspond to modelling "instantaneous commitment" without antecedent ordering. Such 

alternatives collapse the distinction between ordering and commitment and are therefore 

excluded by construction in the present calculus. 

Definition 2.3 (TPB ratio). The Ticks-Per-Bit ratio is defined as the finite-difference quantity: 

τ := ΔT / ΔB for ΔB ≥ 1 

This definition is canonically robust: it requires only that at least one bit has crystallised over the 

interval in question. When bit formation is sufficiently dense that B can be approximated as 

continuous, we pass to the continuum limit: 

τ = dT / dB 

The continuum expression should be understood as a Radon-Nikodym derivative of the tick 

measure with respect to the bit measure [17], valid when many bits crystallise over the scale of 

interest. Formally, one may treat T and B as nondecreasing measures along histories; the 

continuum expressions apply in regimes where coarse-graining renders B absolutely continuous 

with respect to T (and vice versa on the relevant support), so that Radon-Nikodym derivatives 

exist. 

Proposition 2.1 (TPB bounds). By Axiom 2.2, the TPB ratio satisfies τ ≥ 1 everywhere. 

Equality τ = 1 represents maximal commitment efficiency (exactly one tick per bit). The limit τ 

→ ∞ represents vanishing commitment rate. 

The TPB ratio measures experienced time density: how many ordering steps are required to 

realise one unit of distinguishability. It is not a universal constant but a local field that varies 

with physical conditions: 

• Low τ (few ticks per bit): Distinguishability crystallises rapidly. Systems quickly commit 

to definite outcomes. This characterises high-entropy-production regimes. 

• Moderate τ: Systems explore configuration space extensively before committing. 

Reversible dynamics dominate, with occasional crystallisation events. 
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• τ → ∞: A regime where commitment is arbitrarily suppressed relative to ordering. This 

limit corresponds to perfect reversibility or, in gravitational contexts, the external 

description of approach to a horizon where infalling information appears frozen. 

 

3. TPB Differential Operators 

For any observable Q: γ → ℝ evaluated along a history γ, we define two fundamental 

derivatives. 

Definition 3.1 (Tick-derivative). The tick-derivative of Q is: 

D_T Q := dQ / dT 

This measures the rate of change of Q per ordering step, irrespective of whether 

distinguishability is being realised. When T is discrete, D_T Q is defined as the forward 

difference (discrete derivative operator): 

D_T Q := Q(T + 1) − Q(T) 

Definition 3.2 (Bit-derivative). The bit-derivative of Q is: 

D_B Q := dQ / dB 

This measures the rate of change of Q per unit of irreversible commitment. In regimes where B is 

discrete, D_B Q is meaningful as a distribution (Dirac measure) concentrated on commitment 

events; the continuum expression applies when bit formation is coarse-grained. 

Explicitly, for discrete B with crystallisation events at ticks {T₁, T₂, ...}: 

D_B Q = Σⱼ ΔQⱼ · δ(T − Tⱼ) 

where ΔQⱼ = Q(Tⱼ⁺) − Q(Tⱼ⁻) is the jump at the j-th crystallisation. 

Theorem 3.1 (TPB chain rule). The tick and bit derivatives are related by: 

D_T Q = (dB/dT) · D_B Q = (1/τ) · D_B Q 

Proof. This follows directly from the chain rule for Radon-Nikodym derivatives. In the discrete 

case, the relationship holds in the distributional sense: the tick-derivative is smooth between 

crystallisation events and singular at them, with the singularity structure encoded by the 

concentrated bit-derivative. ∎ 
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Corollary 3.1. The tick-derivative is the more fundamental object: it captures change along the 

causal sequence, while the bit-derivative captures change relative to what has been irreversibly 

decided. The relationship between them is mediated by the local physics encoded in τ. 

 

4. Emergence of Ordinary Time and d/dt 

To recover standard calculus, we must connect the informational measures T and B to the 

macroscopic time coordinate t that appears in laboratory physics. 

Definition 4.1 (Calibration mapping). The calibration mapping relates bit measure to clock 

time via: 

dt = κ · dB 

where κ ∈ ℝ₊ is a calibration constant with dimensions of time per bit (interpreted as Δt = κ ΔB 

in the discrete regime, and dt = κ dB in the coarse-grained limit where B is approximately 

continuous). This constant maps increments of realised distinguishability to increments of clock 

time. 

The physical interpretation of κ depends on the reference processes used for calibration. In 

principle, κ could be related to: 

1. Atomic transitions: The frequency of a caesium hyperfine transition defines the SI 

second. This implicitly sets a relationship between distinguishability-producing atomic 

events and clock time. 

2. Planck-scale physics: If bits correspond to Planck-scale degrees of freedom, κ could be 

related to the Planck time t_P ≈ 5.4 × 10⁻⁴⁴ s. 

3. Thermodynamic calibration: In statistical mechanical terms, κ relates entropy 

production (in natural units) to elapsed time. 

For the purposes of this framework, we treat κ as an empirical constant that encodes how the 

informational substrate interfaces with macroscopic measurement. 

Theorem 4.1 (Emergence of d/dt). The standard time derivative emerges as a reparameterised 

tick-derivative: 

d/dt = (1/κ) · d/dB = (τ/κ) · D_T 

Proof. From dt = κ dB, we have d/dt = (1/κ) d/dB. Applying the TPB chain rule (Theorem 3.1) in 

reverse: d/dB = τ · d/dT = τ · D_T. Substitution yields the result. ∎ 

Corollary 4.1 (Validity conditions). The emergence of d/dt as a well-defined operator requires: 
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(i) Bit formation is dense: |ΔB| ≫ 1 over the scale of interest 

(ii) TPB varies slowly: |∇τ| · L ≪ τ for characteristic length L 

(iii) Jumps are sub-resolution: max|ΔQⱼ| ≪ ⟨Q⟩ 

When these conditions fail, the ordinary time derivative d/dt loses meaning, and the more 

fundamental TPB calculus must be employed. 

 

5. Breakdown of Standard Calculus: A Crystallisation 

Model 

To illustrate when and why standard calculus fails, consider a system in which an observable Q 

evolves continuously between discrete crystallisation events but exhibits discontinuous jumps 

when a bit crystallises. 

Model specification. Let bit-formation events occur at ticks T₁, T₂, T₃, ... with ΔB = 1 at each 

event. Define the inter-crystallisation intervals Iⱼ := (Tⱼ, Tⱼ₊₁). 

Proposition 5.1 (Inter-event dynamics). On each interval Iⱼ: 

(i) The bit measure is constant: dB = 0 

(ii) The tick measure advances: dT > 0 

(iii) The observable evolves continuously: D_T Q is well-defined and finite 

Proposition 5.2 (Crystallisation dynamics). At each crystallisation event Tⱼ: 

(i) A unit of distinguishability is committed: ΔB = 1 

(ii) The observable exhibits a discrete jump: ΔQⱼ = Q(Tⱼ⁺) − Q(Tⱼ⁻) 

(iii) The bit-derivative is concentrated at Tⱼ with weight ΔQⱼ (see §3) 

Theorem 5.1 (Failure of standard calculus). Under the calibration dt = κ dB: 

(i) Between crystallisation events: dt = 0, hence dQ/dt is undefined (or infinite) 

(ii) At crystallisation events: dt = κ, dQ = ΔQⱼ, hence dQ/dt = ΔQⱼ/κ (a delta function in the 

continuum idealisation) 
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Proof. Part (i): Since dB = 0 on Iⱼ, we have dt = κ dB = 0. Any nonzero dQ yields dQ/dt = dQ/0, 

which is undefined. Part (ii): At Tⱼ, ΔB = 1 implies Δt = κ, while ΔQ = ΔQⱼ. The ratio is well-

defined but concentrated. ∎ 

Corollary 5.1. Standard calculus presupposes continuous bit formation. When distinguishability 

is realised in discrete events, the continuous time parameter t becomes ill-defined, and dQ/dt fails 

as a mathematical object. 

Remark 5.1 (Hybrid dynamical system). The correct mathematical description in the sparse-bit 

regime is a hybrid dynamical system [1, 2]: continuous evolution in T governed by D_T Q on 

each Iⱼ, punctuated by a jump map Φⱼ: Q(Tⱼ⁻) ↦ Q(Tⱼ⁺) at B events. This is a piecewise-smooth 

process in T with a jump measure supported on {Tⱼ}. 

 

6. Covariant Formulation 

To connect TPB calculus to field theory and general-relativistic contexts, we promote ticks and 

bits from measures along worldlines to spacetime currents. 

Definition 6.1 (Tick current). The tick current Jᵘ is a vector field representing the flow of causal 

ordering through spacetime. 

Definition 6.2 (Bit current). The bit current Jᵇᵘ is a vector field representing the flow of realised 

distinguishability. 

In general, both currents satisfy balance laws rather than strict conservation. 

Axiom 6.1 (Current balance). The currents satisfy: 

∇_μ Jᵘ = Σ_T 

∇_μ Jᵇᵘ = Σ_B 

where Σ_T and Σ_B are source terms representing tick and bit creation or annihilation. Such 

sources could arise from measurement events, decoherence processes, or other commitment-

generating phenomena. 

Definition 6.3 (Closed regime). In the closed/coarse-grained regime analysed in this paper, we 

assume: 

Σ_T = 0, Σ_B = 0 

This yields the conservation laws: 
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∇_μ Jᵘ = 0 

∇_μ Jᵇᵘ = 0 

These assert that, in the regime of interest, ordering and distinguishability are neither created nor 

destroyed but only redistributed through spacetime. 

Definition 6.4 (TPB constitutive law). The tick current couples to the VERSF fields via: 

Jᵘ = ℱ(s, φ) ∇ᵘs 

where s is the entropy density, φ is the void field, and ℱ: ℝ × ℝ → ℝ is a constitutive function. 

We treat this as the lowest-order, local, entropy-aligned constitutive relation in a 

hydrodynamic/near-equilibrium gradient expansion; higher-derivative and nonlocal corrections 

are possible but are neglected here. The sign convention depends on whether J represents 

ordering flow toward increasing s or its negative; we absorb this choice into the definition of ℱ. 

Constraints and status of ℱ. In this paper ℱ(s,φ) is treated as a phenomenological transport 

function to be constrained by stability, symmetry, and ultimately data. Minimal requirements in 

the near-equilibrium/local regime include: (i) scalar dependence ℱ = ℱ(s,φ) to preserve 

covariance; (ii) locality and regularity (no higher-derivative dependence at leading order); and 

(iii) sign/positivity chosen so that ordering flow aligns with the entropy-gradient convention 

adopted. The Newtonian-limit recovery in §10 is driven by the DEC lift structure and harmonic 

φ assumption; it does not require a specific functional form of ℱ at leading order, though ℱ will 

matter for dynamical coupling and strong-field regimes. 

Definition 6.5 (Comoving densities). In a comoving frame with four-velocity uᵘ, define scalar 

densities: 

ρ_T := −u_μ Jᵘ 

ρ_B := −u_μ Jᵇᵘ 

These represent the local density of ordering and commitment as experienced by a comoving 

observer. 

Definition 6.6 (Local TPB field). The covariant TPB field is: 

τ(x) := ρ_T / ρ_B 

This is the spacetime scalar generalisation of ΔT/ΔB, characterising local informational 

dynamics at each event. 
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7. Two-Channel Ordering: The TPB² Base Space 

The single TPB ratio captures the relationship between ordering and commitment but does not 

distinguish between different modes of ordering. 

Definition 7.1 (Reversible ordering). The reversible ordering parameter Tᵣ ∈ ℝ≥₀ measures 

exploration of configuration space without commitment. This corresponds to quantum 

superposition, thermal fluctuation, or any process that could in principle be reversed without 

thermodynamic cost. 

Definition 7.2 (Irreversible ordering). The irreversible ordering parameter Tᵢ ∈ ℝ≥₀ measures 

advancement along the commitment axis. Each increment of Tᵢ corresponds to an approach 

toward crystallisation—a narrowing of possibilities that cannot be undone. 

Remark 7.1. Tᵢ is distinct from the bit measure B: Tᵢ counts ordering steps along the 

commitment direction, while B counts completed commitments. The relationship is: 

dB = f(Tᵢ) dTᵢ 

where f: ℝ≥₀ → ℝ≥₀ encodes the commitment rate (a hazard function). 

Definition 7.3 (TPB² base space). The TPB² base space is the two-dimensional manifold: 

M := {(Tᵣ, Tᵢ) ∈ ℝ≥₀ × ℝ≥₀} 

equipped with the natural smooth structure inherited from ℝ². 

Proposition 7.1 (Minimality). TPB² is the minimal extension that separates reversible 

exploration from irreversible approach-to-commitment. Two channels are the minimal structure 

that permits independent control of: 

(i) Reversible overlap/phase geometry 

(ii) Irreversible commitment dynamics 

without conflating them into a single parameter. Additional channels could capture finer 

distinctions but are not required at this resolution. 

Proposition 7.2 (Physical correspondence). The two-channel structure corresponds to distinct 

aspects of quantum evolution: 

(i) Unitary evolution (Schrödinger equation): advances Tᵣ while leaving Tᵢ unchanged 

(ii) Measurement/decoherence: advances Tᵢ (and eventually B) while collapsing explored 

configuration space 
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8. Overlap as a U(1) Fiber Bundle over TPB² 

Quantum systems in superposition exhibit overlap between configuration branches, manifesting 

as interference. We model this as a U(1) fiber bundle over TPB². 

8.1 The Bundle Structure 

Definition 8.1 (Phase bundle). The phase bundle is a principal U(1) bundle [3, 4, 5]: 

π: P → M 

where M ≡ TPB² is the base space and each fiber π⁻¹(p) ≅ U(1) ≅ S¹ represents the continuous 

phase degree of freedom associated with reversible overlap. 

Proposition 8.1 (Separation of structure). The bundle construction separates: 

(i) Ordering information: position (Tᵣ, Tᵢ) on the base space M 

(ii) Phase information: position θ ∈ [0, 2π) on the fiber U(1) 

This reflects the physical distinction: ordering determines what possibilities exist, while phase 

determines how they interfere. 

8.2 Connection and Parallel Transport 

Definition 8.2 (Phase connection). A U(1) connection on P is a 1-form on M: 

A = Aᵣ(Tᵣ, Tᵢ) dTᵣ + Aᵢ(Tᵣ, Tᵢ) dTᵢ 

where Aᵣ, Aᵢ: M → ℝ are smooth functions encoding phase advancement per unit of reversible 

and irreversible ordering, respectively. 

Definition 8.3 (Parallel transport). For a path γ: [0,1] → M, parallel transport induces a phase 

shift: 

θ(γ) = θ₀ + ∫_γ A = θ₀ + ∫₀¹ [Aᵣ(γ(s)) γ̇ᵣ(s) + Aᵢ(γ(s)) γ̇ᵢ(s)] ds 

This captures phase accumulation along a history parameterised by ordering measures. 
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8.3 Curvature and Interference 

Definition 8.4 (Curvature). The curvature two-form is: 

F := dA = (∂Aᵢ/∂Tᵣ − ∂Aᵣ/∂Tᵢ) dTᵣ ∧ dTᵢ 

Theorem 8.1 (Path dependence). For two paths γ₁, γ₂: [0,1] → M with the same endpoints: 

θ(γ₁) − θ(γ₂) = ∫_Σ F 

where Σ is any surface bounded by γ₁ − γ₂. 

Proof. Stokes' theorem. ∎ 

Corollary 8.1. Nonzero curvature F ≠ 0 implies path-dependent phase evolution, yielding 

observable interference effects. Vanishing curvature F = 0 implies phase depends only on 

endpoints (flat overlap geometry). 

8.4 The Overlap-Validity Function 

Definition 8.5 (Overlap validity). The overlap-validity function χ: M → [0,1] tracks the degree 

to which superposition remains intact: 

• χ ≈ 1: Fully reversible regime; U(1) fiber description applies 

• χ → 0: Approaching crystallisation; phase becoming undefined 

• χ = 0: Post-commitment; definite branch with no remaining overlap 

Axiom 8.1 (Monotone decoherence). We impose: 

∂χ/∂Tᵢ ≤ 0 

This captures the monotone loss of coherence under irreversible ordering: advancement toward 

commitment diminishes superposition. 

8.5 Complex Amplitudes and the Born Rule 

Proposition 8.2 (Geometric interpretation of amplitudes). Complex quantum amplitudes 

decompose as: 

ψ = |ψ| · e^{iθ} 

where: 

• |ψ|: Magnitude governed by TPB/BCB constraints on distinguishability distribution 

• θ: Phase; position on the U(1) fiber 



 17 

Complex numbers are thus reinterpreted geometrically as the minimal structure to represent 

overlap over TPB² ordering space. 

Born weighting and first-passage realisation (model statement). We adopt |ψ|² as the 

operational probability weight because it is a measure consistent with stability under coarse-

graining and consistent composition in standard quantum practice; in the present paper we treat 

this as a structural requirement on any admissible probability assignment and defer a full 

derivation to future work. 

We provide a concrete dynamical realisation compatible with TPB commitment. Consider 

competing branches j with complex amplitudes ψⱼ. Model crystallisation as a first-passage (race) 

process [23] in which each branch produces a record at a stochastic hazard rate λⱼ satisfying λⱼ ∝ 

|ψⱼ|². If the record time in branch j is exponentially distributed, Tⱼ ∼ Exp(λⱼ), then the probability 

that branch j wins the race is: 

P(j wins) = λⱼ / Σₖ λₖ = |ψⱼ|² / Σₖ |ψₖ|² 

This yields the Born frequencies as an emergent consequence of first-passage record formation. 

We emphasise that this is a minimal mechanism-level model (not a unique derivation): it shows 

that TPB-style crystallisation dynamics can implement |ψ|² weighting through irreversible record 

competition, while the deeper origin of the λⱼ ∝ |ψⱼ|² scaling can be anchored either in an 

entropy/composability argument or in a more microscopic TPB hazard derivation. 

 

9. Dimensional Emergence Calculus (DEC): The Lift 

We now arrive at the central construction: the Dimensional Emergence Calculus, which maps 

TPB² into physical displacement. 

9.1 The Differentiation Lift 

Definition 9.1 (Lift vectors). The lift map is specified by a pair of vector fields on physical 3-

space, parameterised by TPB² coordinates: 

𝐞ᵣ: M → ℝ³ (reversible lift vector) 

𝐞ᵢ: M → ℝ³ (irreversible lift vector) 

Definition 9.2 (Emergent displacement). The displacement generated by an infinitesimal step 

in TPB² is: 

d𝐱 = 𝐞ᵣ dTᵣ + 𝐞ᵢ dTᵢ 
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This is the DEC analogue of dx = v dt in classical mechanics, with the "velocity" replaced by 

two lift vectors and "time" replaced by the two-dimensional ordering space. 

9.2 Physical Interpretation 

Proposition 9.1 (Lift semantics). 

(i) 𝐞ᵣ (reversible lift): Displacement generated by exploratory ordering. This corresponds to 

motion that does not commit distinguishability—fluctuations, quantum spreading, reversible 

dynamics. 

(ii) 𝐞ᵢ (irreversible lift): Displacement generated by commitment ordering. This corresponds to 

motion driven by approach to crystallisation. In gravitational contexts, 𝐞ᵢ aligns with the 

direction of "falling." 

9.3 The Differentiation Curl 

Definition 9.3 (Differentiation curl). The non-integrability of the lift is captured by: 

𝛀 := ∂𝐞ᵢ/∂Tᵣ − ∂𝐞ᵣ/∂Tᵢ ∈ ℝ³ 

This 3-vector measures the failure of the lift to define a consistent coordinate transformation 

from TPB² to physical space. 

Definition 9.4 (Lift 1-form). Define the ℝ³-valued 1-form on TPB²: 

α := 𝐞ᵣ dTᵣ + 𝐞ᵢ dTᵢ 

Its exterior derivative is: 

dα = (∂𝐞ᵢ/∂Tᵣ − ∂𝐞ᵣ/∂Tᵢ) dTᵣ ∧ dTᵢ = 𝛀 dTᵣ ∧ dTᵢ 

Theorem 9.1 (Force generation). When 𝛀 ≠ 0: 

(i) Displacement depends on the path through TPB², not just endpoints 

(ii) For a closed loop γ = ∂Σ bounding a region Σ in TPB², the net displacement is: 

∮_{∂Σ} α = ∬_Σ dα = ∬_Σ 𝛀 dTᵣ ∧ dTᵢ 

(iii) Force-like effects emerge in physical space 

Proof. Part (ii) is Stokes' theorem for ℝ³-valued forms. The path dependence in (i) is the 

contrapositive: if displacement were path-independent, then ∮α = 0 for all loops, implying dα = 0 
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and hence 𝛀 = 0. Part (iii) follows from interpreting path-dependent displacement as work done 

by an effective force field. ∎ 

Corollary 9.1. The differentiation curl 𝛀 is the DEC mechanism for generating forces from 

geometry, analogous to spacetime curvature in general relativity. 

9.4 VERSF Field Determination 

Definition 9.5 (Field-lift coupling). The lift vectors are determined by the VERSF fields (φ, s): 

𝐞ᵢ = a(φ, s) 𝐧̂  

𝐞ᵣ = b(φ, s) 𝐦̂  

where: 

• a, b: ℝ × ℝ → ℝ are scalar lift-strength functions 

• 𝐧̂ , 𝐦̂  ∈ S² are unit vectors encoding lift direction 

Axiom 9.1 (Canonical alignment). In the simplest realisation: 

(i) 𝐞ᵢ ∥ ∇φ: Commitment moves toward lower void field 

(ii) 𝐞ᵣ ⊥ ∇φ: Exploration is tangent to void-field isosurfaces 

 

10. The Newtonian Limit 

We demonstrate that DEC recovers Newtonian gravity under explicit assumptions. 

10.1 Assumptions 

The derivation rests on three explicit assumptions: 

Assumption 1 (Radial alignment). The irreversible lift vector aligns with the radial void 

gradient: 

𝐞ᵢ ∥ ∇φ = φ'(r) 𝐫̂  

Assumption 2 (Linear coupling). The lift strength depends linearly on the void field: 

a(φ) = kφ, k ∈ ℝ₊ 
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Assumption 3 (Harmonic void field). The void field satisfies Laplace's equation in vacuum: 

∇²φ = 0 

These represent the simplest choices consistent with spherical symmetry and standard field-

theoretic structure. 

10.2 Setup: Spherically Symmetric Void Field 

Consider a static, spherically symmetric void field φ(r) centred on a mass M, where r = ‖𝐱‖. 

Define: 

• Radial unit vector: 𝐫̂  = 𝐱/r 

• Void gradient: ∇φ(r) = φ'(r) 𝐫̂  

In the spherically symmetric Newtonian configuration, 𝐧̂  = 𝐫̂  and 𝐦̂  spans the transverse tangent 

plane (any orthonormal basis of vectors perpendicular to 𝐫̂ ). 

10.2a Matter Sourcing of the Void Field (Required Extension) 

The vacuum condition ∇²φ = 0 used here is sufficient to recover inverse-square scaling outside 

sources, but a complete gravitational theory requires a source equation relating φ to 

matter/energy distribution. The natural analogue is a Poisson-type relation, schematically ∇²φ = 

S(ρ, ...), where S encodes how matter couples to the void field in the effective limit. Determining 

S (and its relativistic extension) is beyond the scope of this paper and is deferred to future work; 

the present result should be read as a vacuum-limit consistency demonstration: if φ is harmonic 

outside sources and the DEC lift aligns radially, inverse-square scaling follows. 

10.3 Lift Configuration 

Under Assumption 1: 

𝐞ᵢ = a(φ) 𝐫̂  

where a(φ) has dimensions [length · (TPB² ordering)⁻¹]. The reversible lift spans transverse 

directions: 

𝐞ᵣ ⊥ 𝐫̂  

10.4 Newtonian Regime 

Definition 10.1 (Newtonian regime). The Newtonian regime is characterised by: 

(i) dTᵢ ≫ dTᵣ over macroscopic scales (commitment dominates exploration) 
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(ii) Motion is predominantly radial: d𝐱 ≈ 𝐞ᵢ dTᵢ 

In this regime, physical radial velocity is proportional to the lift strength a(φ). 

10.5 Emergent Acceleration 

Definition 10.2 (Effective acceleration). In the coarse-grained Newtonian regime, the emergent 

acceleration is defined as the second derivative of radial coordinate with respect to calibrated 

time t: 

a_eff := d²r/dt² 

Theorem 10.1 (Acceleration from lift variation). The effective acceleration scale is: 

a_eff(r) ∝ ‖∂𝐞ᵢ/∂r‖ = |d[a(φ(r))]/dr| 

Proof sketch. From d𝐱 ≈ 𝐞ᵢ dTᵢ, the radial velocity is dr/dTᵢ = a(φ(r)). The acceleration in Tᵢ is: 

d²r/dTᵢ² = (da/dr)(dr/dTᵢ) = a'(r) · a(r) 

Converting to t via dt = κ dB and dB = f dTᵢ, the Jacobians dTᵢ/dB and dB/dt are absorbed into 

the proportionality constant. Up to multiplicative factors absorbed into calibration—where a(r) 

varies slowly in the near-Newtonian regime—the acceleration scale tracks |da/dr|. ∎ 

Role of the differentiation curl in the Newtonian regime. In full DEC, force-like effects are 

associated with lift non-integrability 𝛀 = ∂𝐞ᵢ/∂Tᵣ − ∂𝐞ᵣ/∂Tᵢ, which measures path dependence in 

TPB². The Newtonian recovery in §10 is obtained in a restricted regime where (i) motion is near-

radial and (ii) ordering is dominated by the commitment channel dTᵢ ≫ dTᵣ, so the dynamics 

effectively project onto a one-dimensional slice in which ∂𝐞ᵣ/∂Tᵢ and transverse path effects are 

suppressed. In this limit, the dominant "force proxy" reduces to the spatial variation of the 

irreversible lift ∂𝐞ᵢ/∂r. Away from this regime—when reversible–irreversible coupling is 

significant or when paths explore nontrivial loops in TPB²—the full 𝛀 term contributes and can 

generate additional non-Newtonian accelerations. 

10.6 Inverse-Square Scaling 

Under Assumption 2: 

a(φ) = kφ ⟹ a_eff(r) ∝ k|φ'(r)| 

Under Assumption 3, we use Laplace's equation. We emphasise that Laplace's equation is not 

derived here, but adopted as the simplest vacuum condition consistent with locality and spherical 

symmetry. The spherically symmetric solution is: 

φ(r) = −GM_φ/r + φ_∞ 
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where M_φ is the "void charge" of the central mass ("void charge" here denotes the coupling 

strength of matter to the void field, not a new conserved quantity) and φ_∞ is set to zero by 

reference choice. Formally, M_φ is defined as the coefficient of the 1/r term in the exterior 

solution for φ, and is determined by the matter–void coupling in the sourced field equation (see 

§10.2a). 

Theorem 10.2 (Inverse-square law). Under Assumptions 1-3: 

a_eff(r) ∝ 1/r² 

Proof. From φ(r) = −GM_φ/r: 

φ'(r) = GM_φ/r² 

Therefore a_eff(r) ∝ |φ'(r)| = GM_φ/r². ∎ 

10.7 Calibration to Newton's Constant 

Proposition 10.1. Matching to observed gravity g = GM/r² requires: 

M_φ ∝ M 

with proportionality fixed by calibration to G. In the simplest identification, M_φ = M and the 

coupling k absorbs remaining calibration factors. 

10.8 Conditions for Non-Newtonian Corrections 

Theorem 10.3 (Correction conditions). Departures from inverse-square gravity arise when: 

(i) Non-harmonic void field: ∇²φ ≠ 0 implies φ(r) ≠ −GM_φ/r, hence φ'(r) ≠ 1/r² 

(ii) Nonlinear lift coupling: a(φ) = kφ + k₂φ² + ⋯ introduces higher-order terms: 

a_eff ∝ |kφ' + 2k₂φφ' + ⋯| 

(iii) Entropy modulation: a(φ,s) = k(φ)·f(s) implies entropy gradients modulate gravitational 

strength (potentially producing MOND-like phenomenology [19] in low-acceleration regimes) 

(iv) TPB² curvature: Significant ∂𝐞ᵣ/∂Tᵢ contributions add force-like terms from reversible-

irreversible coupling 

These conditions provide falsifiable predictions. 
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11. Integration: The Complete Framework 

The constructions combine into a unified architecture: 

Layer Object Role 

TPB² base M = (Tᵣ, Tᵢ) Two-channel ordering manifold 

U(1) fiber θ ∈ S¹ Phase/overlap geometry 

Connection A = Aᵣ dTᵣ + Aᵢ dTᵢ Governs phase evolution 

Curvature F = dA Encodes interference geometry 

Overlap validity χ: M → [0,1] Tracks superposition status 

DEC lift (𝐞ᵣ, 𝐞ᵢ): M → ℝ³ × ℝ³ Maps ordering to displacement 

Diff. curl 𝛀 = ∂{Tᵣ}𝐞ᵢ − ∂{Tᵢ}𝐞ᵣ Generates force-like effects 

VERSF fields (φ, s) Determine lift and connection 

Theorem 11.1 (Coarse-grained limits). In the regime where bit formation is dense and TPB 

varies slowly: 

(i) d/dt emerges as reparameterised tick-derivative (§4) 

(ii) Classical mechanics emerges from differentiation curl (§9) 

(iii) Newtonian gravity emerges from harmonic void field (§10) 

Outside this regime, the full TPB²/DEC structure is required. 

 

12. Relationship to Classical Calculus 

12.1 What TPB²-DEC Adds to Classical Calculus 

Classical calculus provides dx = v dt, turning an abstract parameter t into spatial displacement. 

However, it does not explain why space or time exist, why motion is continuous, or what t 

represents physically—these are assumed infrastructure. 

TPB²-DEC operates at a deeper level, describing how continuous 3D motion arises from a 2D 

informational substrate via: 

d𝐱 = 𝐞ᵣ dTᵣ + 𝐞ᵢ dTᵢ 
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The ordering variables (Tᵣ, Tᵢ) are not spatiotemporal but informational. Continuous motion 

emerges through integration, with the lift vectors encoding how ordering steps generate physical 

displacement. 

12.2 The Role of Curvature 

Just as spacetime curvature in GR manifests as gravity, lift non-integrability 𝛀 manifests as 

force-like effects. Geometry explains why motion deviates from straight-line behaviour. 

12.3 The Hierarchy 

1. TPB²-DEC: Ordering-based calculus with emergent dimensionality 

2. Standard calculus: Coarse-grained limit with continuous time 

3. Newtonian mechanics: Forces from spatial potential variation 

4. General relativity: Spacetime curvature effects 

Each emerges from the one below through limiting procedures. 

12.4 Summary 

Standard calculus: language of motion within space. 

TPB²-DEC: language of how space-like continuity emerges from informational ordering. 

 

13. Discussion and Conclusions 

13.1 Summary of Results 

1. TPB primitives (§2): Ticks and bits as fundamental measures; τ = ΔT/ΔB characterises 

local dynamics with continuum limit dT/dB when bits are dense. 

2. TPB operators (§3): D_T and D_B as fundamental derivatives with chain rule relating 

them through τ. 

3. Time emergence (§4): d/dt = (τ/κ)D_T under validity conditions. 

4. Calculus breakdown (§5): Hybrid dynamical system in sparse-bit regime. 

5. Covariant formulation (§6): Balance laws for currents; constitutive relation as lowest-

order gradient expansion. 

6. TPB² structure (§7): Minimal two-channel separation of reversible/irreversible ordering. 

7. U(1) bundle (§8): Phase geometry with curvature encoding interference; overlap-validity 

tracking decoherence. 

8. DEC lift (§9): Mapping from TPB² to ℝ³; differentiation curl generating forces. 
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9. Newtonian limit (§10): 1/r² from three explicit assumptions; conditions for corrections 

identified. 

13.2 Predictions and Falsifiability 

The DEC framework makes predictions that are distinct from those of general relativity, 

quantum field theory, causal set theory, and entropic gravity. The key distinguishing feature is 

that DEC ties force-like behaviour to path dependence in ordering space (TPB²), not just to 

metric potentials or local field values. The combination of (i) two-channel ordering as a base 

space, (ii) phase as a U(1) fiber over that base rather than over spacetime, and (iii) force as non-

integrability of a lift from ordering space into ℝ³ produces "ordering-history" effects that are not 

automatic in other frameworks. 

13.2.1 Path-dependent phases from ordering history 

In standard quantum mechanics, phase differences depend on action along spacetime paths (and 

gauge fields), but the "clock" is coordinate time. In DEC, phase lives on a U(1) fiber over (Tᵣ, 

Tᵢ), so phase shifts can depend on how much reversible exploration versus irreversible 

commitment occurred along the way—even for paths with the same spacetime endpoints. 

Distinctive signature: Interference fringes that shift when one changes the 

decoherence/commitment profile of one interferometer arm (altering Tᵢ history) while keeping 

classical path length and elapsed time the same. This is not a standard decoherence effect (which 

destroys interference); it is a phase shift that preserves coherence but modifies the fringe pattern. 

13.2.2 Forces from reversible–irreversible coupling (the 𝛀 term) 

In the Newtonian limit (§10), the differentiation curl 𝛀 = ∂𝐞ᵢ/∂Tᵣ − ∂𝐞ᵣ/∂Tᵢ was suppressed by the 

dTᵢ ≫ dTᵣ projection. In general, however, nonzero 𝛀 creates force-like effects that are distinct 

from "gravity from a potential" or "curvature from stress-energy." These are forces arising from 

ordering non-integrability. 

Distinctive signature: Small additional accelerations that correlate with changes in local 

commitment dynamics (decoherence rate, entropy-production environment), not only with mass 

distribution. In other words: identical mass geometry but different "commitment profile" yields 

slightly different dynamics. This is testable in principle by comparing free-fall trajectories in 

environments with different decoherence rates. 

13.2.3 Environment-linked deviations from the equivalence principle 

General relativity's universality of free fall (independence of composition and environment) is 

extremely strict. DEC can reproduce it in the coarse-grained limit, but it provides a clear 

mechanism for controlled violations when: 

• The lift depends on both φ and s (entropy field), so that a(φ,s) ≠ a(φ) alone 
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• 𝛀 effects become appreciable (significant reversible–irreversible coupling) 

• τ varies rapidly (sparse-bit, near-horizon, or strong-gradient regimes) 

Distinctive signature: A small, regime-limited equivalence principle violation that tracks entropy 

gradients or decoherence rate, not composition per se. This is not a claim that EP is violated 

generally; it is a candidate falsifiable corner-case in specific high-gradient or low-commitment-

density environments. 

13.2.4 Calculus breakdown criterion 

Many frameworks invoke discreteness at the Planck scale, but DEC provides a sharp operational 

criterion for when standard calculus fails: 

Standard d/dt calculus is valid only when: (i) bit formation is dense, (ii) τ varies slowly, and (iii) 

jumps are sub-resolution. 

This yields specific breakdown predictions in "commitment-sparse" conditions. 

Distinctive signature: Measurable non-smooth (jump-like) behaviour in effective dynamics near 

crystallisation events, where the correct description is a hybrid dynamical system (continuous in 

T, discontinuous in B). Other frameworks mention collapse or decoherence, but DEC ties it to a 

replacement of calculus itself—the ordinary differential equation description fails and must be 

replaced by the TPB formalism. 

13.2.5 Strong-field structure: multiple channels for non-Newtonian corrections 

In GR, deviations from Newtonian gravity arise from metric curvature. In MOND, they arise 

from modified dynamics at low acceleration. In entropic gravity, they arise from modified 

information-geometry relations. DEC can produce modified gravity through at least three distinct 

mechanisms: 

(i) φ deviates from harmonic (non-Laplacian void field in strong-field or boundary regions) 

(ii) a(φ,s) becomes nonlinear (higher-order lift coupling) 

(iii) 𝛀 becomes non-negligible (reversible–irreversible mixing) 

Distinctive signature: A family of deviations where the shape of corrections is linked to ordering 

geometry (TPB² coupling structure), not just to acceleration scale or metric potentials. The 

different mechanisms produce different correction profiles, potentially distinguishable through 

precision gravitational measurements. 
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13.2.6 Horizon behaviour 

As τ → ∞ near horizons, the relationship between ordering and commitment breaks down in a 

specific way: ordering continues indefinitely while commitment freezes from the external 

perspective. This suggests regimes where the GR continuum description may be insufficient. 

Distinctive signature: Modified near-horizon physics where the τ → ∞ limit produces specific 

predictions for information flow and effective dynamics that differ from standard GR horizon 

thermodynamics. 

Summary: What makes these predictions DEC-specific 

Some other frameworks can mimic individual effects above. What is distinctive about DEC is 

the combination: 

• Two-channel ordering (Tᵣ, Tᵢ) as a base space 

• Phase as a U(1) fiber over that base (not over spacetime) 

• Force as non-integrability of a lift from ordering space into ℝ³ 

This trio produces ordering-history effects—dependence on the path through (Tᵣ, Tᵢ), not just 

through spacetime—that are not automatic in GR, QFT, causal sets, or entropic gravity. 

13.3 Relationship to Other Approaches 

Shared features with: 

• Information-theoretic QM reconstructions [10, 11, 12, 13] (distinguishability primitive) 

• Causal set theory [14, 15, 16] (ordering over geometry) 

• Entropic gravity [6, 7, 8, 9] (thermodynamic-geometric connection) 

• Shape dynamics [22] (3D over 4D primacy) 

Distinguished by: explicit two-channel structure and geometric lift mechanism. 

13.4 Open Questions 

1. VERSF field dynamics: equations for φ and s, matter coupling 

2. Source terms: physical interpretation of non-zero Σ_T, Σ_B 

3. QFT extension: infinite degrees of freedom 

4. Cosmology: large-scale structure, early universe, dark sector 

5. Experimental signatures: laboratory tests of discrete-commitment structure 

Strong-field regime (r → 0). The present Newtonian recovery concerns the exterior/vacuum 

limit and does not address the inner/strong-field behaviour as r → 0. In DEC terms, the strong-

field regime is precisely where (i) the harmonic approximation for φ may fail, (ii) entropy 

dependence in the lift a(φ,s) may become dominant, and (iii) TPB² non-integrability 𝛀 may no 
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longer be suppressed by the dTᵢ ≫ dTᵣ projection. Whether this structure regularises the classical 

singularity or reproduces it depends on the sourced field equation for φ and the high-gradient 

behaviour of the lift functions. We note that Penrose [18] has proposed gravity-induced state 

reduction as a mechanism linking gravitational physics to quantum measurement—a connection 

that resonates with the TPB crystallisation dynamics developed here; detailed comparison is 

deferred to future work. 

13.5 The Deeper Significance: Calculus as Physical Phenomenon 

The core contribution of DEC is that it treats calculus itself as a physical phenomenon rather than 

assumed mathematical infrastructure. 

Standard physics uses differential calculus to describe how things change—dx/dt, ∂ψ/∂t, and so 

on. But this presupposes that continuous time and space already exist. Newton and Leibniz gave 

us the language of motion; they did not explain why that language applies to reality. 

DEC operates one level deeper. It asks: what has to be true for continuous change to be possible 

at all? And it answers: there must be enough distinguishability, accumulated densely enough, 

with slowly varying commitment dynamics. When those conditions hold, standard calculus 

emerges (Theorem 4.1, Corollary 4.1). When they fail, you need the more primitive TPB 

formalism. 

A genuine level-shift. General relativity made spacetime dynamic—geometry responds to 

matter. But spacetime remains fundamental infrastructure. DEC makes spacetime derived—it 

emerges from the organisation of ordering and commitment. The continuous manifold we 

integrate over is not given; it is built. 

The lift mechanism. This is where emergence becomes concrete. You have a 2D informational 

space (reversible exploration Tᵣ, irreversible commitment Tᵢ). You have a map—the lift—from 

that space into physical displacement. The geometry of that map, specifically whether it is 

integrable, determines whether forces exist. Non-integrability of the lift is force, in the same 

sense that curvature of spacetime is gravity in GR. But now the base manifold is informational, 

not spatiotemporal. 

This architecture delivers three things simultaneously: 

1. Unification of scale. The same framework describes both the quantum regime (where phase 

geometry over TPB² matters, where crystallisation events are discrete) and the classical regime 

(where coarse-graining yields standard calculus). The quantum-to-classical transition is not a 

mystery requiring interpretation—it is the validity conditions of §4 being satisfied or violated. 

2. Falsifiability with teeth. Because standard physics is derived as a limit, we know exactly 

where it should break down: sparse commitment, rapid τ variation, significant reversible–

irreversible coupling. These are not vague gestures toward "Planck-scale effects"—they are 

operational criteria (§5, §13.2.4) that specify when the hybrid dynamical system description must 

replace ordinary differential equations. 
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3. Gravity without gravity. The framework does not postulate a gravitational force or field as a 

primitive. It postulates informational ordering, a lift map, and minimal symmetry assumptions 

(§10.1). Inverse-square attraction falls out as a theorem (Theorem 10.2). This suggests gravity is 

not a thing to be explained but a pattern that emerges when information organises itself spatially 

through the void field. 

The deepest implication. The reason physics is describable by differential equations may not be 

that reality is fundamentally continuous. It may be that we only perceive the regimes where 

distinguishability is dense enough to make continuity a good approximation. DEC provides the 

mathematical framework for asking—and potentially answering—what lies beneath. 

13.6 Conclusion 

Dimensional Emergence Calculus provides a mathematical framework in which continuous 

three-dimensional space, ordinary differential calculus, and Newtonian gravity all emerge from a 

two-dimensional informational ordering substrate. The key constructions are: 

• TPB primitives that separate ordering (ticks) from commitment (bits) 

• Two-channel extension (TPB²) distinguishing reversible exploration from irreversible 

approach-to-commitment 

• U(1) phase geometry over ordering space rather than spacetime 

• The differentiation lift mapping ordering increments to physical displacement 

• Non-integrability (𝛀) as the mechanism generating force-like effects 

The recovery of inverse-square gravity under three explicit assumptions (Theorem 10.2) 

demonstrates that the framework makes contact with observable physics. The identification of 

six categories of DEC-specific predictions (§13.2) provides falsifiable criteria distinguishing this 

approach from GR, entropic gravity, and causal set theory. 

The framework suggests that the applicability of differential calculus to physics is not a brute 

fact about reality but an emergent feature of regimes where distinguishability is dense enough, 

commitment dynamics vary slowly enough, and discrete jumps are fine-grained enough to be 

invisible. Where these conditions fail, the TPB formalism provides the replacement description. 

Whether nature actually implements this structure remains to be determined by experiment. 

What the present work establishes is that such an implementation is mathematically coherent and 

empirically viable—a proof of concept for treating the infrastructure of calculus as itself a 

physical phenomenon requiring explanation.. 
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Appendix A – Validity Regime of the Newtonian Limit 
 

We clarify the conditions under which the proportionality used in Theorem 10.1 is valid. The 

conversion from irreversible ordering Tᵢ to calibrated time t proceeds through Jacobians dTᵢ/dB 

and dB/dt = 1/κ. These factors may be absorbed into calibration provided they vary slowly over 

the spatial scale L of interest. 

 

Define the small parameters: 

 

εₐ := |(1/a)(da/dr)| L  ≪ 1 

ε_τ := |∇τ| L / τ ≪ 1 

 

When both conditions hold, lift strength variation and TPB gradients are subleading, and the 

effective acceleration scale satisfies: 

 

a_eff(r) ∝ |da/dr| + O(εₐ, ε_τ) 

 

This links Theorem 10.1 directly to Corollary 4.1 and specifies the regime of Newtonian validity. 

 

 

Appendix B – Constraints on the Constitutive Function 

ℱ(s,φ) 
 

The constitutive relation Jᵘ = ℱ(s,φ) ∇ᵘs is treated as the lowest-order, local, covariant term in a 

gradient expansion. 

 

Minimal constraints include: 

 

1. Positivity/Stability: 

ℱ(s,φ) ∂ᵘs Jᵘ ≥ 0 

 

2. Monotonicity in entropy: 

∂ℱ/∂s ≥ 0 

 

3. Locality and covariance: 

ℱ depends only on scalar fields s and φ at leading order. 
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These conditions restrict admissible forms of ℱ without fixing its detailed functional structure. 

 

 

Appendix C – Status of the Born Rule Scaling 
 

The first-passage race model introduced in §8.5 is an existence proof, not a uniqueness 

derivation. It demonstrates that irreversible TPB-style crystallisation dynamics can implement 

|ψ|² weighting. 

 

Quadratic weighting is singled out by: 

- Additivity under branch composition 

- Stability under coarse-graining 

- Normalisation under repeated branching 

 

No claim of uniqueness is made. A full microscopic derivation of hazard scaling λⱼ ∝ |ψⱼ|² is 

deferred. 

 

 

Appendix D – Relativistic Extension of the DEC Lift 
 

The DEC lift is formulated in emergent 3-space appropriate to dense-commitment rest frames. A 

relativistic extension may be obtained by promoting the lift to a spacetime-valued one-form: 

 

dXᵘ = Eᵘᵣ dTᵣ + Eᵘᵢ dTᵢ 

 

Lorentz covariance emerges in the dense-bit limit when causal constraints are imposed on Eᵘᵢ. 

This extension is deferred to future work. 

 

 

Appendix E – Strong-Field and r → 0 Behaviour 
 

As r → 0, the projection dTᵢ ≫ dTᵣ fails. Reversible ordering becomes significant, and 

differentiation curl Ω is no longer suppressed. 

 

This suggests a natural mechanism for modifying strong-field behaviour, potentially avoiding 

singular acceleration by redistributing ordering between channels. 
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Appendix F – Measure-Theoretic and Dimensional 

Clarifications 
 

The derivative D_B Q is understood as a Radon–Nikodym derivative of a jump measure with 

respect to the bit measure. Delta functions δ(T − Tⱼ) are distributions acting under integration 

over T. 

 

Dimensional summary: 

T, Tᵣ, Tᵢ, B: dimensionless 

κ: time 

𝐞ᵣ, 𝐞ᵢ: length 

φ: potential-like scalar 

ℓ(φ): length per ordering unit 
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