

Distinguishability as a Foundational Constraint in Science

Abstract

Something moving infinitely slowly is indistinguishable from something stationary. This simple observation illuminates a deeper principle: infinite quantities are not extreme values but the dissolution of the properties they purport to extend. Modern science implicitly assumes that differences between states can be resolved to arbitrarily fine precision. This paper argues that *distinguishability*—the capacity to tell two states apart using finite resources—should instead be treated as a foundational constraint. When distinguishability is recognized as finite, many persistent pathologies in physics, mathematics, and computation are revealed as artifacts of an unphysical idealization. We introduce the distinguishability threshold Δ as a formalization of minimal resolution, propose the Taylor Limit as an upper bound on meaningful distinction, and articulate the Distinguishability Criterion for evaluating the scientific decidability of theoretical claims. We show how time itself emerges from the ordering of distinguishable states. The framework does not reject continuous mathematics but clarifies which mathematical limits correspond to operationally meaningful structure and which exceed the domain of realizable states.

1. Introduction: The Invisible Assumption

Consider something moving infinitely slowly. Over any finite observation period—a second, a year, the age of the universe—you would detect no displacement. It would be indistinguishable from something stationary. "Infinitely slow" is not an extreme speed; it is the absence of speed. The same logic applies throughout science: infinitely small differences are no differences at all; infinitely precise values are operationally identical to finite approximations; infinitely many objects that cannot be individually accessed are indistinguishable from finitely many. Infinity, in each case, is not an extension of quantity but its dissolution.

Modern science rests on a small number of foundational assumptions so deeply embedded they are rarely stated explicitly. Among these are locality (causes act nearby), symmetry (laws don't depend on where or when), and continuity (small changes produce small effects). There is, however, another assumption that quietly permeates nearly every theoretical framework: the assumption of *infinite distinguishability*.

By infinite distinguishability, we mean the implicit belief that differences between states, values, or configurations can be resolved to arbitrarily fine precision, without bound. Real numbers are treated as if every decimal place corresponds to a physically meaningful distinction. Limits are taken as if infinite refinement were operationally accessible. Analytic objects are probed as though arbitrarily small variations remain observable, comparable, and significant.

For the general reader: Imagine measuring the length of a table. You might say it's 1 meter long. With a better ruler, you find it's 1.02 meters. With laboratory equipment, perhaps 1.0237 meters. Science implicitly assumes this process can continue forever—that the table has an exact length with infinitely many decimal places, each one meaningful. But does it? At some point, you're measuring individual atoms, then quantum fluctuations, then... what? The assumption that infinite precision is meaningful is so natural we rarely question it.

This assumption appears mathematically natural. Yet it is not required to formulate most empirical laws, nor is it required for any finite measurement, computation, or experiment. Every physical observation, numerical simulation, and cognitive act is carried out under conditions of finite resolution. The assumption of infinite distinguishability is therefore not an empirical necessity but a metaphysical convenience—and, as we shall see, frequently a source of pathology.

This paper argues that distinguishability itself should be treated as a foundational constraint, on par with locality and symmetry. When distinguishability is finite, many long-standing problems—divergences, singular limits, ill-posed observables, and unstable analytic extensions—either disappear or are revealed as artifacts of an unphysical idealization.

2. What Is Distinguishability?

Distinguishability is the capacity to tell two states apart using a finite procedure. It is inherently *operational*. Two states are distinguishable if there exists a finite sequence of operations—measurements, computations, comparisons—that reliably separates them. Conversely, if no such finite procedure exists, the distinction is not physically meaningful, even if it is mathematically definable.

This immediately separates distinguishability from abstract difference. Mathematics allows the definition of arbitrarily small differences, but distinguishability asks whether those differences can be *accessed*, *encoded*, or *acted upon*. A real number may differ from another by an infinitesimal amount, yet no finite experiment can detect that difference. From the standpoint of distinguishability, the two states are equivalent.

For the general reader: Consider two shades of blue that differ by one part in a trillion in their wavelength. A physicist could write down both numbers and prove they're different. But if no instrument, no eye, no physical process can ever tell them apart, are they *really* different in any meaningful sense? Distinguishability says no. A difference that can never be detected, measured, or exploited is not a physical difference—it's a mathematical fiction.

Importantly, distinguishability is not a subjective limitation. It is not merely a matter of technological insufficiency or human perception. It is a structural constraint arising from finite resources: finite energy, finite time, finite memory, and finite computational capacity. Even a hypothetical civilization with arbitrarily advanced technology faces this constraint, because *any* measurement requires physical interaction, and physical interactions have fundamental limits.

3. The Distinguishability Threshold: Δ

To formalize finite distinguishability, we introduce the parameter Δ (delta), representing a minimal unit of distinguishability—a resolution threshold below which differences cannot be resolved or acted upon.

Δ does not represent time, dynamics, or noise. It represents *information granularity*. Two states separated by less than Δ are not merely close; they are operationally identical. No finite procedure can distinguish them.

For the general reader: Think of Δ as the "pixel size" of reality for a given system. Just as a digital photograph cannot capture detail smaller than one pixel, a physical or computational system cannot distinguish states closer together than Δ . Below this threshold, differences don't just become hard to see—they cease to exist in any operational sense.

In this framework, Δ plays the role of a bit. Just as a bit represents the smallest unit of classical information (a single yes/no distinction), Δ represents the smallest resolvable distinction in the relevant state space. Reducing Δ increases resolution, but only at the cost of increasing the size of the state space—and therefore the resources required to process it. Taking Δ to zero corresponds to demanding infinite information capacity.

The value of Δ is not universal but context-dependent:

- **In quantum mechanics**, Δ is related to the uncertainty principle: position and momentum cannot simultaneously be resolved below $\hbar/2$.
- **In computation**, Δ corresponds to machine precision—the smallest difference a computer can represent.
- **In thermodynamics**, Δ relates to thermal fluctuations: states differing by less than kT in energy are effectively indistinguishable [19, 20].
- **In perception**, Δ is the just-noticeable difference—the smallest change a sensory system can detect.

What unifies these is not a specific numerical value but a structural principle: *every system has a Δ below which distinctions lose meaning*.

Crucially, Δ is not a new constant of nature but a bookkeeping device for finite distinguishability. It does not posit new physics; it makes explicit a constraint that is already implicit in every physical theory, every measurement apparatus, and every computational system.

4. The Taylor Limit: An Upper Bound on Meaningful Distinction

If Δ represents a lower bound on distinguishability, is there also an upper bound? We propose there is, and call it the *Taylor Limit*.

The Taylor Limit is not a limit on how *different* two states can be, but on how *finely* any system can resolve distinctions while remaining computationally and physically coherent. It represents the boundary beyond which increasing resolution ceases to yield additional meaningful information and instead produces instability, divergence, or computational undecidability.

For the general reader: Imagine zooming in on a photograph. At first, you see more detail. But past a certain point, you're just seeing noise, compression artifacts, and ultimately the meaningless grain of the medium itself. The Taylor Limit is the point where "looking closer" stops revealing truth and starts generating nonsense. It's not that finer structure doesn't exist mathematically—it's that it doesn't correspond to anything stable or computable.

Just as physical theories recognize lower bounds (the Planck scale, the quantum of action), the Taylor Limit asserts an upper bound on meaningful resolution. Beyond this bound, mathematical differences exist but do not map onto realizable configurations. They are distinctions without operational difference.

The Taylor Limit explains why certain problems resist solution: they implicitly require resolving distinctions beyond the limit. The difficulty is not missing ingenuity but an ill-posed question—one that demands more distinguishability than any finite system can provide.

There is also a conceptual reason why infinity marks a boundary rather than an extension: infinity is not a place, coordinate, or amount. It cannot participate in relations. Science operates through comparison, measurement, and correlation—all of which require relata that can be positioned relative to one another. Infinity dissolves this relational structure. It is not the far end of a scale but the point where scales cease to apply.

From a physical standpoint, infinity would represent catastrophic inefficiency. Nature does not encode information that cannot be read. Consider a display screen: a 200K resolution screen and a hypothetical "infinite resolution" screen would be physically indistinguishable to any observer, because no eye, camera, or detector can resolve the difference. The "extra" resolution beyond distinguishability would require real physical resources—energy, material structure, entropy management—while producing no detectable effect. This is not how nature operates. Physical systems converge toward efficiency: they encode what can be distinguished and no more. Infinite precision would be infinite waste.

For the general reader: Imagine two televisions—one with 200,000 pixels per inch, one with "infinite" pixels per inch. You couldn't tell them apart. No instrument could. Yet the infinite-resolution TV would somehow need to store and display infinitely more information. Where would that information live? What would maintain it? Nature doesn't build structures that make

no difference. The universe is not in the business of maintaining distinctions that nothing can detect.

Or consider the opening example: something moving infinitely slowly is indistinguishable from something stationary. "Infinitely slow" is not an extreme speed; it is the absence of speed. The same applies to infinitely small quantities, infinitely precise values, or infinitely many objects. These are not extreme cases of their respective properties but the point where those properties cease to apply.

5. Infinite Distinguishability as a Source of Pathology

The assumption of infinite distinguishability appears mathematically innocuous, but it is the source of many persistent pathologies in theoretical science. When systems are probed at arbitrarily fine scales, quantities that are well-behaved at every finite resolution can diverge, become unbounded, or lose operational meaning in the limit.

Beyond the formal pathologies, there is a physical implausibility: infinite distinguishability would require physical systems to maintain infinite information using finite resources [9, 21]. Every additional decimal place of precision requires real structure to encode it—atoms arranged just so, energy states maintained against thermal noise, entropy managed and dissipated. Infinite precision would demand infinite overhead for zero additional effect. Nature does not operate this way.

5.1 Pathologies in Physics

A familiar example is the appearance of infinities in quantum field theory. Physical predictions at any finite energy scale are finite and testable, yet formal calculations taken to infinite momentum resolution generate divergences. Renormalization does not eliminate these infinities; it manages them by explicitly reasserting the primacy of finite, physically meaningful scales.

For the general reader: When physicists calculate certain quantum processes, their equations produce infinite answers—clearly nonsense. The standard fix (renormalization) essentially says: "Stop calculating before you reach infinity. The physics only makes sense up to some finite scale." This works remarkably well [13, 14], but it's treating a symptom. The deeper issue is that the theory implicitly assumed infinite distinguishability, then ran into trouble when that assumption was taken seriously.

Similarly, singularities in general relativity—points of infinite density at black hole centers or the Big Bang—indicate not literal physical infinities but a breakdown of the spacetime description. The theory, extended to infinite resolution, predicts its own failure.

5.2 Pathologies in Mathematics

Pointwise limits, distributions, and delta functions are mathematically well-defined but do not correspond to observable states. They represent idealized probes of infinite resolution. When such objects are treated as physically realizable, one encounters instabilities, nonuniform convergence, and ill-posed inverse problems.

For the general reader: A "delta function" in mathematics is infinitely tall, infinitely narrow, and has finite area—a useful idealization but physically impossible. Many mathematical techniques depend on such objects. When these techniques are applied naively to physical problems, strange things happen: solutions become unstable, small changes in input cause enormous changes in output, and sensible-looking equations produce nonsense answers.

More fundamentally, infinite distinguishability underlies singular limits where a sequence converges mathematically while failing to preserve essential properties. Positivity, boundedness, and stability can all be lost in the limit, even though they hold at every finite resolution. This is not a paradox; it reflects that the limit object inhabits a different mathematical space than the sequence approaching it.

5.3 Pathologies in Computation

Computational systems operate on finite state spaces. A digital computer does not manipulate real numbers with infinite precision; it manipulates finite strings of bits. Infinite distinguishability corresponds to an infinite-state machine—one that can store, compare, and process infinitely precise information. Such a machine is logically incompatible with any finite computational process.

This explains why certain problems are undecidable or uncomputable [25, 26]. They require resolving distinctions beyond what any finite symbolic system can support. The halting problem, for instance, asks whether infinite behavior can be predicted from finite input—a question that exceeds distinguishability bounds.

The Distinguishability Criterion

The preceding analysis suggests a general criterion for evaluating theoretical claims:

Distinguishability Criterion (informal): A theoretical claim is scientifically meaningful only if (1) its predicted structure is stable under small coarse-graining of its inputs, and (2) it can be decided, in principle, by finite procedures using finite time and energy.

This criterion does not restrict what can be *calculated* or *modeled*—mathematicians and physicists may freely use infinite-dimensional spaces, continuum limits, and idealized constructions. What the criterion restricts is the interpretation of such constructions as *physically realized* or *empirically testable*. A model that requires infinite precision to distinguish its predictions from alternatives makes no operational claim. A theory whose structure changes qualitatively under any finite coarse-graining describes an idealization, not an observable.

The criterion is conservative: it does not declare what *is*, only what can be *tested*. Claims that fail the criterion are not necessarily false—they are undecidable within the bounds of finite science.

6. The Emergence of Time from Distinguishability

Time is often treated as a primitive backdrop against which physical processes unfold. The distinguishability framework suggests otherwise: time is not fundamental but *emergent* from the ordering of distinguishable states [28, 29, 30].

6.1 Time as Distinguishable Transition

A moment is defined not by an absolute timestamp but by contrast—it differs from what came before and what comes after. If no change occurred, if no distinction could be drawn between successive configurations, then the notion of time would lose operational meaning. A universe frozen into perfect indistinguishability would not merely be static; it would be *timeless*.

This connects to the paper's central observation: something moving infinitely slowly is indistinguishable from something stationary. No finite observation reveals displacement. From a distinguishability standpoint, infinitely slow motion is not motion at all—and therefore contributes nothing to temporal passage. Time requires distinguishable change; without it, there is no before and after. This is why time emerges from distinguishability rather than existing independently of it.

For the general reader: We don't experience time directly. We experience *change*—one moment feeling different from the next. A song progresses because each note differs from the last. A clock works because each tick is distinguishable from the previous one. If nothing could ever be told apart from anything else, "before" and "after" would lose all meaning. Time, in this view, is not a river we float down but a sequence of distinguishable snapshots.

From this viewpoint, temporal ordering arises naturally from the accumulation of distinguishable events. Each irreversible distinction—each resolved difference—adds to an ordered sequence. Entropy increase, causal structure, and the arrow of time can all be understood as consequences of this monotonic growth in distinguishability.

6.2 Temporal Resolution and Δ

The parameter Δ sets not only a lower bound on spatial or spectral distinguishability but also on temporal resolution. Two states separated by less than Δ are indistinguishable temporally as well. No finite process can register an intermediate moment between them.

This dissolves classical puzzles about time. Zeno's paradoxes rely on infinite temporal subdivision while remaining meaningful. In a distinguishability framework, such subdivision is not operationally defined. An arrow reaches its target not by traversing infinitely many points but by passing through finitely many distinguishable states.

6.3 Relativity Reinterpreted

Time dilation in special and general relativity also fits naturally into this picture. When processes slow down due to velocity or gravitational effects, what changes is not time itself but the rate at which distinguishable state transitions occur relative to an external observer. Time dilation reflects a reduction in distinguishability per unit reference time, not a deformation of an underlying temporal substance.

6.4 Clocks as Distinguishability Engines

A clock is not a device that measures an external time parameter; it is a system engineered to produce reliably distinguishable states in a regular sequence. What we call "timekeeping" is the controlled production of distinguishability. This explains why better clocks require more isolation and control—they must ensure each tick is maximally distinguishable from thermal noise and environmental fluctuations.

7. Distinguishability as a Universal Scientific Constraint

Modern science is built on the comparison of states. Whether in physics, mathematics, computation, or measurement, progress depends on the ability to say that one configuration differs from another in a meaningful way. Distinguishability is therefore not a peripheral concept; it is the silent constraint underlying every scientific statement.

7.1 A Criterion for Meaningful Theories

When distinguishability is made explicit, a unifying pattern emerges: theories are well-behaved precisely to the extent that they respect finite distinguishability. Pathologies arise when a framework implicitly demands distinctions finer than any finite process can support.

This suggests a refinement of scientific methodology. A theory should not only be internally consistent and empirically accurate but also *stable under finite distinguishability*. Predictions that hinge on infinitely sharp distinctions may be mathematically definable yet scientifically meaningless. Distinguishability thus functions as a constraint on legitimate inference, analogous to causality or locality.

For the general reader: Scientists already apply informal versions of this criterion. When a theory predicts something "infinite" or depends on measuring something "exactly," practitioners know something has gone wrong. The distinguishability framework makes this intuition precise: meaningful predictions must survive a slight blurring of inputs. If a result changes drastically when you round to the tenth decimal place instead of the hundredth, it probably isn't real.

7.2 Reclassifying Foundational Problems

Many long-standing foundational challenges may need reclassification. They are not failures of mathematics or physics but indicators that a framework has been pushed beyond the domain where distinguishability—and therefore meaning—can be maintained.

This does not diminish mathematics or science; it sharpens their scope. Recognizing the boundary between stable, resolution-independent truths and resolution-dependent artifacts allows effort to be redirected from chasing idealized infinities toward understanding the structure of finite, coherent systems.

8. Relationship to Prior Frameworks

The distinguishability framework connects to several established traditions while offering distinct contributions.

8.1 Operationalism

Percy Bridgman's operationalism [1, 2] insisted that physical concepts are defined by the operations used to measure them. Distinguishability extends this insight: not only must concepts be operationally defined, but the *precision* of concepts is bounded by the resolution of available operations. Where operationalism asks "How do we measure X?", distinguishability asks "To what precision can we possibly measure X?"

8.2 Constructive Mathematics

Brouwer [3] and later Bishop [4, 5] developed mathematics where existence requires construction—you cannot prove something exists without showing how to find it. Distinguishability applies an analogous constraint to physics and computation: a distinction exists only if a finite procedure can reveal it.

8.3 Digital Physics and Information-Theoretic Approaches

Zuse [10], Fredkin [11], Wheeler [8] ("it from bit"), and Landauer [6, 7] all explored connections between physics and information. Distinguishability provides a principled explanation for *why* information is fundamental: because distinguishability—the capacity to tell states apart—is the primitive operation upon which all measurement, computation, and knowledge rests.

8.4 What Distinguishability Adds

Previous frameworks often postulate discreteness or finite information without fully explaining *why* infinite precision fails. Distinguishability provides that explanation: infinite precision fails

because accessing it would require unbounded resources, unbounded time, or unbounded information—none of which are operationally available.

More importantly, the framework applies reflexively. Any theoretical proposal—including proposals about discrete physics or information-theoretic foundations—must itself avoid smuggling in unprovable infinities. Claims about infinitely many computational steps, infinitely many worlds, or infinitely extended structures face the same scrutiny as claims about infinitely precise measurements. Mathematical consistency does not confer physical existence.

9. Implications and Predictions

A framework is only as valuable as its consequences. What does taking distinguishability seriously imply?

9.1 For Physics

- **Renormalization reinterpreted:** Renormalization is not a trick to hide infinities but a recognition that physics respects a natural resolution bound [13, 14, 15].
- **Singularities as signals:** Singularities in physical theories signal not literal infinities but breakdown of the theory's distinguishability domain.
- **Measurement bounds:** There exist fundamental limits on how precisely any physical quantity can be determined, independent of technology [9, 21].
- **Hilbert space clarified:** The "infinite-dimensional" Hilbert space of quantum mechanics is a mathematical framework, but in any actual experimental context, only finite information can be extracted in finite time and energy. The operationally accessible outcome space is always finite or effectively finite.
- **Thermodynamic efficiency:** Nature does not maintain distinctions that cannot be detected. Infinite precision would require infinite physical resources to encode while producing no observable effect—a violation of how physical systems actually operate.

9.2 For Mathematics

- **Robust vs. fragile results:** Results that depend critically on infinitesimal distinctions are mathematically valid but may not correspond to physically or computationally meaningful statements.
- **Reframing undecidability:** Some undecidable propositions may be understood as requiring distinctions beyond any finite symbolic capacity.

9.3 For Computation

- **Computability as distinguishability bound:** The boundary between computable and uncomputable corresponds to the boundary between finite and infinite distinguishability [25, 27].

- **Numerical stability:** Algorithms that remain stable under finite precision are distinguishability-respecting; those that require exact arithmetic are not.

9.4 For Cosmology and Foundational Claims

The framework has direct implications for claims involving actual infinities:

- **Infinite worlds:** Proposals involving infinitely many parallel universes, branches, or cosmological domains exceed distinguishability bounds. If no finite procedure can access or distinguish these worlds, such claims are not presently scientifically testable—they are mathematical extrapolations beyond the Taylor Limit.
- **Infinite cosmologies:** Claims about spatially or temporally infinite universes face the same constraint. An infinity that cannot be traversed, measured, or distinguished from a sufficiently large finite structure is not an empirically decidable claim.
- **Eternal processes:** Assertions about processes continuing "forever" or structures persisting "infinitely" are not operationally testable. What can be tested is behavior over finite, distinguishable intervals.

There is a deeper issue: infinity is not merely inaccessible but *relationally vacuous* in any operational sense. A coordinate system requires positions that can be compared. An amount requires a quantity that can be related to other quantities. Infinity is not a very large number—it is the dissolution of number. You cannot be "at" infinity, measure "from" infinity, or stand in relation to infinity, because infinity has no position within any operational relational structure.

This matters because science is fundamentally relational. Measurement is comparison. Prediction is relating initial states to final states. Explanation is relating causes to effects. When infinity enters a theory, it doesn't extend the operational relational structure to larger scales—it *terminates* it. Infinity is where operational relations end, not where they continue. Claims involving actual infinities are therefore not extensions of scientific reasoning but exits from its domain of applicability.

For the general reader: Imagine trying to meet someone "at infinity." You can't, because infinity isn't a place—it's the idea of there being no final place. The same applies to amounts: "infinitely many" isn't a very large count, it's the absence of counting. When a theory posits infinite worlds or infinite time, it's not describing something unimaginably vast—it's describing something that can't participate in the relational structure that makes description possible. Infinity is less like a distant destination and more like leaving the map entirely.

This is not a dismissal of speculative physics but a clarification of its status. Claims involving actual infinities—whether infinite precision, infinite worlds, or infinite time—all exceed the bounds where distinguishability applies. They are extrapolations beyond the domain of testable science.

9.5 For Philosophy of Science

- **Criterion for meaningful questions:** The Distinguishability Criterion provides a principled basis for evaluating whether a question is scientifically decidable [22, 24]: it must be stable under coarse-graining and resolvable by finite procedures.
- **Ontology and epistemology converge:** What exists operationally (ontology) and what can be known (epistemology) align when distinguishability is fundamental—distinctions that cannot be accessed by any finite procedure have no operational existence.

10. Conclusion: Distinguishability as Foundation

We began with a simple observation: something moving infinitely slowly is indistinguishable from something stationary. This is not a limitation of measurement technology—it is a structural fact about what "motion" means. Speed requires distinguishable displacement over distinguishable time. Where distinguishability fails, the concept itself dissolves.

The assumption of infinite distinguishability is so pervasive that it is rarely examined. Yet it is not empirically required, not computationally realizable, and not physically meaningful. Every actual measurement, calculation, and observation operates under finite resolution.

This paper has argued that distinguishability should be treated as a foundational constraint—a limit on what can be meaningfully said about states, values, and differences. When this constraint is respected:

- Pathologies in physics (divergences, singularities) are revealed as artifacts of exceeding distinguishability bounds.
- Mathematical limits are clarified as either resolution-stable (physically meaningful) or resolution-dependent (idealized artifacts).
- Computational limits are understood as structural boundaries imposed by distinguishability itself.
- Time emerges naturally as the ordering of distinguishable states rather than a primitive backdrop.

The framework does not reject continuous mathematics or formal spaces used as analytical tools. These remain powerful for calculation. But they are tools for describing behavior within finite resolution, not literal descriptions of physically realized infinite structures. The continuum is an idealized completion of finite structures, not a substrate that exists independently of distinguishable states.

Quantum mechanics provides an instructive example. Hilbert space is often described as "infinite-dimensional," but this is a mathematical idealization. In any actual experimental context, only a finite amount of information can be extracted from a quantum system in finite time and with finite energy [17, 18], so the operationally accessible outcome space is finite (or effectively finite under error bars), even when the underlying Hilbert space model is infinite-

dimensional. The infinite-dimensional formalism is a convenience that captures all *possible* finite subsystems within a unified framework; it does not imply that infinitely many distinguishable outcomes are simultaneously accessible. Hilbert space, properly understood, is a catalog of finite possibilities, not an actually infinite structure that must be physically maintained.

The success of continuum mathematics lies precisely in its robustness under finite coarse-graining; where that robustness fails, so does physical meaning. This is not a limitation of mathematics but a clarification of its domain of applicability.

Distinguishability vs. Approximation

A crucial clarification: finite distinguishability is not the same as approximation error. This distinction prevents a common misreading of the framework.

Approximation error implies that a "true" value exists and we are merely failing to reach it—that with better instruments, more time, or greater care, we could get closer. The gap between measurement and reality is contingent, technological, improvable.

Finite distinguishability implies something stronger operationally: below Δ , there is no operationally meaningful refinement to be reached. The distinction may exist as a real-number difference in the continuum model, but it cannot be accessed, stored, transmitted, or acted upon by any admissible finite procedure. In this sense, states separated by less than Δ are equivalent within the observable algebra of the system.

For the general reader: Imagine asking for the "exact" position of a cloud. You could measure more precisely, use better instruments, take more samples—but at some point you realize the question itself is malformed. A cloud doesn't have an exact boundary. The vagueness isn't in your measurement; it's in the thing itself. Similarly, Δ marks where the question "what is the exact value?" stops having an answer, not where we stop being able to find it.

This distinction matters because it changes the nature of limits. In approximation, the limit is the truth we're approaching. In finite distinguishability, limits beyond Δ are not truths we're approaching but idealizations that may or may not correspond to anything operational. The limit is a mathematical convenience, not a physical destination.

Taking distinguishability seriously does not limit science—it clarifies its scope. By distinguishing between resolution-stable truths and resolution-dependent artifacts, we gain a principled way to separate what can be known from what merely can be written down.

This is not a metaphysical proposal but a constraint on the domain of applicability of formal limits. We are not making claims about what reality "really is" at some inaccessible level. We are observing that when mathematical constructs—whether infinite limits, infinite worlds, or infinite structures—exceed operational distinguishability, they cease to correspond to measurable, computable, or physically meaningful quantities. Such constructs may be mathematically well-defined, but well-definition is not proof of existence. The framework is diagnostic: it identifies where formal machinery outruns operational content.

In this sense, distinguishability is not a constraint imposed from outside but a recognition of the conditions under which science is possible at all.

Glossary

Distinguishability: The capacity to tell two states apart using a finite procedure.

Dissolution of quantity: The principle that infinite values (infinitely slow, infinitely small, infinitely many) are not extreme cases of their respective properties but the point where those properties cease to apply; illustrated by the indistinguishability of infinitely slow motion from rest.

Hilbert space: In quantum mechanics, often described as "infinite-dimensional" but operationally constrained: only finite information can be extracted from any quantum system in finite time and energy, so the accessible outcome space is always finite or effectively finite, even when the mathematical formalism is infinite-dimensional.

Δ (Delta): The distinguishability threshold—the minimal resolution below which two states cannot be operationally distinguished.

Taylor Limit: The proposed upper bound on meaningful resolution, beyond which increased precision yields instability rather than information.

Operationally meaningful: Accessible through a finite sequence of measurements, computations, or comparisons.

Resolution-stable: A property or result that persists under coarse-graining to any finite resolution.

Singular limit: A mathematical limit where properties holding at every finite stage fail to persist to the limit.

Unprovable infinity: Any claim involving actual infinities (infinite worlds, infinite precision, infinite extent) that cannot be confirmed or refuted by finite procedures; such claims exceed distinguishability bounds and are not scientifically testable.

Relational vacuity of infinity: The property that infinity cannot serve as a coordinate, position, or amount within an operational relational structure; infinity is not a very large value but the dissolution of value, and therefore cannot participate in the comparisons that constitute measurement and science.

Distinguishability Criterion: The principle that a theoretical claim is scientifically meaningful only if its predicted structure is stable under small coarse-graining and decidable by finite procedures in finite time and energy.

Thermodynamic inefficiency of infinity: The physical argument that infinite precision would require infinite resources to encode while producing no distinguishable effect; nature does not maintain structure beyond what can be detected, making actual infinities physically implausible.

References

Operationalism and Measurement

1. Bridgman, P. W. (1927). *The Logic of Modern Physics*. New York: Macmillan. [The foundational text on operationalism, arguing that physical concepts are defined by the operations used to measure them.]
2. Bridgman, P. W. (1936). *The Nature of Physical Theory*. Princeton: Princeton University Press.

Constructive Mathematics and Finite Procedures

3. Brouwer, L. E. J. (1912). "Intuitionism and Formalism." *Bulletin of the American Mathematical Society*, 20(2), 81–96.
4. Bishop, E. (1967). *Foundations of Constructive Analysis*. New York: McGraw-Hill. [Developed mathematics where existence requires explicit construction.]
5. Bishop, E., & Bridges, D. (1985). *Constructive Analysis*. Berlin: Springer-Verlag.

Information, Computation, and Physics

6. Landauer, R. (1961). "Irreversibility and Heat Generation in the Computing Process." *IBM Journal of Research and Development*, 5(3), 183–191. [Established the physical basis of information, showing that erasure of information requires energy dissipation.]
7. Landauer, R. (1996). "The Physical Nature of Information." *Physics Letters A*, 217(4–5), 188–193.
8. Wheeler, J. A. (1990). "Information, Physics, Quantum: The Search for Links." In W. Zurek (Ed.), *Complexity, Entropy, and the Physics of Information*. Redwood City: Addison-Wesley. [The origin of "it from bit."]
9. Bekenstein, J. D. (1981). "Universal Upper Bound on the Entropy-to-Energy Ratio for Bounded Systems." *Physical Review D*, 23(2), 287–298. [Establishes fundamental limits on information content.]

Digital Physics and Discrete Approaches

10. Zuse, K. (1969). *Rechnender Raum* (Calculating Space). Braunschweig: Vieweg. [English translation: MIT Technical Translation AZT-70-164-GEMIT, 1970.]
11. Fredkin, E. (1990). "Digital Mechanics." *Physica D*, 45(1–3), 254–270.
12. 't Hooft, G. (2016). *The Cellular Automaton Interpretation of Quantum Mechanics*. Cham: Springer.

Renormalization and Effective Field Theory

13. Wilson, K. G. (1971). "Renormalization Group and Critical Phenomena." *Physical Review B*, 4(9), 3174–3183.
14. Wilson, K. G., & Kogut, J. (1974). "The Renormalization Group and the ϵ Expansion." *Physics Reports*, 12(2), 75–199. [The modern understanding of renormalization as scale-dependent physics.]
15. Cao, T. Y., & Schweber, S. S. (1993). "The Conceptual Foundations and the Philosophical Aspects of Renormalization Theory." *Synthese*, 97(1), 33–108.

Quantum Measurement and Information

16. von Neumann, J. (1932). *Mathematische Grundlagen der Quantenmechanik*. Berlin: Springer. [English translation: *Mathematical Foundations of Quantum Mechanics*, Princeton University Press, 1955.]
17. Holevo, A. S. (1973). "Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel." *Problems of Information Transmission*, 9(3), 177–183. [Fundamental limits on information extraction from quantum systems.]
18. Nielsen, M. A., & Chuang, I. L. (2000). *Quantum Computation and Quantum Information*. Cambridge: Cambridge University Press.

Thermodynamics and Entropy

19. Jaynes, E. T. (1957). "Information Theory and Statistical Mechanics." *Physical Review*, 106(4), 620–630.
20. Bennett, C. H. (1982). "The Thermodynamics of Computation—A Review." *International Journal of Theoretical Physics*, 21(12), 905–940.
21. Lloyd, S. (2000). "Ultimate Physical Limits to Computation." *Nature*, 406(6799), 1047–1054. [Derives fundamental bounds on computational operations from physics.]

Philosophy of Science and Limits of Knowledge

22. Popper, K. (1959). *The Logic of Scientific Discovery*. London: Hutchinson. [On falsifiability and the demarcation of science.]
23. Quine, W. V. O. (1951). "Two Dogmas of Empiricism." *The Philosophical Review*, 60(1), 20–43.
24. van Fraassen, B. C. (1980). *The Scientific Image*. Oxford: Clarendon Press. [Constructive empiricism and the limits of theoretical claims.]

Computability and Undecidability

25. Turing, A. M. (1936). "On Computable Numbers, with an Application to the Entscheidungsproblem." *Proceedings of the London Mathematical Society*, 42(1), 230–265.
26. Chaitin, G. J. (1987). *Algorithmic Information Theory*. Cambridge: Cambridge University Press.

27. Pour-El, M. B., & Richards, J. I. (1989). *Computability in Analysis and Physics*. Berlin: Springer-Verlag. [On the relationship between computability and physical theory.]

Time and Emergence

28. Barbour, J. (1999). *The End of Time: The Next Revolution in Physics*. Oxford: Oxford University Press. [Time as emergent from configuration space.]

29. Rovelli, C. (2018). *The Order of Time*. New York: Riverhead Books.

30. Smolin, L. (2013). *Time Reborn: From the Crisis in Physics to the Future of the Universe*. Boston: Houghton Mifflin Harcourt.

Keith Taylor
VERSF Theoretical Physics Program