Dimensional Emergence Calculus: From
Informational Ordering to Newtonian
Gravity

Keith Taylor
VERSF Theoretical Physics Program

Abstract for General Readers

We take for granted that objects move smoothly through three-dimensional space as time flows
forward. But why three dimensions? Why does time flow at all? And why does gravity pull
things together with a strength that weakens as the square of distance?

This paper proposes that these familiar features of reality are not built into the universe from the
start. Instead, they emerge from something simpler: the accumulation of distinctions.

Imagine reality as a process of decisions. Before a quantum measurement, an electron might be
"here" or "there"—the distinction hasn't been made yet. When the measurement happens, the
universe commits to one option. We call each such commitment a "bit" of realised information.
Between these commitments, the universe explores possibilities through "ticks" of logical
ordering.

The ratio of ticks to bits—how much exploring happens before each decision—turns out to be
crucial. Where this ratio is moderate, things behave normally: time flows, objects move
smoothly, and physics works as expected. Where the ratio becomes extreme (near black holes, or
at the moment of quantum measurement), ordinary physics breaks down.

The central contribution of this paper is a new mathematical framework called Dimensional
Emergence Calculus (DEC). Standard calculus assumes continuous time and space already
exist; DEC shows how they can arise from a simpler two-dimensional "ordering space" that
tracks exploration and commitment separately. The key mechanism is the "lift"—a mathematical
map that converts steps in ordering space into movement through physical space. When this lift
has a particular geometric property (non-integrability, or "curl"), it generates forces. Objects
don't just move; they accelerate.

We show that when you set up DEC with minimal assumptions—the simplest possible rules
consistent with symmetry—inverse-square gravity emerges as a natural limit rather than an
independent postulate. The mathematics that Newton invented to describe gravity turns out to be



a special case of DEC, valid only when information is being processed smoothly and
continuously.

This matters because it suggests gravity isn't a fundamental force that needs its own explanation.
It's a natural consequence of how information organises itself into spatial structure. The paper
identifies specific conditions where gravity should deviate from Newton's law—providing
concrete predictions that future observations could test.

In essence: DEC reveals how the calculus of motion, three-dimensional space, and gravity may
all be what information looks like when there's enough of it, organised in the right way.

Abstract

We develop a differential calculus appropriate to frameworks in which time and space are not
fundamental but emerge from deeper informational structures. Starting from the Ticks-Per-Bit
(TPB) primitive—a ratio of causal ordering steps to irreversible distinguishability
commitments—we construct differential operators that reduce to standard calculus only in
appropriate coarse-grained limits. We then extend this to a two-channel ordering space (TPB?),
where reversible exploration and irreversible commitment constitute independent ordering
parameters. Overlap and quantum phase are modelled as a U(1) fiber bundle over this base
space, with connection curvature encoding interference geometry. The central construction is the
Dimensional Emergence Calculus (DEC), which provides a geometric "lift" mapping two-
dimensional ordering into three-dimensional spatial displacement. We demonstrate that the non-
integrability of this lift—the differentiation curl—generates force-like effects in emergent space.
As a concrete application, we show that inverse-square gravitational scaling follows under
minimal symmetry assumptions: radial alignment of the lift with a harmonic void field satisfying
Laplace's equation. The framework thus provides a falsifiable route from informational
foundations toward observable gravitational phenomenology, with explicit conditions under
which non-Newtonian corrections would arise.

Scope

This paper is a mathematical construction and consistency demonstration. Except where
explicitly stated (e.g., the three assumptions in §10), it does not assert unique microphysical
laws, only minimal structures sufficient to recover standard limits. The goal is to establish that a
coherent calculus exists in which time, space, and Newtonian gravity emerge from informational
ordering—mnot to claim that nature must implement this particular structure.
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1. Introduction

1.1 The Problem of Assumed Continuity

Standard differential calculus presupposes the existence of a continuous time parameter along
which physical quantities evolve smoothly. This assumption, inherited from Newton and
Leibniz, has proven extraordinarily successful across classical mechanics, electromagnetism, and
general relativity. Yet the assumption itself is never derived—it is simply posited as part of the
mathematical infrastructure.

Several lines of contemporary inquiry suggest this assumption may be contingent rather than
fundamental. Quantum gravity approaches frequently encounter discreteness at the Planck scale
[14, 15]. Information-theoretic reconstructions of quantum mechanics point toward
distinguishability as a primitive concept [10, 11, 12]. Black hole thermodynamics implies deep
connections between geometry, entropy, and information [6, 20, 21]. These developments invite
the question: can we construct a calculus that does not assume continuous time, but instead
derives temporal and spatial continuity as emergent phenomena?

1.2 The VERSF Framework

The Void Energy-Regulated Space Framework (VERSF) proposes that spacetime emerges from
a more primitive informational substrate characterised by two fundamental fields: the void field
¢ (representing proximity to the zero-entropy void substrate) and the entropy density field s
(representing realised distinguishability). In this framework, what we experience as continuous
space and time arises through the accumulation and organisation of distinguishability.

The present paper develops the mathematical machinery required to make this emergence
precise. We introduce a calculus based on ordering and commitment rather than space and time,
show how standard calculus emerges as a limiting case, and demonstrate that gravitational
phenomena arise naturally from the geometry of this deeper structure.

1.3 Overview

Section 2 introduces the primitive measures—ticks and bits—and defines the fundamental TPB
ratio. Section 3 constructs differential operators on these measures and establishes the chain rule
connecting them. Section 4 shows how ordinary time and the standard derivative d/dt emerge
through calibration. Section 5 presents a toy model illustrating the breakdown of standard
calculus at crystallisation events. Section 6 develops the covariant formulation suitable for field-
theoretic treatment. Section 7 extends to two-channel ordering (TPB?), distinguishing reversible
exploration from irreversible commitment. Section 8 models overlap and phase as a U(1) fiber
bundle over TPB2. Section 9 introduces the Dimensional Emergence Calculus proper, defining
the lift from ordering space to physical displacement. Section 10 recovers the Newtonian
inverse-square law under explicit assumptions. Section 11 summarises the integrated framework.
Section 12 discusses the relationship to classical calculus. Section 13 presents DEC-specific



predictions, discusses the deeper significance of treating calculus as a physical phenomenon, and
concludes.

1.4 Notation

|SymbolH Definition HFirst appears‘
|T HTick measure (causal ordering count) ”§2 ‘
|B HBit measure (irreversible commitments) ”§2 ‘
|r HTPB ratio: AT/AB (or dT/dB in continuum limit)”§2 ‘
T; HReversible ordering parameter ”§7 ‘
|Ti lereversible ordering parameter ”§7 ‘
|1< HCalibration constant (time per bit) ”§4 ‘
|(p HVoid field (proximity to zero-entropy substrate) ”§6 ‘
|s HEntropy density field ”§6 ‘
|A HU(I) connection on TPB? ”§8 ‘
|F HCurvature two-form of connection A ”§8 ‘
|x “Overlap—validity function ”§8 ‘
e, € HDEC lift vectors ”§9 ‘
|.Q HDifferentiation curl (lift non-integrability) ”§9 ‘

2. TPB Primitives and Measures

Along any physical history y through configuration space, we define two monotone measures
that capture distinct aspects of change.

Definition 2.1 (Tick measure). The tick measure T: y — Z> is a count of causal ordering steps.
Ticks establish the sequence in which events occur—they answer the question "what comes
before what?"—without themselves constituting irreversible change. Ticks may be thought of as
the minimal units of logical or causal precedence.

Definition 2.2 (Bit measure). The bit measure B: y — Z>o is a count of realised
distinguishability, or equivalently, of irreversible commitments. Each increment of B
corresponds to a crystallisation event—an irreversible transition from reversible superposition to
definite, irretrievable outcome (referred to as "Fold crystallisation" in the broader VERSF
framework). Bits answer the question "what has been decided?"

These measures satisty the following axioms:

Axiom 2.1 (Monotonicity). Both T and B are monotonically non-decreasing along any history y:



T(y(s1)) < T(y(s2)) and B(y(s1)) < B(y(s2)) for all s1 < s2
Axiom 2.2 (Ordering precedence). Each bit commitment requires at least one ordering step:
AB>1= AT >AB

Motivation (status of Axiom 2.2). Axiom 2.2 is taken as a definitional constraint on what we
mean by "ordering": a crystallisation event is an irreversible commitment that must be preceded
by at least one ordering step, otherwise commitment would occur without any causal precedence
structure. In this sense, T is not merely a counter of events but the minimal carrier of logical
precedence. Alternative conventions are possible—for example, allowing AB > 0 with AT =0
would correspond to modelling "instantaneous commitment" without antecedent ordering. Such
alternatives collapse the distinction between ordering and commitment and are therefore
excluded by construction in the present calculus.

Definition 2.3 (TPB ratio). The Ticks-Per-Bit ratio is defined as the finite-difference quantity:
1:=AT/AB for AB>1

This definition is canonically robust: it requires only that at least one bit has crystallised over the
interval in question. When bit formation is sufficiently dense that B can be approximated as
continuous, we pass to the continuum limit:

t=dT/dB

The continuum expression should be understood as a Radon-Nikodym derivative of the tick
measure with respect to the bit measure [17], valid when many bits crystallise over the scale of
interest. Formally, one may treat T and B as nondecreasing measures along histories; the
continuum expressions apply in regimes where coarse-graining renders B absolutely continuous
with respect to T (and vice versa on the relevant support), so that Radon-Nikodym derivatives
exist.

Proposition 2.1 (TPB bounds). By Axiom 2.2, the TPB ratio satisfies Tt > 1 everywhere.
Equality T = 1 represents maximal commitment efficiency (exactly one tick per bit). The limit t
— oo represents vanishing commitment rate.

The TPB ratio measures experienced time density: how many ordering steps are required to
realise one unit of distinguishability. It is not a universal constant but a local field that varies
with physical conditions:

e Low 7 (few ticks per bit): Distinguishability crystallises rapidly. Systems quickly commit
to definite outcomes. This characterises high-entropy-production regimes.

e Moderate t: Systems explore configuration space extensively before committing.
Reversible dynamics dominate, with occasional crystallisation events.



e T — oo A regime where commitment is arbitrarily suppressed relative to ordering. This
limit corresponds to perfect reversibility or, in gravitational contexts, the external
description of approach to a horizon where infalling information appears frozen.

3. TPB Difterential Operators

For any observable Q: y — R evaluated along a history y, we define two fundamental
derivatives.

Definition 3.1 (Tick-derivative). The tick-derivative of Q is:
D TQ:=dQ/dT
This measures the rate of change of Q per ordering step, irrespective of whether

distinguishability is being realised. When T is discrete, D T Q is defined as the forward
difference (discrete derivative operator):

D TQ:=Q(T+1)—Q(T)

Definition 3.2 (Bit-derivative). The bit-derivative of Q is:

D BQ:=dQ/dB

This measures the rate of change of Q per unit of irreversible commitment. In regimes where B is
discrete, DB Q is meaningful as a distribution (Dirac measure) concentrated on commitment
events; the continuum expression applies when bit formation is coarse-grained.

Explicitly, for discrete B with crystallisation events at ticks {Ti, Ta, ...}:

D BQ=ZX%;AQ;  &(T—Tj

where AQj= Q(Tj") — Q(Ty) is the jump at the j-th crystallisation.

Theorem 3.1 (TPB chain rule). The tick and bit derivatives are related by:

D TQ=(@B/T)-D BQ=(1/1)-D BQ

Proof- This follows directly from the chain rule for Radon-Nikodym derivatives. In the discrete
case, the relationship holds in the distributional sense: the tick-derivative is smooth between

crystallisation events and singular at them, with the singularity structure encoded by the
concentrated bit-derivative. m



Corollary 3.1. The tick-derivative is the more fundamental object: it captures change along the
causal sequence, while the bit-derivative captures change relative to what has been irreversibly
decided. The relationship between them is mediated by the local physics encoded in 7.

4. Emergence of Ordinary Time and d/dt

To recover standard calculus, we must connect the informational measures T and B to the
macroscopic time coordinate t that appears in laboratory physics.

Definition 4.1 (Calibration mapping). The calibration mapping relates bit measure to clock
time via:

dt=x-dB

where k € R+ is a calibration constant with dimensions of time per bit (interpreted as At =« AB
in the discrete regime, and dt = k dB in the coarse-grained limit where B is approximately
continuous). This constant maps increments of realised distinguishability to increments of clock
time.

The physical interpretation of k depends on the reference processes used for calibration. In
principle, « could be related to:

1. Atomic transitions: The frequency of a caesium hyperfine transition defines the SI
second. This implicitly sets a relationship between distinguishability-producing atomic
events and clock time.

2. Planck-scale physics: If bits correspond to Planck-scale degrees of freedom, k could be
related to the Planck timet P~=5.4 x 107 s.

3. Thermodynamic calibration: In statistical mechanical terms, « relates entropy
production (in natural units) to elapsed time.

For the purposes of this framework, we treat k as an empirical constant that encodes how the
informational substrate interfaces with macroscopic measurement.

Theorem 4.1 (Emergence of d/dt). The standard time derivative emerges as a reparameterised
tick-derivative:

d/dt = (1/x) - d/dB = (t/x) - D_T

Proof. From dt = k dB, we have d/dt = (1/x) d/dB. Applying the TPB chain rule (Theorem 3.1) in
reverse: d/dB =1t - d/dT =1 - D_T. Substitution yields the result. m

Corollary 4.1 (Validity conditions). The emergence of d/dt as a well-defined operator requires:

10



(1) Bit formation is dense: |AB| >> 1 over the scale of interest
(i1) TPB varies slowly: |V1| - L « 1 for characteristic length L
(i11) Jumps are sub-resolution: max|AQ;| << (Q)

When these conditions fail, the ordinary time derivative d/dt loses meaning, and the more
fundamental TPB calculus must be employed.

5. Breakdown of Standard Calculus: A Crystallisation
Model

To illustrate when and why standard calculus fails, consider a system in which an observable Q
evolves continuously between discrete crystallisation events but exhibits discontinuous jumps
when a bit crystallises.

Model specification. Let bit-formation events occur at ticks Ti, T2, Ts, ... with AB =1 at each
event. Define the inter-crystallisation intervals [; := (Tj, Tj1).

Proposition 5.1 (Inter-event dynamics). On each interval I;:

(1) The bit measure is constant: dB =0

(i1) The tick measure advances: dT >0

(ii1) The observable evolves continuously: D T Q is well-defined and finite
Proposition 5.2 (Crystallisation dynamics). At each crystallisation event T;:
(1) A unit of distinguishability is committed: AB =1

(i1) The observable exhibits a discrete jump: AQ;= Q(T;") — Q(Ty")

(ii1) The bit-derivative is concentrated at T; with weight AQ; (see §3)

Theorem 5.1 (Failure of standard calculus). Under the calibration dt =« dB:
(i) Between crystallisation events: dt = 0, hence dQ/dt is undefined (or infinite)

(i1) At crystallisation events: dt = k, dQ = AQ;, hence dQ/dt = AQyx (a delta function in the
continuum idealisation)

11



Proof- Part (i): Since dB = 0 on I;, we have dt = k dB = 0. Any nonzero dQ yields dQ/dt = dQ/0,
which is undefined. Part (i1): At T;, AB = 1 implies At =k, while AQ = AQ;. The ratio is well-
defined but concentrated. m

Corollary 5.1. Standard calculus presupposes continuous bit formation. When distinguishability
is realised in discrete events, the continuous time parameter t becomes ill-defined, and dQ/dt fails
as a mathematical object.

Remark 5.1 (Hybrid dynamical system). The correct mathematical description in the sparse-bit
regime is a hybrid dynamical system [1, 2]: continuous evolution in T governed by D T Q on

each [, punctuated by a jump map ®;: Q(T;") = Q(T;") at B events. This is a piecewise-smooth
process in T with a jump measure supported on {T;}.

6. Covariant Formulation

To connect TPB calculus to field theory and general-relativistic contexts, we promote ticks and
bits from measures along worldlines to spacetime currents.

Definition 6.1 (Tick current). The tick current JU is a vector field representing the flow of causal
ordering through spacetime.

Definition 6.2 (Bit current). The bit current J** is a vector field representing the flow of realised
distinguishability.

In general, both currents satisfy balance laws rather than strict conservation.

Axiom 6.1 (Current balance). The currents satisfy:

VuJu=xXT

Vulu=% B

where X T and X B are source terms representing tick and bit creation or annihilation. Such
sources could arise from measurement events, decoherence processes, or other commitment-

generating phenomena.

Definition 6.3 (Closed regime). In the closed/coarse-grained regime analysed in this paper, we
assume:

> T=0,% B=0

This yields the conservation laws:

12



V ule=0
V pJe=0

These assert that, in the regime of interest, ordering and distinguishability are neither created nor
destroyed but only redistributed through spacetime.

Definition 6.4 (TPB constitutive law). The tick current couples to the VERSF fields via:
Jv=As, @) Vs

where s is the entropy density, ¢ is the void field, and & R x R — R is a constitutive function.
We treat this as the lowest-order, local, entropy-aligned constitutive relation in a
hydrodynamic/near-equilibrium gradient expansion; higher-derivative and nonlocal corrections
are possible but are neglected here. The sign convention depends on whether J represents
ordering flow toward increasing s or its negative; we absorb this choice into the definition of &

Constraints and status of % In this paper (s,0) is treated as a phenomenological transport
function to be constrained by stability, symmetry, and ultimately data. Minimal requirements in
the near-equilibrium/local regime include: (1) scalar dependence & = Z(s,p) to preserve
covariance; (ii) locality and regularity (no higher-derivative dependence at leading order); and
(ii1) sign/positivity chosen so that ordering flow aligns with the entropy-gradient convention
adopted. The Newtonian-limit recovery in §10 is driven by the DEC lift structure and harmonic
¢ assumption; it does not require a specific functional form of & at leading order, though & will
matter for dynamical coupling and strong-field regimes.

Definition 6.5 (Comoving densities). In a comoving frame with four-velocity u*, define scalar
densities:

p T:=—uplJv
p B:=—u pJbu

These represent the local density of ordering and commitment as experienced by a comoving
observer.

Definition 6.6 (Local TPB field). The covariant TPB field is:
1(x)=p T/p B

This is the spacetime scalar generalisation of AT/AB, characterising local informational
dynamics at each event.

13



7. Two-Channel Ordering: The TPB? Base Space

The single TPB ratio captures the relationship between ordering and commitment but does not
distinguish between different modes of ordering.

Definition 7.1 (Reversible ordering). The reversible ordering parameter T, € R>o measures
exploration of configuration space without commitment. This corresponds to quantum
superposition, thermal fluctuation, or any process that could in principle be reversed without
thermodynamic cost.

Definition 7.2 (Irreversible ordering). The irreversible ordering parameter T; € R>o measures
advancement along the commitment axis. Each increment of T; corresponds to an approach

toward crystallisation—a narrowing of possibilities that cannot be undone.

Remark 7.1. T; is distinct from the bit measure B: T; counts ordering steps along the
commitment direction, while B counts completed commitments. The relationship is:

dB =A{(Ti) dTi

where f: R>o — R>o encodes the commitment rate (a hazard function).

Definition 7.3 (TPB? base space). The TPB? base space is the two-dimensional manifold:

M = {(T:, Ti) € R>0 X R>o}

equipped with the natural smooth structure inherited from R2.

Proposition 7.1 (Minimality). TPB? is the minimal extension that separates reversible
exploration from irreversible approach-to-commitment. Two channels are the minimal structure
that permits independent control of:

(1) Reversible overlap/phase geometry

(i1) Irreversible commitment dynamics

without conflating them into a single parameter. Additional channels could capture finer
distinctions but are not required at this resolution.

Proposition 7.2 (Physical correspondence). The two-channel structure corresponds to distinct
aspects of quantum evolution:

(1) Unitary evolution (Schrédinger equation): advances T, while leaving T; unchanged

(i1) Measurement/decoherence: advances T; (and eventually B) while collapsing explored
configuration space

14



8. Overlap as a U(1) Fiber Bundle over TPB?

Quantum systems in superposition exhibit overlap between configuration branches, manifesting
as interference. We model this as a U(1) fiber bundle over TPB2.

8.1 The Bundle Structure

Definition 8.1 (Phase bundle). The phase bundle is a principal U(1) bundle [3, 4, 5]:
mP—-M

where M = TPB? is the base space and each fiber n~'(p) = U(1) = S' represents the continuous
phase degree of freedom associated with reversible overlap.

Proposition 8.1 (Separation of structure). The bundle construction separates:
(1) Ordering information: position (T, T;) on the base space M
(i1) Phase information: position 6 € [0, 27) on the fiber U(1)

This reflects the physical distinction: ordering determines what possibilities exist, while phase
determines how they interfere.

8.2 Connection and Parallel Transport

Definition 8.2 (Phase connection). A U(1) connection on P is a 1-form on M:
A= Ar(Tr, T,) dTr + Ai(Tr, T.) dT,

where A, Ai: M — R are smooth functions encoding phase advancement per unit of reversible
and irreversible ordering, respectively.

Definition 8.3 (Parallel transport). For a path y: [0,1] — M, parallel transport induces a phase
shift:

0(y) =00 +]_y A =00+ Jo' [A(Y(5)) ¥(s) + Ai(Y(s)) ¥i(5)] ds

This captures phase accumulation along a history parameterised by ordering measures.

15



8.3 Curvature and Interference

Definition 8.4 (Curvature). The curvature two-form is:

F :=dA = (0A/0T; — 0A,/0Ti) dT: A dT;

Theorem 8.1 (Path dependence). For two paths y1, y2: [0,1] — M with the same endpoints:
0(y1) = 0(y2) =] ZF

where X is any surface bounded by y1 — ya.

Proof. Stokes' theorem. m

Corollary 8.1. Nonzero curvature F # 0 implies path-dependent phase evolution, yielding

observable interference effects. Vanishing curvature F = 0 implies phase depends only on
endpoints (flat overlap geometry).

8.4 The Overlap-Validity Function

Definition 8.5 (Overlap validity). The overlap-validity function y: M — [0,1] tracks the degree
to which superposition remains intact:

ey = 1: Fully reversible regime; U(1) fiber description applies

e 1y — 0: Approaching crystallisation; phase becoming undefined

e = 0: Post-commitment; definite branch with no remaining overlap
Axiom 8.1 (Monotone decoherence). We impose:

Oy/OT; <0

This captures the monotone loss of coherence under irreversible ordering: advancement toward
commitment diminishes superposition.

8.5 Complex Amplitudes and the Born Rule

Proposition 8.2 (Geometric interpretation of amplitudes). Complex quantum amplitudes
decompose as:

v = y| - e{ib}
where:

e |y|: Magnitude governed by TPB/BCB constraints on distinguishability distribution
e 0: Phase; position on the U(1) fiber

16



Complex numbers are thus reinterpreted geometrically as the minimal structure to represent
overlap over TPB? ordering space.

Born weighting and first-passage realisation (model statement). We adopt |y|* as the
operational probability weight because it is a measure consistent with stability under coarse-
graining and consistent composition in standard quantum practice; in the present paper we treat
this as a structural requirement on any admissible probability assignment and defer a full
derivation to future work.

We provide a concrete dynamical realisation compatible with TPB commitment. Consider
competing branches j with complex amplitudes y;. Model crystallisation as a first-passage (race)
process [23] in which each branch produces a record at a stochastic hazard rate A; satisfying A;
|yjl>. If the record time in branch j is exponentially distributed, T; ~ Exp(A;), then the probability
that branch j wins the race is:

P(] WinS) = Xj / 2k Xk = |\|lj|2 / 2k |\|lk|2

This yields the Born frequencies as an emergent consequence of first-passage record formation.
We emphasise that this is a minimal mechanism-level model (not a unique derivation): it shows
that TPB-style crystallisation dynamics can implement |y|* weighting through irreversible record

competition, while the deeper origin of the A; < |y;]? scaling can be anchored either in an
entropy/composability argument or in a more microscopic TPB hazard derivation.

9. Dimensional Emergence Calculus (DEC): The Lift

We now arrive at the central construction: the Dimensional Emergence Calculus, which maps
TPB? into physical displacement.

9.1 The Differentiation Lift

Definition 9.1 (Lift vectors). The lift map is specified by a pair of vector fields on physical 3-
space, parameterised by TPB? coordinates:

e.: M — R? (reversible lift vector)
ei: M — R (irreversible lift vector)

Definition 9.2 (Emergent displacement). The displacement generated by an infinitesimal step
in TPB? is:

dx =e, dT; + e; dT;

17



This is the DEC analogue of dx = v dt in classical mechanics, with the "velocity" replaced by
two lift vectors and "time" replaced by the two-dimensional ordering space.

9.2 Physical Interpretation

Proposition 9.1 (Lift semantics).

(1) e (reversible lift): Displacement generated by exploratory ordering. This corresponds to
motion that does not commit distinguishability—fluctuations, quantum spreading, reversible
dynamics.

(i1) e; (irreversible lift): Displacement generated by commitment ordering. This corresponds to

motion driven by approach to crystallisation. In gravitational contexts, e; aligns with the
direction of "falling."

9.3 The Differentiation Curl

Definition 9.3 (Differentiation curl). The non-integrability of the lift is captured by:
Q :=0ei/0T, — 0e,/0T; € R?

This 3-vector measures the failure of the lift to define a consistent coordinate transformation
from TPB? to physical space.

Definition 9.4 (Lift 1-form). Define the R3-valued 1-form on TPB?:

a:=e dT; + e dT;

Its exterior derivative is:

do = (0ei/0T; — de,/0T;) dT: A dT; = Q dT; A dT;

Theorem 9.1 (Force generation). When Q # 0:

(i) Displacement depends on the path through TPB?2, not just endpoints

(i1) For a closed loop v = 0X bounding a region X in TPB?, the net displacement is:
¢ (Xt a=[[ Tda=[[ ZTQdT. AdT;

(ii1) Force-like effects emerge in physical space

Proof- Part (ii) is Stokes' theorem for R3-valued forms. The path dependence in (i) is the
contrapositive: if displacement were path-independent, then $o. = 0 for all loops, implying da. = 0

18



and hence Q = 0. Part (iii) follows from interpreting path-dependent displacement as work done
by an effective force field. m

Corollary 9.1. The differentiation curl Q is the DEC mechanism for generating forces from
geometry, analogous to spacetime curvature in general relativity.

9.4 VERSF Field Determination

Definition 9.5 (Field-lift coupling). The lift vectors are determined by the VERSF fields (¢, s):

ei=a(p, s) 0
e.=b(p,s) m
where:

e a,b: R xR — R are scalar lift-strength functions
e 1, M € S? are unit vectors encoding lift direction

Axiom 9.1 (Canonical alignment). In the simplest realisation:
(1) ei Il Vo: Commitment moves toward lower void field

(ii) e; L Vo: Exploration is tangent to void-field isosurfaces

10. The Newtonian Limit

We demonstrate that DEC recovers Newtonian gravity under explicit assumptions.
10.1 Assumptions

The derivation rests on three explicit assumptions:

Assumption 1 (Radial alignment). The irreversible lift vector aligns with the radial void
gradient:

e ll Vo = ¢'(r) £
Assumption 2 (Linear coupling). The lift strength depends linearly on the void field:

a(p) = ko, k € R+
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Assumption 3 (Harmonic void field). The void field satisfies Laplace's equation in vacuum:
V2o =0

These represent the simplest choices consistent with spherical symmetry and standard field-
theoretic structure.

10.2 Setup: Spherically Symmetric Void Field

Consider a static, spherically symmetric void field ¢(r) centred on a mass M, where r = IxI.
Define:

o Radial unit vector: ¥ = x/r
e Void gradient: Vo(r) = ¢'(r) F

In the spherically symmetric Newtonian configuration, i = ¥ and mi spans the transverse tangent
plane (any orthonormal basis of vectors perpendicular to F).

10.2a Matter Sourcing of the Void Field (Required Extension)

The vacuum condition V?@ = 0 used here is sufficient to recover inverse-square scaling outside
sources, but a complete gravitational theory requires a source equation relating ¢ to
matter/energy distribution. The natural analogue is a Poisson-type relation, schematically V2o =
S(p, ...), where S encodes how matter couples to the void field in the effective limit. Determining
S (and its relativistic extension) is beyond the scope of this paper and is deferred to future work;
the present result should be read as a vacuum-limit consistency demonstration: if ¢ is harmonic
outside sources and the DEC lift aligns radially, inverse-square scaling follows.

10.3 Lift Configuration

Under Assumption 1:

e=a(p)F

where a(¢p) has dimensions [length - (TPB? ordering)']. The reversible lift spans transverse
directions:

e.lr
10.4 Newtonian Regime

Definition 10.1 (Newtonian regime). The Newtonian regime is characterised by:

(1) dTi > dT: over macroscopic scales (commitment dominates exploration)
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(i1) Motion is predominantly radial: dx = e; dT;

In this regime, physical radial velocity is proportional to the lift strength a(o).
10.5 Emergent Acceleration

Definition 10.2 (Effective acceleration). In the coarse-grained Newtonian regime, the emergent
acceleration is defined as the second derivative of radial coordinate with respect to calibrated
time t:

a_eff .= d*r/dt?

Theorem 10.1 (Acceleration from lift variation). The effective acceleration scale is:
a_eff(r) o< 10ei/orl = |d[a(¢(r))]/dr]

Proof sketch. From dx = e; dTj, the radial velocity is dr/dT; = a(¢(r)). The acceleration in T; is:
d?r/dT? = (da/dr)(dr/dTi) = a'(r) - a(r)

Converting to t via dt =k dB and dB = f dT;, the Jacobians dTi/dB and dB/dt are absorbed into
the proportionality constant. Up to multiplicative factors absorbed into calibration—where a(r)
varies slowly in the near-Newtonian regime—the acceleration scale tracks |da/dr|. m

Role of the differentiation curl in the Newtonian regime. In full DEC, force-like effects are
associated with lift non-integrability Q = 0e;/0T; — de./0T;, which measures path dependence in
TPB? The Newtonian recovery in §10 is obtained in a restricted regime where (i) motion is near-
radial and (i1) ordering is dominated by the commitment channel dT; > dT;, so the dynamics
effectively project onto a one-dimensional slice in which de./0T; and transverse path effects are
suppressed. In this limit, the dominant "force proxy" reduces to the spatial variation of the
irreversible lift 0ei/Or. Away from this regime—when reversible—irreversible coupling is
significant or when paths explore nontrivial loops in TPB>—the full Q term contributes and can
generate additional non-Newtonian accelerations.

10.6 Inverse-Square Scaling

Under Assumption 2:

a(p) = ko = a_eff(r) < k|o'(r)|

Under Assumption 3, we use Laplace's equation. We emphasise that Laplace's equation is not
derived here, but adopted as the simplest vacuum condition consistent with locality and spherical

symmetry. The spherically symmetric solution is:

o(r)=—GM o/r+¢ ©
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where M_ ¢ is the "void charge" of the central mass ("void charge" here denotes the coupling
strength of matter to the void field, not a new conserved quantity) and ¢ oo is set to zero by
reference choice. Formally, M_¢ is defined as the coefficient of the 1/r term in the exterior

solution for @, and is determined by the matter—void coupling in the sourced field equation (see
§10.2a).

Theorem 10.2 (Inverse-square law). Under Assumptions 1-3:
a eff(r) o< 1/12

Proof. From ¢(r) = —GM_o/r:

¢'(r) = GM_o/r?

Therefore a_eff(r) o |¢'(r)| = GM_¢/r>. m

10.7 Calibration to Newton's Constant

Proposition 10.1. Matching to observed gravity g = GM/r? requires:
M oxM

with proportionality fixed by calibration to G. In the simplest identification, M_¢ = M and the
coupling k absorbs remaining calibration factors.

10.8 Conditions for Non-Newtonian Corrections

Theorem 10.3 (Correction conditions). Departures from inverse-square gravity arise when:
(1) Non-harmonic void field: V?¢ # 0 implies ¢(r) # —GM_¢/r, hence ¢'(r) # 1/r*

(i1) Nonlinear lift coupling: a(¢) = ko + ko@? + --- introduces higher-order terms:

a_eff o« |ko' + 2k200¢" + -+

(i11)) Entropy modulation: a(o,s) = k(¢)-f(s) implies entropy gradients modulate gravitational
strength (potentially producing MOND-like phenomenology [19] in low-acceleration regimes)

(iv) TPB? curvature: Significant 0e,/0T; contributions add force-like terms from reversible-
irreversible coupling

These conditions provide falsifiable predictions.
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11. Integration: The Complete Framework

The constructions combine into a unified architecture:

| Layer H Object H Role ‘
|TPB2 base HM = (T, T) HTwo-channel ordering manifold ‘
|U(1) fiber HO € S! HPhase/overlap geometry ‘
|C0nnecti0n HA = A, dT; + A; dT; HGoverns phase evolution ‘
|Curvature HF =dA HEncodes interference geometry ‘
|Overlap validity HX M — [0,1] HTracks superposition status ‘
|DEC lift H(er, e):M— R xR? HMaps ordering to displacement ‘
|Diff. curl HQ =0{T.}e — 0{Ti}e; HGenerates force-like effects ‘
|VERSF fields H((p, S) HDetermine lift and connection ‘

Theorem 11.1 (Coarse-grained limits). In the regime where bit formation is dense and TPB
varies slowly:

(1) d/dt emerges as reparameterised tick-derivative (§4)
(i1) Classical mechanics emerges from differentiation curl (§9)
(i11) Newtonian gravity emerges from harmonic void field (§10)

Outside this regime, the full TPB¥DEC structure is required.

12. Relationship to Classical Calculus
12.1 What TPB2-DEC Adds to Classical Calculus

Classical calculus provides dx = v dt, turning an abstract parameter t into spatial displacement.
However, it does not explain why space or time exist, why motion is continuous, or what t
represents physically—these are assumed infrastructure.

TPB2-DEC operates at a deeper level, describing how continuous 3D motion arises from a 2D
informational substrate via:

dx =e, dT; + e; dT;
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The ordering variables (T, T;) are not spatiotemporal but informational. Continuous motion
emerges through integration, with the lift vectors encoding how ordering steps generate physical
displacement.

12.2 The Role of Curvature

Just as spacetime curvature in GR manifests as gravity, lift non-integrability Q manifests as
force-like effects. Geometry explains why motion deviates from straight-line behaviour.

12.3 The Hierarchy

TPB2-DEC: Ordering-based calculus with emergent dimensionality
Standard calculus: Coarse-grained limit with continuous time
Newtonian mechanics: Forces from spatial potential variation
General relativity: Spacetime curvature effects

b

Each emerges from the one below through limiting procedures.
12.4 Summary

Standard calculus: language of motion within space.

TPB2-DEC: language of how space-like continuity emerges from informational ordering.

13. Discussion and Conclusions
13.1 Summary of Results

1. TPB primitives (§2): Ticks and bits as fundamental measures; T = AT/AB characterises
local dynamics with continuum limit dT/dB when bits are dense.

2. TPB operators (§3): D T and D B as fundamental derivatives with chain rule relating

them through .

Time emergence (§4): d/dt = (t/x)D_T under validity conditions.

Calculus breakdown (§5): Hybrid dynamical system in sparse-bit regime.

Covariant formulation (§6): Balance laws for currents; constitutive relation as lowest-

order gradient expansion.

TPB? structure (§7): Minimal two-channel separation of reversible/irreversible ordering.

7. U(1) bundle (§8): Phase geometry with curvature encoding interference; overlap-validity
tracking decoherence.

8. DEC lift (§9): Mapping from TPB? to R?; differentiation curl generating forces.

wnhkw

2
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9. Newtonian limit (§10): 1/r* from three explicit assumptions; conditions for corrections
identified.

13.2 Predictions and Falsifiability

The DEC framework makes predictions that are distinct from those of general relativity,
quantum field theory, causal set theory, and entropic gravity. The key distinguishing feature is
that DEC ties force-like behaviour to path dependence in ordering space (TPB?), not just to
metric potentials or local field values. The combination of (i) two-channel ordering as a base
space, (ii) phase as a U(1) fiber over that base rather than over spacetime, and (iii) force as non-
integrability of a lift from ordering space into R? produces "ordering-history" effects that are not
automatic in other frameworks.

13.2.1 Path-dependent phases from ordering history

In standard quantum mechanics, phase differences depend on action along spacetime paths (and
gauge fields), but the "clock" is coordinate time. In DEC, phase lives on a U(1) fiber over (T,
Ti), so phase shifts can depend on how much reversible exploration versus irreversible
commitment occurred along the way—even for paths with the same spacetime endpoints.

Distinctive signature: Interference fringes that shift when one changes the
decoherence/commitment profile of one interferometer arm (altering T; history) while keeping
classical path length and elapsed time the same. This is not a standard decoherence effect (which
destroys interference); it is a phase shift that preserves coherence but modifies the fringe pattern.

13.2.2 Forces from reversible—irreversible coupling (the Q term)

In the Newtonian limit (§10), the differentiation curl = 0e;/0T; — de./0T; was suppressed by the
dT; > dT.; projection. In general, however, nonzero Q creates force-like effects that are distinct
from "gravity from a potential" or "curvature from stress-energy." These are forces arising from
ordering non-integrability.

Distinctive signature: Small additional accelerations that correlate with changes in local
commitment dynamics (decoherence rate, entropy-production environment), not only with mass
distribution. In other words: identical mass geometry but different "commitment profile" yields
slightly different dynamics. This is testable in principle by comparing free-fall trajectories in
environments with different decoherence rates.

13.2.3 Environment-linked deviations from the equivalence principle

General relativity's universality of free fall (independence of composition and environment) is
extremely strict. DEC can reproduce it in the coarse-grained limit, but it provides a clear
mechanism for controlled violations when:

e The lift depends on both @ and s (entropy field), so that a(o,s) # a(¢) alone
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o () effects become appreciable (significant reversible—irreversible coupling)
e tvaries rapidly (sparse-bit, near-horizon, or strong-gradient regimes)

Distinctive signature: A small, regime-limited equivalence principle violation that tracks entropy
gradients or decoherence rate, not composition per se. This is not a claim that EP is violated
generally; it is a candidate falsifiable corner-case in specific high-gradient or low-commitment-
density environments.

13.2.4 Calculus breakdown criterion

Many frameworks invoke discreteness at the Planck scale, but DEC provides a sharp operational
criterion for when standard calculus fails:

Standard d/dt calculus is valid only when: (i) bit formation is dense, (ii) T varies slowly, and (iii)
jumps are sub-resolution.

This yields specific breakdown predictions in "commitment-sparse" conditions.

Distinctive signature: Measurable non-smooth (jump-like) behaviour in effective dynamics near
crystallisation events, where the correct description is a hybrid dynamical system (continuous in
T, discontinuous in B). Other frameworks mention collapse or decoherence, but DEC ties it to a
replacement of calculus itself—the ordinary differential equation description fails and must be
replaced by the TPB formalism.

13.2.5 Strong-field structure: multiple channels for non-Newtonian corrections

In GR, deviations from Newtonian gravity arise from metric curvature. In MOND, they arise
from modified dynamics at low acceleration. In entropic gravity, they arise from modified
information-geometry relations. DEC can produce modified gravity through at least three distinct
mechanisms:

(1) ¢ deviates from harmonic (non-Laplacian void field in strong-field or boundary regions)

(1) a(@,s) becomes nonlinear (higher-order lift coupling)

(ii1) Q becomes non-negligible (reversible—irreversible mixing)

Distinctive signature: A family of deviations where the shape of corrections is linked to ordering
geometry (TPB? coupling structure), not just to acceleration scale or metric potentials. The

different mechanisms produce different correction profiles, potentially distinguishable through
precision gravitational measurements.
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13.2.6 Horizon behaviour

As T — oo near horizons, the relationship between ordering and commitment breaks down in a
specific way: ordering continues indefinitely while commitment freezes from the external
perspective. This suggests regimes where the GR continuum description may be insufficient.

Distinctive signature: Modified near-horizon physics where the T — oo limit produces specific
predictions for information flow and effective dynamics that differ from standard GR horizon
thermodynamics.

Summary: What makes these predictions DEC-specific

Some other frameworks can mimic individual effects above. What is distinctive about DEC is
the combination:

e Two-channel ordering (T:, Ti) as a base space
e Phase as a U(1) fiber over that base (not over spacetime)
o Force as non-integrability of a lift from ordering space into R?

This trio produces ordering-history effects—dependence on the path through (T, T;), not just
through spacetime—that are not automatic in GR, QFT, causal sets, or entropic gravity.

13.3 Relationship to Other Approaches

Shared features with:

o Information-theoretic QM reconstructions [10, 11, 12, 13] (distinguishability primitive)
o Causal set theory [14, 15, 16] (ordering over geometry)

e Entropic gravity [6, 7, 8, 9] (thermodynamic-geometric connection)

e Shape dynamics [22] (3D over 4D primacy)

Distinguished by: explicit two-channel structure and geometric lift mechanism.
13.4 Open Questions

VERSF field dynamics: equations for ¢ and s, matter coupling

Source terms: physical interpretation of non-zero X T, X B

QFT extension: infinite degrees of freedom

Cosmology: large-scale structure, early universe, dark sector
Experimental signatures: laboratory tests of discrete-commitment structure

M

Strong-field regime (r — 0). The present Newtonian recovery concerns the exterior/vacuum
limit and does not address the inner/strong-field behaviour as r — 0. In DEC terms, the strong-
field regime is precisely where (i) the harmonic approximation for ¢ may fail, (i1) entropy
dependence in the lift a(¢,s) may become dominant, and (iii) TPB? non-integrability © may no
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longer be suppressed by the dT; > dT; projection. Whether this structure regularises the classical
singularity or reproduces it depends on the sourced field equation for ¢ and the high-gradient
behaviour of the lift functions. We note that Penrose [18] has proposed gravity-induced state
reduction as a mechanism linking gravitational physics to quantum measurement—a connection
that resonates with the TPB crystallisation dynamics developed here; detailed comparison is
deferred to future work.

13.5 The Deeper Significance: Calculus as Physical Phenomenon

The core contribution of DEC is that it treats calculus itself as a physical phenomenon rather than
assumed mathematical infrastructure.

Standard physics uses differential calculus to describe how things change—dx/dt, oy/ot, and so
on. But this presupposes that continuous time and space already exist. Newton and Leibniz gave
us the language of motion; they did not explain why that language applies to reality.

DEC operates one level deeper. It asks: what has to be true for continuous change to be possible
at all? And it answers: there must be enough distinguishability, accumulated densely enough,
with slowly varying commitment dynamics. When those conditions hold, standard calculus
emerges (Theorem 4.1, Corollary 4.1). When they fail, you need the more primitive TPB
formalism.

A genuine level-shift. General relativity made spacetime dynamic—geometry responds to
matter. But spacetime remains fundamental infrastructure. DEC makes spacetime derived—it
emerges from the organisation of ordering and commitment. The continuous manifold we
integrate over is not given; it is built.

The lift mechanism. This is where emergence becomes concrete. You have a 2D informational
space (reversible exploration T, irreversible commitment T;). You have a map—the lift—from
that space into physical displacement. The geometry of that map, specifically whether it is
integrable, determines whether forces exist. Non-integrability of the lift is force, in the same
sense that curvature of spacetime is gravity in GR. But now the base manifold is informational,
not spatiotemporal.

This architecture delivers three things simultaneously:

1. Unification of scale. The same framework describes both the quantum regime (where phase
geometry over TPB? matters, where crystallisation events are discrete) and the classical regime
(where coarse-graining yields standard calculus). The quantum-to-classical transition is not a
mystery requiring interpretation—it is the validity conditions of §4 being satisfied or violated.

2. Falsifiability with teeth. Because standard physics is derived as a limit, we know exactly
where it should break down: sparse commitment, rapid t variation, significant reversible—
irreversible coupling. These are not vague gestures toward "Planck-scale effects"—they are
operational criteria (§5, §13.2.4) that specify when the hybrid dynamical system description must
replace ordinary differential equations.
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3. Gravity without gravity. The framework does not postulate a gravitational force or field as a
primitive. It postulates informational ordering, a lift map, and minimal symmetry assumptions
(§10.1). Inverse-square attraction falls out as a theorem (Theorem 10.2). This suggests gravity is
not a thing to be explained but a pattern that emerges when information organises itself spatially
through the void field.

The deepest implication. The reason physics is describable by differential equations may not be
that reality is fundamentally continuous. It may be that we only perceive the regimes where
distinguishability is dense enough to make continuity a good approximation. DEC provides the
mathematical framework for asking—and potentially answering—what lies beneath.

13.6 Conclusion

Dimensional Emergence Calculus provides a mathematical framework in which continuous
three-dimensional space, ordinary differential calculus, and Newtonian gravity all emerge from a
two-dimensional informational ordering substrate. The key constructions are:

o TPB primitives that separate ordering (ticks) from commitment (bits)

o Two-channel extension (TPB?) distinguishing reversible exploration from irreversible
approach-to-commitment

o U(1) phase geometry over ordering space rather than spacetime

o The differentiation lift mapping ordering increments to physical displacement

o Non-integrability () as the mechanism generating force-like effects

The recovery of inverse-square gravity under three explicit assumptions (Theorem 10.2)
demonstrates that the framework makes contact with observable physics. The identification of
six categories of DEC-specific predictions (§13.2) provides falsifiable criteria distinguishing this
approach from GR, entropic gravity, and causal set theory.

The framework suggests that the applicability of differential calculus to physics is not a brute
fact about reality but an emergent feature of regimes where distinguishability is dense enough,
commitment dynamics vary slowly enough, and discrete jumps are fine-grained enough to be
invisible. Where these conditions fail, the TPB formalism provides the replacement description.

Whether nature actually implements this structure remains to be determined by experiment.
What the present work establishes is that such an implementation is mathematically coherent and
empirically viable—a proof of concept for treating the infrastructure of calculus as itself a
physical phenomenon requiring explanation..
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Appendix A — Validity Regime of the Newtonian Limit

We clarify the conditions under which the proportionality used in Theorem 10.1 is valid. The
conversion from irreversible ordering T; to calibrated time t proceeds through Jacobians dTi/dB
and dB/dt = 1/x. These factors may be absorbed into calibration provided they vary slowly over
the spatial scale L of interest.

Define the small parameters:

€ :=|(1/a)(da/dr)| L <1
et =|Vi]L/1«K 1

When both conditions hold, lift strength variation and TPB gradients are subleading, and the
effective acceleration scale satisfies:

a_eff(r) « |da/dr| + O(ea, € _T)

This links Theorem 10.1 directly to Corollary 4.1 and specifies the regime of Newtonian validity.

Appendix B — Constraints on the Constitutive Function
H(s,0)

The constitutive relation J* = Zs,p) V's is treated as the lowest-order, local, covariant term in a
gradient expansion.

Minimal constraints include:

1. Positivity/Stability:
Hs,0) 0's J' >0

2. Monotonicity in entropy:
0F10s >0

3. Locality and covariance:
Z depends only on scalar fields s and ¢ at leading order.
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These conditions restrict admissible forms of & without fixing its detailed functional structure.

Appendix C — Status of the Born Rule Scaling

The first-passage race model introduced in §8.5 is an existence proof, not a uniqueness
derivation. It demonstrates that irreversible TPB-style crystallisation dynamics can implement
|y|* weighting.

Quadratic weighting is singled out by:

- Additivity under branch composition

- Stability under coarse-graining
- Normalisation under repeated branching

No claim of uniqueness is made. A full microscopic derivation of hazard scaling A; & |y;? is
deferred.

Appendix D — Relativistic Extension of the DEC Lift

The DEC lift is formulated in emergent 3-space appropriate to dense-commitment rest frames. A
relativistic extension may be obtained by promoting the lift to a spacetime-valued one-form:

dXv = Ev. dT; + Ev dT;

Lorentz covariance emerges in the dense-bit limit when causal constraints are imposed on Ev;.
This extension is deferred to future work.

Appendix E — Strong-Field and r — 0 Behaviour

As r — 0, the projection dT; > dT; fails. Reversible ordering becomes significant, and
differentiation curl Q is no longer suppressed.

This suggests a natural mechanism for modifying strong-field behaviour, potentially avoiding
singular acceleration by redistributing ordering between channels.
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Appendix F — Measure-Theoretic and Dimensional
Clarifications
The derivative D_B Q is understood as a Radon—Nikodym derivative of a jump measure with

respect to the bit measure. Delta functions 6(T — Tj) are distributions acting under integration
over T.

Dimensional summary:

T, T:, Ti, B: dimensionless

K: time

e, ei: length

¢: potential-like scalar

L(p): length per ordering unit
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