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Abstract

We propose that quantum measurement outcomes are determined by a first-passage race between
decohered branches. Each branch generates microscopic "ticks" at a rate proportional to its
amplitude squared; the branch producing the first threshold-crossing tick—which triggers a
macroscopic irreversible "bit"—becomes the observed outcome. This Tick-Bit mechanism yields
the Born rule P = |y|* as an exact theorem of first-passage statistics, not as an axiom. The
apparent randomness of quantum mechanics emerges from epistemic uncertainty about
environmental microstates, while the underlying dynamics remain deterministic.

We ground the tick-rate scaling A A « [y_A[J* in Fermi's golden rule and a deeper reconstruction
of quantum amplitudes from resonance and distinguishability geometry (Resonant Assembly
Language), ensuring the derivation is non-circular. The framework provides a physical
mechanism for outcome definiteness, resolves the measurement problem without fundamental
stochasticity, and makes testable predictions: detectors requiring multiple independent triggers
should deviate from Born statistics.

A Note for General Readers

Quantum mechanics has a puzzle at its heart: the theory describes particles existing in
"superpositions" of multiple states simultaneously, yet we always observe definite outcomes.
How does one possibility win out over the others?

This paper proposes a concrete answer: it is a race. Each possible outcome generates random
"ticks"—tiny fluctuations in the detector. Whichever outcome produces the first tick that crosses
a threshold wins, triggering an irreversible amplification. The probability of winning turns out to
equal exactly |y|?, the famous Born rule.



Sections marked [General Reader] provide plain-language explanations. You can follow the
conceptual story through these sections alone, or engage with the full mathematics.
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PART I: THE TICK-BIT MECHANISM

1. The Outcome Selection Problem

1.1 The Puzzle

Quantum mechanics describes systems in superposition:
) =2 Ay _AJA)

where y_A are complex amplitudes and |A) are possible outcomes. The Born rule states that
outcome A occurs with probability:

P(A) = y_AP

But why? And how does a single definite outcome emerge from the superposition?

[General Reader] Imagine a coin that is somehow "both heads and tails" until you look at it.
Quantum mechanics says particles really are like this—existing in multiple states at once. But

when we measure, we always see ONE result. How does the universe "choose"? That is the
measurement problem, and it has been debated for a century.

1.2 What Decoherence Does—and Does Not—Explain

Decoherence occurs when a quantum system becomes entangled with its environment:
[W)[Eo) = Z_Ay_AJA)E_A)

where (E_A|E_B) = 0 for A # B. The branches become distinguishable and can no longer
interfere.

Decoherence explains why we do not observe interference between outcomes. It does not explain
why we observe one particular outcome. After decoherence, we have multiple branches—but
which one becomes "actual"?

[General Reader] Decoherence is like shuffling a deck of cards separately for each possible
outcome—now the outcomes cannot "talk to each other" anymore. But it does not explain which
card you will draw. That is a separate question.



1.3 Existing Approaches and Their Limitations

Different interpretations handle outcome selection differently:

Copenhagen: Measurement "collapses" the wave function. But what counts as measurement?
The boundary between quantum and classical remains undefined.

Many-Worlds: All branches are real; we simply find ourselves in one. But why do we observe
outcomes with frequency |y|*? The probability measure requires additional postulates.

Bohmian Mechanics: Hidden particle positions determine outcomes. But why should positions
be distributed as |y[*? This is assumed, not derived.

Objective Collapse (GRW): Spontaneous collapses are fundamental. But why do collapse rates
scale as [y[*? The rule is postulated.

All approaches either leave the Born rule as an axiom or derive it through assumptions that
effectively encode it. The measurement problem persists because no interpretation provides a
mechanism for outcome selection that derives the Born rule from more fundamental principles.

1.4 Our Proposal: A Physical Race

We propose that outcome selection is a first-passage race between decohered branches:

1. After decoherence, each branch generates microscopic "ticks" at rate A A
The tick rate scales as A_A =«|y_AJ?

3. The first branch to produce a threshold-crossing tick triggers a macroscopic irreversible
”bit"

4. First-passage statistics then yield P(A) = |y_AJ?

The Born rule emerges as a theorem, not an axiom.

[General Reader] Think of each possible outcome as a contestant in a race. Each contestant has
a "speed" proportional to [y|*. They are all racing to be the first to cross a finish line (produce an
irreversible event). The faster you are, the more likely you win. When we do the math, the
probability of winning equals exactly |y|>—the Born rule pops out automatically.



2. The Tick-Bit Mechanism
2.1 Definitions

Tick: A tick is the smallest microscopic increment of distinguishability in the detector—
environment microstate. A tick is not itself irreversible or stable; it is a micro-event that may, if
it crosses the metastability threshold, trigger the macroscopic irreversible event known as a Bit.
Physical examples include:

e A carrier excitation in a photodiode

e A hotspot nucleation attempt in a superconducting nanowire

e A metastable fluctuation in a pointer mechanism

e A molecular conformational fluctuation in a biological sensor
Bit: A Bit is the smallest macroscopic, thermodynamically irreversible unit of recorded
distinguishability—the measurement outcome. In metastable amplifying detectors, the first tick
that successfully drives the system over the instability threshold becomes a Bit.

Hazard rate h_A(t): The instantaneous probability density that branch A produces its first
threshold-crossing tick at time t, given no such tick has occurred yet.

2.2 The First-Passage Framework

We model each branch as a point process generating ticks. The key assumptions are:

(A1) Proportional hazards. All branches share the same hazard shape, differing only in scale:
h A(t)=X_A - ho(t)

where ho(t) is a baseline hazard and A_A is the branch-specific tick rate.

(A2) Tick rate scales with amplitude squared.

AA=x" |y AP

where « is a constant depending on the apparatus.

(A3) First-tick selection. The outcome is determined by the first branch to produce a threshold-
crossing tick (which becomes the Bit).

[General Reader]| These assumptions say: (1) all branches "tick" in the same general pattern,

just at different speeds; (2) the speed is proportional to |y[?; (3) first one to tick wins. These are
physically reasonable for real detectors, as we discuss below.
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2.3 Strengthened Constraints: From Assumptions to Physical Necessities

The assumptions (A1)—(A3) can be recast in a more rigorous form grounded in general physical
principles. None are arbitrary; each is a structural consequence of quantum dynamics,
decoherence, and detector physics. We denote the strengthened versions as (A1')—(A3").

(A3’) First-tick selection (k = 1) is forced by metastability and thermodynamic
irreversibility

Any macroscopic detector capable of amplifying a quantum input must operate as a metastable
system near an instability threshold. In such systems, the first microscopic event that crosses the
barrier triggers deterministic relaxation to a macroscopic outcome. This is a universal feature of
metastable amplification:

e A metastable system near an instability point has a single escape pathway (Arrhenius
barrier)

e As soon as one microscopic fluctuation crosses the barrier, the system undergoes rapid,
deterministic relaxation into one macrostate

o Subsequent fluctuations occur after the macrostate has been irreversibly determined

This principle spans supercooled nucleation (a single nucleus triggers crystallization), avalanche
photodiodes (one carrier triggers breakdown), photomultipliers (one photoelectron triggers the
cascade), superconducting nanowires (one hotspot triggers the voltage pulse), Geiger-Miiller
tubes (one ionization triggers the discharge), and chemical ignition (one radical triggers the
reaction).

Thus k = 1 is not a modeling assumption but a thermodynamic necessity for any single-quantum-
sensitive detector. Tick-Bit does not assume k = I—physics forces k = 1.

(A2') Tick rates must scale as |y_A|* by unitarity, symmetry, and perturbation theory
Transition amplitudes evolve linearly under the Schrodinger equation:

dy/dt=—(/h) H y

Physical transition rates must be non-negative, gauge-invariant, and phase-covariant quadratic
forms of the amplitudes. The only such functional is [yy_A[*. Any other choice would break phase
covariance, violate linearity of quantum response, break local tomography, or violate energy
conservation in perturbation theory.

Time-dependent perturbation theory (Fermi's golden rule) confirms this scaling as a dynamical
fact about amplitude-squared flow rates, independent of any probabilistic interpretation. We

develop this further in Section 4.

Therefore A A o |y A is forced by linear quantum dynamics and U(1) symmetry, not
postulated. This is a representation-theoretic necessity.

11



(A1’) Proportional hazards arise from detector branch-blindness

After decoherence, each branch A interacts with the detector via the same Hamiltonian H _int;
the apparatus cannot condition its response on which branch it is coupled to. The detector
Hamiltonian is the same operator acting on |A)[Po)|E_A) regardless of A. This implies that the
hazard functions share the same time-shape ho(t), differing only by scale factors A_A determined
by branch-dependent microstructure.

This is exactly the proportional hazards structure of the Cox model, emerging from the branch-
blindness of the detector Hamiltonian. Branch-specific environmental microstates affect A_A (the
scale), but not ho(t) (the shape).

Even if two physical detectors differ slightly, those differences enter A_A, not ho(t). Corrections
to proportional hazards are second-order and yield small perturbative corrections to Born
statistics—exactly as the theory predicts for any realistic physical system.

Summary: Why These Constraints Are Ironclad

With (A1")—(A3’) reframed this way, the constraints become physically necessary, not modeling
choices:

e (A3') gives irreversibility and outcome definiteness from thermodynamics

e (A2') gives Born weights at the rate level from unitarity and symmetry

e (Al’) gives the proportional hazards structure from detector branch-blindness
Once (A1)—(A3’) hold, the Born rule P(A) = |y_A[* is forced. No alternative functional form
survives all three constraints. Tick-Bit is not "a mechanism that happens to work"—it is the

unique mechanism consistent with unitary dynamics, decoherence, metastable amplification, and
amplitude-squared transition rates.

2.4 Survival Functions and First-Passage Probability

Let T_A be the waiting time for the first tick in branch A. The survival function (probability no
tick by time t) is:

S A(t) =exp(—A_A - Ho(t))

where Ho(t) = Jo! ho(s)ds is the cumulative baseline hazard.

The probability density for first tick at time t is:

f A®)=h_A(t) - S _A(t)=A_A - ho(t) - exp(—A_A - Ho(t))

For competing processes, the probability that branch A fires first is:

P(A first) = Jo*oo f A(t) - []_{B#A} S_B(t) dt

12



2.5 The First-Passage Born Rule Theorem

Theorem 2.1 (First-Passage Born Rule). Under constraints (A1)—(A3’), the probability that
branch A produces the first threshold-crossing tick (the Bit) is:

P(A)=|yv_AP/Z By _Bf?

Proof. With proportional hazards h_ A(t) =A_A - ho(t):

P(A first) = Jo*0 &_A - ho(t) - exp(—Z_C A_C - Ho(t)) dt

Let u = Ho(t), so du = ho(t)dt:

P(A first) = J*o L A - exp(-2£_ CA C-u)du=L A/Z CAC
Substituting A A=x - |yv_A[*

PAA)=«x- |y AP/Z Cx: |y CP=|y APF/Z By Bm

Lemma 2.2 (Uniqueness of Linear Probability Assignment). Let P: {A A} — [0,1] be a
probability assignment satisfying: (i) Normalization: ¥ A P(A) =1 (ii) Symmetry: P is invariant
under permutation of branch labels (iii) Homogeneity: P(A; {cA_B})=P(A; {A B}) foranyc>0
(iv) Continuity: P depends continuously on {A A}

Then P(A)=% A/Z B A B.

Proof sketch. By (ii) and (iv), P(A) = f(A_A, £ B A _B) for some continuous symmetric function
f. By (iii), f is homogeneous of degree zero in its arguments, so f(A_ A, ZA B)=g(h A/ ZA B)
for some function g. By (i), £ A g(A. A/ ZA B) =1 for all configurations. The only continuous
solution is g(x) = x, giving P(A)=A A/X BA B. m

This lemma confirms that the proportional hazards structure (A1") combined with first-passage
dynamics uniquely determines the probability assignment. There is no freedom to choose a
different functional form.

[General Reader] The math confirms our intuition: when contestants race with speeds
proportional to |y[?, the probability of winning is exactly |y|* (after normalizing). The Born rule
is not a mystery—it is the inevitable outcome of a fair race with these speeds.

A note on the "race"” metaphor: The race is not a dynamical interaction between branches—after
decoherence, branches evolve independently and do not "communicate." Rather, the race is a
counterfactual comparison: each branch's microstate configuration determines a threshold-
crossing time T A, and the winner is simply the branch whose configuration happens to produce
the earliest such time. This is structurally identical to Bohmian mechanics, where particle
positions determine outcomes but different branches never interact. The mathematics of

13



competing point processes captures this comparison without requiring any inter-branch
dynamics.

2.6 Technical Details: First-Tick Selection and the k > 1 Prediction

As established in (A3’), the k = 1 structure is thermodynamically forced for metastable
amplifying systems. Here we develop the technical consequences and the testable prediction that
follows.

The mechanism reproduces the Born rule only if the outcome is determined by the first tick (k =
1). If k > 1 independent ticks were required, waiting times would follow a Gamma(k, A _A)
distribution, yielding different statistics.

For concreteness, consider the specific detector parameters:

Avalanche photodiodes: Electric field tuned just below breakdown; a single carrier ionization
event initiates multiplicative gain of 105-10°.

Photomultipliers: Each dynode stage multiplies by ~4—10x, yielding total gains of 10108 from
a single initial electron.

Superconducting nanowire detectors: A single photon breaks Cooper pairs locally, creating a
resistive hotspot that diverts current and produces a measurable signal within picoseconds.

These numbers are not incidental—they reflect the thermodynamic requirement that single-
quantum sensitivity demands first-crossing amplification.

Prediction: Detectors engineered to require k > 1 independent events (e.g., multi-photon
coincidence counters with truly independent channels) should show deviations from Born
statistics. This is testable, though challenging to implement cleanly. See Section 10 and
Appendix B for quantitative predictions.

2.7 Robustness: Deviations from the Constraints Produce Deviations
from Born

The constraints (A1")—(A3’) are not only sufficient for deriving the Born rule; they are also
necessary in a strong sense. Small or systematic violations of any one of them generically
produce calculable deviations from P(A) = |y_AJ. This section summarizes the robustness
analysis.

2.7.1 Violating (A2'): Wrong Exponent in A_A

Suppose we keep (A1’) and (A3')—proportional hazards and k = 1—but relax (A2') by allowing
the tick rates to scale as a different power of the amplitude:

14



AA=x"|y Ao, a#2
The first-passage result still gives:
P(A)=L A/X BA B=|y A"a/X B|y Bl"a

Thus, the outcome probabilities directly inherit the wrong exponent a. For a simple two-branch
system with [y1> = 2|y2|?, we have [yi| = V2 |y2|. Then:

Born rule (o = 2):

Po=yif* / (jwif? + |p2l) = 2/3 = 0.667

Sublinear case (o = 1):

Pi=|yi|/ (| + [w2)) = V2 / (N2 + 1) = 0.586

Superquadratic case (o = 4):

Pu=yi* 7 (jyi]* + |w2l*) = 4/5 = 0.800

These deviations (=0.586 vs 0.667 vs 0.800) are large and would have been detected long ago in
interference and polarization experiments. Decades of quantum optics and spin measurements

are consistent with P o |[y[? to very high precision. Thus a = 2 is not just convenient—it is
empirically forced.

2.7.2 Violating (A1’): Non-Proportional Hazards

Now keep (A2') and (A3’) but relax (A1"). Suppose the hazard functions have slightly different
shapes across branches:

h A() =% A - ho(t) + & A - g(t)

with small parameters € A and some perturbing shape g(t). The survival and first-passage
integrals no longer simplify exactly toA A /ZA C. To first order in ¢ A:

P(A) = P(A) + SP(A)

where P°(A)=A A /X CA_Cis the ideal proportional-hazards result and 6P(A) is a correction
term of order ¢.

Two points are clear:

Generic deviations: For generic g(t) and nonzero € A, 6P(A) # 0. Non-proportional hazards
generically produce departures from the simple A A/ZA C rule.

15



Suppression by scale separation: In realistic detectors, microscopic variations in response
shape g(t) occur on timescales T_micro (carrier scattering, phonon relaxation), while the
macroscopic avalanche unfolds on timescales T macro > t_micro. The correction integral is
typically suppressed by T_micro/t_macro. This explains why Born statistics are extremely
accurate in practice even though no real detector is perfectly branch-blind microscopically.

2.7.3 Violating (A3"): Multi-Tick Requirements (k > 1)

As shown in Appendix B, when (A1) and (A2") are retained but (A3’) is violated by requiring k
> 1 independent ticks, the waiting-time distribution becomes Gamma(k, A_A) and the first-
passage probability deviates from A A / XA C. For two branches with A1 = 22a:

2/3=0.667
20/27 = 0.741

1: Py
2: Py

k
k
2.7.4 Summary: Tick-Bit as a Robust Fixed Point

Taken together, these robustness results show that:

e Violating (A2") (wrong exponent) leads directly to P(A) « |y_A|"a, a # 2, which is
empirically ruled out

e Violating (A1") (non-proportional hazards) produces calculable corrections that are
generically nonzero but suppressed by microscopic/macroscopic scale separation

e Violating (A3') (k > 1) yields Gamma-distributed waiting times and explicit deviations
from the A A/ZL C rule

The Tick-Bit mechanism is not merely @ mechanism that reproduces the Born rule; it is the
robust fixed point in the space of detector-layer outcome-selection models satisfying physical
constraints. Small deviations from (A1")—(A3'") produce correspondingly small, calculable
deviations from Born statistics, while large deviations (e.g., a # 2 or k > 1) are already
experimentally excluded.

3. Is Tick-Bit Just an Ad Hoc Fit to the Born Rule?

One natural worry is that Tick-Bit is "just something we made up that happens to reproduce the
Born rule." In other words, given that |y|* already appears everywhere in quantum mechanics,
one might suspect that any model can be reverse-engineered to match it, with no real explanatory
gain.

There are three reasons this objection does not apply.

16



3.1 Strong Constraints, Not a Free Choice

The Tick-Bit mechanism is not an arbitrary story bolted onto quantum theory; it is the result of
imposing physically necessary constraints (A1'—A3’):

e Decoherence produces effectively independent branches with amplitudes y_A

o Transition rates must scale as [y_AJ* by unitarity, U(1) symmetry, and perturbation theory
(A2)

o Metastable amplifying detectors are thermodynamically forced to trigger on the first
supercritical event (A3")

e The detector Hamiltonian is branch-blind, forcing proportional hazards structure (A1)

o The distinguishability functional must satisfy additivity, symmetry, phase covariance, and
mild regularity, which uniquely forces D(A) = [y_AJ?

Given these ingredients, a proportional-hazards race with A_A o |[y_A[* is not an arbitrary
choice; it is the unique way to combine decohered branches, amplitude-squared transition rates,
and threshold detection into a concrete outcome-selection mechanism.

3.2 Sensitivity to Modifications

The mechanism is not "under-constrained" in the sense that anything goes. On the contrary,
small changes destroy key features:

o If we change the distinguishability functional away from |y[?, we lose additivity and
interference consistency

o If we require k > 1 independent ticks, the first-passage probabilities deviate from |y/?

e If we abandon proportional hazards, the simple A A/ZA_C structure is lost and the Born
rule no longer follows as a theorem

These failures are not cosmetic; they are calculable and, in principle, testable. Section 2.7
provides a detailed robustness analysis showing that deviations from each constraint (A1")—(A3")
produce specific, quantifiable departures from Born statistics. The Tick-Bit framework is
therefore falsifiable under controlled changes of its assumptions.

3.3 Additional Explanatory and Predictive Content

Finally, Tick-Bit does more than reproduce |y/|. It offers:

e A detector-level, first-passage mechanism for outcome definiteness, rather than a bare
collapse postulate

e A deterministic microdynamics with epistemic probabilities, resolving how apparent
randomness can arise from unitary evolution plus inaccessible microstructure

e A quantitative prediction that detectors engineered with k >> 1 independent triggers
should show observable deviations from Born statistics
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e A natural link between outcome selection, irreversibility, and emergent time in the TPB
framework

These are additional structural and conceptual payoffs that go beyond merely "fitting" the Born
rule.

For these reasons, Tick-Bit should not be viewed as an unconstrained just-so story. It is a
specific, tightly constrained mechanism that (i) respects known quantum dynamics, (ii) fails in
calculable ways when its assumptions are altered, and (iii) yields new conceptual clarity and
potential empirical signatures.

To put it plainly: Tick-Bit is not "one arbitrary story among many." It is what you get if you take
decoherence, golden-rule transition rates, and single-quantum threshold detectors seriously, then

ask: "What concrete mechanism could connect these to definite outcomes and the Born rule?"
Within that space, the first-passage tick race really is the thing that fits the bill.

4. Grounding A A « |y _AJ*: Why Tick Rates Scale with
Amplitude Squared

4.1 The Circularity Question

A potential objection: "You assumed A_A o |y_AP. Is that not just assuming the Born rule?"
This objection conflates two distinct uses of [y|*:

e Born rule (outcome statistics): P(A) = |y_AJ* for measurement outcomes
e Fermi's golden rule (transition dynamics): I' « [(f]V|i)|? for transition rates

The second is a statement about dynamics—how fast quantum systems transition between
states—not about outcome probabilities. It is derived from time-dependent perturbation theory
using only the Schrodinger equation and the structure of Hilbert space, without invoking the
Born rule for measurement outcomes.

The logical structure is:

Time-dependent perturbation theory — transition rates scale as |[matrix element|?
Measurement interactions have matrix elements proportional to system amplitudes
Therefore tick rates scale as [y AP

First-passage statistics — P(A) = |y_Af

b=

At no point do we assume P(A) = |y_A[*. The outcome probability emerges from the race
dynamics.

18



To be fully explicit: in Tick-Bit, the quantities '’ A and A_A are interpreted as rates of
amplitude-squared flow toward macroscopic distinguishability—currents in amplitude space, not
probabilities per se. These rates describe how fast each branch accumulates the microscopic
preconditions for a threshold-crossing event. The probabilistic meaning arises only after the first-
passage competition resolves: the race converts deterministic rate differences into outcome
probabilities. The Born rule emerges from the competition, not from the rate equation itself.

4.2 Derivation from Fermi's Golden Rule

Consider a measurement described by an interaction Hamiltonian:

Hint=% AANA|Q V_A

where |A) are system outcome states and V_A acts on the pointer and environment.

For a system in state [y) =X A y_A |A), the initial joint state is:

%o} = ) @ [Po) & [Eo)

where |Po) and |Eo) are initial pointer and environment states.

By Fermi's golden rule, the transition rate into pointer channel A is:

I A=Quh) - |y AP-Z f|(f AP _A|V_A |Po)|Eo)]? - 8(E_f—E_ i)

The key point: I'_A factorizes as:

I A=y AP -k A

where kA depends only on apparatus matrix elements, not on the system amplitudes.
[General Reader] Fermi's golden rule is a standard result in quantum mechanics from the
1920s: the rate of quantum transitions is proportional to the square of the relevant amplitude.

This is already part of quantum theory—we are not adding anything new. We are just applying it
to the measurement process.

4.3 Addressing Deeper Circularity Concerns

One might object that Fermi's golden rule is itself derived using probabilistic reasoning that
implicitly assumes |y|> weighting. This concern can be addressed at two levels:

Operational level: Fermi's golden rule can be derived purely from the Schrodinger equation by
computing the time evolution of state amplitudes under perturbation. The |matrix element|?
dependence emerges from the mathematical structure of complex amplitudes—specifically, from
the fact that transition amplitudes are complex numbers and physical rates must be real and non-
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negative. The simplest real, non-negative, phase-invariant function of a complex amplitude a is
laf*.

Foundational level: The Resonant Assembly Language (RAL) framework in Part II derives the
|y|? structure from physical first principles—resonance geometry and distinguishability
requirements—without presupposing quantum mechanics. This provides a non-circular
foundation for the amplitude-squared scaling.

4.4 The Complete Logical Chain

The full derivation follows this chain:

1. Resonance geometry — complex amplitudes naturally describe oscillatory systems
(Section 13)

Distinguishability structure — bilinear form D(A) = |y_A[ is uniquely determined
(Section 14)

Time-dependent perturbation theory — transition rates scale as |matrix element|?

Measurement interaction structure — I" A = |y_AJ* - (apparatus factors)

Tick rate identification — A A =«|y_ AP

First-passage statistics — P(A) = |y AP

N

ANl

At no point do we assume P(A) = |y_A[*. The probability emerges from the race dynamics
operating on independently-grounded rate scaling.

5. Worked Example: Stern-Gerlach Measurement
We trace through a complete Stern-Gerlach measurement to illustrate the mechanism.
5.1 State Preparation

A spin-¥ particle is prepared in the [+x) state:

ly_in) = (1N2)([+z) + [-z))

Including apparatus and environment:

[Fo) = y_in) & |Do) & [Eo)

[General Reader] We start with an electron spinning "sideways" (in the x-direction). Quantum
mechanically, this equals a 50-50 superposition of spinning "up" and "down" in the z-direction.
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5.2 Stern-Gerlach Separation

The inhomogeneous magnetic field separates spin components spatially:
W) = (1A2)(H2)lpath_1) + |-z)|path_{)) ® [Do) & |Eo)
The spin states are now correlated with spatial paths.

5.3 Decoherence

Interaction with detectors and environment produces:

[W2) = (1N2)(H+2)path_1)[D_1)[E_1) + [-z)|path_|)ID_{)[E_))

where (E_1|E_|) = 0. The branches are now distinguishable and cannot interfere.

[General Reader] The two paths become entangled with different detector states and different

environmental states (air molecules, thermal radiation, etc.). Once this happens, the paths cannot
interfere anymore—they are "decohered."

5.4 Branch Amplitudes and Tick Rates

We have two branches A € {1, |} with amplitudes:
v 1=1M2,y | =112

Distinguishability weights:

D() =_1P=1/22,D() = y_lP =12

Tick rates:

AT=wc |y TP=w2,A | =K |y | =x2

5.5 First-Passage Race

Both branches generate ticks at equal rates. The race is symmetric.
By Theorem 2.1:
PM=A1/(A1+X ])=2)/(x2+x2)=1/2

P()=A /(A 1+A =12
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This matches the Born rule prediction.
5.6 Physical Interpretation

Within each branch, the detector undergoes microscopic fluctuations. Each branch is racing to
produce its first irreversible event—an avalanche trigger, a photon emission, a chemical reaction.

The branch that wins this race—say, T—produces a macroscopic, irreversible signal.
Amplification and further decoherence then stabilize this outcome. The other branch (|) becomes
counterfactual.

[General Reader] Both possible outcomes are "trying" to happen—both detectors are

fluctuating, ready to trigger. Whichever detector triggers first, wins. Since both have equal |y[?,
both have equal chances. We see spin-up or spin-down, each 50% of the time.

5.7 Unequal Amplitudes

Now consider |y_in) prepared at angle 0 from the z-axis:
ly_in) = cos(0/2)[+z) + sin(6/2)|-z)

Amplitudes:

v 1 =cos(0/2), y_| =sin(6/2)

Tick rates:

A T=x"-cos¥0/2),L | =x - sin*0/2)

First-passage probabilities:

P(1) = cos?(0/2) / (cos?*(0/2) + sin?(0/2)) = cos*(6/2)

P(]) = sin?(6/2)

Again matching the Born rule exactly.
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6. Determinism, Epistemic Probability, and the Nature of
Quantum Randomness

6.1 Determinism at the Microlevel

A profound implication of Tick-Bit: the outcome is deterministic in principle.

After decoherence, each branch A has a specific environmental microstate configuration
{m_i~(A)}. These microstates determine the exact times at which ticks occur:

TA=T A({m_i*(A)})

Given complete microstate information, the first-passage time T A is fixed for each branch. The
outcome is:

Outcome = argmin AT A

In the Tick-Bit picture, the microdynamics are deterministic in principle; the outcome is fixed by
the microstate configuration, not by any fundamental stochastic process.

[General Reader] Here is the claim: quantum randomness might not be fundamental. If you
knew EVERY detail about the detector, the air molecules, every particle involved—you could in
principle calculate exactly which outcome would occur. The "randomness" exists because we
CANNOT know all that information, not necessarily because the universe is inherently random.

6.2 Practical Inaccessibility

Why can we not know the microstates? Several fundamental barriers:

Exponential complexity: Environmental degrees of freedom diverge exponentially after
decoherence. A detector interacting with ~10?* air molecules generates untraceable correlations
in femtoseconds.

Chaotic sensitivity: Microscopic dynamics are chaotic. Tiny uncertainties in initial conditions
amplify exponentially with Lyapunov exponents on the order of thermal collision rates.

Thermodynamic irreversibility: Decoherence is thermodynamically irreversible. Information
about the pre-decoherence state is lost to heat—it is not merely hidden but genuinely dispersed.

No-cloning theorem: Quantum mechanics forbids copying unknown quantum states. We cannot

measure microstates without disturbing them, and we cannot duplicate them for non-destructive
analysis.

23



6.3 Epistemic vs. Ontic Probability

This bears on a long-standing debate:
Ontic probability: Randomness is fundamental; the universe genuinely "rolls dice."

Epistemic probability: Randomness reflects our ignorance; underlying dynamics are
deterministic.

Tick-Bit is naturally interpreted as supporting epistemic probability: the Born rule emerges as the
optimal prediction given our necessary ignorance of microstates. This interpretation is suggested
by the framework's structure, though the empirical predictions remain identical regardless of
which metaphysical stance one adopts.

[General Reader] When you flip a coin, the outcome is determined by physics—air currents,
your thumb's force, the coin's spin. You call it "random" because you cannot track all those

details. Quantum mechanics might be the same: deterministic underneath, but with details so
complex that probability is the best we can do.

6.4 Comparison with Classical Statistical Mechanics

This parallels classical statistical mechanics:

Aspect Classical Stat Mech Tick-Bit QM
Underlying dynamics Deterministic (Newton) Deterministic (unitary + tick race)
Source of probability Ignorance of microstates Ignorance of microstates
Emergent law Boltzmann distribution Born rule
Fundamental randomness No No

The analogy is precise: just as thermodynamics emerges from deterministic mechanics plus
epistemic uncertainty, the Born rule emerges from deterministic tick dynamics plus epistemic
uncertainty.

6.5 What About "True Randomness" in QM?

Standard quantum mechanics is often said to involve "true" or "irreducible" randomness. Tick-
Bit challenges this:

The appearance of true randomness arises because:
1. Microstates are inaccessible in practice and in principle

2. The best prediction is probabilistic
3. No pattern in outcomes can be exploited (by us)
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But this does not require fundamental randomness—only fundamental unpredictability from our
epistemic position.

[General Reader]| "True randomness" might be an illusion created by our necessary ignorance.
The universe could be a perfectly deterministic clockwork—but a clockwork so complex that we

can never see all its gears. For all practical purposes, it is random to us. But "random to us" is not
the same as "fundamentally random."

7. Entanglement, Bell Correlations, and Nonlocality

7.1 The Challenge

Bell's theorem proves that no local hidden-variable theory can reproduce quantum correlations.
Any deterministic mechanism reproducing quantum predictions must be nonlocal.

How does Tick-Bit handle this?

7.2 Entangled State Setup
Consider two qubits in the singlet state:
¥) = (112)(0)_A[1)_B — [1)_A[0)_B)

Alice measures along axis a; Bob along axis b. After decoherence, four branches exist with joint
Outcomes (A’ B) E {(+9+)7 (+9_)’ (_’+)’ (_’_)}'

The amplitudes depend on both settings:

lv_{++i(@b)?=|v_{—}(a,b)=(1 —ab)/4

lv_{+=}(a,b)? = |y_{—+}(a,b)P = (1 +a-b)/4
7.3 Tick Rates for Joint Branches

Tick-Bit assigns tick rates to global branches in configuration space:
A_{ABj}(a,b) =« |y_{ABj}(a,b)?

The tick rate for branch (A,B) depends on both Alice's setting a and Bob's setting b.
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7.4 Nonlocality

This is explicitly nonlocal: the tick rate for a joint outcome depends on the measurement settings
at both locations, even if Alice and Bob are light-years apart.

The key point: nonlocality resides in the configuration-space structure of tick rates, not in any
signal propagation. Just as Bohmian mechanics has particle velocities that depend nonlocally on
the full configuration via the wave function, Tick-Bit has tick intensities that depend nonlocally
on the full measurement configuration via |y[*>. The wave function mediates nonlocal correlations
in both frameworks—through guidance in Bohm, through rate-setting in Tick-Bit.

[General Reader]| Bell proved that any hidden-variable theory matching quantum predictions
must involve "spooky action at a distance." Tick-Bit is no exception: the tick rate for a joint

outcome (Alice sees +, Bob sees —) depends on what BOTH Alice and Bob chose to measure.
This is strange but unavoidable—Bell's theorem leaves no alternative.

7.5 No-Signaling Is Preserved

Despite nonlocality, no information can be transmitted faster than light:
Y BA {AB}(ab)=x- X By {AB}PP=x"|y_Af
Alice's marginal outcome distribution depends only on her setting a and the reduced state, not on

Bob's setting b. The correlations only appear when Alice and Bob compare results—which
requires ordinary subluminal communication.

7.6 No Superdeterminism or Retrocausality

Some hidden-variable approaches invoke:

Superdeterminism: Measurement choices are correlated with hidden variables, eliminating free
choice.

Retrocausality: Effects propagate backward in time.
Tick-Bit requires neither. Nonlocal dependence of A_{AB} on joint settings is sufficient, exactly

as in Bohmian mechanics. The price of determinism is nonlocality, but not conspiracy or time-
reversal.
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8. Ontological Status of Competing Branches
8.1 The Question

A natural question arises: after decoherence but before the race concludes, what is the
ontological status of the competing branches? Do they all "exist"? In what sense do they "race"?

8.2 Three Interpretive Options

Tick-Bit is compatible with several ontological stances:

Option 1: Single-branch realism. Only one branch is ever real; the tick race determines which
one actualizes from an initial superposition. The other branches are mathematical fictions
representing unrealized possibilities. This resembles modal interpretations.

Option 2: Transient multi-branch realism. All branches exist temporarily during the race, but
the losing branches are annihilated when the winner is determined. This resembles objective
collapse but with a physical mechanism.

Option 3: Configuration-space realism. The fundamental arena is configuration space, where
the wave function and its associated tick-rate field are real. "Branches" are features of this space.
The first-passage event selects which configuration-space region becomes correlated with stable
macroscopic records. This resembles Bohmian mechanics without committed particle ontology.

8.3 What Tick-Bit Adds

Tick-Bit does not resolve the interpretive question—no physical theory does. But it provides
something the other interpretations lack: a mechanism.

In Many-Worlds, branches simply exist and the probability measure is postulated. In
Copenhagen, collapse is a black box. In Tick-Bit, outcome selection has a physical story: micro-
events race, and the first one to cross the threshold triggers an irreversible Bit. This mechanism
constrains interpretation even if it does not uniquely determine it.

8.4 The Race as Physical Process

Crucially, the "race" is not metaphorical. Each branch, via its environmental microstate, has a
definite (if unknowable) first-tick time. These times are physical quantities determined by the
microscopic configuration. The race is as real as any thermodynamic process—it is the entropic
evolution of the measurement apparatus toward a distinguishable macrostate.
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9. Comparison with Bohmian Mechanics

9.1 Structural Parallels

Bohmian mechanics (BM) is the best-known deterministic hidden-variable theory. Tick-Bit
shares key features:

| Feature ” Bohmian Mechanics H Tick-Bit ’

|Determinism ”Yes HYes ‘

|Hidden variables ”Particle positions HEnVironmental microstates‘

|Pr0babi1ity type HEpistemic HEpistemic ‘

|Repr0duces Born rule”Yes HYes ‘

|N0nlocality ”Yes (guidance equation)HYes (tick rates) ‘

9.2 Key Differences

| Aspect H Bohmian Mechanics H Tick-Bit

Ontology Par‘gc;les with definite No commitment to particle trajectories
positions

Dynamics Guldggce equation for First-passage statistics for outcomes
velocities

Wave function - . S o

role Real guiding field Determines tick intensities via
Particle position determines  ||First threshold-crossing tick (Bit)

Measurement .
outcome determines outcome

Level. Of. MOdlﬁ?s ficroscopic Adds structure at measurement level

description dynamics

9.3 What Tick-Bit Adds

Non-circular derivation of |y|*: The RAL framework reconstructs the amplitude structure from
physical principles. BM assumes Hilbert space and uses the Born rule for the initial distribution.

No particle ontology: Tick-Bit does not commit to particles having trajectories. This avoids

difficulties with relativistic extensions and quantum field theories, where particle number is not

conserved.

Detector-level mechanism: Tick-Bit directly addresses how measurement apparatus produces
outcomes, rather than relying on particle positions to determine pointer readings.

Connection to emergent time: Integration with the TPB (Ticks-Per-Bit) framework grounds
time itself in irreversible change.
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9.4 Complementarity

Tick-Bit and Bohmian mechanics are not mutually exclusive. One could adopt Bohmian particle
ontology while using Tick-Bit to explain how particle positions become registered in detectors.
They address different aspects of the measurement process.

[General Reader] Bohmian mechanics says particles have hidden positions that determine
outcomes. Tick-Bit says the environment has hidden details that determine which detector
triggers first. Both are deterministic; both match quantum predictions; both require nonlocality.
They are different stories about "what is really going on," but they are compatible—you could
believe both.

10. Predictions and Experimental Signatures
10.1 Empirical Equivalence for Standard Measurements

For standard measurements with k = 1 threshold detectors, Tick-Bit reproduces all quantum
predictions exactly. No existing experiment can distinguish it from standard quantum mechanics.

This is not a weakness. Any interpretation of quantum mechanics must reproduce the empirical
success of the theory. The question is whether it offers additional predictions or explanatory
power.

10.2 Predicted Deviation: k > 1 Detectors

If a detector requires k > 1 independent triggers, the waiting-time distribution becomes
Gamma(k, &_A) rather than exponential. First-passage probabilities then deviate from |y/|>

Specific prediction: For k = 2 (two independent triggers required) and two branches with rates
A =22

e k
e k

1: P(1 first) = 2/3 = 0.667
2: P(1 first) = 20/27 = 0.741

The deviation is substantial and measurable.
[General Reader]| Here is a testable prediction: if you built a detector that only "clicks" after

TWO independent quantum events (not just one), the probabilities would NOT follow the Born
rule. This is genuinely new physics—though building such detectors is challenging.
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10.3 Experimental Challenges

Testing the k > 1 prediction requires:

1.

2.
3.

True independence: The k triggers must be causally independent, not merely sequential
stages of a single amplification chain.

Known k: The number of required triggers must be precisely characterized.

Sufficient statistics: Deviations from Born statistics require many trials to distinguish
from statistical fluctuation.

Distinguishing k > 1 from k = 1: The critical distinction is between independent triggers and
amplification stages. A photomultiplier has many dynode stages, but these form a single causal
chain initiated by one photoelectron—this is k = 1. A true k = 2 system would require two
separate quantum absorption events, neither causing the other, both required before the detector
registers.

Candidate experimental setups:

Two-photon coincidence detectors with independent absorption sites, where both sites
must fire within a coincidence window for registration. The challenge is ensuring the two
absorptions are genuinely independent quantum events rather than correlated through
shared optical modes.

Molecular switches requiring two independent photoisomerization events to trigger a
conformational change that produces the signal.

Dual-threshold superconducting detectors engineered to require hotspot formation at two
separate locations.

Statistical requirements: For the two-branch case with A1 = 2,, the predicted probabilities are
P1=0.667 (k=1) vs P1=0.741 (k = 2). To distinguish these at 3o confidence requires:

N>9/(0.741 — 0.667)* = 1,600 trials

This is experimentally feasible if a clean k = 2 system can be constructed.

Existing datasets: We are not aware of existing experiments designed to test k > 1 statistics.
Standard quantum optics experiments use k = 1 detectors by design. However, some multi-
photon absorption spectroscopy data might be reanalyzable if the detection chain can be
characterized precisely.

10.4 Timing Correlations

In principle, the tick-rate structure might produce subtle timing correlations in measurement
events. Measurements with higher [y|* might show systematically shorter detection times.

For a single-branch detection with rate A = k|y|?, the mean detection time is:
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(T) =1/r= 1/(xy])

Higher amplitude means faster expected detection. This is in principle testable but requires
extremely precise timing across many trials.

10.5 Current Experimental Status

No deviations from quantum mechanics have been observed. This is consistent with Tick-Bit,
since:

1. Standard detectors are k = 1 threshold devices
2. Timing precision in existing experiments is insufficient to detect tick-rate structure

The predictions are in principle testable but require specialized apparatus not yet constructed.

11. Connection to Emergent Time and the TPB
Framework

11.1 Time from Ticks

The Tick-Bit mechanism connects to the Ticks-Per-Bit (TPB) framework, which proposes that
time itself emerges from the accumulation of irreversible records.

In TPB:

e A "tick" is the fundamental unit of counted change contributing to experienced time; in
the measurement context, this corresponds to threshold-crossing ticks that generate Bits

e A "Bit" is the irreversible macroscopic record—the actual contribution to the arrow of
time

e Time is defined operationally by the accumulation of such recorded events

e There is no background time independent of physical change

The terminological overlap is intentional: Tick-Bit provides the microphysical mechanism by
which TPB's "time-creating events" occur in quantum measurement.

11.2 Measurement as Time Creation

From this perspective, quantum measurement is not just outcome selection—it is time creation.
The Bit—the irreversible amplification triggered by the first threshold-crossing tick—is
simultaneously:
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1. The event that selects a definite result
2. A contribution to the flow of experienced time

[General Reader] What if time does not exist as a background stage, but emerges from change
itself? Every irreversible event—every Bit—creates a little bit of time. Quantum measurement,

which produces irreversible outcomes, is then a time-creating process. The Tick-Bit mechanism
becomes part of a deeper story about the nature of time.

11.3 Entropy and Distinguishability

The distinguishability weight D(A) = |y_A[* can be interpreted as the rate at which
distinguishable (entropic) structure flows into outcome A.

This connects to the second law of thermodynamics: measurement increases entropy by creating
irreversible distinguishability. The Born rule governs how this entropy is distributed among
outcomes.

A fuller development of TPB would require modeling how accumulated Bits define an
operational time parameter and how this interacts with relativistic and thermodynamic notions of
time. We reserve this for a dedicated treatment; here we highlight only that Tick-Bit provides the
microphysical mechanism by which TPB's time-creating events arise in quantum measurement
contexts.

12. Summary of Part I
12.1 Core Claims

1. Outcome selection is a race. Decohered branches compete to produce the first
irreversible event.

2. Tick rates scale as |y[ This is forced by unitarity, U(1) symmetry, and perturbation
theory (A2'), not assumed.

3. First-passage statistics yield the Born rule. P(A) = |y_AJP is a theorem, not an axiom.

4. The k =1 structure is thermodynamically necessary. Metastable amplifying detectors
must trigger on the first supercritical event (A3").

5. The interpretation is epistemic. In the Tick-Bit picture, randomness reflects ignorance
of microstates; the underlying microdynamics may be deterministic.

6. Nonlocality is required. Tick rates for entangled systems depend on joint measurement
settings, as demanded by Bell's theorem.
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12.2 Advantages

Resolves the measurement problem: Provides a physical mechanism for outcome
definiteness

Non-circular derivation of Born rule: The rule emerges from race dynamics operating
on independently-grounded constraints

Constraints are physically necessary: (A1')—(A3’) follow from unitarity,
thermodynamics, and detector branch-blindness—not modeling choices

Robust fixed point: Deviations from the constraints produce calculable deviations from
Born statistics; the mechanism is not fine-tuned (Section 2.7)

Compatible with multiple ontologies: Works with or without particle trajectories, wave
function realism, etc.

Makes testable predictions: k > 1 detectors should deviate from Born statistics
Uniquely determined: Within the constraint space, Tick-Bit is the mechanism that fits
the bill

12.3 Relation to Standard QM

Tick-Bit is empirically equivalent to standard quantum mechanics for all current experiments. It
differs in interpretation and in predictions for exotic detector types.

12.4 Future Directions

Several extensions of this work merit investigation:

1.
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Experimental tests of the k > 1 prediction. Designing and constructing detectors with
genuinely independent multi-trigger requirements would provide the first empirical test
distinguishing Tick-Bit from standard quantum mechanics.

Full development of TPB. The connection between Tick-Bit and emergent time (Section
11) is suggestive but incomplete. A rigorous treatment would model how accumulated
Bits define an operational time parameter compatible with relativity and
thermodynamics.

Relativistic extension. Tick-Bit is formulated in non-relativistic quantum mechanics.
Extending the framework to quantum field theory—where particle number is not
conserved and detector interactions are more complex—is an open problem.
Quantitative predictions for timing correlations. The tick-rate structure predicts that
higher-amplitude outcomes should show systematically shorter detection times. Deriving
precise predictions and assessing their experimental accessibility remains to be done.



PART II: FOUNDATIONS — THE RESONANT
ASSEMBLY LANGUAGE FRAMEWORK

The following sections develop the Resonant Assembly Language (RAL) framework, which
provides a complete reconstruction of quantum mechanics from physical first principles. This
grounds the Tick-Bit mechanism by showing why:

1. Amplitudes are complex numbers

2. Distinguishability has the form D(A) = |y]?

3. Dynamics are unitary

Readers primarily interested in the Tick-Bit mechanism may proceed to the Appendices; those
interested in the foundational reconstruction should continue.

13. Resonance: The Physical Origin of Complex
Amplitudes

Clarification on the status of Part II: The following reconstruction should be understood as a
consistency and uniqueness result: given resonance, interference, and distinguishability
constraints, the complex amplitude formalism is the unique structure consistent with these
physical features. We do not claim to derive quantum mechanics from pre-physical primitives,
but rather to show that once oscillatory systems with coherent superposition are admitted, the
quantum formalism is forced. This transforms the question "Why complex Hilbert space?" into
"What physical features require it?"—and provides a definite answer.

13.1 Two Degrees of Freedom

Every physical oscillation possesses two independent pieces of information:

o Amplitude: How big is it?
e Phase: Where is it in its cycle?

This is universal: pendulums, waves, electromagnetic fields, matter waves.
Consider a simple harmonic oscillator:
x(t) = A - cos(ot + @)

The state is fully specified by (A, ¢).
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13.2 Complex Representation

We represent (A, ¢) as a complex number:
a=A e ip)
This is not arbitrary. The complex plane naturally encodes:

e Magnitude |a| = A (amplitude)
e Argument arg(a) = ¢ (phase)

[General Reader]| A complex number is a point on a 2D plane. Distance from origin =

amplitude; angle = phase. The expression e™(i¢) means "point at angle ¢ on the unit circle." So
A-e”(ip) means "amplitude A, phase ¢." It is just a compact notation for two numbers.

13.3 Interference from Complex Addition

Adding oscillations:
arta=A:r- eMigp1) + Az - e™(i92)
The result depends on relative phase:
e (1= @2 a1 + a2 = A1 + Az (constructive interference)
e 1=zt a1 + a2l = |A1 — Az| (destructive interference)

e Qeneral: intermediate interference

Complex numbers have interference "built in."
13.4 Why Not Real Numbers?

Using real numbers to describe oscillations requires tracking two components separately (e.g.,
position and velocity, or sine and cosine components). This works but:

o Loses the unified treatment of phase
e Obscures the rotational symmetry
e Requires artificial bookkeeping
Complex numbers are the natural language for resonance.
Theorem 13.1 (Resonance Implies Complex Amplitudes). Any mathematical representation of

systems with (1) oscillatory dynamics, (i1) continuous phase, and (ii1) superposition is naturally
isomorphic to C.
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Proof sketch. Conditions (i)—(ii) require a two-dimensional state space with U(1) rotational
structure. Condition (ii1) requires closure under addition. The unique two-dimensional division
algebra with these properties is C. m

14. Distinguishability Geometry and the Born Rule
14.1 From Microstates to Outcomes

Consider a system with microstates {m i}, each carrying amplitude a i. A macroscopic outcome
A corresponds to a subset:

A={mi:1el A}
The outcome amplitude is the coherent sum:
vy A=ZX {i€EA}a i

14.2 The Distinguishability Functional

We seek a functional D(A) measuring the "distinguishability weight" of outcome A—how much
distinguishable structure is associated with it.

[General Reader] When multiple quantum paths lead to the same outcome, they combine with

interference. We want a number D(A) that captures "how much stuff" is associated with outcome
A, accounting for this interference. What formula should we use?

14.3 Uniqueness Theorem

Theorem 14.1 (Uniqueness of Distinguishability). Let D: (outcomes) — R>0 satisty:
(1) Additivity: D(A: U Az) = D(A:) + D(A2) for distinguishable outcomes

(i) Symmetry: D is invariant under permutation of microstates

(ii1) Phase covariance: D depends on relative phases and exhibits interference

(iv) Polynomial dependence: D is polynomial in {a i, a j*}

Then D(A) =c - |y_AJ* for some constant ¢ > 0.

Remark on (iv): We restrict to polynomial (or analytic) functionals, in line with all physical
constructions in quantum mechanics and field theory. This mild regularity assumption excludes
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pathological cases while including all representations used in practice. Physically, it reflects the
expectation that distinguishability depends smoothly on amplitudes.

Remark on (iii) and the theorem's scope: Condition (iii) assumes that interference exists—that
relative phases matter for distinguishability. This means Theorem 14.1 is a uniqueness theorem
within theories exhibiting interference, not a derivation of why interference occurs. We do not
explain interference from more primitive principles; rather, we show that given interference, the
|y|* form is uniquely forced. The question "Why does interference exist?" remains open—but it is
a separate question from "Given interference, why [y[*?"

Proof. Condition (iv) restricts D to polynomial form. The simplest phase-sensitive polynomial is
the bilinear form:

DA)=X {i€EA} X {jeA}a i-a j*
This equals [y_A[J* by direct computation:
v AP=(Z ia i)(Z ja j¥) =X iX jai-a j*

Conditions (i)—(iii) are satisfied by this form. Higher-order polynomials violate (i) or introduce
inconsistent phase dependence. Thus D(A) =c - |[y_AJ* uniquely. m

We regard polynomial (or analytic) dependence as the weakest regularity condition ensuring
operational continuity and robustness: small changes in amplitudes should not produce
discontinuous or non-analytic jumps in distinguishability. Without condition (iv), one could
construct pathological functionals that do not correspond to any physically realisable
measurement procedure. This mirrors standard practice in the generalized probabilistic theories
(GPT) literature, where analyticity or smoothness is routinely imposed to ensure that theoretical
predictions connect to laboratory operations (Hardy 2001; Chiribella et al. 2011).

Connection to Gleason's theorem: The uniqueness of D(A) = |y[* in Theorem 14.1 can be
viewed as a physical derivation of the measure whose uniqueness Gleason (1957) established
mathematically. Gleason proved that |y[? is the unique probability measure on Hilbert space
(dimension > 3) satisfying non-contextuality—the requirement that the probability assigned to a
subspace is independent of how it is embedded in a larger measurement context. Our conditions
(1)—(1v) encode physical versions of similar structural requirements: additivity corresponds to
consistent probability assignment across coarse-grainings; phase covariance encodes the
interference structure that makes quantum mechanics non-classical. Tick-Bit then provides the
dynamical mechanism by which this unique measure governs outcome selection. The constraints
are not ad hoc—they connect to deep structural features of Hilbert space that Gleason's theorem
reveals.

14.4 Born Rule as Normalized Distinguishability

Probabilities are normalized distinguishability weights:
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P(A)=D(A)/Z BDB)=|y_AP/XZ B|y B}

For normalized states:

P(A) = v_AP

[General Reader]| The four requirements—additivity, symmetry, interference, smoothness—

seem minimal and obvious. But they are enough to FORCE the formula D = |y|*. There is
literally no other option. The Born rule is not a mystery; it is the only consistent possibility.

15. Galois Invariance: Why Complex and Not Real or
Quaternionic?

15.1 Division Algebras

The finite-dimensional division algebras over R are (Frobenius, 1878):
e R (real numbers, dimension 1)
e (C (complex numbers, dimension 2)

e H (quaternions, dimension 4, non-commutative)

No other options exist.
15.2 Physical Selection Criteria
(C1) Commutativity: Superposition must satisfy yi + y2 = y2 + y1.

e R:V
« C:V
e H: X (quaternion multiplication does not commute)

(C2) Nontrivial Galois structure: Physical predictions must be invariant under nontrivial field
automorphisms.

e R: X (only trivial automorphism)
e C:V (complex conjugation z — z*)

e H:V (many automorphisms—too many)

(C3) Continuous phase group: Resonance requires U(1) phase rotations e(i0).
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e R: X (no phase structure)
e C:V (U(1) rotations)
o H: Partial (has SU(2), but this is three-dimensional)

15.3 Unique Selection

Only C satisfies all three criteria:

Criterion RCH
Commutativity ' v X
Nontrivial Galois X v v/
U(1) phase XV X

Theorem 15.1 (Galois Selection). The complex numbers are the unique division algebra
compatible with commutative superposition, nontrivial Galois invariance, and continuous U(1)
phase.

[General Reader] Why complex numbers specifically? Real numbers do not have phase.

Quaternions have too much structure and do not commute. Complex numbers are the
"Goldilocks" choice—just right for describing quantum physics.

16. Representation Minimality: Why Hilbert Space?
16.1 The Selection Problem

Given complex amplitudes, what mathematical space should quantum states live in? We need a
space supporting:

e Complex scalars
e Inner products (for probabilities)

e Superposition (vector addition)

The candidates are real, complex, and quaternionic Hilbert spaces.
16.2 Representation Complexity

Define:

K(R) = dim(R) — dim(Aut(R))
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This counts effective degrees of freedom after quotienting by gauge symmetries.
[General Reader] If a description uses 10 numbers but 3 are arbitrary (like choosing which

direction is "north"), the real information is 10 — 3 = 7. We want the description with minimal
real information content.

16.3 Calculation

For n outcomes:
Real (R*", encoding complex as pairs):
e dim=2n
e dim(Aut) =0 (no phase freedom)
e K=2n
Complex (C»):
e dim = 2n (as real vector space)
e dim(Aut) =1 (overall U(1) phase unphysical)
e K=2n-1
Quaternionic (H”(n/2)):
e dim=2n
e dim(Aut) =3 (SU(2) gauge)
e K=2n-3
However, quaternionic Hilbert spaces lead to composition and locality structures that conflict

with observed quantum behaviour: they violate local tomography and imply extra experimentally
unobserved degrees of freedom.

16.4 Result

Theorem 16.1 (Representation Minimality). Complex Hilbert space minimizes K(R) among
representations correctly encoding interference, superposition, and entanglement while
respecting observed composition rules.

Remark: We present K(R) as a heuristic minimality principle. It is not claimed as a rigorous no-
go theorem; rather, it provides a plausibility argument for why complex Hilbert space is natural.
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17. Unitary Dynamics from Distinguishability
Preservation

17.1 Constraint

Time evolution must preserve distinguishability relations:
D(A") =D(A) for all A

Equivalently, transition probabilities are preserved:
Ky Aly' B)?=[v_A |y B)P

17.2 Wigner's Theorem

Theorem 17.1 (Wigner). Every distinguishability-preserving transformation is unitary or
antiunitary.

Antiunitary transformations (like time reversal) are discrete. Continuous evolution must be
unitary.

17.3 Schrodinger Equation

Theorem 17.2 (Stone). Every continuous one-parameter unitary group has the form:

U(t) = eN(—iHt/A)

for some self-adjoint operator H.

The Schrdodinger equation follows immediately:

ih - d|y)/dt = H|y)

[General Reader] The Schrodinger equation is not put in by hand. It is the ONLY way to evolve

quantum states continuously while preserving the distinguishability structure. The formalism is
forced by consistency.
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18. Measurement as Distinguishability Resolution
18.1 Before Measurement

System in superposition:

W) =Z_Avy_AlA)

Outcomes are indistinguishable at environmental level—interference is possible.

18.2 Decoherence

Measurement interaction:
lW)[Eo) = Z_ A w_A[A)E_A)

with (E_A|E B) = 0. Branches become distinguishable; interference suppressed.
18.3 Outcome Selection (Tick-Bit)

Among decohered branches, the first to produce a threshold-crossing tick becomes actual—that
tick triggers the irreversible Bit. This is the Tick-Bit mechanism of Sections 2-5.

18.4 Complete Picture

Preparation: System in superposition

Interaction: System couples to apparatus

Decoherence: Branches become distinguishable

Race: Branches compete to produce first tick

Outcome: Winner's tick becomes macroscopic bit

Amplification: Winning branch stabilized; others become counterfactual

A

This is the complete physical story of quantum measurement.

42



APPENDICES

Appendix A: Mathematical Details of First-Passage
Statistics

A.1 Hazard Functions

For a non-negative random variable T (waiting time), the hazard function is:
h(t) = f(t) / S(t)

where f{(t) is the density and S(t) = P(T > t) is the survival function.

Interpretation: h(t)dt is the probability of event in [t, t+dt] given survival to t.
A.2 Proportional Hazards Model

The proportional hazards assumption:
h A(t)=2A_A - ho(t)
means all processes share the same "shape" ho(t) but differ in scale A_A.

This is the Cox proportional hazards model, widely used in survival analysis.
A.3 Cumulative Hazard

H A(t)=Joth_ A(s)ds =A A - Ho(t)

The survival function is:

S_A(t) = exp(—H_A(t)) = exp(—A_A - Ho(t))

A.4 Competing Risks

For independent competing processes, the probability A fires first:
P(A first) = Jo*o h_A(t) - exp(—Z_C H_C(t)) dt

With proportional hazards:
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=0k A - ho(t) - exp(~=_C A_C - Ho(t)) dt
Substituting u = Ho(t):

=\ A Joroo exp(-X CA C-u)du=A A/Z CAC
A.5 Born Rule Derivation

With A A=x"- |y Al

P(A)=x- |y AP/Z Cx- |y CP=|y APF/Z By BP

For normalized states: P(A) = |y_A]>. m

Appendix B: Gamma Distribution and k > 1 Deviations
B.1 Gamma Waiting Times

If k independent ticks are required, the waiting time follows Gamma(k, A_A):

£ ANK)(D) = [L_A"k - t7(k=1) / (k=1)!] - exp(-L_A - 1)

B.2 First-Passage with Gamma Waiting Times

P(A first) = o*oo £ AMK)(D) - []_{B#A} S_BAK)(D) dt

This integral is more complex and generally # [y_AP.

B.3 Example: Two Branches, k =2

For two independent Gamma(k=2, A) processes with rates A1, A2, we derive the first-passage
probability.

Derivation: The Gamma(2, A) density is f(t) = A*t-e”(—At) and the survival function is S(t) = (1 +
At)-e™(—At). For process 1 to fire first:

P(1 first) = Jo*oo fi(t) - Sa(t) dt = Jo"oo Ai2t-eN(—t) * (1 + hat)-eN(—Aat) dt
Let A = A1 + A2. Expanding:

= M2 Joho0 t-eN(—At) dt + 2z Johoo t2-eN(—At) dt
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Using Joroo tn-eN(—At) dt = nl/Ar:

=M (1/A?) + M2 - (2/A3) = MY A2+ 2020/ N3 = M2(A + 202)/ N3
Substituting A = A1 + Az:

P(1 first | k=2) =M% - (M + 3h2) / (M +2)?

Compare to k= 1:

P(1 first | k=1) =M1 / (M + A2)

For equal rates (A1 = A2 = &), both give P = 1/2 by symmetry.

For A = 22 (corresponding to |y = 2|y2?):

e k
o k

1: P(1 first) = 2/3 = 0.667
2: P(1 first) = (44:2)(5%2)/(3%2)® = 20023/27A2° = 20/27 = 0.741

This confirms that k > 1 violates Born statistics. The deviation is substantial (11%) and
experimentally distinguishable with ~1,600 trials at 36 confidence.

For general k, the integrals become increasingly complex but can be evaluated numerically. The
pattern persists: higher k systematically biases outcomes toward the faster process more strongly
than |y|* predicts.

Appendix C: Fermi's Golden Rule Derivation
C.1 Setup

System: [y} =X_A y_A |A)

Interaction: H int=3 A [ANA|® V_A

Initial state: [¥o) = [y) ® |Po) & |Eo)

C.2 Transition Amplitude

To first order in H_int, amplitude to transition to |A)|P_A)|f A):

T fi=y A (P_A{f A|V_A |Po)[Eo)
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C.3 Transition Rate

I' A=Q2n/h) -2 f|T fi?-o(E f—E 1)

=Q2n/h) - ly_AP- S f(P_AKf A|V_A [Po)|Eo)]? - 8(E_f—E i)

=y AP -k A

where kA = (2n/h) - _f[(P_A|(f A| V_A [Po)|Eo)]? - S(E_f— E_i).
C.4 Tick Rate Identification

MA=ET A=x A |y AP

For uniform apparatus coupling (k_A = k):

AA=x"|v AP

Appendix D: Proof of Distinguishability Uniqueness
Theorem

D.1 Setup

Let D: {outcomes} — R>0 satisfy:

e (1) Additivity for distinguishable outcomes
e (ii) Permutation symmetry

e (iil) Phase covariance with interference

e (iv) Polynomial dependence on {a i, a j*}

D.2 Polynomial Form

By (iv), D has the form:
D(A)=ZXZ terms of formc - [[ ia i™(n i) - [] j (a j*)"(m_j)

D.3 Reality Constraint

D(A) must be real. Complex conjugate of D equals D:
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D*=D

This requires n_total = m_total (equal powers of a and a*).
D.4 Phase Covariance (1ii)

Under global phase shifta i — e*(i0) - a_i:

D — e*(i(n—m)0) - D=D

Thus n = m for each term.

D.5 Lowest Order

The lowest-order terms satisfying these constraints are:

e Order 0: constant (violates normalization)
e Order2: X {ij} c {ij} -a i-a j* (bilinear form)

D.6 Symmetry (i1)

Permutation symmetry requires ¢_{ij} = c for all 1, j.

Thus: D(A)=c-X {iEA} X {jEA}ai-a j*=c- |y Al

D.7 Higher Orders

Quartic terms violate additivity. Consider D(A) = (X_{i€A} |a_i])%
For disjoint outcomes A1, Az:

D(AI U As) = (_{i€A} Ja i + X {jEA:} a_j]?)? = D(A1) + D(As) + 2-(Z_{i€EAI}
la_iP?)(Z_{jEA:} [a_jP)

The cross-term is nonzero even for distinguishable outcomes, violating (1).

Thus the bilinear form is unique. m
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Appendix E: Bell Inequality Analysis
E.1 CHSH Setup

Alice chooses between settings a or a'. Bob chooses between settings b or b'. Outcomes: A, B €
{+1,—1}.

The CHSH quantity is:

S =E(a,b) — E(a,b") + E(a',b) + E(a',b")

where E(a,b) = (A-B) is the correlation.
Classical bound: S| <2

Quantum bound: |S| < 2V2 =~ 2.83

E.2 Tick-Bit Correlations

For the singlet state [¥) = (1/72)(|01) — |10)), the tick rates are:
A {+ti(@b)=A {—}(a,b) =« (1 —cos(a—b))/4
A {+=}(@b)=1 {—+}(a,b) =«(1 + cos(a—b))/4
The correlation function:

E(a,b) = P(same) — P(opposite) = —cos(a—b)
This matches standard quantum mechanics.

E.3 CHSH Value with Optimal Settings

Optimal angles: a=0, a'=n/2, b=n/4,b' = 3n/4

Settings Angle difference Correlation
(a,b)=(0,n/4)  -m/4 E=—\2/2
(a,b)=(0,3n/4) —3m/4 E=-+22
(a,b)= (2, /4) w4 E=—\2/
(a, b)) = (n/2, 3n/4) —/4 E=—2/
Therefore:
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S = (—V2/2) — (+\2/2) + (—\2/2) + (—V2/2) = 22

So [S| = 212, saturating the Tsirelson bound.
E.4 Conclusion

Tick-Bit reproduces the maximal quantum violation |S| = 212, confirming that it generates full
quantum correlations for entangled states.

Appendix F: Glossary

Bit: Irreversible macroscopic distinguishability event; the measurement outcome.
Born rule: P(A) = |y_AP. The rule converting amplitudes to probabilities.

Decoherence: Process by which superpositions lose interference due to environmental
entanglement.

Distinguishability weight D(A): Bilinear functional equal to |y_AJ*.

Epistemic probability: Probability reflecting ignorance, not fundamental randomness.
First-passage: The event of a stochastic process first reaching a threshold.

Galois invariance: Invariance under field automorphisms.

Hazard rate h(t): Instantaneous event probability given survival to time t.

Hilbert space: Complete inner product space; arena for quantum states.

Ontic probability: Probability as fundamental feature of reality.

Proportional hazards: Model where hazards differ only by scale factor.

RAL (Resonant Assembly Language): Framework reconstructing QM from physical
principles.

Tick: The smallest microscopic increment of distinguishability in the detector—environment
microstate. A tick is not itself irreversible; it is a micro-event that may trigger an irreversible Bit

if it crosses the metastability threshold.

Tick rate A_A: Rate of tick production in branch A; equals x|y A%
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TPB (Ticks-Per-Bit): Framework where time emerges from tick accumulation.

Appendix G: Axioms and Theorems Summary

G.1 Axioms

Axiom 1 (Resonance). Physical states are oscillatory, characterized by complex amplitudes a =
A-e™(ip).

Axiom 2 (Distinguishability Geometry). The distinguishability functional satisfies additivity,
symmetry, phase covariance, and polynomial dependence.

Axiom 3 (Galois Invariance). Physical predictions are invariant under amplitude field
automorphisms.

Axiom 4 (Representation Minimality). Nature selects the representation minimizing K(R) =
dim(R) — dim(Aut(R)).

Constraint (A1’) (Detector Branch-Blindness). The detector Hamiltonian cannot condition its
response on which branch it is coupled to, forcing proportional hazards structure.

Constraint (A2') (Amplitude-Squared Rates). Transition rates must be non-negative, gauge-
invariant, U(1)-covariant quadratic functionals of amplitudes, uniquely giving A A o« |y A%

Constraint (A3') (Metastable Amplification). Single-quantum-sensitive detectors must be
metastable amplifying systems, forcing first-tick (k = 1) outcome selection.

(.2 Main Theorems

Theorem 1: Distinguishability uniquely equals [y|>. (Section 14)

Theorem 2: Complex numbers are uniquely selected. (Section 15)
Theorem 3: Complex Hilbert space is representation-minimal. (Section 16)
Theorem 4: Dynamics are unitary. (Section 17)

Theorem 5: Under constraints (A1')—(A3"), first-passage statistics yield P(A) = |y_A[*. (Section
2)

Theorem 6: Probability is epistemic; determinism holds microscopically. (Section 6)
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Lemma (Uniqueness): The probability assignment P(A) = A A/XA B is uniquely determined by
symmetry, homogeneity, continuity, and normalization. (Section 2.5)

Theorem 7: No alternative functional form survives all three constraints (A1')—(A3’); the Born
rule is uniquely forced. (Sections 2.3, 2.5)

Robustness Result: Deviations from each constraint produce calculable deviations from Born
statistics; Tick-Bit is the robust fixed point in the space of detector-layer models. (Section 2.7)
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