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Abstract

Positive geometries demonstrate that physical scattering amplitudes can be derived entirely from
global consistency and positivity constraints, without reference to spacetime dynamics or virtual
particles. Independently, the Void Energy—Regulated Space Framework (VERSF) proposes that
spacetime and time itself emerge from entropy-regulated distinguishability on a pre-geometric
substrate. In this paper we argue that these approaches are aligned manifestations of a constraint-
first ontology. We present a mathematically explicit correspondence between canonical forms in
positive geometry and feasibility regions defined by entropy and distinguishability in VERSF.
We establish sufficient conditions under which VERSF feasibility regions satisty positive
geometry axioms, derive the suppression hierarchy for high-codimension boundaries from
entropy principles, and show that emergent time corresponds to directed flow on the feasibility
space with canonical form singularities encoding reorganization events. This correspondence is
non-trivial, structurally restrictive, and leads to concrete constraints on which positive
geometries can represent physically admissible processes.

General-Reader Abstract

Modern physics usually explains the world by describing how forces act on objects as time
passes. But recent discoveries suggest a different picture: instead of focusing on how things
move, it may be more fundamental to ask what configurations of the world are even allowed to
exist.

One place this idea appears is in particle physics, in the study of scattering — what happens
when tiny particles collide and fly apart. Because these events are unpredictable in detail,
physicists describe them using scattering probabilities, which simply mean the chances of
different outcomes (for example, the likelihood that particles scatter in one direction rather than
another). Surprisingly, modern work has shown that these probabilities can be calculated using
geometry alone. In this approach, known as pesitive geometry, the outcomes of particle
collisions are encoded in the shape of a mathematical object, without needing to track forces,
motion, or even time.



Independently, the Void Energy—Regulated Space Framework (VERSF) proposes that space
and time themselves are not fundamental ingredients of reality. Instead, they emerge from limits
on distinguishability — how well different states of the world can be told apart — and entropy,
which measures how much disorder or complexity a system carries. In VERSF, physical
structure only exists where these limits allow it.

This paper shows that these two ideas are deeply connected. We demonstrate that the regions of
possibility defined by VERSF — determined by thresholds on distinguishability, entropy
capacity, and available energy — naturally form the same kinds of geometric shapes used in
positive geometry. In this view, physical processes are governed not by equations of motion, but
by whether they fit inside an allowed region of possibility.

The boundaries of these regions play a special role. They correspond to critical situations where
physical structure must reorganize — moments where something new forms or breaks down.
Moving through the allowed region defines a natural direction of time, while configurations that
push against many boundaries at once become increasingly unlikely.

Together, these ideas suggest a unifying perspective in which geometry, probability, and time all
emerge from basic limits on what can be consistently distinguished. Physics, in this view, is not
primarily about what happens, but about what is allowed to happen at all.

1. Introduction

Recent developments in theoretical physics suggest that fundamental laws may be better
understood as global consistency conditions rather than dynamical equations of motion. In
scattering amplitudes, this perspective culminates in the theory of positive geometries, where
probabilities arise from geometric structure alone. Separately, VERSF proposes that spacetime,
geometry, and time emerge from entropy-regulated distinguishability. Despite their distinct
origins, both frameworks replace dynamics with admissibility.

This paper establishes a precise correspondence between these frameworks. We show that
VERSF feasibility regions, under specified conditions, satisfy the axioms defining positive
geometries, and that the physical content of VERSF provides interpretation for the resulting
canonical forms. The correspondence operates at two levels: positive geometries encode
outcome-level consistency (which scattering processes are allowed), while VERSF addresses
existence-level consistency (which distinguishability configurations can persist).



2. Positive Geometries

A positive geometry is a region of a real algebraic variety equipped with a unique canonical
differential form whose singularities occur only on the boundary of the region. The canonical
form has logarithmic singularities on each boundary component and no singularities in the
interior. Formally, a positive geometry (X, X>0, Q) consists of:

1. A complex algebraic variety X
2. A closed subset X>0 c X(R) with interior X>0
3. A unique rational differential form Q of top degree

The canonical form Q satisfies:

e Logarithmic singularities on all boundary components of X>0

e No poles in the interior X>0

e Recursive residue factorization: residues on boundaries equal canonical forms of
boundary geometries

In the context of scattering amplitudes, these structures encode unitarity and factorization
directly and reproduce known amplitudes without reference to spacetime locality (Arkani-Hamed
& Trnka 2014; Arkani-Hamed et al. 2017). The amplituhedron, associahedron, and cosmological
polytopes are key examples.

3. The VERSF Framework

VERSF begins from a pre-geometric void substrate in which distinguishability is not assumed
but must arise through constraint-regulated processes. Distinguishability arises when reversible
micro-events cross constraint thresholds that render distinctions stable. Entropy regulates which
distinctions can persist, with time emerging as the ordering of these stabilization events.
Geometry arises as a response to entropy loading rather than as a fundamental background.

The framework posits three fundamental constraint classes:
o Distinguishability threshold: D(y) — D¢> 0
e Entropy capacity: X —X(y) >0
e Void-energy budget: I'.ff(y) >0

Physical configurations must satisfy all three constraints simultaneously.



4. Structural Alignment as Constraint Geometry
4.1 Constraint-Defined Regions

Let X be a real manifold with coordinates x € RY. Define an admissible region # c X by
inequality constraints:

R={xeX : fi(x)>0,i=1,...,m}

Such regions underlie both positive geometries and the VERSF framework. The boundary 02
consists of components where one or more constraints saturate.

4.2 Canonical Forms and Boundary Structure

Positive geometries admit a unique canonical form Q(Z) with logarithmic singularities only on
the boundaries fi(x) = 0 and no interior singularities. Locally, such forms take the structure:

Q) = o(x) [1i d log fi(x)

where w(x) is fixed by degree and residue conditions. The uniqueness of the canonical form is
the central rigidity result of positive geometry theory.

4.3 VERSF as a Constraint Geometry

VERSF is expressed in the same formal language by defining a state space Y whose coordinates
encode distinguishability, entropy loading, and void-energy degrees of freedom. Physical states
satisfy the feasibility constraints:

e D(y) — D¢ > 0 (distinguishability exceeds threshold)
e X¢—3(y)> 0 (entropy remains below capacity)
o Tff(y) > 0 (effective void-energy is positive)

These define an admissible region %2 VERSF C Y.

4.3.1 Conditions for a Canonical Form on %2 VERSF

To establish that 2 VERSF admits a canonical form in the positive geometry sense, we require:

Assumption (A1): Semi-algebraic stratified region. 2 VERSF c Y is a bounded (or
projectively compact once projective equivalence and physical cutoffs are imposed) semi-
algebraic region whose boundary admits a Whitney stratification into smooth components
defined by fi(y) = 0, such that intersections define codimension-k strata.

Assumption (A2): Boundary recursion. Each codimension-1 boundary component



Bi={yeR: fi(y)=0}

inherits an induced feasibility region Z; defined by the remaining inequalities fi#(y) > 0
restricted to Bi. More generally, each codimension-k intersection fi1 = --+ = i, = 0 inherits an
induced feasibility subregion defined by the remaining inequalities restricted to that stratum.

Definition 4.1 (VERSF canonical form). A top-degree differential form Q VERSF on Y is
called canonical for 2 VERSF if it satisfies:

Sign convention. All canonical forms are defined up to overall sign; residues inherit signs from
the induced boundary orientation.

1. Logarithmic singularities on each codimension-1 boundary: Near f; = 0,
Q ~ (dfi / fi) A (regular form)

2. No interior poles on %2 VERSF
3. Unit residue factorization: For each 1,

Res {f=0} Q VERSF =+ Q;
where Q; is the canonical form on the boundary region Z; (defined inductively)

4. Weight/normalization condition: Q has the correct homogeneity under admissible
rescalings of coordinates (or satisfies an appropriate normalization if Y is not naturally
projective)

Definition 4.2 (VERSF positive geometry candidate). A VERSF feasibility region %2 VERSF
satistying (A1)—(A2) together with the local product structure condition (A3, see §4.5) is called a
VERSF positive geometry candidate. Such regions admit unique canonical forms by the
following proposition.

Proposition 4.1 (Uniqueness). If %2 VERSEF satisfies (A1)—(A2) and admits a canonical form in
the sense of Def. 4.1, then it is unique up to overall sign.

Proof sketch. Suppose Q and Q' both satisfy conditions (1)—(4). Their difference A = Q — Q' has
vanishing residues on all boundary components and no interior poles. Hence A extends to a
globally regular form on the ambient compactification (projective closure of Y). For the
projective closure and the imposed homogeneity/normalization, any globally regular top form
compatible with (1)—(4) must be proportional under the imposed normalization and homogeneity
class; the unit-residue normalization condition (3) removes this freedom. Hence A = 0, and
uniqueness up to sign follows from residue normalization (cf. Arkani-Hamed et al. 2018, §2). m

Existence via pushforward. One natural construction of Q VERSF proceeds by pushforward:
choose a reference positive region (simplex, hypercube) with known canonical form Q ref, and
define an embedding @ from the reference region into Y. We require @ to be a stratified,



orientation-preserving, rational (or piecewise-rational) map that restricts to diffeomorphisms
with non-vanishing Jacobian on open strata and sends codimension-k faces of the reference
polytope to codimension-k constraint intersections fi1 = --- = fix = 0. Given such @, set Q VERSF
:= O*(Q_ref). This is the standard construction for amplituhedron canonical forms. The factor
n(y) in the local expression Q VERSF =n(y) []i d log fi(y) is then determined by requiring
residue factorization to hold.

Scope. The existence of ® (and thus  VERSF) is a structural requirement, not assumed
generically. In concrete VERSF models, verifying (A1)—(A3) and constructing @ is the principal
mathematical task.

4.4 Canonical Measure and Entropy Weighting

Beyond the canonical form itself, VERSF motivates an entropy-weighted measure on the
feasibility region. We derive this from first principles.

Assumption (A4): Additive entropy cost per independent saturated constraint. Approaching
a codimension-k stratum corresponds to simultaneously saturating k independent
distinguishability constraints. Independence here means that the constraint hypersurfaces
intersect transversely and approaching one saturation surface does not force another at leading
order—this links directly to condition (A3). When constraint activations are weakly coupled, the
entropy penalty is additive:

ASik=k - AS:

VERSF weighting postulate. Configurations with higher entropy loading are exponentially
suppressed in their contribution to stable distinguishable outcomes:

w(y) < exp[ =B AS(y) ]

where f is an inverse "entropy temperature" scale set by void regulation. The value of B is a
fundamental VERSF parameter; its derivation from void-energy density or distinguishability
thresholds is an open problem whose solution would constrain the framework significantly.
Derived suppression hierarchy. For configurations approaching codimension-k strata:

wi ~ exp(—p ASk) = exp(—B k AS1)

This yields the entropy-weighted measure:

dp = exp[~B AS(y)] @ VERSF

where AS(y) measures the total entropy cost of the configuration. For codimension-k boundary
strata, AS = k ASi, recovering the exponential suppression wi ~ exp(—Ak) with A := 3 AS:.



Deviation diagnostics. Exponential suppression follows in the weakly coupled constraint
regime. Deviations from exponential scaling—whether polynomial suppression wi ~ k™ or
modified exponentials—serve as diagnostics of constraint correlations (criticality) in the void
regulation dynamics. Specifically:

e ASi ~log k implies power-law suppression
e ASy~kewith a <1 implies stretched exponential
e Such deviations signal that constraint saturations are not kinematically independent

4.5 Correspondence Lemma: Recursive Structure

To demonstrate that the correspondence between VERSF and positive geometry is substantive
rather than merely notational, we establish that VERSF feasibility regions satisfy the recursive

boundary property.

Lemma 4.1 (Feasibility recursion). Let 2 VERSF = { f; > 0 }. If a codimension-1 boundary
component f, = 0 corresponds to a single constraint saturation event (e.g., ¥ — X¢ or D — D¢),
then the restricted region

R ={y€Y :fu(y)=0, fi#(y) >0 }

is itself a feasibility region of the same type, with inherited constraints. Hence the boundary
stratification is closed under "constraint saturation," matching the recursive boundary structure of
positive geometries.

Condition (A3): Local product structure near boundaries. Near f, = 0, the feasibility
constraints decouple at leading order so the region locally looks like (0, €) * %,. Under this
condition, the canonical form on & has residue equal to the canonical form on ..

This local product structure is expected to hold when constraint saturations are kinematically
independent—i.e., when approaching f, = 0 does not generically force other constraints toward
saturation. Violations of this condition indicate constraint coupling, producing non-factorizing
residues that would be observable as anomalous boundary behavior.

Triangulation analogue. In amplituhedra, triangulation corresponds to decomposing a region
into simpler cells (simplices) with matching boundaries, such that the canonical form equals the
sum of cell contributions with internal boundary terms canceling.

In VERSF feasibility regions, a natural cell decomposition is given by which constraints are
"active" (near saturation) versus far from saturation. This yields a stratification with the structure
of a regular CW complex. Summing over cells with appropriate orientations produces boundary
cancellations, leaving only physical boundary poles—the analogue of triangulation.

Whether concrete VERSF models satisfy (A1)—(A3)—and hence whether specific & VERSF
instantiations are positive geometries in the strict mathematical sense—is a natural question for



further investigation. The sufficient conditions are established; verification in specific physical
contexts remains open.

4.6 Why This Is Not Generic Constraint Optimization

This correspondence is non-trivial. Generic constraint systems admit many inequivalent
measures, interior extrema, and arbitrary objective functions. In contrast, both positive
geometries and VERSF exhibit:

1. Boundary-only singularities: The canonical form has poles only where constraints
saturate, never in the interior

2. Uniquely determined canonical form: Given the boundary structure, the form is fixed
up to sign

3. Factorization under boundary limits: Residues on boundaries equal canonical forms of
sub-regions

These properties distinguish admissibility frameworks from optimization frameworks.
4.7 Emergent Time as Flow on Feasibility Space

VERSF proposes that time is not fundamental but emerges from entropy-regulated
distinguishability dynamics. We now connect this to canonical form structure.

Definition (Emergent time parameter). An emergent time parameter T is any monotonic
parametrization of trajectories in & VERSF such that AS(y(t)) is non-decreasing along
trajectories, where AS = S — So measures entropy loading above a baseline. This captures the
VERSF principle that time corresponds to the accumulation of irreversible distinguishability.

One natural realization is gradient flow:

dy/dt = —VAS(y)

where V is the gradient with respect to any chosen Riemannian metric on Y. The construction is
metric-dependent, but monotonicity of AS is the only requirement used in this correspondence.
The specific flow equation is not canonical—only the monotonicity condition matters.
Temporal interpretation of boundaries. Boundaries of %2 VERSF acquire temporal meaning:
they are not merely geometric features but event horizons in the entropy-regulated sense—
surfaces where the system's distinguishability structure must reorganize for continued evolution.

Specifically:

e The boundary D(y) — D¢ = 0 corresponds to under-formation thresholds: insufficient
entropy to establish distinction



e The boundary X¢ — %(y) = 0 corresponds to overload thresholds: entropy cost exceeds
available capacity

e The boundary I'.ff(y) = 0 corresponds to void-energy exhaustion: no budget for further
distinction-making

The canonical form encodes these singular surfaces. Its poles mark the events where
distinguishability reorganization occurs—precisely the "ticks" in VERSF terminology that, upon
stabilization, become "bits."

Time emergence and canonical form. In this view, emergent time is not an external coordinate;
it is the directed traversal of the feasible region under entropy regulation. The canonical form
encodes the singular "event surfaces" where distinguishability reorganizes. The residue
factorization property then has temporal content: crossing a boundary threshold decomposes the
system's evolution into the sub-evolution on the constrained surface.

5. Toy Model Illustration

Consider a single normalized stability variable x € (0, 1). The admissible region is the open
interval (0, 1) with two constraint functions:

e fi(x) = x > 0 (distinguishability threshold)
o f3(x)=1—x>0 (entropy capacity)

The canonical form is:
Q=dx/[x(1 —x)]=dlogx—dlog(l —x)

This form has logarithmic singularities at both boundaries and no interior poles. The unit residue
property is verified explicitly:

Res {x=0} [dx /x(1—x)] = I/(1—x)|_{x=0} =1

Res {x=1} [dx/x(1—x)]=-1/x| {x=1} =-1

The residues are +1, confirming the unit residue normalization. For a zero-dimensional positive
geometry (a point), the canonical form is =1 by convention, fixed by orientation. This makes the
toy example formally consistent with the recursion axiom: boundaries of & are points, and their
canonical forms are the residues.

Physical interpretation. The boundaries x — 0 and x — 1 correspond respectively to:

e Under-formation (x — 0): Insufficient entropy to establish distinction
e Overload (x — 1): Entropy cost exceeds available void-energy budget



This defines the minimal two-constraint window for stable distinguishability. The canonical
form's symmetry under x <> (1 — x) reflects the duality between these failure modes.

Entropy-weighted measure. Including the VERSF weighting yields:
du =exp[—B AS(x)] - dx / [x(1 —x)]

where AS(x) measures entropy cost. If AS(x) = —x log x — (1—x) log(1—x) (the binary entropy),
then configurations near x = 1/2 are suppressed relative to those near the boundaries. This
weighting does not describe microstate typicality; it describes the relative contribution of
configurations to stable distinguishable outcomes under void regulation. Stable distinguishability
contributions are concentrated near constraint thresholds, where configurations carry more
structural information than the "featureless" high-entropy configurations at x = 1/2.

6. Operational Positivity from Finite Distinguishability

A key question is why probability amplitudes derived from positive geometries yield non-
negative probabilities for physical measurements. VERSF provides a natural answer grounded in
finite distinguishability.

Proposition (Operational positivity from finite distinguishability). Let {E;} be a finite or
countable set of operationally distinguishable outcomes (an event algebra for measurements). If
outcome probabilities are defined as stable relative frequencies of these outcomes—or
equivalently as a normalized positive functional on the event algebra—then:

pi=0,%ipi=1

Proof- Relative frequencies are ratios of non-negative counts. Any limiting frequency is therefore
non-negative. Normalization follows from exhaustiveness of the outcome set. m

Relation to quasi-probabilities. Quasi-probabilities (e.g., Wigner functions) can be negative
because they are phase-space representations, not operational event probabilities. Their
negativity is operationally meaningful only through how they reproduce positive measurement
statistics after integration against admissible test functions (marginals, POVM kernels).

Finite distinguishability does not forbid interference; it only constrains what can be registered as
an outcome. Negative quasi-probabilities are permitted as intermediate representations, but any
operational probability obtained by coarse-graining over finitely resolvable outcomes must be
non-negative. The role of finite distinguishability is not to outlaw interference, but to enforce
positivity at the level of observable event measures.

This is consistent with the result that Wigner negativity is necessary for quantum computational
advantage (Spekkens 2008; Veitch et al. 2012): the negativity encodes coherence resources that
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are consumed when outcomes are operationally resolved. VERSF accommodates this structure—
negativity reflects contextuality and coherence at the representation level, while positivity is
enforced at the distinguishable-outcome level.

7. Constraints on Admissible Positive Geometries

VERSF does not compute specific scattering amplitudes, but constrains which positive
geometries can correspond to physically realizable processes. This yields concrete predictions.

7.1 Compactness

Finite distinguishability implies that admissible regions must be compact—or effectively
compact once projective equivalence and physical cutoffs are imposed—in the relevant
kinematic space. Infinite regions would require infinite distinguishability to resolve all boundary
behavior.

Known examples such as the amplituhedron are compact when formulated in projective space,
consistent with this expectation. This is not a post-hoc observation: VERSF predicts that any

positive geometry corresponding to a physical process must admit a compact (or projectively
compact) formulation.

7.2 Codimension Suppression Hierarchy

Entropy regulation implies suppression of high-codimension boundary contributions. Boundaries
of codimension k correspond to the simultaneous saturation of k independent constraints and
therefore require increasingly fine distinguishability.
From Section 4.4, the suppression factor is:
Wi ~ exp(—Ak)
in the weakly coupled regime. This predicts that:

e Codimension-1 boundaries (single constraint saturation) dominate

e Higher-codimension contributions are exponentially suppressed
e The suppression scale A is set by fundamental VERSF parameters

7.3 Empirical Support

Independent support for this hierarchy appears in amplitude physics, where leading contributions
are dominated by low-codimension soft and collinear limits, while more degenerate multi-
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particle factorization channels are subleading (Catani 1998; Bern, Dixon & Kosower 2004; see
Dixon 2013 for a review). Specifically:

o Single soft limits (codimension-1) give leading infrared behavior
e Double soft limits (codimension-2) are subleading
e Multi-collinear configurations become increasingly suppressed

This empirical structure aligns with the VERSF-based admissibility hierarchy. The
correspondence suggests that the observed soft/collinear dominance is not accidental but reflects
the entropy cost of high-codimension constraint saturation.

8. Conclusion

Positive geometries and VERSF are aligned through a shared constraint-defined geometric
structure. We have established:

1. Formal correspondence: VERSF feasibility regions, under (A1)—(A3), satisfy the
axioms defining positive geometries and admit unique canonical forms

2. Derived suppression hierarchy: Exponential suppression of high-codimension
boundaries follows from entropy additivity, with deviations diagnosing constraint
correlations

3. Operational positivity: Finite distinguishability enforces non-negative probabilities at
the measurement level while permitting negative quasi-probability representations

4. Emergent time interpretation: Time corresponds to entropy-regulated flow on
feasibility space, with canonical form singularities encoding distinguishability
reorganization events

5. Concrete predictions: Compactness requirements and codimension suppression
constrain which positive geometries can represent physical processes

Positive geometries operate at the level of outcome consistency—encoding which scattering
processes satisfy unitarity and factorization. VERSF addresses existence-level consistency—
encoding which distinguishability configurations can persist under entropy regulation. Together
they suggest that physics is governed not by dynamics but by nested layers of admissibility.

This work does not propose that VERSF computes amplitudes, only that it constrains the class of
geometries that can correspond to physically realizable processes. The development of explicit
VERSF-derived constraints on amplituhedra and related structures remains an important
direction for future work.
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Appendix A: Notation Summary

Symbol Meaning
R_VERSF VERSF feasibility region
fi(y) Constraint functions
Q) VERSF Canonical form on %# VERSF
D(y) Distinguishability functional
2(y) Entropy loading
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Symbol Meaning

I'ff(y)
De, 3¢

B

Effective void-energy
Critical thresholds
Inverse entropy temperature

A=B AS: Codimension suppression scale

T
AS

Emergent time parameter
Entropy loading above baseline (S — So)

(A1)—(A3) Geometric assumptions for VERSF positive geometry candidate

(A4)

Additive entropy cost assumption

Appendix B: Open Problems
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Derive B from first principles: What sets the entropy temperature scale in VERSF?

. Explicit amplituhedron constraints: Which amplituhedra satisfy VERSF admissibility

conditions?

Triangulation correspondence: Does the VERSF cell decomposition reproduce known
triangulations of positive geometries?

Constraint correlation diagnostics: Can deviations from exponential suppression be
measured in amplitude data?

Cosmological polytopes: Do VERSF constraints apply to positive geometries for
cosmological correlators?
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