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Abstract 

We propose that quantum measurement outcomes are determined by a first-passage race between 

decohered branches. Each branch generates microscopic "ticks" at a rate proportional to its 

amplitude squared; the branch producing the first threshold-crossing tick—which triggers a 

macroscopic irreversible "bit"—becomes the observed outcome. This Tick-Bit mechanism yields 

the Born rule P = |ψ|² as an exact theorem of first-passage statistics, not as an axiom. The 

apparent randomness of quantum mechanics emerges from epistemic uncertainty about 

environmental microstates, while the underlying dynamics remain deterministic. 

We ground the tick-rate scaling λ_A ∝ |ψ_A|² in Fermi's golden rule and a deeper reconstruction 

of quantum amplitudes from resonance and distinguishability geometry (Resonant Assembly 

Language), ensuring the derivation is non-circular. The framework provides a physical 

mechanism for outcome definiteness, resolves the measurement problem without fundamental 

stochasticity, and makes testable predictions: detectors requiring multiple independent triggers 

should deviate from Born statistics. 

 

A Note for General Readers 

Quantum mechanics has a puzzle at its heart: the theory describes particles existing in 

"superpositions" of multiple states simultaneously, yet we always observe definite outcomes. 

How does one possibility win out over the others? 

This paper proposes a concrete answer: it is a race. Each possible outcome generates random 

"ticks"—tiny fluctuations in the detector. Whichever outcome produces the first tick that crosses 

a threshold wins, triggering an irreversible amplification. The probability of winning turns out to 

equal exactly |ψ|², the famous Born rule. 
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Sections marked [General Reader] provide plain-language explanations. You can follow the 

conceptual story through these sections alone, or engage with the full mathematics. 
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PART I: THE TICK-BIT MECHANISM 

1. The Outcome Selection Problem 

1.1 The Puzzle 

Quantum mechanics describes systems in superposition: 

|ψ⟩ = Σ_A ψ_A |A⟩ 

where ψ_A are complex amplitudes and |A⟩ are possible outcomes. The Born rule states that 

outcome A occurs with probability: 

P(A) = |ψ_A|² 

But why? And how does a single definite outcome emerge from the superposition? 

[General Reader] Imagine a coin that is somehow "both heads and tails" until you look at it. 

Quantum mechanics says particles really are like this—existing in multiple states at once. But 

when we measure, we always see ONE result. How does the universe "choose"? That is the 

measurement problem, and it has been debated for a century. 

1.2 What Decoherence Does—and Does Not—Explain 

Decoherence occurs when a quantum system becomes entangled with its environment: 

|ψ⟩|E₀⟩ → Σ_A ψ_A |A⟩|E_A⟩ 

where ⟨E_A|E_B⟩ ≈ 0 for A ≠ B. The branches become distinguishable and can no longer 

interfere. 

Decoherence explains why we do not observe interference between outcomes. It does not explain 

why we observe one particular outcome. After decoherence, we have multiple branches—but 

which one becomes "actual"? 

[General Reader] Decoherence is like shuffling a deck of cards separately for each possible 

outcome—now the outcomes cannot "talk to each other" anymore. But it does not explain which 

card you will draw. That is a separate question. 
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1.3 Existing Approaches and Their Limitations 

Different interpretations handle outcome selection differently: 

Copenhagen: Measurement "collapses" the wave function. But what counts as measurement? 

The boundary between quantum and classical remains undefined. 

Many-Worlds: All branches are real; we simply find ourselves in one. But why do we observe 

outcomes with frequency |ψ|²? The probability measure requires additional postulates. 

Bohmian Mechanics: Hidden particle positions determine outcomes. But why should positions 

be distributed as |ψ|²? This is assumed, not derived. 

Objective Collapse (GRW): Spontaneous collapses are fundamental. But why do collapse rates 

scale as |ψ|²? The rule is postulated. 

All approaches either leave the Born rule as an axiom or derive it through assumptions that 

effectively encode it. The measurement problem persists because no interpretation provides a 

mechanism for outcome selection that derives the Born rule from more fundamental principles. 

1.4 Our Proposal: A Physical Race 

We propose that outcome selection is a first-passage race between decohered branches: 

1. After decoherence, each branch generates microscopic "ticks" at rate λ_A 

2. The tick rate scales as λ_A = κ|ψ_A|² 

3. The first branch to produce a threshold-crossing tick triggers a macroscopic irreversible 

"bit" 

4. First-passage statistics then yield P(A) = |ψ_A|² 

The Born rule emerges as a theorem, not an axiom. 

[General Reader] Think of each possible outcome as a contestant in a race. Each contestant has 

a "speed" proportional to |ψ|². They are all racing to be the first to cross a finish line (produce an 

irreversible event). The faster you are, the more likely you win. When we do the math, the 

probability of winning equals exactly |ψ|²—the Born rule pops out automatically. 
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2. The Tick-Bit Mechanism 

2.1 Definitions 

Tick: A tick is the smallest microscopic increment of distinguishability in the detector–

environment microstate. A tick is not itself irreversible or stable; it is a micro-event that may, if 

it crosses the metastability threshold, trigger the macroscopic irreversible event known as a Bit. 

Physical examples include: 

• A carrier excitation in a photodiode 

• A hotspot nucleation attempt in a superconducting nanowire 

• A metastable fluctuation in a pointer mechanism 

• A molecular conformational fluctuation in a biological sensor 

Bit: A Bit is the smallest macroscopic, thermodynamically irreversible unit of recorded 

distinguishability—the measurement outcome. In metastable amplifying detectors, the first tick 

that successfully drives the system over the instability threshold becomes a Bit. 

Hazard rate h_A(t): The instantaneous probability density that branch A produces its first 

threshold-crossing tick at time t, given no such tick has occurred yet. 

2.2 The First-Passage Framework 

We model each branch as a point process generating ticks. The key assumptions are: 

(A1) Proportional hazards. All branches share the same hazard shape, differing only in scale: 

h_A(t) = λ_A · h₀(t) 

where h₀(t) is a baseline hazard and λ_A is the branch-specific tick rate. 

(A2) Tick rate scales with amplitude squared. 

λ_A = κ · |ψ_A|² 

where κ is a constant depending on the apparatus. 

(A3) First-tick selection. The outcome is determined by the first branch to produce a threshold-

crossing tick (which becomes the Bit). 

[General Reader] These assumptions say: (1) all branches "tick" in the same general pattern, 

just at different speeds; (2) the speed is proportional to |ψ|²; (3) first one to tick wins. These are 

physically reasonable for real detectors, as we discuss below. 
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2.3 Strengthened Constraints: From Assumptions to Physical Necessities 

The assumptions (A1)–(A3) can be recast in a more rigorous form grounded in general physical 

principles. None are arbitrary; each is a structural consequence of quantum dynamics, 

decoherence, and detector physics. We denote the strengthened versions as (A1′)–(A3′). 

(A3′) First-tick selection (k = 1) is forced by metastability and thermodynamic 

irreversibility 

Any macroscopic detector capable of amplifying a quantum input must operate as a metastable 

system near an instability threshold. In such systems, the first microscopic event that crosses the 

barrier triggers deterministic relaxation to a macroscopic outcome. This is a universal feature of 

metastable amplification: 

• A metastable system near an instability point has a single escape pathway (Arrhenius 

barrier) 

• As soon as one microscopic fluctuation crosses the barrier, the system undergoes rapid, 

deterministic relaxation into one macrostate 

• Subsequent fluctuations occur after the macrostate has been irreversibly determined 

This principle spans supercooled nucleation (a single nucleus triggers crystallization), avalanche 

photodiodes (one carrier triggers breakdown), photomultipliers (one photoelectron triggers the 

cascade), superconducting nanowires (one hotspot triggers the voltage pulse), Geiger-Müller 

tubes (one ionization triggers the discharge), and chemical ignition (one radical triggers the 

reaction). 

Thus k = 1 is not a modeling assumption but a thermodynamic necessity for any single-quantum-

sensitive detector. Tick-Bit does not assume k = 1—physics forces k = 1. 

(A2′) Tick rates must scale as |ψ_A|² by unitarity, symmetry, and perturbation theory 

Transition amplitudes evolve linearly under the Schrödinger equation: 

dψ/dt = −(i/ℏ) H ψ 

Physical transition rates must be non-negative, gauge-invariant, and phase-covariant quadratic 

forms of the amplitudes. The only such functional is |ψ_A|². Any other choice would break phase 

covariance, violate linearity of quantum response, break local tomography, or violate energy 

conservation in perturbation theory. 

Time-dependent perturbation theory (Fermi's golden rule) confirms this scaling as a dynamical 

fact about amplitude-squared flow rates, independent of any probabilistic interpretation. We 

develop this further in Section 4. 

Therefore λ_A ∝ |ψ_A|² is forced by linear quantum dynamics and U(1) symmetry, not 

postulated. This is a representation-theoretic necessity. 
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(A1′) Proportional hazards arise from detector branch-blindness 

After decoherence, each branch A interacts with the detector via the same Hamiltonian H_int; 

the apparatus cannot condition its response on which branch it is coupled to. The detector 

Hamiltonian is the same operator acting on |A⟩|P₀⟩|E_A⟩ regardless of A. This implies that the 

hazard functions share the same time-shape h₀(t), differing only by scale factors λ_A determined 

by branch-dependent microstructure. 

This is exactly the proportional hazards structure of the Cox model, emerging from the branch-

blindness of the detector Hamiltonian. Branch-specific environmental microstates affect λ_A (the 

scale), but not h₀(t) (the shape). 

Even if two physical detectors differ slightly, those differences enter λ_A, not h₀(t). Corrections 

to proportional hazards are second-order and yield small perturbative corrections to Born 

statistics—exactly as the theory predicts for any realistic physical system. 

Summary: Why These Constraints Are Ironclad 

With (A1′)–(A3′) reframed this way, the constraints become physically necessary, not modeling 

choices: 

• (A3′) gives irreversibility and outcome definiteness from thermodynamics 

• (A2′) gives Born weights at the rate level from unitarity and symmetry 

• (A1′) gives the proportional hazards structure from detector branch-blindness 

Once (A1′)–(A3′) hold, the Born rule P(A) = |ψ_A|² is forced. No alternative functional form 

survives all three constraints. Tick-Bit is not "a mechanism that happens to work"—it is the 

unique mechanism consistent with unitary dynamics, decoherence, metastable amplification, and 

amplitude-squared transition rates. 

2.4 Survival Functions and First-Passage Probability 

Let T_A be the waiting time for the first tick in branch A. The survival function (probability no 

tick by time t) is: 

S_A(t) = exp(−λ_A · H₀(t)) 

where H₀(t) = ∫₀ᵗ h₀(s)ds is the cumulative baseline hazard. 

The probability density for first tick at time t is: 

f_A(t) = h_A(t) · S_A(t) = λ_A · h₀(t) · exp(−λ_A · H₀(t)) 

For competing processes, the probability that branch A fires first is: 

P(A first) = ∫₀^∞ f_A(t) · ∏_{B≠A} S_B(t) dt 
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2.5 The First-Passage Born Rule Theorem 

Theorem 2.1 (First-Passage Born Rule). Under constraints (A1′)–(A3′), the probability that 

branch A produces the first threshold-crossing tick (the Bit) is: 

P(A) = |ψ_A|² / Σ_B |ψ_B|² 

Proof. With proportional hazards h_A(t) = λ_A · h₀(t): 

P(A first) = ∫₀^∞ λ_A · h₀(t) · exp(−Σ_C λ_C · H₀(t)) dt 

Let u = H₀(t), so du = h₀(t)dt: 

P(A first) = ∫₀^∞ λ_A · exp(−Σ_C λ_C · u) du = λ_A / Σ_C λ_C 

Substituting λ_A = κ · |ψ_A|²: 

P(A) = κ · |ψ_A|² / Σ_C κ · |ψ_C|² = |ψ_A|² / Σ_B |ψ_B|² ∎ 

Lemma 2.2 (Uniqueness of Linear Probability Assignment). Let P: {λ_A} → [0,1] be a 

probability assignment satisfying: (i) Normalization: Σ_A P(A) = 1 (ii) Symmetry: P is invariant 

under permutation of branch labels (iii) Homogeneity: P(A; {cλ_B}) = P(A; {λ_B}) for any c > 0 

(iv) Continuity: P depends continuously on {λ_A} 

Then P(A) = λ_A / Σ_B λ_B. 

Proof sketch. By (ii) and (iv), P(A) = f(λ_A, Σ_B λ_B) for some continuous symmetric function 

f. By (iii), f is homogeneous of degree zero in its arguments, so f(λ_A, Σλ_B) = g(λ_A / Σλ_B) 

for some function g. By (i), Σ_A g(λ_A / Σλ_B) = 1 for all configurations. The only continuous 

solution is g(x) = x, giving P(A) = λ_A / Σ_B λ_B. ∎ 

This lemma confirms that the proportional hazards structure (A1′) combined with first-passage 

dynamics uniquely determines the probability assignment. There is no freedom to choose a 

different functional form. 

[General Reader] The math confirms our intuition: when contestants race with speeds 

proportional to |ψ|², the probability of winning is exactly |ψ|² (after normalizing). The Born rule 

is not a mystery—it is the inevitable outcome of a fair race with these speeds. 

A note on the "race" metaphor: The race is not a dynamical interaction between branches—after 

decoherence, branches evolve independently and do not "communicate." Rather, the race is a 

counterfactual comparison: each branch's microstate configuration determines a threshold-

crossing time T_A, and the winner is simply the branch whose configuration happens to produce 

the earliest such time. This is structurally identical to Bohmian mechanics, where particle 

positions determine outcomes but different branches never interact. The mathematics of 
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competing point processes captures this comparison without requiring any inter-branch 

dynamics. 

2.6 Technical Details: First-Tick Selection and the k > 1 Prediction 

As established in (A3′), the k = 1 structure is thermodynamically forced for metastable 

amplifying systems. Here we develop the technical consequences and the testable prediction that 

follows. 

The mechanism reproduces the Born rule only if the outcome is determined by the first tick (k = 

1). If k > 1 independent ticks were required, waiting times would follow a Gamma(k, λ_A) 

distribution, yielding different statistics. 

For concreteness, consider the specific detector parameters: 

Avalanche photodiodes: Electric field tuned just below breakdown; a single carrier ionization 

event initiates multiplicative gain of 10⁵–10⁶. 

Photomultipliers: Each dynode stage multiplies by ~4–10×, yielding total gains of 10⁶–10⁸ from 

a single initial electron. 

Superconducting nanowire detectors: A single photon breaks Cooper pairs locally, creating a 

resistive hotspot that diverts current and produces a measurable signal within picoseconds. 

These numbers are not incidental—they reflect the thermodynamic requirement that single-

quantum sensitivity demands first-crossing amplification. 

Prediction: Detectors engineered to require k ≫ 1 independent events (e.g., multi-photon 

coincidence counters with truly independent channels) should show deviations from Born 

statistics. This is testable, though challenging to implement cleanly. See Section 10 and 

Appendix B for quantitative predictions. 

2.7 Robustness: Deviations from the Constraints Produce Deviations 

from Born 

The constraints (A1′)–(A3′) are not only sufficient for deriving the Born rule; they are also 

necessary in a strong sense. Small or systematic violations of any one of them generically 

produce calculable deviations from P(A) = |ψ_A|². This section summarizes the robustness 

analysis. 

2.7.1 Violating (A2′): Wrong Exponent in λ_A 

Suppose we keep (A1′) and (A3′)—proportional hazards and k = 1—but relax (A2′) by allowing 

the tick rates to scale as a different power of the amplitude: 
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λ_A = κ · |ψ_A|^α, α ≠ 2 

The first-passage result still gives: 

P(A) = λ_A / Σ_B λ_B = |ψ_A|^α / Σ_B |ψ_B|^α 

Thus, the outcome probabilities directly inherit the wrong exponent α. For a simple two-branch 

system with |ψ₁|² = 2|ψ₂|², we have |ψ₁| = √2 |ψ₂|. Then: 

Born rule (α = 2): 

P₁ = |ψ₁|² / (|ψ₁|² + |ψ₂|²) = 2/3 ≈ 0.667 

Sublinear case (α = 1): 

P₁ = |ψ₁| / (|ψ₁| + |ψ₂|) = √2 / (√2 + 1) ≈ 0.586 

Superquadratic case (α = 4): 

P₁ = |ψ₁|⁴ / (|ψ₁|⁴ + |ψ₂|⁴) = 4/5 = 0.800 

These deviations (≈0.586 vs 0.667 vs 0.800) are large and would have been detected long ago in 

interference and polarization experiments. Decades of quantum optics and spin measurements 

are consistent with P ∝ |ψ|² to very high precision. Thus α = 2 is not just convenient—it is 

empirically forced. 

2.7.2 Violating (A1′): Non-Proportional Hazards 

Now keep (A2′) and (A3′) but relax (A1′). Suppose the hazard functions have slightly different 

shapes across branches: 

h_A(t) = λ_A · h₀(t) + ε_A · g(t) 

with small parameters ε_A and some perturbing shape g(t). The survival and first-passage 

integrals no longer simplify exactly to λ_A / Σλ_C. To first order in ε_A: 

P(A) = P⁰(A) + δP(A) 

where P⁰(A) = λ_A / Σ_C λ_C is the ideal proportional-hazards result and δP(A) is a correction 

term of order ε. 

Two points are clear: 

Generic deviations: For generic g(t) and nonzero ε_A, δP(A) ≠ 0. Non-proportional hazards 

generically produce departures from the simple λ_A/Σλ_C rule. 
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Suppression by scale separation: In realistic detectors, microscopic variations in response 

shape g(t) occur on timescales τ_micro (carrier scattering, phonon relaxation), while the 

macroscopic avalanche unfolds on timescales τ_macro ≫ τ_micro. The correction integral is 

typically suppressed by τ_micro/τ_macro. This explains why Born statistics are extremely 

accurate in practice even though no real detector is perfectly branch-blind microscopically. 

2.7.3 Violating (A3′): Multi-Tick Requirements (k > 1) 

As shown in Appendix B, when (A1′) and (A2′) are retained but (A3′) is violated by requiring k 

> 1 independent ticks, the waiting-time distribution becomes Gamma(k, λ_A) and the first-

passage probability deviates from λ_A / Σλ_C. For two branches with λ₁ = 2λ₂: 

• k = 1: P₁ = 2/3 ≈ 0.667 

• k = 2: P₁ = 20/27 ≈ 0.741 

2.7.4 Summary: Tick-Bit as a Robust Fixed Point 

Taken together, these robustness results show that: 

• Violating (A2′) (wrong exponent) leads directly to P(A) ∝ |ψ_A|^α, α ≠ 2, which is 

empirically ruled out 

• Violating (A1′) (non-proportional hazards) produces calculable corrections that are 

generically nonzero but suppressed by microscopic/macroscopic scale separation 

• Violating (A3′) (k > 1) yields Gamma-distributed waiting times and explicit deviations 

from the λ_A/Σλ_C rule 

The Tick-Bit mechanism is not merely a mechanism that reproduces the Born rule; it is the 

robust fixed point in the space of detector-layer outcome-selection models satisfying physical 

constraints. Small deviations from (A1′)–(A3′) produce correspondingly small, calculable 

deviations from Born statistics, while large deviations (e.g., α ≠ 2 or k ≫ 1) are already 

experimentally excluded. 

 

3. Is Tick-Bit Just an Ad Hoc Fit to the Born Rule? 

One natural worry is that Tick-Bit is "just something we made up that happens to reproduce the 

Born rule." In other words, given that |ψ|² already appears everywhere in quantum mechanics, 

one might suspect that any model can be reverse-engineered to match it, with no real explanatory 

gain. 

There are three reasons this objection does not apply. 



 17 

3.1 Strong Constraints, Not a Free Choice 

The Tick-Bit mechanism is not an arbitrary story bolted onto quantum theory; it is the result of 

imposing physically necessary constraints (A1′–A3′): 

• Decoherence produces effectively independent branches with amplitudes ψ_A 

• Transition rates must scale as |ψ_A|² by unitarity, U(1) symmetry, and perturbation theory 

(A2′) 

• Metastable amplifying detectors are thermodynamically forced to trigger on the first 

supercritical event (A3′) 

• The detector Hamiltonian is branch-blind, forcing proportional hazards structure (A1′) 

• The distinguishability functional must satisfy additivity, symmetry, phase covariance, and 

mild regularity, which uniquely forces D(A) = |ψ_A|² 

Given these ingredients, a proportional-hazards race with λ_A ∝ |ψ_A|² is not an arbitrary 

choice; it is the unique way to combine decohered branches, amplitude-squared transition rates, 

and threshold detection into a concrete outcome-selection mechanism. 

3.2 Sensitivity to Modifications 

The mechanism is not "under-constrained" in the sense that anything goes. On the contrary, 

small changes destroy key features: 

• If we change the distinguishability functional away from |ψ|², we lose additivity and 

interference consistency 

• If we require k > 1 independent ticks, the first-passage probabilities deviate from |ψ|² 

• If we abandon proportional hazards, the simple λ_A/Σλ_C structure is lost and the Born 

rule no longer follows as a theorem 

These failures are not cosmetic; they are calculable and, in principle, testable. Section 2.7 

provides a detailed robustness analysis showing that deviations from each constraint (A1′)–(A3′) 

produce specific, quantifiable departures from Born statistics. The Tick-Bit framework is 

therefore falsifiable under controlled changes of its assumptions. 

3.3 Additional Explanatory and Predictive Content 

Finally, Tick-Bit does more than reproduce |ψ|². It offers: 

• A detector-level, first-passage mechanism for outcome definiteness, rather than a bare 

collapse postulate 

• A deterministic microdynamics with epistemic probabilities, resolving how apparent 

randomness can arise from unitary evolution plus inaccessible microstructure 

• A quantitative prediction that detectors engineered with k ≫ 1 independent triggers 

should show observable deviations from Born statistics 
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• A natural link between outcome selection, irreversibility, and emergent time in the TPB 

framework 

These are additional structural and conceptual payoffs that go beyond merely "fitting" the Born 

rule. 

For these reasons, Tick-Bit should not be viewed as an unconstrained just-so story. It is a 

specific, tightly constrained mechanism that (i) respects known quantum dynamics, (ii) fails in 

calculable ways when its assumptions are altered, and (iii) yields new conceptual clarity and 

potential empirical signatures. 

To put it plainly: Tick-Bit is not "one arbitrary story among many." It is what you get if you take 

decoherence, golden-rule transition rates, and single-quantum threshold detectors seriously, then 

ask: "What concrete mechanism could connect these to definite outcomes and the Born rule?" 

Within that space, the first-passage tick race really is the thing that fits the bill. 

 

4. Grounding λ_A ∝ |ψ_A|²: Why Tick Rates Scale with 

Amplitude Squared 

4.1 The Circularity Question 

A potential objection: "You assumed λ_A ∝ |ψ_A|². Is that not just assuming the Born rule?" 

This objection conflates two distinct uses of |ψ|²: 

• Born rule (outcome statistics): P(A) = |ψ_A|² for measurement outcomes 

• Fermi's golden rule (transition dynamics): Γ ∝ |⟨f|V|i⟩|² for transition rates 

The second is a statement about dynamics—how fast quantum systems transition between 

states—not about outcome probabilities. It is derived from time-dependent perturbation theory 

using only the Schrödinger equation and the structure of Hilbert space, without invoking the 

Born rule for measurement outcomes. 

The logical structure is: 

1. Time-dependent perturbation theory → transition rates scale as |matrix element|² 

2. Measurement interactions have matrix elements proportional to system amplitudes 

3. Therefore tick rates scale as |ψ_A|² 

4. First-passage statistics → P(A) = |ψ_A|² 

At no point do we assume P(A) = |ψ_A|². The outcome probability emerges from the race 

dynamics. 
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To be fully explicit: in Tick-Bit, the quantities Γ_A and λ_A are interpreted as rates of 

amplitude-squared flow toward macroscopic distinguishability—currents in amplitude space, not 

probabilities per se. These rates describe how fast each branch accumulates the microscopic 

preconditions for a threshold-crossing event. The probabilistic meaning arises only after the first-

passage competition resolves: the race converts deterministic rate differences into outcome 

probabilities. The Born rule emerges from the competition, not from the rate equation itself. 

4.2 Derivation from Fermi's Golden Rule 

Consider a measurement described by an interaction Hamiltonian: 

H_int = Σ_A |A⟩⟨A| ⊗ V̂_A 

where |A⟩ are system outcome states and V̂_A acts on the pointer and environment. 

For a system in state |ψ⟩ = Σ_A ψ_A |A⟩, the initial joint state is: 

|Ψ₀⟩ = |ψ⟩ ⊗ |P₀⟩ ⊗ |E₀⟩ 

where |P₀⟩ and |E₀⟩ are initial pointer and environment states. 

By Fermi's golden rule, the transition rate into pointer channel A is: 

Γ_A = (2π/ℏ) · |ψ_A|² · Σ_f |⟨f_A|⟨P_A| V̂_A |P₀⟩|E₀⟩|² · δ(E_f − E_i) 

The key point: Γ_A factorizes as: 

Γ_A = |ψ_A|² · κ_A 

where κ_A depends only on apparatus matrix elements, not on the system amplitudes. 

[General Reader] Fermi's golden rule is a standard result in quantum mechanics from the 

1920s: the rate of quantum transitions is proportional to the square of the relevant amplitude. 

This is already part of quantum theory—we are not adding anything new. We are just applying it 

to the measurement process. 

4.3 Addressing Deeper Circularity Concerns 

One might object that Fermi's golden rule is itself derived using probabilistic reasoning that 

implicitly assumes |ψ|² weighting. This concern can be addressed at two levels: 

Operational level: Fermi's golden rule can be derived purely from the Schrödinger equation by 

computing the time evolution of state amplitudes under perturbation. The |matrix element|² 

dependence emerges from the mathematical structure of complex amplitudes—specifically, from 

the fact that transition amplitudes are complex numbers and physical rates must be real and non-
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negative. The simplest real, non-negative, phase-invariant function of a complex amplitude a is 

|a|². 

Foundational level: The Resonant Assembly Language (RAL) framework in Part II derives the 

|ψ|² structure from physical first principles—resonance geometry and distinguishability 

requirements—without presupposing quantum mechanics. This provides a non-circular 

foundation for the amplitude-squared scaling. 

4.4 The Complete Logical Chain 

The full derivation follows this chain: 

1. Resonance geometry → complex amplitudes naturally describe oscillatory systems 

(Section 13) 

2. Distinguishability structure → bilinear form D(A) = |ψ_A|² is uniquely determined 

(Section 14) 

3. Time-dependent perturbation theory → transition rates scale as |matrix element|² 

4. Measurement interaction structure → Γ_A = |ψ_A|² · (apparatus factors) 

5. Tick rate identification → λ_A = κ|ψ_A|² 

6. First-passage statistics → P(A) = |ψ_A|² 

At no point do we assume P(A) = |ψ_A|². The probability emerges from the race dynamics 

operating on independently-grounded rate scaling. 

 

5. Worked Example: Stern-Gerlach Measurement 

We trace through a complete Stern-Gerlach measurement to illustrate the mechanism. 

5.1 State Preparation 

A spin-½ particle is prepared in the |+x⟩ state: 

|ψ_in⟩ = (1/√2)(|+z⟩ + |−z⟩) 

Including apparatus and environment: 

|Ψ₀⟩ = |ψ_in⟩ ⊗ |D₀⟩ ⊗ |E₀⟩ 

[General Reader] We start with an electron spinning "sideways" (in the x-direction). Quantum 

mechanically, this equals a 50-50 superposition of spinning "up" and "down" in the z-direction. 
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5.2 Stern-Gerlach Separation 

The inhomogeneous magnetic field separates spin components spatially: 

|Ψ₁⟩ = (1/√2)(|+z⟩|path_↑⟩ + |−z⟩|path_↓⟩) ⊗ |D₀⟩ ⊗ |E₀⟩ 

The spin states are now correlated with spatial paths. 

5.3 Decoherence 

Interaction with detectors and environment produces: 

|Ψ₂⟩ = (1/√2)(|+z⟩|path_↑⟩|D_↑⟩|E_↑⟩ + |−z⟩|path_↓⟩|D_↓⟩|E_↓⟩) 

where ⟨E_↑|E_↓⟩ ≈ 0. The branches are now distinguishable and cannot interfere. 

[General Reader] The two paths become entangled with different detector states and different 

environmental states (air molecules, thermal radiation, etc.). Once this happens, the paths cannot 

interfere anymore—they are "decohered." 

5.4 Branch Amplitudes and Tick Rates 

We have two branches A ∈ {↑, ↓} with amplitudes: 

ψ_↑ = 1/√2, ψ_↓ = 1/√2 

Distinguishability weights: 

D(↑) = |ψ_↑|² = 1/2, D(↓) = |ψ_↓|² = 1/2 

Tick rates: 

λ_↑ = κ · |ψ_↑|² = κ/2, λ_↓ = κ · |ψ_↓|² = κ/2 

5.5 First-Passage Race 

Both branches generate ticks at equal rates. The race is symmetric. 

By Theorem 2.1: 

P(↑) = λ_↑ / (λ_↑ + λ_↓) = (κ/2) / (κ/2 + κ/2) = 1/2 

P(↓) = λ_↓ / (λ_↑ + λ_↓) = 1/2 



 22 

This matches the Born rule prediction. 

5.6 Physical Interpretation 

Within each branch, the detector undergoes microscopic fluctuations. Each branch is racing to 

produce its first irreversible event—an avalanche trigger, a photon emission, a chemical reaction. 

The branch that wins this race—say, ↑—produces a macroscopic, irreversible signal. 

Amplification and further decoherence then stabilize this outcome. The other branch (↓) becomes 

counterfactual. 

[General Reader] Both possible outcomes are "trying" to happen—both detectors are 

fluctuating, ready to trigger. Whichever detector triggers first, wins. Since both have equal |ψ|², 

both have equal chances. We see spin-up or spin-down, each 50% of the time. 

5.7 Unequal Amplitudes 

Now consider |ψ_in⟩ prepared at angle θ from the z-axis: 

|ψ_in⟩ = cos(θ/2)|+z⟩ + sin(θ/2)|−z⟩ 

Amplitudes: 

ψ_↑ = cos(θ/2), ψ_↓ = sin(θ/2) 

Tick rates: 

λ_↑ = κ · cos²(θ/2), λ_↓ = κ · sin²(θ/2) 

First-passage probabilities: 

P(↑) = cos²(θ/2) / (cos²(θ/2) + sin²(θ/2)) = cos²(θ/2) 

P(↓) = sin²(θ/2) 

Again matching the Born rule exactly. 
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6. Determinism, Epistemic Probability, and the Nature of 

Quantum Randomness 

6.1 Determinism at the Microlevel 

A profound implication of Tick-Bit: the outcome is deterministic in principle. 

After decoherence, each branch A has a specific environmental microstate configuration 

{m_i^(A)}. These microstates determine the exact times at which ticks occur: 

T_A = T_A({m_i^(A)}) 

Given complete microstate information, the first-passage time T_A is fixed for each branch. The 

outcome is: 

Outcome = argmin_A T_A 

In the Tick-Bit picture, the microdynamics are deterministic in principle; the outcome is fixed by 

the microstate configuration, not by any fundamental stochastic process. 

[General Reader] Here is the claim: quantum randomness might not be fundamental. If you 

knew EVERY detail about the detector, the air molecules, every particle involved—you could in 

principle calculate exactly which outcome would occur. The "randomness" exists because we 

CANNOT know all that information, not necessarily because the universe is inherently random. 

6.2 Practical Inaccessibility 

Why can we not know the microstates? Several fundamental barriers: 

Exponential complexity: Environmental degrees of freedom diverge exponentially after 

decoherence. A detector interacting with ~10²³ air molecules generates untraceable correlations 

in femtoseconds. 

Chaotic sensitivity: Microscopic dynamics are chaotic. Tiny uncertainties in initial conditions 

amplify exponentially with Lyapunov exponents on the order of thermal collision rates. 

Thermodynamic irreversibility: Decoherence is thermodynamically irreversible. Information 

about the pre-decoherence state is lost to heat—it is not merely hidden but genuinely dispersed. 

No-cloning theorem: Quantum mechanics forbids copying unknown quantum states. We cannot 

measure microstates without disturbing them, and we cannot duplicate them for non-destructive 

analysis. 
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6.3 Epistemic vs. Ontic Probability 

This bears on a long-standing debate: 

Ontic probability: Randomness is fundamental; the universe genuinely "rolls dice." 

Epistemic probability: Randomness reflects our ignorance; underlying dynamics are 

deterministic. 

Tick-Bit is naturally interpreted as supporting epistemic probability: the Born rule emerges as the 

optimal prediction given our necessary ignorance of microstates. This interpretation is suggested 

by the framework's structure, though the empirical predictions remain identical regardless of 

which metaphysical stance one adopts. 

[General Reader] When you flip a coin, the outcome is determined by physics—air currents, 

your thumb's force, the coin's spin. You call it "random" because you cannot track all those 

details. Quantum mechanics might be the same: deterministic underneath, but with details so 

complex that probability is the best we can do. 

6.4 Comparison with Classical Statistical Mechanics 

This parallels classical statistical mechanics: 

Aspect Classical Stat Mech Tick-Bit QM 

Underlying dynamics Deterministic (Newton) Deterministic (unitary + tick race) 

Source of probability Ignorance of microstates Ignorance of microstates 

Emergent law Boltzmann distribution Born rule 

Fundamental randomness No No 

The analogy is precise: just as thermodynamics emerges from deterministic mechanics plus 

epistemic uncertainty, the Born rule emerges from deterministic tick dynamics plus epistemic 

uncertainty. 

6.5 What About "True Randomness" in QM? 

Standard quantum mechanics is often said to involve "true" or "irreducible" randomness. Tick-

Bit challenges this: 

The appearance of true randomness arises because: 

1. Microstates are inaccessible in practice and in principle 

2. The best prediction is probabilistic 

3. No pattern in outcomes can be exploited (by us) 
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But this does not require fundamental randomness—only fundamental unpredictability from our 

epistemic position. 

[General Reader] "True randomness" might be an illusion created by our necessary ignorance. 

The universe could be a perfectly deterministic clockwork—but a clockwork so complex that we 

can never see all its gears. For all practical purposes, it is random to us. But "random to us" is not 

the same as "fundamentally random." 

 

7. Entanglement, Bell Correlations, and Nonlocality 

7.1 The Challenge 

Bell's theorem proves that no local hidden-variable theory can reproduce quantum correlations. 

Any deterministic mechanism reproducing quantum predictions must be nonlocal. 

How does Tick-Bit handle this? 

7.2 Entangled State Setup 

Consider two qubits in the singlet state: 

|Ψ⟩ = (1/√2)(|0⟩_A|1⟩_B − |1⟩_A|0⟩_B) 

Alice measures along axis a; Bob along axis b. After decoherence, four branches exist with joint 

outcomes (A, B) ∈ {(+,+), (+,−), (−,+), (−,−)}. 

The amplitudes depend on both settings: 

|ψ_{++}(a,b)|² = |ψ_{−−}(a,b)|² = (1 − a·b)/4 

|ψ_{+−}(a,b)|² = |ψ_{−+}(a,b)|² = (1 + a·b)/4 

7.3 Tick Rates for Joint Branches 

Tick-Bit assigns tick rates to global branches in configuration space: 

λ_{AB}(a,b) = κ · |ψ_{AB}(a,b)|² 

The tick rate for branch (A,B) depends on both Alice's setting a and Bob's setting b. 
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7.4 Nonlocality 

This is explicitly nonlocal: the tick rate for a joint outcome depends on the measurement settings 

at both locations, even if Alice and Bob are light-years apart. 

The key point: nonlocality resides in the configuration-space structure of tick rates, not in any 

signal propagation. Just as Bohmian mechanics has particle velocities that depend nonlocally on 

the full configuration via the wave function, Tick-Bit has tick intensities that depend nonlocally 

on the full measurement configuration via |ψ|². The wave function mediates nonlocal correlations 

in both frameworks—through guidance in Bohm, through rate-setting in Tick-Bit. 

[General Reader] Bell proved that any hidden-variable theory matching quantum predictions 

must involve "spooky action at a distance." Tick-Bit is no exception: the tick rate for a joint 

outcome (Alice sees +, Bob sees −) depends on what BOTH Alice and Bob chose to measure. 

This is strange but unavoidable—Bell's theorem leaves no alternative. 

7.5 No-Signaling Is Preserved 

Despite nonlocality, no information can be transmitted faster than light: 

Σ_B λ_{AB}(a,b) = κ · Σ_B |ψ_{AB}|² = κ · |ψ_A|² 

Alice's marginal outcome distribution depends only on her setting a and the reduced state, not on 

Bob's setting b. The correlations only appear when Alice and Bob compare results—which 

requires ordinary subluminal communication. 

7.6 No Superdeterminism or Retrocausality 

Some hidden-variable approaches invoke: 

Superdeterminism: Measurement choices are correlated with hidden variables, eliminating free 

choice. 

Retrocausality: Effects propagate backward in time. 

Tick-Bit requires neither. Nonlocal dependence of λ_{AB} on joint settings is sufficient, exactly 

as in Bohmian mechanics. The price of determinism is nonlocality, but not conspiracy or time-

reversal. 
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8. Ontological Status of Competing Branches 

8.1 The Question 

A natural question arises: after decoherence but before the race concludes, what is the 

ontological status of the competing branches? Do they all "exist"? In what sense do they "race"? 

8.2 Three Interpretive Options 

Tick-Bit is compatible with several ontological stances: 

Option 1: Single-branch realism. Only one branch is ever real; the tick race determines which 

one actualizes from an initial superposition. The other branches are mathematical fictions 

representing unrealized possibilities. This resembles modal interpretations. 

Option 2: Transient multi-branch realism. All branches exist temporarily during the race, but 

the losing branches are annihilated when the winner is determined. This resembles objective 

collapse but with a physical mechanism. 

Option 3: Configuration-space realism. The fundamental arena is configuration space, where 

the wave function and its associated tick-rate field are real. "Branches" are features of this space. 

The first-passage event selects which configuration-space region becomes correlated with stable 

macroscopic records. This resembles Bohmian mechanics without committed particle ontology. 

8.3 What Tick-Bit Adds 

Tick-Bit does not resolve the interpretive question—no physical theory does. But it provides 

something the other interpretations lack: a mechanism. 

In Many-Worlds, branches simply exist and the probability measure is postulated. In 

Copenhagen, collapse is a black box. In Tick-Bit, outcome selection has a physical story: micro-

events race, and the first one to cross the threshold triggers an irreversible Bit. This mechanism 

constrains interpretation even if it does not uniquely determine it. 

8.4 The Race as Physical Process 

Crucially, the "race" is not metaphorical. Each branch, via its environmental microstate, has a 

definite (if unknowable) first-tick time. These times are physical quantities determined by the 

microscopic configuration. The race is as real as any thermodynamic process—it is the entropic 

evolution of the measurement apparatus toward a distinguishable macrostate. 
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9. Comparison with Bohmian Mechanics 

9.1 Structural Parallels 

Bohmian mechanics (BM) is the best-known deterministic hidden-variable theory. Tick-Bit 

shares key features: 

Feature Bohmian Mechanics Tick-Bit 

Determinism Yes Yes 

Hidden variables Particle positions Environmental microstates 

Probability type Epistemic Epistemic 

Reproduces Born rule Yes Yes 

Nonlocality Yes (guidance equation) Yes (tick rates) 

9.2 Key Differences 

Aspect Bohmian Mechanics Tick-Bit 

Ontology 
Particles with definite 

positions 
No commitment to particle trajectories 

Dynamics 
Guidance equation for 

velocities 
First-passage statistics for outcomes 

Wave function 

role 
Real guiding field Determines tick intensities via 

Measurement 
Particle position determines 

outcome 

First threshold-crossing tick (Bit) 

determines outcome 

Level of 

description 

Modifies microscopic 

dynamics 
Adds structure at measurement level 

9.3 What Tick-Bit Adds 

Non-circular derivation of |ψ|²: The RAL framework reconstructs the amplitude structure from 

physical principles. BM assumes Hilbert space and uses the Born rule for the initial distribution. 

No particle ontology: Tick-Bit does not commit to particles having trajectories. This avoids 

difficulties with relativistic extensions and quantum field theories, where particle number is not 

conserved. 

Detector-level mechanism: Tick-Bit directly addresses how measurement apparatus produces 

outcomes, rather than relying on particle positions to determine pointer readings. 

Connection to emergent time: Integration with the TPB (Ticks-Per-Bit) framework grounds 

time itself in irreversible change. 
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9.4 Complementarity 

Tick-Bit and Bohmian mechanics are not mutually exclusive. One could adopt Bohmian particle 

ontology while using Tick-Bit to explain how particle positions become registered in detectors. 

They address different aspects of the measurement process. 

[General Reader] Bohmian mechanics says particles have hidden positions that determine 

outcomes. Tick-Bit says the environment has hidden details that determine which detector 

triggers first. Both are deterministic; both match quantum predictions; both require nonlocality. 

They are different stories about "what is really going on," but they are compatible—you could 

believe both. 

 

10. Predictions and Experimental Signatures 

10.1 Empirical Equivalence for Standard Measurements 

For standard measurements with k = 1 threshold detectors, Tick-Bit reproduces all quantum 

predictions exactly. No existing experiment can distinguish it from standard quantum mechanics. 

This is not a weakness. Any interpretation of quantum mechanics must reproduce the empirical 

success of the theory. The question is whether it offers additional predictions or explanatory 

power. 

10.2 Predicted Deviation: k > 1 Detectors 

If a detector requires k > 1 independent triggers, the waiting-time distribution becomes 

Gamma(k, λ_A) rather than exponential. First-passage probabilities then deviate from |ψ|². 

Specific prediction: For k = 2 (two independent triggers required) and two branches with rates 

λ₁ = 2λ₂: 

• k = 1: P(1 first) = 2/3 ≈ 0.667 

• k = 2: P(1 first) = 20/27 ≈ 0.741 

The deviation is substantial and measurable. 

[General Reader] Here is a testable prediction: if you built a detector that only "clicks" after 

TWO independent quantum events (not just one), the probabilities would NOT follow the Born 

rule. This is genuinely new physics—though building such detectors is challenging. 
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10.3 Experimental Challenges 

Testing the k > 1 prediction requires: 

1. True independence: The k triggers must be causally independent, not merely sequential 

stages of a single amplification chain. 

2. Known k: The number of required triggers must be precisely characterized. 

3. Sufficient statistics: Deviations from Born statistics require many trials to distinguish 

from statistical fluctuation. 

Distinguishing k > 1 from k = 1: The critical distinction is between independent triggers and 

amplification stages. A photomultiplier has many dynode stages, but these form a single causal 

chain initiated by one photoelectron—this is k = 1. A true k = 2 system would require two 

separate quantum absorption events, neither causing the other, both required before the detector 

registers. 

Candidate experimental setups: 

• Two-photon coincidence detectors with independent absorption sites, where both sites 

must fire within a coincidence window for registration. The challenge is ensuring the two 

absorptions are genuinely independent quantum events rather than correlated through 

shared optical modes. 

• Molecular switches requiring two independent photoisomerization events to trigger a 

conformational change that produces the signal. 

• Dual-threshold superconducting detectors engineered to require hotspot formation at two 

separate locations. 

Statistical requirements: For the two-branch case with λ₁ = 2λ₂, the predicted probabilities are 

P₁ = 0.667 (k = 1) vs P₁ = 0.741 (k = 2). To distinguish these at 3σ confidence requires: 

N ≥ 9 / (0.741 − 0.667)² ≈ 1,600 trials 

This is experimentally feasible if a clean k = 2 system can be constructed. 

Existing datasets: We are not aware of existing experiments designed to test k > 1 statistics. 

Standard quantum optics experiments use k = 1 detectors by design. However, some multi-

photon absorption spectroscopy data might be reanalyzable if the detection chain can be 

characterized precisely. 

10.4 Timing Correlations 

In principle, the tick-rate structure might produce subtle timing correlations in measurement 

events. Measurements with higher |ψ|² might show systematically shorter detection times. 

For a single-branch detection with rate λ = κ|ψ|², the mean detection time is: 
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⟨T⟩ = 1/λ = 1/(κ|ψ|²) 

Higher amplitude means faster expected detection. This is in principle testable but requires 

extremely precise timing across many trials. 

10.5 Current Experimental Status 

No deviations from quantum mechanics have been observed. This is consistent with Tick-Bit, 

since: 

1. Standard detectors are k = 1 threshold devices 

2. Timing precision in existing experiments is insufficient to detect tick-rate structure 

The predictions are in principle testable but require specialized apparatus not yet constructed. 

 

11. Connection to Emergent Time and the TPB 

Framework 

11.1 Time from Ticks 

The Tick-Bit mechanism connects to the Ticks-Per-Bit (TPB) framework, which proposes that 

time itself emerges from the accumulation of irreversible records. 

In TPB: 

• A "tick" is the fundamental unit of counted change contributing to experienced time; in 

the measurement context, this corresponds to threshold-crossing ticks that generate Bits 

• A "Bit" is the irreversible macroscopic record—the actual contribution to the arrow of 

time 

• Time is defined operationally by the accumulation of such recorded events 

• There is no background time independent of physical change 

The terminological overlap is intentional: Tick-Bit provides the microphysical mechanism by 

which TPB's "time-creating events" occur in quantum measurement. 

11.2 Measurement as Time Creation 

From this perspective, quantum measurement is not just outcome selection—it is time creation. 

The Bit—the irreversible amplification triggered by the first threshold-crossing tick—is 

simultaneously: 
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1. The event that selects a definite result 

2. A contribution to the flow of experienced time 

[General Reader] What if time does not exist as a background stage, but emerges from change 

itself? Every irreversible event—every Bit—creates a little bit of time. Quantum measurement, 

which produces irreversible outcomes, is then a time-creating process. The Tick-Bit mechanism 

becomes part of a deeper story about the nature of time. 

11.3 Entropy and Distinguishability 

The distinguishability weight D(A) = |ψ_A|² can be interpreted as the rate at which 

distinguishable (entropic) structure flows into outcome A. 

This connects to the second law of thermodynamics: measurement increases entropy by creating 

irreversible distinguishability. The Born rule governs how this entropy is distributed among 

outcomes. 

A fuller development of TPB would require modeling how accumulated Bits define an 

operational time parameter and how this interacts with relativistic and thermodynamic notions of 

time. We reserve this for a dedicated treatment; here we highlight only that Tick-Bit provides the 

microphysical mechanism by which TPB's time-creating events arise in quantum measurement 

contexts. 

 

12. Summary of Part I 

12.1 Core Claims 

1. Outcome selection is a race. Decohered branches compete to produce the first 

irreversible event. 

2. Tick rates scale as |ψ|². This is forced by unitarity, U(1) symmetry, and perturbation 

theory (A2′), not assumed. 

3. First-passage statistics yield the Born rule. P(A) = |ψ_A|² is a theorem, not an axiom. 

4. The k = 1 structure is thermodynamically necessary. Metastable amplifying detectors 

must trigger on the first supercritical event (A3′). 

5. The interpretation is epistemic. In the Tick-Bit picture, randomness reflects ignorance 

of microstates; the underlying microdynamics may be deterministic. 

6. Nonlocality is required. Tick rates for entangled systems depend on joint measurement 

settings, as demanded by Bell's theorem. 
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12.2 Advantages 

• Resolves the measurement problem: Provides a physical mechanism for outcome 

definiteness 

• Non-circular derivation of Born rule: The rule emerges from race dynamics operating 

on independently-grounded constraints 

• Constraints are physically necessary: (A1′)–(A3′) follow from unitarity, 

thermodynamics, and detector branch-blindness—not modeling choices 

• Robust fixed point: Deviations from the constraints produce calculable deviations from 

Born statistics; the mechanism is not fine-tuned (Section 2.7) 

• Compatible with multiple ontologies: Works with or without particle trajectories, wave 

function realism, etc. 

• Makes testable predictions: k > 1 detectors should deviate from Born statistics 

• Uniquely determined: Within the constraint space, Tick-Bit is the mechanism that fits 

the bill 

12.3 Relation to Standard QM 

Tick-Bit is empirically equivalent to standard quantum mechanics for all current experiments. It 

differs in interpretation and in predictions for exotic detector types. 

12.4 Future Directions 

Several extensions of this work merit investigation: 

1. Experimental tests of the k > 1 prediction. Designing and constructing detectors with 

genuinely independent multi-trigger requirements would provide the first empirical test 

distinguishing Tick-Bit from standard quantum mechanics. 

2. Full development of TPB. The connection between Tick-Bit and emergent time (Section 

11) is suggestive but incomplete. A rigorous treatment would model how accumulated 

Bits define an operational time parameter compatible with relativity and 

thermodynamics. 

3. Relativistic extension. Tick-Bit is formulated in non-relativistic quantum mechanics. 

Extending the framework to quantum field theory—where particle number is not 

conserved and detector interactions are more complex—is an open problem. 

4. Quantitative predictions for timing correlations. The tick-rate structure predicts that 

higher-amplitude outcomes should show systematically shorter detection times. Deriving 

precise predictions and assessing their experimental accessibility remains to be done. 
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PART II: FOUNDATIONS — THE RESONANT 

ASSEMBLY LANGUAGE FRAMEWORK 

The following sections develop the Resonant Assembly Language (RAL) framework, which 

provides a complete reconstruction of quantum mechanics from physical first principles. This 

grounds the Tick-Bit mechanism by showing why: 

1. Amplitudes are complex numbers 

2. Distinguishability has the form D(A) = |ψ|² 

3. Dynamics are unitary 

Readers primarily interested in the Tick-Bit mechanism may proceed to the Appendices; those 

interested in the foundational reconstruction should continue. 

 

13. Resonance: The Physical Origin of Complex 

Amplitudes 

Clarification on the status of Part II: The following reconstruction should be understood as a 

consistency and uniqueness result: given resonance, interference, and distinguishability 

constraints, the complex amplitude formalism is the unique structure consistent with these 

physical features. We do not claim to derive quantum mechanics from pre-physical primitives, 

but rather to show that once oscillatory systems with coherent superposition are admitted, the 

quantum formalism is forced. This transforms the question "Why complex Hilbert space?" into 

"What physical features require it?"—and provides a definite answer. 

13.1 Two Degrees of Freedom 

Every physical oscillation possesses two independent pieces of information: 

• Amplitude: How big is it? 

• Phase: Where is it in its cycle? 

This is universal: pendulums, waves, electromagnetic fields, matter waves. 

Consider a simple harmonic oscillator: 

x(t) = A · cos(ωt + φ) 

The state is fully specified by (A, φ). 
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13.2 Complex Representation 

We represent (A, φ) as a complex number: 

a = A · e^(iφ) 

This is not arbitrary. The complex plane naturally encodes: 

• Magnitude |a| = A (amplitude) 

• Argument arg(a) = φ (phase) 

[General Reader] A complex number is a point on a 2D plane. Distance from origin = 

amplitude; angle = phase. The expression e^(iφ) means "point at angle φ on the unit circle." So 

A·e^(iφ) means "amplitude A, phase φ." It is just a compact notation for two numbers. 

13.3 Interference from Complex Addition 

Adding oscillations: 

a₁ + a₂ = A₁ · e^(iφ₁) + A₂ · e^(iφ₂) 

The result depends on relative phase: 

• φ₁ = φ₂: |a₁ + a₂| = A₁ + A₂ (constructive interference) 

• φ₁ = φ₂ + π: |a₁ + a₂| = |A₁ − A₂| (destructive interference) 

• General: intermediate interference 

Complex numbers have interference "built in." 

13.4 Why Not Real Numbers? 

Using real numbers to describe oscillations requires tracking two components separately (e.g., 

position and velocity, or sine and cosine components). This works but: 

• Loses the unified treatment of phase 

• Obscures the rotational symmetry 

• Requires artificial bookkeeping 

Complex numbers are the natural language for resonance. 

Theorem 13.1 (Resonance Implies Complex Amplitudes). Any mathematical representation of 

systems with (i) oscillatory dynamics, (ii) continuous phase, and (iii) superposition is naturally 

isomorphic to ℂ. 
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Proof sketch. Conditions (i)–(ii) require a two-dimensional state space with U(1) rotational 

structure. Condition (iii) requires closure under addition. The unique two-dimensional division 

algebra with these properties is ℂ. ∎ 

 

14. Distinguishability Geometry and the Born Rule 

14.1 From Microstates to Outcomes 

Consider a system with microstates {m_i}, each carrying amplitude a_i. A macroscopic outcome 

A corresponds to a subset: 

A = {m_i : i ∈ I_A} 

The outcome amplitude is the coherent sum: 

ψ_A = Σ_{i∈A} a_i 

14.2 The Distinguishability Functional 

We seek a functional D(A) measuring the "distinguishability weight" of outcome A—how much 

distinguishable structure is associated with it. 

[General Reader] When multiple quantum paths lead to the same outcome, they combine with 

interference. We want a number D(A) that captures "how much stuff" is associated with outcome 

A, accounting for this interference. What formula should we use? 

14.3 Uniqueness Theorem 

Theorem 14.1 (Uniqueness of Distinguishability). Let D: (outcomes) → ℝ≥0 satisfy: 

(i) Additivity: D(A₁ ⊔ A₂) = D(A₁) + D(A₂) for distinguishable outcomes 

(ii) Symmetry: D is invariant under permutation of microstates 

(iii) Phase covariance: D depends on relative phases and exhibits interference 

(iv) Polynomial dependence: D is polynomial in {a_i, a_j*} 

Then D(A) = c · |ψ_A|² for some constant c > 0. 

Remark on (iv): We restrict to polynomial (or analytic) functionals, in line with all physical 

constructions in quantum mechanics and field theory. This mild regularity assumption excludes 
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pathological cases while including all representations used in practice. Physically, it reflects the 

expectation that distinguishability depends smoothly on amplitudes. 

Remark on (iii) and the theorem's scope: Condition (iii) assumes that interference exists—that 

relative phases matter for distinguishability. This means Theorem 14.1 is a uniqueness theorem 

within theories exhibiting interference, not a derivation of why interference occurs. We do not 

explain interference from more primitive principles; rather, we show that given interference, the 

|ψ|² form is uniquely forced. The question "Why does interference exist?" remains open—but it is 

a separate question from "Given interference, why |ψ|²?" 

Proof. Condition (iv) restricts D to polynomial form. The simplest phase-sensitive polynomial is 

the bilinear form: 

D(A) = Σ_{i∈A} Σ_{j∈A} a_i · a_j* 

This equals |ψ_A|² by direct computation: 

|ψ_A|² = (Σ_i a_i)(Σ_j a_j*) = Σ_i Σ_j a_i · a_j* 

Conditions (i)–(iii) are satisfied by this form. Higher-order polynomials violate (i) or introduce 

inconsistent phase dependence. Thus D(A) = c · |ψ_A|² uniquely. ∎ 

We regard polynomial (or analytic) dependence as the weakest regularity condition ensuring 

operational continuity and robustness: small changes in amplitudes should not produce 

discontinuous or non-analytic jumps in distinguishability. Without condition (iv), one could 

construct pathological functionals that do not correspond to any physically realisable 

measurement procedure. This mirrors standard practice in the generalized probabilistic theories 

(GPT) literature, where analyticity or smoothness is routinely imposed to ensure that theoretical 

predictions connect to laboratory operations (Hardy 2001; Chiribella et al. 2011). 

Connection to Gleason's theorem: The uniqueness of D(A) = |ψ|² in Theorem 14.1 can be 

viewed as a physical derivation of the measure whose uniqueness Gleason (1957) established 

mathematically. Gleason proved that |ψ|² is the unique probability measure on Hilbert space 

(dimension ≥ 3) satisfying non-contextuality—the requirement that the probability assigned to a 

subspace is independent of how it is embedded in a larger measurement context. Our conditions 

(i)–(iv) encode physical versions of similar structural requirements: additivity corresponds to 

consistent probability assignment across coarse-grainings; phase covariance encodes the 

interference structure that makes quantum mechanics non-classical. Tick-Bit then provides the 

dynamical mechanism by which this unique measure governs outcome selection. The constraints 

are not ad hoc—they connect to deep structural features of Hilbert space that Gleason's theorem 

reveals. 

14.4 Born Rule as Normalized Distinguishability 

Probabilities are normalized distinguishability weights: 
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P(A) = D(A) / Σ_B D(B) = |ψ_A|² / Σ_B |ψ_B|² 

For normalized states: 

P(A) = |ψ_A|² 

[General Reader] The four requirements—additivity, symmetry, interference, smoothness—

seem minimal and obvious. But they are enough to FORCE the formula D = |ψ|². There is 

literally no other option. The Born rule is not a mystery; it is the only consistent possibility. 

 

15. Galois Invariance: Why Complex and Not Real or 

Quaternionic? 

15.1 Division Algebras 

The finite-dimensional division algebras over ℝ are (Frobenius, 1878): 

• ℝ (real numbers, dimension 1) 

• ℂ (complex numbers, dimension 2) 

• ℍ (quaternions, dimension 4, non-commutative) 

No other options exist. 

15.2 Physical Selection Criteria 

(C1) Commutativity: Superposition must satisfy ψ₁ + ψ₂ = ψ₂ + ψ₁. 

• ℝ: ✓ 

• ℂ: ✓ 

• ℍ: ✗ (quaternion multiplication does not commute) 

(C2) Nontrivial Galois structure: Physical predictions must be invariant under nontrivial field 

automorphisms. 

• ℝ: ✗ (only trivial automorphism) 

• ℂ: ✓ (complex conjugation z → z*) 

• ℍ: ✓ (many automorphisms—too many) 

(C3) Continuous phase group: Resonance requires U(1) phase rotations e^(iθ). 
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• ℝ: ✗ (no phase structure) 

• ℂ: ✓ (U(1) rotations) 

• ℍ: Partial (has SU(2), but this is three-dimensional) 

15.3 Unique Selection 

Only ℂ satisfies all three criteria: 

Criterion ℝ ℂ ℍ 

Commutativity ✓ ✓ ✗ 

Nontrivial Galois ✗ ✓ ✓ 

U(1) phase ✗ ✓ ✗ 

Theorem 15.1 (Galois Selection). The complex numbers are the unique division algebra 

compatible with commutative superposition, nontrivial Galois invariance, and continuous U(1) 

phase. 

[General Reader] Why complex numbers specifically? Real numbers do not have phase. 

Quaternions have too much structure and do not commute. Complex numbers are the 

"Goldilocks" choice—just right for describing quantum physics. 

 

16. Representation Minimality: Why Hilbert Space? 

16.1 The Selection Problem 

Given complex amplitudes, what mathematical space should quantum states live in? We need a 

space supporting: 

• Complex scalars 

• Inner products (for probabilities) 

• Superposition (vector addition) 

The candidates are real, complex, and quaternionic Hilbert spaces. 

16.2 Representation Complexity 

Define: 

K(R) = dim(R) − dim(Aut(R)) 
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This counts effective degrees of freedom after quotienting by gauge symmetries. 

[General Reader] If a description uses 10 numbers but 3 are arbitrary (like choosing which 

direction is "north"), the real information is 10 − 3 = 7. We want the description with minimal 

real information content. 

16.3 Calculation 

For n outcomes: 

Real (ℝ²ⁿ, encoding complex as pairs): 

• dim = 2n 

• dim(Aut) = 0 (no phase freedom) 

• K = 2n 

Complex (ℂⁿ): 

• dim = 2n (as real vector space) 

• dim(Aut) = 1 (overall U(1) phase unphysical) 

• K = 2n − 1 

Quaternionic (ℍ^(n/2)): 

• dim = 2n 

• dim(Aut) = 3 (SU(2) gauge) 

• K = 2n − 3 

However, quaternionic Hilbert spaces lead to composition and locality structures that conflict 

with observed quantum behaviour: they violate local tomography and imply extra experimentally 

unobserved degrees of freedom. 

16.4 Result 

Theorem 16.1 (Representation Minimality). Complex Hilbert space minimizes K(R) among 

representations correctly encoding interference, superposition, and entanglement while 

respecting observed composition rules. 

Remark: We present K(R) as a heuristic minimality principle. It is not claimed as a rigorous no-

go theorem; rather, it provides a plausibility argument for why complex Hilbert space is natural. 
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17. Unitary Dynamics from Distinguishability 

Preservation 

17.1 Constraint 

Time evolution must preserve distinguishability relations: 

D(A') = D(A) for all A 

Equivalently, transition probabilities are preserved: 

|⟨ψ'_A | ψ'_B⟩|² = |⟨ψ_A | ψ_B⟩|² 

17.2 Wigner's Theorem 

Theorem 17.1 (Wigner). Every distinguishability-preserving transformation is unitary or 

antiunitary. 

Antiunitary transformations (like time reversal) are discrete. Continuous evolution must be 

unitary. 

17.3 Schrödinger Equation 

Theorem 17.2 (Stone). Every continuous one-parameter unitary group has the form: 

U(t) = e^(−iHt/ℏ) 

for some self-adjoint operator H. 

The Schrödinger equation follows immediately: 

iℏ · d|ψ⟩/dt = H|ψ⟩ 

[General Reader] The Schrödinger equation is not put in by hand. It is the ONLY way to evolve 

quantum states continuously while preserving the distinguishability structure. The formalism is 

forced by consistency. 
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18. Measurement as Distinguishability Resolution 

18.1 Before Measurement 

System in superposition: 

|ψ⟩ = Σ_A ψ_A |A⟩ 

Outcomes are indistinguishable at environmental level—interference is possible. 

18.2 Decoherence 

Measurement interaction: 

|ψ⟩|E₀⟩ → Σ_A ψ_A |A⟩|E_A⟩ 

with ⟨E_A|E_B⟩ ≈ 0. Branches become distinguishable; interference suppressed. 

18.3 Outcome Selection (Tick-Bit) 

Among decohered branches, the first to produce a threshold-crossing tick becomes actual—that 

tick triggers the irreversible Bit. This is the Tick-Bit mechanism of Sections 2–5. 

18.4 Complete Picture 

1. Preparation: System in superposition 

2. Interaction: System couples to apparatus 

3. Decoherence: Branches become distinguishable 

4. Race: Branches compete to produce first tick 

5. Outcome: Winner's tick becomes macroscopic bit 

6. Amplification: Winning branch stabilized; others become counterfactual 

This is the complete physical story of quantum measurement. 

 



 43 

APPENDICES 

Appendix A: Mathematical Details of First-Passage 

Statistics 

A.1 Hazard Functions 

For a non-negative random variable T (waiting time), the hazard function is: 

h(t) = f(t) / S(t) 

where f(t) is the density and S(t) = P(T > t) is the survival function. 

Interpretation: h(t)dt is the probability of event in [t, t+dt] given survival to t. 

A.2 Proportional Hazards Model 

The proportional hazards assumption: 

h_A(t) = λ_A · h₀(t) 

means all processes share the same "shape" h₀(t) but differ in scale λ_A. 

This is the Cox proportional hazards model, widely used in survival analysis. 

A.3 Cumulative Hazard 

H_A(t) = ∫₀ᵗ h_A(s)ds = λ_A · H₀(t) 

The survival function is: 

S_A(t) = exp(−H_A(t)) = exp(−λ_A · H₀(t)) 

A.4 Competing Risks 

For independent competing processes, the probability A fires first: 

P(A first) = ∫₀^∞ h_A(t) · exp(−Σ_C H_C(t)) dt 

With proportional hazards: 
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= ∫₀^∞ λ_A · h₀(t) · exp(−Σ_C λ_C · H₀(t)) dt 

Substituting u = H₀(t): 

= λ_A · ∫₀^∞ exp(−Σ_C λ_C · u) du = λ_A / Σ_C λ_C 

A.5 Born Rule Derivation 

With λ_A = κ · |ψ_A|²: 

P(A) = κ · |ψ_A|² / Σ_C κ · |ψ_C|² = |ψ_A|² / Σ_B |ψ_B|² 

For normalized states: P(A) = |ψ_A|². ∎ 

 

Appendix B: Gamma Distribution and k > 1 Deviations 

B.1 Gamma Waiting Times 

If k independent ticks are required, the waiting time follows Gamma(k, λ_A): 

f_A^(k)(t) = [λ_A^k · t^(k−1) / (k−1)!] · exp(−λ_A · t) 

B.2 First-Passage with Gamma Waiting Times 

P(A first) = ∫₀^∞ f_A^(k)(t) · ∏_{B≠A} S_B^(k)(t) dt 

This integral is more complex and generally ≠ |ψ_A|². 

B.3 Example: Two Branches, k = 2 

For two independent Gamma(k=2, λ) processes with rates λ₁, λ₂, we derive the first-passage 

probability. 

Derivation: The Gamma(2, λ) density is f(t) = λ²t·e^(−λt) and the survival function is S(t) = (1 + 

λt)·e^(−λt). For process 1 to fire first: 

P(1 first) = ∫₀^∞ f₁(t) · S₂(t) dt = ∫₀^∞ λ₁²t·e^(−λ₁t) · (1 + λ₂t)·e^(−λ₂t) dt 

Let Λ = λ₁ + λ₂. Expanding: 

= λ₁² ∫₀^∞ t·e^(−Λt) dt + λ₁²λ₂ ∫₀^∞ t²·e^(−Λt) dt 
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Using ∫₀^∞ tⁿ·e^(−Λt) dt = n!/Λⁿ⁺¹: 

= λ₁² · (1/Λ²) + λ₁²λ₂ · (2/Λ³) = λ₁²/Λ² + 2λ₁²λ₂/Λ³ = λ₁²(Λ + 2λ₂)/Λ³ 

Substituting Λ = λ₁ + λ₂: 

P(1 first | k=2) = λ₁² · (λ₁ + 3λ₂) / (λ₁ + λ₂)³ 

Compare to k = 1: 

P(1 first | k=1) = λ₁ / (λ₁ + λ₂) 

For equal rates (λ₁ = λ₂ = λ), both give P = 1/2 by symmetry. 

For λ₁ = 2λ₂ (corresponding to |ψ₁|² = 2|ψ₂|²): 

• k = 1: P(1 first) = 2/3 ≈ 0.667 

• k = 2: P(1 first) = (4λ₂²)(5λ₂)/(3λ₂)³ = 20λ₂³/27λ₂³ = 20/27 ≈ 0.741 

This confirms that k > 1 violates Born statistics. The deviation is substantial (11%) and 

experimentally distinguishable with ~1,600 trials at 3σ confidence. 

For general k, the integrals become increasingly complex but can be evaluated numerically. The 

pattern persists: higher k systematically biases outcomes toward the faster process more strongly 

than |ψ|² predicts. 

 

Appendix C: Fermi's Golden Rule Derivation 

C.1 Setup 

System: |ψ⟩ = Σ_A ψ_A |A⟩ 

Interaction: H_int = Σ_A |A⟩⟨A| ⊗ V̂_A 

Initial state: |Ψ₀⟩ = |ψ⟩ ⊗ |P₀⟩ ⊗ |E₀⟩ 

C.2 Transition Amplitude 

To first order in H_int, amplitude to transition to |A⟩|P_A⟩|f_A⟩: 

T_fi = ψ_A · ⟨P_A|⟨f_A| V̂_A |P₀⟩|E₀⟩ 
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C.3 Transition Rate 

Γ_A = (2π/ℏ) · Σ_f |T_fi|² · δ(E_f − E_i) 

= (2π/ℏ) · |ψ_A|² · Σ_f |⟨P_A|⟨f_A| V̂_A |P₀⟩|E₀⟩|² · δ(E_f − E_i) 

= |ψ_A|² · κ_A 

where κ_A = (2π/ℏ) · Σ_f |⟨P_A|⟨f_A| V̂_A |P₀⟩|E₀⟩|² · δ(E_f − E_i). 

C.4 Tick Rate Identification 

λ_A ≡ Γ_A = κ_A · |ψ_A|² 

For uniform apparatus coupling (κ_A = κ): 

λ_A = κ · |ψ_A|² 

 

Appendix D: Proof of Distinguishability Uniqueness 

Theorem 

D.1 Setup 

Let D: {outcomes} → ℝ≥0 satisfy: 

• (i) Additivity for distinguishable outcomes 

• (ii) Permutation symmetry 

• (iii) Phase covariance with interference 

• (iv) Polynomial dependence on {a_i, a_j*} 

D.2 Polynomial Form 

By (iv), D has the form: 

D(A) = Σ terms of form c · ∏_i a_i^(n_i) · ∏_j (a_j*)^(m_j) 

D.3 Reality Constraint 

D(A) must be real. Complex conjugate of D equals D: 
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D* = D 

This requires n_total = m_total (equal powers of a and a*). 

D.4 Phase Covariance (iii) 

Under global phase shift a_i → e^(iθ) · a_i: 

D → e^(i(n−m)θ) · D = D 

Thus n = m for each term. 

D.5 Lowest Order 

The lowest-order terms satisfying these constraints are: 

• Order 0: constant (violates normalization) 

• Order 2: Σ_{ij} c_{ij} · a_i · a_j* (bilinear form) 

D.6 Symmetry (ii) 

Permutation symmetry requires c_{ij} = c for all i, j. 

Thus: D(A) = c · Σ_{i∈A} Σ_{j∈A} a_i · a_j* = c · |ψ_A|² 

D.7 Higher Orders 

Quartic terms violate additivity. Consider D(A) = (Σ_{i∈A} |a_i|²)². 

For disjoint outcomes A₁, A₂: 

D(A₁ ⊔ A₂) = (Σ_{i∈A₁} |a_i|² + Σ_{j∈A₂} |a_j|²)² = D(A₁) + D(A₂) + 2·(Σ_{i∈A₁} 

|a_i|²)·(Σ_{j∈A₂} |a_j|²) 

The cross-term is nonzero even for distinguishable outcomes, violating (i). 

Thus the bilinear form is unique. ∎ 
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Appendix E: Bell Inequality Analysis 

E.1 CHSH Setup 

Alice chooses between settings a or a'. Bob chooses between settings b or b'. Outcomes: A, B ∈ 

{+1, −1}. 

The CHSH quantity is: 

S = E(a,b) − E(a,b') + E(a',b) + E(a',b') 

where E(a,b) = ⟨A·B⟩ is the correlation. 

Classical bound: |S| ≤ 2 

Quantum bound: |S| ≤ 2√2 ≈ 2.83 

E.2 Tick-Bit Correlations 

For the singlet state |Ψ⟩ = (1/√2)(|01⟩ − |10⟩), the tick rates are: 

λ_{++}(a,b) = λ_{−−}(a,b) = κ·(1 − cos(a−b))/4 

λ_{+−}(a,b) = λ_{−+}(a,b) = κ·(1 + cos(a−b))/4 

The correlation function: 

E(a,b) = P(same) − P(opposite) = −cos(a−b) 

This matches standard quantum mechanics. 

E.3 CHSH Value with Optimal Settings 

Optimal angles: a = 0, a' = π/2, b = π/4, b' = 3π/4 

Settings Angle difference Correlation 

(a, b) = (0, π/4) −π/4 E = −√2/2 

(a, b') = (0, 3π/4) −3π/4 E = +√2/2 

(a', b) = (π/2, π/4) π/4 E = −√2/2 

(a', b') = (π/2, 3π/4) −π/4 E = −√2/2 

Therefore: 
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S = (−√2/2) − (+√2/2) + (−√2/2) + (−√2/2) = −2√2 

So |S| = 2√2, saturating the Tsirelson bound. 

E.4 Conclusion 

Tick-Bit reproduces the maximal quantum violation |S| = 2√2, confirming that it generates full 

quantum correlations for entangled states. 

 

Appendix F: Glossary 

Bit: Irreversible macroscopic distinguishability event; the measurement outcome. 

Born rule: P(A) = |ψ_A|². The rule converting amplitudes to probabilities. 

Decoherence: Process by which superpositions lose interference due to environmental 

entanglement. 

Distinguishability weight D(A): Bilinear functional equal to |ψ_A|². 

Epistemic probability: Probability reflecting ignorance, not fundamental randomness. 

First-passage: The event of a stochastic process first reaching a threshold. 

Galois invariance: Invariance under field automorphisms. 

Hazard rate h(t): Instantaneous event probability given survival to time t. 

Hilbert space: Complete inner product space; arena for quantum states. 

Ontic probability: Probability as fundamental feature of reality. 

Proportional hazards: Model where hazards differ only by scale factor. 

RAL (Resonant Assembly Language): Framework reconstructing QM from physical 

principles. 

Tick: The smallest microscopic increment of distinguishability in the detector–environment 

microstate. A tick is not itself irreversible; it is a micro-event that may trigger an irreversible Bit 

if it crosses the metastability threshold. 

Tick rate λ_A: Rate of tick production in branch A; equals κ|ψ_A|². 
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TPB (Ticks-Per-Bit): Framework where time emerges from tick accumulation. 

 

Appendix G: Axioms and Theorems Summary 

G.1 Axioms 

Axiom 1 (Resonance). Physical states are oscillatory, characterized by complex amplitudes a = 

A·e^(iφ). 

Axiom 2 (Distinguishability Geometry). The distinguishability functional satisfies additivity, 

symmetry, phase covariance, and polynomial dependence. 

Axiom 3 (Galois Invariance). Physical predictions are invariant under amplitude field 

automorphisms. 

Axiom 4 (Representation Minimality). Nature selects the representation minimizing K(R) = 

dim(R) − dim(Aut(R)). 

Constraint (A1′) (Detector Branch-Blindness). The detector Hamiltonian cannot condition its 

response on which branch it is coupled to, forcing proportional hazards structure. 

Constraint (A2′) (Amplitude-Squared Rates). Transition rates must be non-negative, gauge-

invariant, U(1)-covariant quadratic functionals of amplitudes, uniquely giving λ_A ∝ |ψ_A|². 

Constraint (A3′) (Metastable Amplification). Single-quantum-sensitive detectors must be 

metastable amplifying systems, forcing first-tick (k = 1) outcome selection. 

G.2 Main Theorems 

Theorem 1: Distinguishability uniquely equals |ψ|². (Section 14) 

Theorem 2: Complex numbers are uniquely selected. (Section 15) 

Theorem 3: Complex Hilbert space is representation-minimal. (Section 16) 

Theorem 4: Dynamics are unitary. (Section 17) 

Theorem 5: Under constraints (A1′)–(A3′), first-passage statistics yield P(A) = |ψ_A|². (Section 

2) 

Theorem 6: Probability is epistemic; determinism holds microscopically. (Section 6) 
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Lemma (Uniqueness): The probability assignment P(A) = λ_A/Σλ_B is uniquely determined by 

symmetry, homogeneity, continuity, and normalization. (Section 2.5) 

Theorem 7: No alternative functional form survives all three constraints (A1′)–(A3′); the Born 

rule is uniquely forced. (Sections 2.3, 2.5) 

Robustness Result: Deviations from each constraint produce calculable deviations from Born 

statistics; Tick-Bit is the robust fixed point in the space of detector-layer models. (Section 2.7) 
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