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Distinguishability as a Foundational 

Constraint in Science 

Abstract 

Something moving infinitely slowly is indistinguishable from something stationary. This simple 

observation illuminates a deeper principle: infinite quantities are not extreme values but the 

dissolution of the properties they purport to extend. Modern science implicitly assumes that 

differences between states can be resolved to arbitrarily fine precision. This paper argues that 

distinguishability—the capacity to tell two states apart using finite resources—should instead be 

treated as a foundational constraint. When distinguishability is recognized as finite, many 

persistent pathologies in physics, mathematics, and computation are revealed as artifacts of an 

unphysical idealization. We introduce the distinguishability threshold Δ as a formalization of 

minimal resolution, propose the Taylor Limit as an upper bound on meaningful distinction, and 

articulate the Distinguishability Criterion for evaluating the scientific decidability of theoretical 

claims. We show how time itself emerges from the ordering of distinguishable states. The 

framework does not reject continuous mathematics but clarifies which mathematical limits 

correspond to operationally meaningful structure and which exceed the domain of realizable 

states. 

 

1. Introduction: The Invisible Assumption 

Consider something moving infinitely slowly. Over any finite observation period—a second, a 

year, the age of the universe—you would detect no displacement. It would be indistinguishable 

from something stationary. "Infinitely slow" is not an extreme speed; it is the absence of speed. 

The same logic applies throughout science: infinitely small differences are no differences at all; 

infinitely precise values are operationally identical to finite approximations; infinitely many 

objects that cannot be individually accessed are indistinguishable from finitely many. Infinity, in 

each case, is not an extension of quantity but its dissolution. 

Modern science rests on a small number of foundational assumptions so deeply embedded they 

are rarely stated explicitly. Among these are locality (causes act nearby), symmetry (laws don't 

depend on where or when), and continuity (small changes produce small effects). There is, 

however, another assumption that quietly permeates nearly every theoretical framework: the 

assumption of infinite distinguishability. 

By infinite distinguishability, we mean the implicit belief that differences between states, values, 

or configurations can be resolved to arbitrarily fine precision, without bound. Real numbers are 

treated as if every decimal place corresponds to a physically meaningful distinction. Limits are 

taken as if infinite refinement were operationally accessible. Analytic objects are probed as 

though arbitrarily small variations remain observable, comparable, and significant. 
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For the general reader: Imagine measuring the length of a table. You might say it's 1 meter 

long. With a better ruler, you find it's 1.02 meters. With laboratory equipment, perhaps 1.0237 

meters. Science implicitly assumes this process can continue forever—that the table has an exact 

length with infinitely many decimal places, each one meaningful. But does it? At some point, 

you're measuring individual atoms, then quantum fluctuations, then... what? The assumption that 

infinite precision is meaningful is so natural we rarely question it. 

This assumption appears mathematically natural. Yet it is not required to formulate most 

empirical laws, nor is it required for any finite measurement, computation, or experiment. Every 

physical observation, numerical simulation, and cognitive act is carried out under conditions of 

finite resolution. The assumption of infinite distinguishability is therefore not an empirical 

necessity but a metaphysical convenience—and, as we shall see, frequently a source of 

pathology. 

This paper argues that distinguishability itself should be treated as a foundational constraint, on 

par with locality and symmetry. When distinguishability is finite, many long-standing 

problems—divergences, singular limits, ill-posed observables, and unstable analytic 

extensions—either disappear or are revealed as artifacts of an unphysical idealization. 

 

2. What Is Distinguishability? 

Distinguishability is the capacity to tell two states apart using a finite procedure. It is inherently 

operational. Two states are distinguishable if there exists a finite sequence of operations—

measurements, computations, comparisons—that reliably separates them. Conversely, if no such 

finite procedure exists, the distinction is not physically meaningful, even if it is mathematically 

definable. 

This immediately separates distinguishability from abstract difference. Mathematics allows the 

definition of arbitrarily small differences, but distinguishability asks whether those differences 

can be accessed, encoded, or acted upon. A real number may differ from another by an 

infinitesimal amount, yet no finite experiment can detect that difference. From the standpoint of 

distinguishability, the two states are equivalent. 

For the general reader: Consider two shades of blue that differ by one part in a trillion in their 

wavelength. A physicist could write down both numbers and prove they're different. But if no 

instrument, no eye, no physical process can ever tell them apart, are they really different in any 

meaningful sense? Distinguishability says no. A difference that can never be detected, measured, 

or exploited is not a physical difference—it's a mathematical fiction. 

Importantly, distinguishability is not a subjective limitation. It is not merely a matter of 

technological insufficiency or human perception. It is a structural constraint arising from finite 

resources: finite energy, finite time, finite memory, and finite computational capacity. Even a 

hypothetical civilization with arbitrarily advanced technology faces this constraint, because any 

measurement requires physical interaction, and physical interactions have fundamental limits. 
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3. The Distinguishability Threshold: Δ 

To formalize finite distinguishability, we introduce the parameter Δ (delta), representing a 

minimal unit of distinguishability—a resolution threshold below which differences cannot be 

resolved or acted upon. 

Δ does not represent time, dynamics, or noise. It represents information granularity. Two states 

separated by less than Δ are not merely close; they are operationally identical. No finite 

procedure can distinguish them. 

For the general reader: Think of Δ as the "pixel size" of reality for a given system. Just as a 

digital photograph cannot capture detail smaller than one pixel, a physical or computational 

system cannot distinguish states closer together than Δ. Below this threshold, differences don't 

just become hard to see—they cease to exist in any operational sense. 

In this framework, Δ plays the role of a bit. Just as a bit represents the smallest unit of classical 

information (a single yes/no distinction), Δ represents the smallest resolvable distinction in the 

relevant state space. Reducing Δ increases resolution, but only at the cost of increasing the size 

of the state space—and therefore the resources required to process it. Taking Δ to zero 

corresponds to demanding infinite information capacity. 

The value of Δ is not universal but context-dependent: 

• In quantum mechanics, Δ is related to the uncertainty principle: position and 

momentum cannot simultaneously be resolved below ℏ/2. 

• In computation, Δ corresponds to machine precision—the smallest difference a 

computer can represent. 

• In thermodynamics, Δ relates to thermal fluctuations: states differing by less than kT in 

energy are effectively indistinguishable [19, 20]. 

• In perception, Δ is the just-noticeable difference—the smallest change a sensory system 

can detect. 

What unifies these is not a specific numerical value but a structural principle: every system has a 

Δ below which distinctions lose meaning. 

Crucially, Δ is not a new constant of nature but a bookkeeping device for finite 

distinguishability. It does not posit new physics; it makes explicit a constraint that is already 

implicit in every physical theory, every measurement apparatus, and every computational 

system. 

 



 4 

4. The Taylor Limit: An Upper Bound on Meaningful 

Distinction 

If Δ represents a lower bound on distinguishability, is there also an upper bound? We propose 

there is, and call it the Taylor Limit. 

The Taylor Limit is not a limit on how different two states can be, but on how finely any system 

can resolve distinctions while remaining computationally and physically coherent. It represents 

the boundary beyond which increasing resolution ceases to yield additional meaningful 

information and instead produces instability, divergence, or computational undecidability. 

For the general reader: Imagine zooming in on a photograph. At first, you see more detail. But 

past a certain point, you're just seeing noise, compression artifacts, and ultimately the 

meaningless grain of the medium itself. The Taylor Limit is the point where "looking closer" 

stops revealing truth and starts generating nonsense. It's not that finer structure doesn't exist 

mathematically—it's that it doesn't correspond to anything stable or computable. 

Just as physical theories recognize lower bounds (the Planck scale, the quantum of action), the 

Taylor Limit asserts an upper bound on meaningful resolution. Beyond this bound, mathematical 

differences exist but do not map onto realizable configurations. They are distinctions without 

operational difference. 

The Taylor Limit explains why certain problems resist solution: they implicitly require resolving 

distinctions beyond the limit. The difficulty is not missing ingenuity but an ill-posed question—

one that demands more distinguishability than any finite system can provide. 

There is also a conceptual reason why infinity marks a boundary rather than an extension: 

infinity is not a place, coordinate, or amount. It cannot participate in relations. Science operates 

through comparison, measurement, and correlation—all of which require relata that can be 

positioned relative to one another. Infinity dissolves this relational structure. It is not the far end 

of a scale but the point where scales cease to apply. 

From a physical standpoint, infinity would represent catastrophic inefficiency. Nature does not 

encode information that cannot be read. Consider a display screen: a 200K resolution screen and 

a hypothetical "infinite resolution" screen would be physically indistinguishable to any observer, 

because no eye, camera, or detector can resolve the difference. The "extra" resolution beyond 

distinguishability would require real physical resources—energy, material structure, entropy 

management—while producing no detectable effect. This is not how nature operates. Physical 

systems converge toward efficiency: they encode what can be distinguished and no more. Infinite 

precision would be infinite waste. 

For the general reader: Imagine two televisions—one with 200,000 pixels per inch, one with 

"infinite" pixels per inch. You couldn't tell them apart. No instrument could. Yet the infinite-

resolution TV would somehow need to store and display infinitely more information. Where 

would that information live? What would maintain it? Nature doesn't build structures that make 
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no difference. The universe is not in the business of maintaining distinctions that nothing can 

detect. 

Or consider the opening example: something moving infinitely slowly is indistinguishable from 

something stationary. "Infinitely slow" is not an extreme speed; it is the absence of speed. The 

same applies to infinitely small quantities, infinitely precise values, or infinitely many objects. 

These are not extreme cases of their respective properties but the point where those properties 

cease to apply. 

 

5. Infinite Distinguishability as a Source of Pathology 

The assumption of infinite distinguishability appears mathematically innocuous, but it is the 

source of many persistent pathologies in theoretical science. When systems are probed at 

arbitrarily fine scales, quantities that are well-behaved at every finite resolution can diverge, 

become unbounded, or lose operational meaning in the limit. 

Beyond the formal pathologies, there is a physical implausibility: infinite distinguishability 

would require physical systems to maintain infinite information using finite resources [9, 21]. 

Every additional decimal place of precision requires real structure to encode it—atoms arranged 

just so, energy states maintained against thermal noise, entropy managed and dissipated. Infinite 

precision would demand infinite overhead for zero additional effect. Nature does not operate this 

way. 

5.1 Pathologies in Physics 

A familiar example is the appearance of infinities in quantum field theory. Physical predictions 

at any finite energy scale are finite and testable, yet formal calculations taken to infinite 

momentum resolution generate divergences. Renormalization does not eliminate these infinities; 

it manages them by explicitly reasserting the primacy of finite, physically meaningful scales. 

For the general reader: When physicists calculate certain quantum processes, their equations 

produce infinite answers—clearly nonsense. The standard fix (renormalization) essentially says: 

"Stop calculating before you reach infinity. The physics only makes sense up to some finite 

scale." This works remarkably well [13, 14], but it's treating a symptom. The deeper issue is that 

the theory implicitly assumed infinite distinguishability, then ran into trouble when that 

assumption was taken seriously. 

Similarly, singularities in general relativity—points of infinite density at black hole centers or the 

Big Bang—indicate not literal physical infinities but a breakdown of the spacetime description. 

The theory, extended to infinite resolution, predicts its own failure. 
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5.2 Pathologies in Mathematics 

Pointwise limits, distributions, and delta functions are mathematically well-defined but do not 

correspond to observable states. They represent idealized probes of infinite resolution. When 

such objects are treated as physically realizable, one encounters instabilities, nonuniform 

convergence, and ill-posed inverse problems. 

For the general reader: A "delta function" in mathematics is infinitely tall, infinitely narrow, 

and has finite area—a useful idealization but physically impossible. Many mathematical 

techniques depend on such objects. When these techniques are applied naively to physical 

problems, strange things happen: solutions become unstable, small changes in input cause 

enormous changes in output, and sensible-looking equations produce nonsense answers. 

More fundamentally, infinite distinguishability underlies singular limits where a sequence 

converges mathematically while failing to preserve essential properties. Positivity, boundedness, 

and stability can all be lost in the limit, even though they hold at every finite resolution. This is 

not a paradox; it reflects that the limit object inhabits a different mathematical space than the 

sequence approaching it. 

5.3 Pathologies in Computation 

Computational systems operate on finite state spaces. A digital computer does not manipulate 

real numbers with infinite precision; it manipulates finite strings of bits. Infinite 

distinguishability corresponds to an infinite-state machine—one that can store, compare, and 

process infinitely precise information. Such a machine is logically incompatible with any finite 

computational process. 

This explains why certain problems are undecidable or uncomputable [25, 26]. They require 

resolving distinctions beyond what any finite symbolic system can support. The halting problem, 

for instance, asks whether infinite behavior can be predicted from finite input—a question that 

exceeds distinguishability bounds. 

The Distinguishability Criterion 

The preceding analysis suggests a general criterion for evaluating theoretical claims: 

Distinguishability Criterion (informal): A theoretical claim is scientifically meaningful only if 

(1) its predicted structure is stable under small coarse-graining of its inputs, and (2) it can be 

decided, in principle, by finite procedures using finite time and energy. 

This criterion does not restrict what can be calculated or modeled—mathematicians and 

physicists may freely use infinite-dimensional spaces, continuum limits, and idealized 

constructions. What the criterion restricts is the interpretation of such constructions as physically 

realized or empirically testable. A model that requires infinite precision to distinguish its 

predictions from alternatives makes no operational claim. A theory whose structure changes 

qualitatively under any finite coarse-graining describes an idealization, not an observable. 
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The criterion is conservative: it does not declare what is, only what can be tested. Claims that fail 

the criterion are not necessarily false—they are undecidable within the bounds of finite science. 

 

6. The Emergence of Time from Distinguishability 

Time is often treated as a primitive backdrop against which physical processes unfold. The 

distinguishability framework suggests otherwise: time is not fundamental but emergent from the 

ordering of distinguishable states [28, 29, 30]. 

6.1 Time as Distinguishable Transition 

A moment is defined not by an absolute timestamp but by contrast—it differs from what came 

before and what comes after. If no change occurred, if no distinction could be drawn between 

successive configurations, then the notion of time would lose operational meaning. A universe 

frozen into perfect indistinguishability would not merely be static; it would be timeless. 

This connects to the paper's central observation: something moving infinitely slowly is 

indistinguishable from something stationary. No finite observation reveals displacement. From a 

distinguishability standpoint, infinitely slow motion is not motion at all—and therefore 

contributes nothing to temporal passage. Time requires distinguishable change; without it, there 

is no before and after. This is why time emerges from distinguishability rather than existing 

independently of it. 

For the general reader: We don't experience time directly. We experience change—one 

moment feeling different from the next. A song progresses because each note differs from the 

last. A clock works because each tick is distinguishable from the previous one. If nothing could 

ever be told apart from anything else, "before" and "after" would lose all meaning. Time, in this 

view, is not a river we float down but a sequence of distinguishable snapshots. 

From this viewpoint, temporal ordering arises naturally from the accumulation of distinguishable 

events. Each irreversible distinction—each resolved difference—adds to an ordered sequence. 

Entropy increase, causal structure, and the arrow of time can all be understood as consequences 

of this monotonic growth in distinguishability. 

6.2 Temporal Resolution and Δ 

The parameter Δ sets not only a lower bound on spatial or spectral distinguishability but also on 

temporal resolution. Two states separated by less than Δ are indistinguishable temporally as well. 

No finite process can register an intermediate moment between them. 

This dissolves classical puzzles about time. Zeno's paradoxes rely on infinite temporal 

subdivision while remaining meaningful. In a distinguishability framework, such subdivision is 

not operationally defined. An arrow reaches its target not by traversing infinitely many points but 

by passing through finitely many distinguishable states. 
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6.3 Relativity Reinterpreted 

Time dilation in special and general relativity also fits naturally into this picture. When processes 

slow down due to velocity or gravitational effects, what changes is not time itself but the rate at 

which distinguishable state transitions occur relative to an external observer. Time dilation 

reflects a reduction in distinguishability per unit reference time, not a deformation of an 

underlying temporal substance. 

6.4 Clocks as Distinguishability Engines 

A clock is not a device that measures an external time parameter; it is a system engineered to 

produce reliably distinguishable states in a regular sequence. What we call "timekeeping" is the 

controlled production of distinguishability. This explains why better clocks require more 

isolation and control—they must ensure each tick is maximally distinguishable from thermal 

noise and environmental fluctuations. 

 

7. Distinguishability as a Universal Scientific Constraint 

Modern science is built on the comparison of states. Whether in physics, mathematics, 

computation, or measurement, progress depends on the ability to say that one configuration 

differs from another in a meaningful way. Distinguishability is therefore not a peripheral 

concept; it is the silent constraint underlying every scientific statement. 

7.1 A Criterion for Meaningful Theories 

When distinguishability is made explicit, a unifying pattern emerges: theories are well-behaved 

precisely to the extent that they respect finite distinguishability. Pathologies arise when a 

framework implicitly demands distinctions finer than any finite process can support. 

This suggests a refinement of scientific methodology. A theory should not only be internally 

consistent and empirically accurate but also stable under finite distinguishability. Predictions that 

hinge on infinitely sharp distinctions may be mathematically definable yet scientifically 

meaningless. Distinguishability thus functions as a constraint on legitimate inference, analogous 

to causality or locality. 

For the general reader: Scientists already apply informal versions of this criterion. When a 

theory predicts something "infinite" or depends on measuring something "exactly," practitioners 

know something has gone wrong. The distinguishability framework makes this intuition precise: 

meaningful predictions must survive a slight blurring of inputs. If a result changes drastically 

when you round to the tenth decimal place instead of the hundredth, it probably isn't real. 
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7.2 Reclassifying Foundational Problems 

Many long-standing foundational challenges may need reclassification. They are not failures of 

mathematics or physics but indicators that a framework has been pushed beyond the domain 

where distinguishability—and therefore meaning—can be maintained. 

This does not diminish mathematics or science; it sharpens their scope. Recognizing the 

boundary between stable, resolution-independent truths and resolution-dependent artifacts allows 

effort to be redirected from chasing idealized infinities toward understanding the structure of 

finite, coherent systems. 

 

8. Relationship to Prior Frameworks 

The distinguishability framework connects to several established traditions while offering 

distinct contributions. 

8.1 Operationalism 

Percy Bridgman's operationalism [1, 2] insisted that physical concepts are defined by the 

operations used to measure them. Distinguishability extends this insight: not only must concepts 

be operationally defined, but the precision of concepts is bounded by the resolution of available 

operations. Where operationalism asks "How do we measure X?", distinguishability asks "To 

what precision can we possibly measure X?" 

8.2 Constructive Mathematics 

Brouwer [3] and later Bishop [4, 5] developed mathematics where existence requires 

construction—you cannot prove something exists without showing how to find it. 

Distinguishability applies an analogous constraint to physics and computation: a distinction 

exists only if a finite procedure can reveal it. 

8.3 Digital Physics and Information-Theoretic Approaches 

Zuse [10], Fredkin [11], Wheeler [8] ("it from bit"), and Landauer [6, 7] all explored connections 

between physics and information. Distinguishability provides a principled explanation for why 

information is fundamental: because distinguishability—the capacity to tell states apart—is the 

primitive operation upon which all measurement, computation, and knowledge rests. 

8.4 What Distinguishability Adds 

Previous frameworks often postulate discreteness or finite information without fully explaining 

why infinite precision fails. Distinguishability provides that explanation: infinite precision fails 
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because accessing it would require unbounded resources, unbounded time, or unbounded 

information—none of which are operationally available. 

More importantly, the framework applies reflexively. Any theoretical proposal—including 

proposals about discrete physics or information-theoretic foundations—must itself avoid 

smuggling in unprovable infinities. Claims about infinitely many computational steps, infinitely 

many worlds, or infinitely extended structures face the same scrutiny as claims about infinitely 

precise measurements. Mathematical consistency does not confer physical existence. 

 

9. Implications and Predictions 

A framework is only as valuable as its consequences. What does taking distinguishability 

seriously imply? 

9.1 For Physics 

• Renormalization reinterpreted: Renormalization is not a trick to hide infinities but a 

recognition that physics respects a natural resolution bound [13, 14, 15]. 

• Singularities as signals: Singularities in physical theories signal not literal infinities but 

breakdown of the theory's distinguishability domain. 

• Measurement bounds: There exist fundamental limits on how precisely any physical 

quantity can be determined, independent of technology [9, 21]. 

• Hilbert space clarified: The "infinite-dimensional" Hilbert space of quantum mechanics 

is a mathematical framework, but in any actual experimental context, only finite 

information can be extracted in finite time and energy. The operationally accessible 

outcome space is always finite or effectively finite. 

• Thermodynamic efficiency: Nature does not maintain distinctions that cannot be 

detected. Infinite precision would require infinite physical resources to encode while 

producing no observable effect—a violation of how physical systems actually operate. 

9.2 For Mathematics 

• Robust vs. fragile results: Results that depend critically on infinitesimal distinctions are 

mathematically valid but may not correspond to physically or computationally 

meaningful statements. 

• Reframing undecidability: Some undecidable propositions may be understood as 

requiring distinctions beyond any finite symbolic capacity. 

9.3 For Computation 

• Computability as distinguishability bound: The boundary between computable and 

uncomputable corresponds to the boundary between finite and infinite distinguishability 

[25, 27]. 
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• Numerical stability: Algorithms that remain stable under finite precision are 

distinguishability-respecting; those that require exact arithmetic are not. 

9.4 For Cosmology and Foundational Claims 

The framework has direct implications for claims involving actual infinities: 

• Infinite worlds: Proposals involving infinitely many parallel universes, branches, or 

cosmological domains exceed distinguishability bounds. If no finite procedure can access 

or distinguish these worlds, such claims are not presently scientifically testable—they are 

mathematical extrapolations beyond the Taylor Limit. 

• Infinite cosmologies: Claims about spatially or temporally infinite universes face the 

same constraint. An infinity that cannot be traversed, measured, or distinguished from a 

sufficiently large finite structure is not an empirically decidable claim. 

• Eternal processes: Assertions about processes continuing "forever" or structures 

persisting "infinitely" are not operationally testable. What can be tested is behavior over 

finite, distinguishable intervals. 

There is a deeper issue: infinity is not merely inaccessible but relationally vacuous in any 

operational sense. A coordinate system requires positions that can be compared. An amount 

requires a quantity that can be related to other quantities. Infinity is not a very large number—it 

is the dissolution of number. You cannot be "at" infinity, measure "from" infinity, or stand in 

relation to infinity, because infinity has no position within any operational relational structure. 

This matters because science is fundamentally relational. Measurement is comparison. Prediction 

is relating initial states to final states. Explanation is relating causes to effects. When infinity 

enters a theory, it doesn't extend the operational relational structure to larger scales—it 

terminates it. Infinity is where operational relations end, not where they continue. Claims 

involving actual infinities are therefore not extensions of scientific reasoning but exits from its 

domain of applicability. 

For the general reader: Imagine trying to meet someone "at infinity." You can't, because 

infinity isn't a place—it's the idea of there being no final place. The same applies to amounts: 

"infinitely many" isn't a very large count, it's the absence of counting. When a theory posits 

infinite worlds or infinite time, it's not describing something unimaginably vast—it's describing 

something that can't participate in the relational structure that makes description possible. 

Infinity is less like a distant destination and more like leaving the map entirely. 

This is not a dismissal of speculative physics but a clarification of its status. Claims involving 

actual infinities—whether infinite precision, infinite worlds, or infinite time—all exceed the 

bounds where distinguishability applies. They are extrapolations beyond the domain of testable 

science. 
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9.5 For Philosophy of Science 

• Criterion for meaningful questions: The Distinguishability Criterion provides a 

principled basis for evaluating whether a question is scientifically decidable [22, 24]: it 

must be stable under coarse-graining and resolvable by finite procedures. 

• Ontology and epistemology converge: What exists operationally (ontology) and what 

can be known (epistemology) align when distinguishability is fundamental—distinctions 

that cannot be accessed by any finite procedure have no operational existence. 

 

10. Conclusion: Distinguishability as Foundation 

We began with a simple observation: something moving infinitely slowly is indistinguishable 

from something stationary. This is not a limitation of measurement technology—it is a structural 

fact about what "motion" means. Speed requires distinguishable displacement over 

distinguishable time. Where distinguishability fails, the concept itself dissolves. 

The assumption of infinite distinguishability is so pervasive that it is rarely examined. Yet it is 

not empirically required, not computationally realizable, and not physically meaningful. Every 

actual measurement, calculation, and observation operates under finite resolution. 

This paper has argued that distinguishability should be treated as a foundational constraint—a 

limit on what can be meaningfully said about states, values, and differences. When this 

constraint is respected: 

• Pathologies in physics (divergences, singularities) are revealed as artifacts of exceeding 

distinguishability bounds. 

• Mathematical limits are clarified as either resolution-stable (physically meaningful) or 

resolution-dependent (idealized artifacts). 

• Computational limits are understood as structural boundaries imposed by 

distinguishability itself. 

• Time emerges naturally as the ordering of distinguishable states rather than a primitive 

backdrop. 

The framework does not reject continuous mathematics or formal spaces used as analytical tools. 

These remain powerful for calculation. But they are tools for describing behavior within finite 

resolution, not literal descriptions of physically realized infinite structures. The continuum is an 

idealized completion of finite structures, not a substrate that exists independently of 

distinguishable states. 

Quantum mechanics provides an instructive example. Hilbert space is often described as 

"infinite-dimensional," but this is a mathematical idealization. In any actual experimental 

context, only a finite amount of information can be extracted from a quantum system in finite 

time and with finite energy [17, 18], so the operationally accessible outcome space is finite (or 

effectively finite under error bars), even when the underlying Hilbert space model is infinite-
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dimensional. The infinite-dimensional formalism is a convenience that captures all possible finite 

subsystems within a unified framework; it does not imply that infinitely many distinguishable 

outcomes are simultaneously accessible. Hilbert space, properly understood, is a catalog of finite 

possibilities, not an actually infinite structure that must be physically maintained. 

The success of continuum mathematics lies precisely in its robustness under finite coarse-

graining; where that robustness fails, so does physical meaning. This is not a limitation of 

mathematics but a clarification of its domain of applicability. 

Distinguishability vs. Approximation 

A crucial clarification: finite distinguishability is not the same as approximation error. This 

distinction prevents a common misreading of the framework. 

Approximation error implies that a "true" value exists and we are merely failing to reach it—that 

with better instruments, more time, or greater care, we could get closer. The gap between 

measurement and reality is contingent, technological, improvable. 

Finite distinguishability implies something stronger operationally: below Δ, there is no 

operationally meaningful refinement to be reached. The distinction may exist as a real-number 

difference in the continuum model, but it cannot be accessed, stored, transmitted, or acted upon 

by any admissible finite procedure. In this sense, states separated by less than Δ are equivalent 

within the observable algebra of the system. 

For the general reader: Imagine asking for the "exact" position of a cloud. You could measure 

more precisely, use better instruments, take more samples—but at some point you realize the 

question itself is malformed. A cloud doesn't have an exact boundary. The vagueness isn't in 

your measurement; it's in the thing itself. Similarly, Δ marks where the question "what is the 

exact value?" stops having an answer, not where we stop being able to find it. 

This distinction matters because it changes the nature of limits. In approximation, the limit is the 

truth we're approaching. In finite distinguishability, limits beyond Δ are not truths we're 

approaching but idealizations that may or may not correspond to anything operational. The limit 

is a mathematical convenience, not a physical destination. 

Taking distinguishability seriously does not limit science—it clarifies its scope. By 

distinguishing between resolution-stable truths and resolution-dependent artifacts, we gain a 

principled way to separate what can be known from what merely can be written down. 

This is not a metaphysical proposal but a constraint on the domain of applicability of formal 

limits. We are not making claims about what reality "really is" at some inaccessible level. We are 

observing that when mathematical constructs—whether infinite limits, infinite worlds, or infinite 

structures—exceed operational distinguishability, they cease to correspond to measurable, 

computable, or physically meaningful quantities. Such constructs may be mathematically well-

defined, but well-definition is not proof of existence. The framework is diagnostic: it identifies 

where formal machinery outruns operational content. 
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In this sense, distinguishability is not a constraint imposed from outside but a recognition of the 

conditions under which science is possible at all. 

 

Glossary 

Distinguishability: The capacity to tell two states apart using a finite procedure. 

Dissolution of quantity: The principle that infinite values (infinitely slow, infinitely small, 

infinitely many) are not extreme cases of their respective properties but the point where those 

properties cease to apply; illustrated by the indistinguishability of infinitely slow motion from 

rest. 

Hilbert space: In quantum mechanics, often described as "infinite-dimensional" but 

operationally constrained: only finite information can be extracted from any quantum system in 

finite time and energy, so the accessible outcome space is always finite or effectively finite, even 

when the mathematical formalism is infinite-dimensional. 

Δ (Delta): The distinguishability threshold—the minimal resolution below which two states 

cannot be operationally distinguished. 

Taylor Limit: The proposed upper bound on meaningful resolution, beyond which increased 

precision yields instability rather than information. 

Operationally meaningful: Accessible through a finite sequence of measurements, 

computations, or comparisons. 

Resolution-stable: A property or result that persists under coarse-graining to any finite 

resolution. 

Singular limit: A mathematical limit where properties holding at every finite stage fail to persist 

to the limit. 

Unprovable infinity: Any claim involving actual infinities (infinite worlds, infinite precision, 

infinite extent) that cannot be confirmed or refuted by finite procedures; such claims exceed 

distinguishability bounds and are not scientifically testable. 

Relational vacuity of infinity: The property that infinity cannot serve as a coordinate, position, 

or amount within an operational relational structure; infinity is not a very large value but the 

dissolution of value, and therefore cannot participate in the comparisons that constitute 

measurement and science. 

Distinguishability Criterion: The principle that a theoretical claim is scientifically meaningful 

only if its predicted structure is stable under small coarse-graining and decidable by finite 

procedures in finite time and energy. 
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Thermodynamic inefficiency of infinity: The physical argument that infinite precision would 

require infinite resources to encode while producing no distinguishable effect; nature does not 

maintain structure beyond what can be detected, making actual infinities physically implausible. 
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