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Abstract 

Positive geometries demonstrate that physical scattering amplitudes can be derived entirely from 

global consistency and positivity constraints, without reference to spacetime dynamics or virtual 

particles. Independently, the Void Energy–Regulated Space Framework (VERSF) proposes that 

spacetime and time itself emerge from entropy-regulated distinguishability on a pre-geometric 

substrate. In this paper we argue that these approaches are aligned manifestations of a constraint-

first ontology. We present a mathematically explicit correspondence between canonical forms in 

positive geometry and feasibility regions defined by entropy and distinguishability in VERSF. 

We establish sufficient conditions under which VERSF feasibility regions satisfy positive 

geometry axioms, derive the suppression hierarchy for high-codimension boundaries from 

entropy principles, and show that emergent time corresponds to directed flow on the feasibility 

space with canonical form singularities encoding reorganization events. This correspondence is 

non-trivial, structurally restrictive, and leads to concrete constraints on which positive 

geometries can represent physically admissible processes. 

General-Reader Abstract 

Modern physics usually explains the world by describing how forces act on objects as time 

passes. But recent discoveries suggest a different picture: instead of focusing on how things 

move, it may be more fundamental to ask what configurations of the world are even allowed to 

exist. 

One place this idea appears is in particle physics, in the study of scattering — what happens 

when tiny particles collide and fly apart. Because these events are unpredictable in detail, 

physicists describe them using scattering probabilities, which simply mean the chances of 

different outcomes (for example, the likelihood that particles scatter in one direction rather than 

another). Surprisingly, modern work has shown that these probabilities can be calculated using 

geometry alone. In this approach, known as positive geometry, the outcomes of particle 

collisions are encoded in the shape of a mathematical object, without needing to track forces, 

motion, or even time. 
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Independently, the Void Energy–Regulated Space Framework (VERSF) proposes that space 

and time themselves are not fundamental ingredients of reality. Instead, they emerge from limits 

on distinguishability — how well different states of the world can be told apart — and entropy, 

which measures how much disorder or complexity a system carries. In VERSF, physical 

structure only exists where these limits allow it. 

This paper shows that these two ideas are deeply connected. We demonstrate that the regions of 

possibility defined by VERSF — determined by thresholds on distinguishability, entropy 

capacity, and available energy — naturally form the same kinds of geometric shapes used in 

positive geometry. In this view, physical processes are governed not by equations of motion, but 

by whether they fit inside an allowed region of possibility. 

The boundaries of these regions play a special role. They correspond to critical situations where 

physical structure must reorganize — moments where something new forms or breaks down. 

Moving through the allowed region defines a natural direction of time, while configurations that 

push against many boundaries at once become increasingly unlikely. 

Together, these ideas suggest a unifying perspective in which geometry, probability, and time all 

emerge from basic limits on what can be consistently distinguished. Physics, in this view, is not 

primarily about what happens, but about what is allowed to happen at all. 

 

 

1. Introduction 

Recent developments in theoretical physics suggest that fundamental laws may be better 

understood as global consistency conditions rather than dynamical equations of motion. In 

scattering amplitudes, this perspective culminates in the theory of positive geometries, where 

probabilities arise from geometric structure alone. Separately, VERSF proposes that spacetime, 

geometry, and time emerge from entropy-regulated distinguishability. Despite their distinct 

origins, both frameworks replace dynamics with admissibility. 

This paper establishes a precise correspondence between these frameworks. We show that 

VERSF feasibility regions, under specified conditions, satisfy the axioms defining positive 

geometries, and that the physical content of VERSF provides interpretation for the resulting 

canonical forms. The correspondence operates at two levels: positive geometries encode 

outcome-level consistency (which scattering processes are allowed), while VERSF addresses 

existence-level consistency (which distinguishability configurations can persist). 
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2. Positive Geometries 

A positive geometry is a region of a real algebraic variety equipped with a unique canonical 

differential form whose singularities occur only on the boundary of the region. The canonical 

form has logarithmic singularities on each boundary component and no singularities in the 

interior. Formally, a positive geometry (X, X≥0, Ω) consists of: 

1. A complex algebraic variety X 

2. A closed subset X≥0 ⊂ X(ℝ) with interior X>0 

3. A unique rational differential form Ω of top degree 

The canonical form Ω satisfies: 

• Logarithmic singularities on all boundary components of X≥0 

• No poles in the interior X>0 

• Recursive residue factorization: residues on boundaries equal canonical forms of 

boundary geometries 

In the context of scattering amplitudes, these structures encode unitarity and factorization 

directly and reproduce known amplitudes without reference to spacetime locality (Arkani-Hamed 

& Trnka 2014; Arkani-Hamed et al. 2017). The amplituhedron, associahedron, and cosmological 

polytopes are key examples. 

 

3. The VERSF Framework 

VERSF begins from a pre-geometric void substrate in which distinguishability is not assumed 

but must arise through constraint-regulated processes. Distinguishability arises when reversible 

micro-events cross constraint thresholds that render distinctions stable. Entropy regulates which 

distinctions can persist, with time emerging as the ordering of these stabilization events. 

Geometry arises as a response to entropy loading rather than as a fundamental background. 

The framework posits three fundamental constraint classes: 

• Distinguishability threshold: D(y) − Dᶜ > 0 

• Entropy capacity: Σᶜ − Σ(y) > 0 

• Void-energy budget: Γₑff(y) > 0 

Physical configurations must satisfy all three constraints simultaneously. 
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4. Structural Alignment as Constraint Geometry 

4.1 Constraint-Defined Regions 

Let X be a real manifold with coordinates x ∈ ℝᵈ. Define an admissible region ℛ ⊂ X by 

inequality constraints: 

ℛ = { x ∈ X : fᵢ(x) > 0, i = 1, ..., m } 

Such regions underlie both positive geometries and the VERSF framework. The boundary ∂ℛ 

consists of components where one or more constraints saturate. 

4.2 Canonical Forms and Boundary Structure 

Positive geometries admit a unique canonical form Ω(ℛ) with logarithmic singularities only on 

the boundaries fᵢ(x) = 0 and no interior singularities. Locally, such forms take the structure: 

Ω(ℛ) = ω(x) ∏ᵢ d log fᵢ(x) 

where ω(x) is fixed by degree and residue conditions. The uniqueness of the canonical form is 

the central rigidity result of positive geometry theory. 

4.3 VERSF as a Constraint Geometry 

VERSF is expressed in the same formal language by defining a state space Y whose coordinates 

encode distinguishability, entropy loading, and void-energy degrees of freedom. Physical states 

satisfy the feasibility constraints: 

• D(y) − Dᶜ > 0 (distinguishability exceeds threshold) 

• Σᶜ − Σ(y) > 0 (entropy remains below capacity) 

• Γₑff(y) > 0 (effective void-energy is positive) 

These define an admissible region ℛ_VERSF ⊂ Y. 

4.3.1 Conditions for a Canonical Form on ℛ_VERSF 

To establish that ℛ_VERSF admits a canonical form in the positive geometry sense, we require: 

Assumption (A1): Semi-algebraic stratified region. ℛ_VERSF ⊂ Y is a bounded (or 

projectively compact once projective equivalence and physical cutoffs are imposed) semi-

algebraic region whose boundary admits a Whitney stratification into smooth components 

defined by fᵢ(y) = 0, such that intersections define codimension-k strata. 

Assumption (A2): Boundary recursion. Each codimension-1 boundary component 
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Bᵢ := { y ∈ ℛ̄ : fᵢ(y) = 0 } 

inherits an induced feasibility region ℛᵢ defined by the remaining inequalities fⱼ≠ᵢ(y) > 0 

restricted to Bᵢ. More generally, each codimension-k intersection fᵢ₁ = ⋯ = fᵢₖ = 0 inherits an 

induced feasibility subregion defined by the remaining inequalities restricted to that stratum. 

Definition 4.1 (VERSF canonical form). A top-degree differential form Ω_VERSF on Y is 

called canonical for ℛ_VERSF if it satisfies: 

Sign convention. All canonical forms are defined up to overall sign; residues inherit signs from 

the induced boundary orientation. 

1. Logarithmic singularities on each codimension-1 boundary: Near fᵢ = 0, 

Ω ~ (dfᵢ / fᵢ) ∧ (regular form) 

2. No interior poles on ℛ_VERSF 

3. Unit residue factorization: For each i, 

Res_{fᵢ=0} Ω_VERSF = ± Ωᵢ 

where Ωᵢ is the canonical form on the boundary region ℛᵢ (defined inductively) 

4. Weight/normalization condition: Ω has the correct homogeneity under admissible 

rescalings of coordinates (or satisfies an appropriate normalization if Y is not naturally 

projective) 

Definition 4.2 (VERSF positive geometry candidate). A VERSF feasibility region ℛ_VERSF 

satisfying (A1)–(A2) together with the local product structure condition (A3, see §4.5) is called a 

VERSF positive geometry candidate. Such regions admit unique canonical forms by the 

following proposition. 

Proposition 4.1 (Uniqueness). If ℛ_VERSF satisfies (A1)–(A2) and admits a canonical form in 

the sense of Def. 4.1, then it is unique up to overall sign. 

Proof sketch. Suppose Ω and Ω′ both satisfy conditions (1)–(4). Their difference Δ = Ω − Ω′ has 

vanishing residues on all boundary components and no interior poles. Hence Δ extends to a 

globally regular form on the ambient compactification (projective closure of Y). For the 

projective closure and the imposed homogeneity/normalization, any globally regular top form 

compatible with (1)–(4) must be proportional under the imposed normalization and homogeneity 

class; the unit-residue normalization condition (3) removes this freedom. Hence Δ = 0, and 

uniqueness up to sign follows from residue normalization (cf. Arkani-Hamed et al. 2018, §2). ∎ 

Existence via pushforward. One natural construction of Ω_VERSF proceeds by pushforward: 

choose a reference positive region (simplex, hypercube) with known canonical form Ω_ref, and 

define an embedding Φ from the reference region into Y. We require Φ to be a stratified, 
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orientation-preserving, rational (or piecewise-rational) map that restricts to diffeomorphisms 

with non-vanishing Jacobian on open strata and sends codimension-k faces of the reference 

polytope to codimension-k constraint intersections fᵢ₁ = ⋯ = fᵢₖ = 0. Given such Φ, set Ω_VERSF 

:= Φ∗(Ω_ref). This is the standard construction for amplituhedron canonical forms. The factor 

η(y) in the local expression Ω_VERSF = η(y) ∏ᵢ d log fᵢ(y) is then determined by requiring 

residue factorization to hold. 

Scope. The existence of Φ (and thus Ω_VERSF) is a structural requirement, not assumed 

generically. In concrete VERSF models, verifying (A1)–(A3) and constructing Φ is the principal 

mathematical task. 

4.4 Canonical Measure and Entropy Weighting 

Beyond the canonical form itself, VERSF motivates an entropy-weighted measure on the 

feasibility region. We derive this from first principles. 

Assumption (A4): Additive entropy cost per independent saturated constraint. Approaching 

a codimension-k stratum corresponds to simultaneously saturating k independent 

distinguishability constraints. Independence here means that the constraint hypersurfaces 

intersect transversely and approaching one saturation surface does not force another at leading 

order—this links directly to condition (A3). When constraint activations are weakly coupled, the 

entropy penalty is additive: 

ΔSₖ ≈ k · ΔS₁ 

VERSF weighting postulate. Configurations with higher entropy loading are exponentially 

suppressed in their contribution to stable distinguishable outcomes: 

w(y) ∝ exp[ −β ΔS(y) ] 

where β is an inverse "entropy temperature" scale set by void regulation. The value of β is a 

fundamental VERSF parameter; its derivation from void-energy density or distinguishability 

thresholds is an open problem whose solution would constrain the framework significantly. 

Derived suppression hierarchy. For configurations approaching codimension-k strata: 

wₖ ~ exp(−β ΔSₖ) ≈ exp(−β k ΔS₁) 

This yields the entropy-weighted measure: 

dμ = exp[−β ΔS(y)] Ω_VERSF 

where ΔS(y) measures the total entropy cost of the configuration. For codimension-k boundary 

strata, ΔS ≈ k ΔS₁, recovering the exponential suppression wₖ ~ exp(−λk) with λ := β ΔS₁. 
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Deviation diagnostics. Exponential suppression follows in the weakly coupled constraint 

regime. Deviations from exponential scaling—whether polynomial suppression wₖ ~ k⁻ᵅ or 

modified exponentials—serve as diagnostics of constraint correlations (criticality) in the void 

regulation dynamics. Specifically: 

• ΔSₖ ~ log k implies power-law suppression 

• ΔSₖ ~ kᵅ with α < 1 implies stretched exponential 

• Such deviations signal that constraint saturations are not kinematically independent 

4.5 Correspondence Lemma: Recursive Structure 

To demonstrate that the correspondence between VERSF and positive geometry is substantive 

rather than merely notational, we establish that VERSF feasibility regions satisfy the recursive 

boundary property. 

Lemma 4.1 (Feasibility recursion). Let ℛ_VERSF = { fᵢ > 0 }. If a codimension-1 boundary 

component fₐ = 0 corresponds to a single constraint saturation event (e.g., Σ → Σᶜ or D → Dᶜ), 

then the restricted region 

ℛₐ := { y ∈ Y : fₐ(y) = 0, fᵢ≠ₐ(y) > 0 } 

is itself a feasibility region of the same type, with inherited constraints. Hence the boundary 

stratification is closed under "constraint saturation," matching the recursive boundary structure of 

positive geometries. 

Condition (A3): Local product structure near boundaries. Near fₐ = 0, the feasibility 

constraints decouple at leading order so the region locally looks like (0, ε) × ℛₐ. Under this 

condition, the canonical form on ℛ has residue equal to the canonical form on ℛₐ. 

This local product structure is expected to hold when constraint saturations are kinematically 

independent—i.e., when approaching fₐ = 0 does not generically force other constraints toward 

saturation. Violations of this condition indicate constraint coupling, producing non-factorizing 

residues that would be observable as anomalous boundary behavior. 

Triangulation analogue. In amplituhedra, triangulation corresponds to decomposing a region 

into simpler cells (simplices) with matching boundaries, such that the canonical form equals the 

sum of cell contributions with internal boundary terms canceling. 

In VERSF feasibility regions, a natural cell decomposition is given by which constraints are 

"active" (near saturation) versus far from saturation. This yields a stratification with the structure 

of a regular CW complex. Summing over cells with appropriate orientations produces boundary 

cancellations, leaving only physical boundary poles—the analogue of triangulation. 

Whether concrete VERSF models satisfy (A1)–(A3)—and hence whether specific ℛ_VERSF 

instantiations are positive geometries in the strict mathematical sense—is a natural question for 
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further investigation. The sufficient conditions are established; verification in specific physical 

contexts remains open. 

4.6 Why This Is Not Generic Constraint Optimization 

This correspondence is non-trivial. Generic constraint systems admit many inequivalent 

measures, interior extrema, and arbitrary objective functions. In contrast, both positive 

geometries and VERSF exhibit: 

1. Boundary-only singularities: The canonical form has poles only where constraints 

saturate, never in the interior 

2. Uniquely determined canonical form: Given the boundary structure, the form is fixed 

up to sign 

3. Factorization under boundary limits: Residues on boundaries equal canonical forms of 

sub-regions 

These properties distinguish admissibility frameworks from optimization frameworks. 

4.7 Emergent Time as Flow on Feasibility Space 

VERSF proposes that time is not fundamental but emerges from entropy-regulated 

distinguishability dynamics. We now connect this to canonical form structure. 

Definition (Emergent time parameter). An emergent time parameter τ is any monotonic 

parametrization of trajectories in ℛ_VERSF such that ΔS(y(τ)) is non-decreasing along 

trajectories, where ΔS = S − S₀ measures entropy loading above a baseline. This captures the 

VERSF principle that time corresponds to the accumulation of irreversible distinguishability. 

One natural realization is gradient flow: 

dy/dτ = −∇ΔS(y) 

where ∇ is the gradient with respect to any chosen Riemannian metric on Y. The construction is 

metric-dependent, but monotonicity of ΔS is the only requirement used in this correspondence. 

The specific flow equation is not canonical—only the monotonicity condition matters. 

Temporal interpretation of boundaries. Boundaries of ℛ_VERSF acquire temporal meaning: 

they are not merely geometric features but event horizons in the entropy-regulated sense—

surfaces where the system's distinguishability structure must reorganize for continued evolution. 

Specifically: 

• The boundary D(y) − Dᶜ = 0 corresponds to under-formation thresholds: insufficient 

entropy to establish distinction 
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• The boundary Σᶜ − Σ(y) = 0 corresponds to overload thresholds: entropy cost exceeds 

available capacity 

• The boundary Γₑff(y) = 0 corresponds to void-energy exhaustion: no budget for further 

distinction-making 

The canonical form encodes these singular surfaces. Its poles mark the events where 

distinguishability reorganization occurs—precisely the "ticks" in VERSF terminology that, upon 

stabilization, become "bits." 

Time emergence and canonical form. In this view, emergent time is not an external coordinate; 

it is the directed traversal of the feasible region under entropy regulation. The canonical form 

encodes the singular "event surfaces" where distinguishability reorganizes. The residue 

factorization property then has temporal content: crossing a boundary threshold decomposes the 

system's evolution into the sub-evolution on the constrained surface. 

 

5. Toy Model Illustration 

Consider a single normalized stability variable x ∈ (0, 1). The admissible region is the open 

interval (0, 1) with two constraint functions: 

• f₁(x) = x > 0 (distinguishability threshold) 

• f₂(x) = 1 − x > 0 (entropy capacity) 

The canonical form is: 

Ω = dx / [x(1 − x)] = d log x − d log(1 − x) 

This form has logarithmic singularities at both boundaries and no interior poles. The unit residue 

property is verified explicitly: 

Res_{x=0} [dx / x(1−x)] = 1/(1−x)|_{x=0} = 1 

Res_{x=1} [dx / x(1−x)] = −1/x|_{x=1} = −1 

The residues are ±1, confirming the unit residue normalization. For a zero-dimensional positive 

geometry (a point), the canonical form is ±1 by convention, fixed by orientation. This makes the 

toy example formally consistent with the recursion axiom: boundaries of ℛ are points, and their 

canonical forms are the residues. 

Physical interpretation. The boundaries x → 0 and x → 1 correspond respectively to: 

• Under-formation (x → 0): Insufficient entropy to establish distinction 

• Overload (x → 1): Entropy cost exceeds available void-energy budget 
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This defines the minimal two-constraint window for stable distinguishability. The canonical 

form's symmetry under x ↔ (1 − x) reflects the duality between these failure modes. 

Entropy-weighted measure. Including the VERSF weighting yields: 

dμ = exp[−β ΔS(x)] · dx / [x(1 − x)] 

where ΔS(x) measures entropy cost. If ΔS(x) = −x log x − (1−x) log(1−x) (the binary entropy), 

then configurations near x = 1/2 are suppressed relative to those near the boundaries. This 

weighting does not describe microstate typicality; it describes the relative contribution of 

configurations to stable distinguishable outcomes under void regulation. Stable distinguishability 

contributions are concentrated near constraint thresholds, where configurations carry more 

structural information than the "featureless" high-entropy configurations at x = 1/2. 

 

6. Operational Positivity from Finite Distinguishability 

A key question is why probability amplitudes derived from positive geometries yield non-

negative probabilities for physical measurements. VERSF provides a natural answer grounded in 

finite distinguishability. 

Proposition (Operational positivity from finite distinguishability). Let {Eᵢ} be a finite or 

countable set of operationally distinguishable outcomes (an event algebra for measurements). If 

outcome probabilities are defined as stable relative frequencies of these outcomes—or 

equivalently as a normalized positive functional on the event algebra—then: 

pᵢ ≥ 0, ∑ᵢ pᵢ = 1 

Proof. Relative frequencies are ratios of non-negative counts. Any limiting frequency is therefore 

non-negative. Normalization follows from exhaustiveness of the outcome set. ∎ 

Relation to quasi-probabilities. Quasi-probabilities (e.g., Wigner functions) can be negative 

because they are phase-space representations, not operational event probabilities. Their 

negativity is operationally meaningful only through how they reproduce positive measurement 

statistics after integration against admissible test functions (marginals, POVM kernels). 

Finite distinguishability does not forbid interference; it only constrains what can be registered as 

an outcome. Negative quasi-probabilities are permitted as intermediate representations, but any 

operational probability obtained by coarse-graining over finitely resolvable outcomes must be 

non-negative. The role of finite distinguishability is not to outlaw interference, but to enforce 

positivity at the level of observable event measures. 

This is consistent with the result that Wigner negativity is necessary for quantum computational 

advantage (Spekkens 2008; Veitch et al. 2012): the negativity encodes coherence resources that 
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are consumed when outcomes are operationally resolved. VERSF accommodates this structure—

negativity reflects contextuality and coherence at the representation level, while positivity is 

enforced at the distinguishable-outcome level. 

 

7. Constraints on Admissible Positive Geometries 

VERSF does not compute specific scattering amplitudes, but constrains which positive 

geometries can correspond to physically realizable processes. This yields concrete predictions. 

7.1 Compactness 

Finite distinguishability implies that admissible regions must be compact—or effectively 

compact once projective equivalence and physical cutoffs are imposed—in the relevant 

kinematic space. Infinite regions would require infinite distinguishability to resolve all boundary 

behavior. 

Known examples such as the amplituhedron are compact when formulated in projective space, 

consistent with this expectation. This is not a post-hoc observation: VERSF predicts that any 

positive geometry corresponding to a physical process must admit a compact (or projectively 

compact) formulation. 

7.2 Codimension Suppression Hierarchy 

Entropy regulation implies suppression of high-codimension boundary contributions. Boundaries 

of codimension k correspond to the simultaneous saturation of k independent constraints and 

therefore require increasingly fine distinguishability. 

From Section 4.4, the suppression factor is: 

wₖ ~ exp(−λk) 

in the weakly coupled regime. This predicts that: 

• Codimension-1 boundaries (single constraint saturation) dominate 

• Higher-codimension contributions are exponentially suppressed 

• The suppression scale λ is set by fundamental VERSF parameters 

7.3 Empirical Support 

Independent support for this hierarchy appears in amplitude physics, where leading contributions 

are dominated by low-codimension soft and collinear limits, while more degenerate multi-
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particle factorization channels are subleading (Catani 1998; Bern, Dixon & Kosower 2004; see 

Dixon 2013 for a review). Specifically: 

• Single soft limits (codimension-1) give leading infrared behavior 

• Double soft limits (codimension-2) are subleading 

• Multi-collinear configurations become increasingly suppressed 

This empirical structure aligns with the VERSF-based admissibility hierarchy. The 

correspondence suggests that the observed soft/collinear dominance is not accidental but reflects 

the entropy cost of high-codimension constraint saturation. 

 

8. Conclusion 

Positive geometries and VERSF are aligned through a shared constraint-defined geometric 

structure. We have established: 

1. Formal correspondence: VERSF feasibility regions, under (A1)–(A3), satisfy the 

axioms defining positive geometries and admit unique canonical forms 

2. Derived suppression hierarchy: Exponential suppression of high-codimension 

boundaries follows from entropy additivity, with deviations diagnosing constraint 

correlations 

3. Operational positivity: Finite distinguishability enforces non-negative probabilities at 

the measurement level while permitting negative quasi-probability representations 

4. Emergent time interpretation: Time corresponds to entropy-regulated flow on 

feasibility space, with canonical form singularities encoding distinguishability 

reorganization events 

5. Concrete predictions: Compactness requirements and codimension suppression 

constrain which positive geometries can represent physical processes 

Positive geometries operate at the level of outcome consistency—encoding which scattering 

processes satisfy unitarity and factorization. VERSF addresses existence-level consistency—

encoding which distinguishability configurations can persist under entropy regulation. Together 

they suggest that physics is governed not by dynamics but by nested layers of admissibility. 

This work does not propose that VERSF computes amplitudes, only that it constrains the class of 

geometries that can correspond to physically realizable processes. The development of explicit 

VERSF-derived constraints on amplituhedra and related structures remains an important 

direction for future work. 
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Appendix A: Notation Summary 

Symbol Meaning 

ℛ_VERSF VERSF feasibility region 

fᵢ(y) Constraint functions 

Ω_VERSF Canonical form on ℛ_VERSF 

D(y) Distinguishability functional 

Σ(y) Entropy loading 
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Symbol Meaning 

Γₑff(y) Effective void-energy 

Dᶜ, Σᶜ Critical thresholds 

β Inverse entropy temperature 

λ = β ΔS₁ Codimension suppression scale 

τ Emergent time parameter 

ΔS Entropy loading above baseline (S − S₀) 

(A1)–(A3) Geometric assumptions for VERSF positive geometry candidate 

(A4) Additive entropy cost assumption 

Appendix B: Open Problems 

1. Derive β from first principles: What sets the entropy temperature scale in VERSF? 

2. Explicit amplituhedron constraints: Which amplituhedra satisfy VERSF admissibility 

conditions? 

3. Triangulation correspondence: Does the VERSF cell decomposition reproduce known 

triangulations of positive geometries? 

4. Constraint correlation diagnostics: Can deviations from exponential suppression be 

measured in amplitude data? 

5. Cosmological polytopes: Do VERSF constraints apply to positive geometries for 

cosmological correlators? 
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