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Uniqueness of the Bit–Tick Ontology 

Abstract 

We prove that any physical theory satisfying four minimal requirements—finite 

distinguishability for bounded systems, operational definition of time via clocks, no surplus 

structure beyond operational access, and finite-resolution experimental capacity—admits a 

canonical projection onto a unique bit–tick substrate: bits as the binary information capacity of 

maximal measurement contexts (n = ⌈log₂ N_dist⌉), and ticks as the successor structure on clock 

records. 

This uniqueness is structural, not representational. We show that the operational core of any 

candidate ontology—its quotient under resource-bounded operational equivalence—is finite, 

sequentially updated along worldlines, and unique up to isomorphism. All alternative ontologies 

(fields, strings, particles, spin networks) either project onto this same substrate or contain 

empirically inert surplus structure. 

The framework accommodates quantum mechanics naturally: within any maximal measurement 

context, the outcome algebra is finite Boolean with N_dist atoms encoding n bits of capacity; 

continuous amplitude parameters collapse under finite-resolution equivalence to finitely many 

distinguishable preparation classes. Mathematical consistency checks confirm reproduction of 

Planck's relation E = hf and Boltzmann entropy S = k_B ln Ω. 

We establish that denying bits or ticks as primitives requires abandoning either finite information 

bounds (violating the Bekenstein-Hawking entropy), operational grounding (positing physically 

meaningful distinctions no experiment can access), or finite experimental resources (requiring 

infinite precision). The bit–tick ontology is thus the unique minimal invariant of any 

operationally grounded, resource-bounded physics. 

 

Abstract for General Readers 

What is the universe made of, at the deepest level? This paper proves that once we take seriously 

four basic facts—that physical systems can only be in finitely many perfectly distinguishable 

states, that time is whatever clocks measure, that physics should not posit distinctions no 

experiment could detect, and that real experiments have finite precision—we are forced into a 

uniquely determined picture. 

Everything reduces to bits and ticks. 
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A bit is the most basic unit of information: one yes/no question, one binary choice. Whenever 

you perform a measurement with N perfectly distinguishable outcomes, the information capacity 

is log₂(N) bits—the number of yes/no questions needed to specify which outcome occurred. A 

measurement distinguishing 8 outcomes carries 3 bits of information (since 2³ = 8). Bits are not 

the outcomes themselves but the information capacity those outcomes represent. 

A tick is the most basic unit of change along a clock's history: one recorded event following 

another. Every clock counts something—oscillations, decays, vibrations. We prove that any 

clock record has the mathematical structure of the natural numbers with the successor operation: 

0, 1, 2, 3, … This is uniquely determined, not chosen. 

Once you have bits and ticks, everything else follows. Energy measures how fast new 

distinctions are produced—bits per tick. Entropy counts how many different tick-histories are 

compatible with what we observe. The flow of time reflects accumulated ticks along worldlines. 

Quantum mechanics fits naturally: while quantum systems have continuous parameters (the 

Bloch sphere for a qubit), finite experimental precision means only finitely many preparation 

classes are actually distinguishable. The continuum is representational convenience; the 

operationally accessible structure is discrete. 

The bit–tick picture is what remains when you strip away everything beyond experimental reach. 

It is the unique, minimal foundation for physics. 
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1. Introduction: The Elimination Argument 

What must any candidate physical ontology ultimately provide? At minimum: 

1. Differentiate outcomes. It must assert: this detector fired, that one did not; this 

configuration differs from that one. 

2. Respect finite distinguishability. Entropy bounds (Bekenstein, holographic principle) 

establish that any bounded region with bounded energy permits only finitely many 

perfectly distinguishable states. 

3. Ground time operationally. Time cannot be a background parameter. Whatever "time" 

means must connect to what clocks measure—counts of reproducible physical transitions. 

4. Contain no surplus structure. Physics should not posit distinctions that no possible 

experiment, even in principle, could access. 

5. Acknowledge finite resources. Real experiments have finite precision. Operational 

equivalence must be resource-bounded, not idealized. 

These requirements are forced by the demand that physics make contact with finite, operational 

experiments. 

This paper demonstrates that once these constraints are imposed, the bit–tick ontology emerges 

as the unique minimal framework. We prove: 

• Within any maximal measurement context, the outcome algebra is finite Boolean with 

N_dist atoms encoding n = ⌈log₂ N_dist⌉ bits (Section 3) 

• Along any clock record, temporal structure is isomorphic to (ℕ, S)—the natural numbers 

with successor (Section 4) 
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• Under finite-resolution equivalence, the operational core is finite and unique up to 

isomorphism (Section 6) 

• All richer structures either project onto this core or contain empirically inert overhead 

(Section 6) 

• Quantum mechanics fits naturally, with continuous parameters collapsing to finite 

equivalence classes (Section 7) 

• No alternative exists without violating established physical principles (Section 10) 

 

2. Axioms: The Four Constraints 

We build from four deliberately weak assumptions. 

Axiom 1: Finite Perfect Distinguishability 

For any physically realizable system confined to a bounded region with bounded energy, the 

number of mutually perfectly distinguishable states is finite: 

N_dist < ∞ 

where perfect distinguishability means: there exists a measurement that assigns different 

outcomes to the states with certainty (probability 1). 

This follows from the Bekenstein bound, the holographic principle, and the finite dimension of 

effective Hilbert spaces under energy constraints. 

Critical clarification. Axiom 1 concerns perfect distinguishability, not operational distinctness 

in general. A qubit has N_dist = 2 (only |0⟩ and |1⟩ are perfectly distinguishable), but a 

continuum of preparations on the Bloch sphere that yield different probability distributions. 

Axiom 1 alone does not imply a finite state space—that requires Axiom 4. 

Axiom 2: Operational Time 

Time is not given a priori. "Time" is defined operationally as what clocks measure, and every 

clock functions by registering reproducible physical transitions along its worldline. 

Worldline scope. In relativistic settings, there is no global time order—only partial orders and 

observer-dependent foliations. We therefore define temporal structure locally along worldlines, 

not globally. Each clock record is a totally ordered sequence of events; the invariant structure is 

this ordering plus count. 

Formally, let a clock worldline W have recorded events {e₀, e₁, e₂, …} with total order e₀ < e₁ < 

e₂ < …. The temporal structure along W is the order type of this sequence. 
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Axiom 3: Operational Completeness (No Surplus Structure) 

The ontology of a physical theory is complete if and only if it accounts for all operationally 

accessible distinctions and contains no structure that is in principle inaccessible. 

Formally, define the operational equivalence relation: 

s ∼ s′ iff s and s′ induce identical outcome statistics for all possible experiments 

Then Axiom 3 requires that physical states correspond to equivalence classes under ∼. 

Remark. Under idealized operational access (infinite precision), different quantum amplitudes 

are operationally distinct—they yield different probability distributions. Axiom 3 alone does not 

collapse continuous parameters. That requires: 

Axiom 4: Finite Accessible Information 

For any bounded experiment with total resources ℛ (energy E, time T, apparatus size L), the 

mutual information extractable between preparation labels and measurement outcomes is 

bounded: 

I(prep : outcome | ℛ) ≤ I_max(ℛ) < ∞ 

Status of this axiom. Axiom 4 is an empirically motivated constraint, not a theorem derived 

within the bit-tick framework itself. The motivation comes from established bounds in specific 

physical theories: 

Bound Statement Source Framework 

Holevo bound I ≤ S(ρ) ≤ log₂(dim ℋ) Quantum mechanics 

Bekenstein bound S ≤ 2πER/(ℏc) GR + thermodynamics 

Channel capacity C = max I(X:Y) < ∞ for finite-energy channels Information theory 

Quantum speed limit Operations per time ≤ 2E/πℏ Quantum mechanics 

These bounds are empirically well-confirmed within their respective domains. Axiom 4 abstracts 

their common content: finite resources yield finite information. This is not circular—we take the 

empirical success of these bounds as evidence for A4, then show that A4 (combined with A1–

A3) forces bit-tick structure. 

The logical status is: Empirical evidence → Axiom 4 → Bit-tick substrate theorem 

If future physics discovered violations of finite-information bounds (e.g., infinite channel 

capacity at finite energy), Axiom 4 would need revision. But all current evidence supports it. 

Statistical equivalence relation. Define: 
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s ∼_{ℛ,ε} s′ iff for all experiments feasible under ℛ, the total variation distance between 

outcome distributions satisfies ‖P_s − P_{s′}‖_TV ≤ ε 

Theorem (Finite ε-Net). For any compact preparation space S and any ε > 0, the quotient 

S/∼_{ℛ,ε} is finite. 

Proof sketch. With finite samples N (bounded by time/energy via quantum speed limits), 

hypothesis testing can only distinguish distributions differing by more than O(1/√N) in total 

variation. The set of ε-distinguishable distributions forms a finite ε-net. By compactness, finitely 

many equivalence classes cover S. ∎ 

Corollary. Given Axiom 4, finiteness of the operational core is derived, not assumed. 

The Four Axioms Together 

Axiom Content Status 

A1 Finite perfect distinguishability Empirical (Bekenstein bound) 

A2 Operational time on worldlines Methodological (operationalism) 

A3 No surplus structure Methodological (parsimony) 

A4 Finite accessible information Empirical (Holevo, channel capacity) 

Axioms 1–3 are standard in operational approaches. Axiom 4 is grounded in empirically 

confirmed information-theoretic bounds. The bit-tick substrate theorem follows from all four. 

Axiom Independence and Relationships 

The four axioms are logically independent—none implies any other: 

A1 does not imply A4. A system with N_dist = 2 (finite perfect distinguishability) can have 

infinitely many operationally distinct preparations (the Bloch sphere) if experimental precision is 

unlimited. A1 bounds the orthogonal states; A4 bounds the distinguishable preparation classes 

under finite resources. 

A4 does not imply A1. A4 bounds extractable information given finite resources, but says 

nothing about whether infinite perfect distinguishability is possible in principle. A1 is a physical 

constraint (Bekenstein); A4 is a resource constraint. 

A2 and A3 are methodological, not empirical. They could in principle be rejected by adopting 

non-operationalist or non-parsimonious stances. However, rejecting A2 divorces "time" from 

physical clocks (operationally meaningless), and rejecting A3 admits untestable ontological 

commitments (scientifically unmotivated). 

Why all four are needed: 
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Without... You get... 

A1 No bound on N_dist; bits undefined 

A2 No tick structure; time is background parameter 

A3 Surplus structure survives; uniqueness fails 

A4 Infinite preparation classes; core not finite 

The bit-tick substrate theorem requires the conjunction of all four. 

Alternative Routes to Axiom 4 

Axiom 4 (finite accessible information) can be motivated independently through multiple 

physical arguments. This strengthens the case that A4 captures a robust physical fact, not a 

convenient assumption. 

Route A: Minimal Sufficient Statistic (Decision-Theoretic) 

Define the operational state as the minimal object that predicts all future outcome distributions 

within (ℛ, ε). This is the "minimal sufficient statistic" from decision theory. 

Lemma (Minimal Predictive State). For any theory under (ℛ, ε), there exists a coarsest 

partition of preparations such that all members of a cell induce ε-close future outcome statistics 

for all feasible experiments. This partition is unique. 

Proof sketch. Define s ∼ s′ iff for all feasible experiments E under ℛ, ‖P_E(s) − P_E(s′)‖_TV ≤ ε. 

This is an equivalence relation. The quotient S/∼ is the coarsest partition with the required 

property. Uniqueness follows from the definition. ∎ 

This partition is exactly Core_{ℛ,ε}. Its cardinality is bounded by the ε-covering number of the 

accessible distribution set (Appendix A.3). Therefore: 

The "real" operational state space is finite—derived from pure decision theory without invoking 

Bekenstein or Holevo. 

Route B: Landauer / Finite-Precision Thermodynamics 

Any physical readout requires: 

• Finite memory to store the result 

• Finite energy to perform the measurement 

• Operation above thermal noise floor 

Landauer's principle: Erasing one bit of information requires dissipating at least k_B T ln 2 of 

energy. Conversely, distinguishing states requires sufficient energy to overcome thermal 

fluctuations. 



 12 

If arbitrarily fine distinctions were extractable at fixed resources: 

• Infinite bits would be storable in finite memory (contradiction) 

• Infinite precision would be achievable at finite energy (violates Landauer) 

• Signals below thermal noise would be detectable (impossible) 

Therefore physical state identification must collapse to finite equivalence classes at finite 

resources—independently of QM or GR bounds. 

Convergence of routes: Both routes arrive at the same conclusion: 

Route Starting point Conclusion 

Information-theoretic (A4) 
Holevo, Bekenstein, channel 

capacity 
Finite ε-net of preparations 

Decision-theoretic (Route 

A) 
Minimal sufficient statistic 

Finite partition = 

Core_{ℛ,ε} 

Thermodynamic (Route B) Landauer, finite memory/energy Finite distinguishable classes 

The convergence from independent physical principles suggests Axiom 4 captures a robust, 

framework-independent constraint. 

 

3. Contextual Boolean Algebras and Bit Atoms 

3.1 The Problem with Global Boolean Structure 

A naive approach would define "the distinction algebra" as all operationally decidable yes/no 

propositions, claim this is Boolean, and identify bits as its atoms. 

This fails for quantum mechanics. The global structure of quantum propositions is an 

orthomodular lattice, not a Boolean algebra. Incompatible measurements (e.g., σ_x and σ_z for 

a qubit) do not share a joint event structure—there is no single Boolean algebra containing all 

quantum yes/no questions. 

3.2 Measurement Contexts 

Definition. A measurement context M is a specification of a complete measurement—a POVM 

or projective measurement that can be physically implemented. For each context M, let: 

B_M = the Boolean algebra of outcome events for M 
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Within any single context, the outcome events do form a Boolean algebra: outcomes are 

mutually exclusive, jointly exhaustive, and satisfy classical logic. 

Example (Qubit). 

• Context M₁ = {measure σ_z}: B_{M₁} has atoms |0⟩⟨0| and |1⟩⟨1| 

• Context M₂ = {measure σ_x}: B_{M₂} has atoms |+⟩⟨+| and |−⟩⟨−| 

These are different Boolean algebras, not subalgebras of a common Boolean algebra. 

3.3 Maximal Contexts: Atoms and Bits 

Definition. A maximal context is a measurement that perfectly distinguishes N_dist states—the 

maximum possible for the system. By Axiom 1, N_dist < ∞. 

Definition (Atoms). The atoms of B_M are the elementary outcomes—the N_dist mutually 

exclusive, perfectly distinguishable results of a maximal measurement. 

Definition (Bits). The bit capacity of a maximal context is the number of binary questions 

needed to specify an outcome: 

n = ⌈log₂ N_dist⌉ 

Bits are not the atoms themselves but the binary generators of the outcome algebra—the 

minimal yes/no distinctions from which all outcomes can be constructed. 

Proposition (Contextual Structure). For any maximal context M of a system with N_dist 

perfectly distinguishable states: 

B_M ≅ 𝒫({1, …, N_dist}) 

This power set has: 

• N_dist atoms (elementary outcomes) 

• n = ⌈log₂ N_dist⌉ bits of information capacity 

• 2^{N_dist} elements in the full Boolean algebra 

Clarification. The relationship between atoms and bits: 

Concept Count Role 

Atoms N_dist Elementary distinguishable outcomes 

Bits n = ⌈log₂ N_dist⌉ Binary generators; information capacity 

Algebra elements 2^{N_dist} All Boolean combinations of atoms 
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A system with N_dist = 8 perfectly distinguishable states has 8 atoms but only n = 3 bits of 

capacity (since 2³ = 8). 

3.4 Context-Independence of Capacity 

Theorem (Bit Capacity Invariance). All maximal contexts for a given system have the same 

number of atoms (N_dist), and hence the same bit capacity n = ⌈log₂ N_dist⌉. 

Proof. N_dist is a property of the system (maximum number of perfectly distinguishable states), 

not of any particular measurement. Any maximal measurement realizes exactly this capacity. 

Different maximal contexts yield isomorphic (though not identical) Boolean algebras with the 

same atom count. ∎ 

3.5 Summary: Atoms, Bits, and Contextual Structure 

To summarize the precise terminology: 

• Atoms are the elementary outcomes of a maximal measurement (there are N_dist of 

them) 

• Bits are the binary information capacity: n = ⌈log₂ N_dist⌉ independent yes/no questions 

• Contextual Boolean algebras B_M contain the logical structure of outcomes within 

measurement M 

• The global event structure is orthomodular (non-Boolean), formed by pasting contextual 

algebras 

Within any single maximal test, the structure is Boolean with N_dist atoms encoding n bits of 

information. 

 

4. Worldline Ticks and Successor Structure 

4.1 The Problem with Global Temporal Order 

A naive approach would define dynamics as a single global sequence {C₀, C₁, C₂, …} and 

identify ticks as increments of this sequence. 

This fails for relativistic physics. General relativity provides only a partial order on spacetime 

events—no global "next configuration." Different observers see different temporal orderings. 

Quantum mechanics (in some interpretations) involves branching structures without a single 

timeline. 
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4.2 Clock Records as Totally Ordered Sequences 

Definition. A clock is a physical subsystem that registers a sequence of marker events along its 

worldline. A clock record is the totally ordered sequence of these events: 

W = (e₀, e₁, e₂, …) with e₀ < e₁ < e₂ < … 

Key point. Within a single worldline, events are totally ordered (proper time provides this). The 

successor structure lives on worldlines, not on spacetime globally. 

4.3 Ticks as Successor Increments 

Definition. A tick (along clock record W) is the minimal increment between successive events: 

the transition from eₙ to e_{n+1}. 

Define the clock count function: 

T_W(n) = n (the count of events up to the nth marker) 

Any physical time measurement along W has the form t = α · T_W for some calibration constant 

α. 

4.4 The Successor Theorem (Worldline-Scoped) 

Theorem (Tick Uniqueness). Let W be any clock record satisfying: 

• (T1) W is a totally ordered sequence of recorded events 

• (T2) Events are atomic (no infinitesimal subdivisions) 

• (T3) The sequence has a first element and no last element 

Then the order type of W is isomorphic to (ℕ, S) where S: n ↦ n+1 is the successor function. 

Proof. 

1. (T1) gives total order 

2. (T2) gives discreteness—no limit points between successive events 

3. (T3) gives the initial segment and unboundedness 

4. The unique countable, discrete, well-ordered set with minimum and no maximum is (ℕ, 

≤) 

5. The successor function S is the unique atomic increment operation on ℕ ∎ 

Corollary. Along any clock worldline, operational time reduces to counting discrete events—

ticks—with continuous parameters being monotone reparametrizations. 
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4.5 Global Structure 

While individual worldlines have (ℕ, S) structure, the global picture is richer: 

• Different worldlines may have different tick counts between shared events (cf. twin 

paradox) 

• The global causal structure is a partial order, not a total order 

• Tick structure is local/worldline-specific, not global 

This is a feature, not a bug: it matches the structure of relativistic spacetime exactly. 

 

5. Ticks-per-Bit: The Bridge Quantity 

5.1 Definition 

With contextual bits and worldline ticks as primitives, define the ticks-per-bit ratio along a 

worldline W: 

β_W := ΔT_W / ΔB = ticks per bit of new distinguishability 

where ΔB measures the production of new distinguishable outcomes along W. 

5.2 Physical Interpretation 

Regime Meaning 

High β Many ticks per bit → slow distinguishability production → gentle dynamics 

Low β Few ticks per bit → rapid distinguishability production → violent dynamics 

5.3 Connection to Energy 

Define bits-per-tick rate: γ := 1/β 

The fundamental energy relation: 

E = (ℏ/τ₀) × γ 

where τ₀ is a fundamental time scale (Planck time τ_P = √(ℏG/c⁵) provides a natural candidate). 

Energy measures how rapidly distinguishability is produced per tick along a worldline. 
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6. The Core Universality Theorem 

This section establishes the central uniqueness result with proper technical precision. 

6.1 Statistical Operational Equivalence 

Fix a resource bound ℛ (energy E, time T, apparatus size L) and error tolerance ε > 0. The 

statistical equivalence relation from Axiom 4: 

s ∼_{ℛ,ε} s′ iff for all experiments feasible under ℛ, ‖P_s − P_{s′}‖_TV ≤ ε 

By Axiom 4 (finite accessible information), the quotient S/∼_{ℛ,ε} is a finite ε-net. 

6.2 The Operational Core 

Definition. The operational core of an ontology M (relative to resource bound ℛ and tolerance 

ε) is: 

Core_{ℛ,ε}(M) := M/∼_{ℛ,ε} 

the quotient under statistical operational equivalence—the finite set of preparation classes 

distinguishable at resolution ε under resources ℛ. 

6.3 The Bit–Tick Substrate: Formal Definition 

To make uniqueness precise, we define the bit–tick substrate as a structured object: 

Definition (Bit–Tick Substrate). The bit–tick substrate BTS_{ℛ,ε} of an ontology M consists 

of: 

1. Maximal contexts: The family {B_M} of finite Boolean algebras, one per maximal 

measurement context M 

2. Preparation classes: The finite quotient S/∼_{ℛ,ε} of preparation classes under 

statistical equivalence 

3. Context-change maps: For each maximal context M, the map 

Φ_M : S/∼{ℛ,ε} → Δ{K-1} 

sending each preparation class to its coarse-grained outcome distribution in context M 

(where Δ_{K-1} is the (K-1)-simplex of distributions over K = N_dist outcomes) 

4. Worldline tick structure: The order type (ℕ, S) along each clock record 



 18 

Operational equivalence of two theories means equivalence of these maps Φ_M for all feasible 

contexts M. 

6.4 Core Universality Theorem 

Theorem (Uniqueness of Bit–Tick Substrate). Let M and M′ be any ontologies satisfying 

Axioms 1–4. Then: 

1. Core_{ℛ,ε}(M) is finite. (From Axiom 4: finite ε-net under bounded mutual 

information) 

2. Maximal-context structure is Boolean. Within any maximal measurement context, 

outcome events form a finite Boolean algebra B_M with N_dist atoms, encoding n = 

⌈log₂ N_dist⌉ bits of information capacity. 

3. Worldline temporal structure is (ℕ, S). Along any clock record, the event order is 

isomorphic to the natural numbers with successor. 

4. The bit–tick substrate is unique up to isomorphism. If M and M′ have the same N_dist 

and are operationally equivalent (i.e., their context-change maps {Φ_M} and {Φ′M} 

agree for all feasible contexts under ℛ), then their bit–tick substrates BTS{ℛ,ε}(M) and 

BTS_{ℛ,ε}(M′) are isomorphic as structured objects. 

Remark. The condition "same N_dist" is not an additional constraint but a consequence of 

operational equivalence. Since N_dist is the capacity of maximal measurement contexts, it is 

itself operationally determined: two operationally equivalent theories must have identical N_dist. 

Proof. 

(1) Finiteness. By Axiom 4, mutual information I(prep:outcome|ℛ) is bounded. The quotient 

under ∼{ℛ,ε} forms a finite ε-net of distinguishable preparation classes. Hence |Core{ℛ,ε}(M)| 

< ∞. □ 

(2) Boolean structure. By Section 3, any maximal context M has N_dist perfectly distinguishable 

outcomes. The Boolean algebra of outcome events has N_dist atoms, hence B_M ≅ 

𝒫({1,…,N_dist}). □ 

(3) Successor structure. By Section 4, any clock record satisfying (T1)–(T3) has order type (ℕ, 

S). □ 

(4) Uniqueness. Let M, M′ satisfy the axioms with equal N_dist and operational equivalence. 

• Both have finite cores with the same cardinality (from (1) + operational equivalence) 

• Maximal contexts in both yield Boolean algebras with N_dist atoms (from (2)) 

• Clock records in both have (ℕ, S) structure (from (3)) 

• Operational equivalence means the context-change maps agree: Φ_M([s]) = Φ′_M([s]′) 

for corresponding classes 

• The substrates BTS_{ℛ,ε}(M) and BTS_{ℛ,ε}(M′) are therefore isomorphic as 

structured objects □ 
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Corollary (Projection Property). Every candidate ontology M satisfying Axioms 1–4 admits a 

canonical projection: 

π: M → Core_{ℛ,ε}(M) 

Any structure in M not preserved by π is empirically inert surplus (below statistical resolution ε 

or operationally inaccessible under ℛ). 

6.5 Universal Property: BTS as Terminal Object 

To make uniqueness maximally precise, we formulate it as a universal property. 

Definition. The operational prediction object E_{ℛ,ε}(M) of an ontology M is the family of 

all feasible-context outcome distributions under (ℛ, ε): 

E_{ℛ,ε}(M) = { Φ_M : S/∼{ℛ,ε} → Δ{K-1} | M a feasible maximal context } 

This captures everything operationally extractable from M. 

Theorem (Universal Receiver). There exists a unique (up to isomorphism) structured object 

BTS_{ℛ,ε} such that every admissible ontology M factors through it: 

M  ──π──▶  BTS_{ℛ,ε}  ──ι──▶  E_{ℛ,ε}(M) 

where: 

• π is the projection onto the bit-tick substrate 

• ι is the canonical embedding (inclusion of substrate structure into predictions) 

Moreover, any two such factorizations differ only by isomorphism of BTS_{ℛ,ε}. 

Translation: BTS_{ℛ,ε} is the minimal structured object that can carry all operational content. 

It is a terminal object in the category of "operational prediction carriers"—any other carrier 

either factors through it or contains redundant structure. 

Proof sketch. 

1. Existence: Construct BTS_{ℛ,ε} as in Definition 6.3. 

2. Factorization: Any M projects via π to Core_{ℛ,ε}(M) ⊆ BTS_{ℛ,ε}; the context-

change maps Φ_M embed Core into E_{ℛ,ε}(M). 

3. Uniqueness: If BTS′ is another such object, the factorization property forces BTS ≅ 

BTS′. □ 

This universal property makes BTS canonical, not merely "one encoding among many." 
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6.6 What the Theorem Does and Does Not Claim 

Claims: 

• Any operationally grounded, finite-resolution theory has a bit–tick substrate BTS_{ℛ,ε} 

• The substrate includes Boolean algebras, preparation classes, context-change maps, and 

tick structure 

• Theories agreeing operationally (same context-change maps) have isomorphic substrates 

• The substrate is unique up to isomorphism as a structured object 

Does not claim: 

• That Core_{ℛ,ε}(M) literally equals {0,1}ⁿ (it's isomorphic, not identical) 

• That global dynamics is (ℕ, S) (only worldline-local) 

• That idealized continuous parameters are meaningless (only that they collapse under 

statistical equivalence) 

• That two theories with same N_dist are automatically equivalent (they must also share 

context-change maps) 

Critical distinction: Substrate uniqueness ≠ Dynamics uniqueness. 

The bit-tick substrate is the invariant kinematic structure that any operationally grounded theory 

must possess. It does not determine which specific dynamics governs evolution on that substrate. 

Concretely: QFT, string theory, loop quantum gravity, and other candidate theories may all 

project onto isomorphic bit-tick substrates while differing in their dynamics—the specific 

transition rules, coupling constants, and field equations. The substrate theorem tells us what kind 

of structure physics must have, not which physical theory is correct. 

Is this trivial? No. Structural constraints are nontrivial even when they don't determine 

dynamics: 

Structural constraint What it constrains What it leaves open 

"Spacetime is Lorentzian" Causal structure, signature 
Field equations, matter 

content 

"States form a Hilbert 

space" 
Superposition, interference Hamiltonian, interactions 

"Substrate is bit-tick" 
Finite distinguishability, operational 

time 

Specific dynamics, 

constants 

The bit-tick constraint rules out: 

• Theories with infinite information in bounded regions 

• Theories with non-operational time 
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• Theories with empirically inert ontological commitments 

• Theories requiring infinite experimental precision 

This is a substantive restriction on the space of possible physical theories, even though it does 

not select a unique dynamics. 

This is analogous to how "spacetime is a Lorentzian manifold" constrains physics without 

determining whether GR, modified gravity, or some other theory governs curvature. The bit-tick 

substrate is a structural constraint, not a complete theory. 

6.7 Diagrammatic Summary 

                   π_ℛ                            π_ℛ 

     M  ───────────────▶  Core_ℛ(M)  ◀───────────────  M′ 

                              ║ 
                              ║  (unique up to isomorphism 

                              ║   for theories with same N_dist 

                              ║   agreeing operationally) 

                              ▼ 

                      Bit–Tick Substrate 

                              │ 

              ┌───────────────┴───────────────┐ 

              ▼                               ▼ 

     Contextual outcome structure      Worldline tick structure 

     (N_dist atoms → n bits capacity)     (ℕ, S) along clocks 

6.8 Application to Known Frameworks 

Framework 
Surplus Structure (collapses 

under π_ℛ) 
Core Content 

Classical 

mechanics 
Sub-resolution phase space detail Finite distinguishable macrostates 

Quantum field 

theory 

Infinite-dim Hilbert space; sub-

resolution amplitudes 

Finite effective states under 

energy/resolution cutoff 

String theory 
Extra dimensions, continuous 

moduli 

Effective low-energy distinguishable 

states 

Loop quantum 

gravity 

Continuous spin network 

parameters 

Finite area/volume eigenvalues above 

Planck scale 

Causal set theory 
Specific causal relations beyond 

resolution 
Order type + cardinality ≈ bit–tick 
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7. Quantum Mechanics in the Bit–Tick Framework 

7.1 The Qubit Subtlety 

A qubit illustrates why all four axioms are needed: 

Property Value Implication 

N_dist 2 Only 2 perfectly distinguishable states 

State space Bloch sphere S² Continuum of preparations 

Operational distinctness Continuum Different points → different probabilities 

Under Axioms 1–3 alone, the qubit has finite N_dist but infinite operationally distinct 

preparations. Axiom 4 is essential for finiteness. 

7.2 Finite-Resolution Collapse 

Under statistical equivalence ∼_{ℛ,ε}: 

• Points on the Bloch sphere with outcome distributions differing by ‖P_s − P_{s′}‖_TV ≤ ε 

are equivalent 

• The sphere partitions into finitely many equivalence classes (an ε-net) 

• Each class is one element of Core_{ℛ,ε} 

Proposition. For a qubit under resource bound ℛ yielding statistical resolution ε in total 

variation distance, the number of distinguishable preparation classes is finite. 

Explicit TVD-geometry connection. For a qubit measured in a fixed basis, the outcome 

probabilities are: 

P(0) = (1 + z)/2, P(1) = (1 − z)/2 

where z is the Bloch coordinate along the measurement axis. The total variation distance 

between two preparations with coordinates z, z′ is: 

d_TV = ½|z − z′| 

For a complete tomographic measurement (three orthogonal bases), the TVD between 

preparations at Bloch vectors r, r′ satisfies: 

d_TV ≤ ‖r − r′‖/2 

Thus an ε-ball in TVD space corresponds to a ball of radius ~2ε in Bloch geometry. The 

covering number of S² by balls of radius δ is O(1/δ²), yielding: 



 23 

|S²/∼_{ℛ,ε}| ~ O(1/ε²) 

This bound is tight up to constants. 

7.3 Amplitudes as Sub-Resolution Parameters 

Under Axiom 4, continuous amplitude parameters are sub-resolution structure: 

Amplitudes differing by less than δ(ℛ) belong to the same operational equivalence class. 

This is weaker than "amplitudes are gauge redundancy" (which would require them to be 

physically meaningless). The correct statement is: 

Amplitudes parametrize preparations, but only finitely many preparation classes are 

operationally distinguishable under finite resources. 

The Bloch sphere is operationally meaningful—but as a continuum of preparation procedures, 

not as a continuum of physically real states surviving operational equivalence. 

7.4 Finite Hilbert Spaces 

For bounded-energy systems in finite regions: 

dim(ℋ_eff) < ∞ 

The system embeds in a finite qubit register: 

ℋ_eff ↪ (ℂ²)^⊗n where n = ⌈log₂ dim(ℋ_eff)⌉ 

The infinite-dimensional Hilbert spaces of QFT are idealizations—useful for calculation but 

exceeding finite-region, finite-energy information capacity. 

7.5 Contextual Structure in Quantum Systems 

Within any maximal measurement context M on a quantum system: 

• The outcome algebra B_M is finite Boolean 

• Atoms of B_M are the N_dist perfectly distinguishable outcomes 

• The bit capacity is n = ⌈log₂ N_dist⌉ 

For a qubit in context M = {σ_z measurement}: 

• B_M has 2 atoms: {|0⟩⟨0|, |1⟩⟨1|} 

• These atoms encode n = 1 bit of information capacity 



 24 

• The atoms are the outcomes; the bit is the capacity they carry 

Quantum mechanics is not a counterexample to the bit–tick ontology—it is its natural 

quantum realization, with atoms as measurement outcomes, bits as information capacity, and 

amplitudes as sub-resolution preparation parameters. 

 

8. Eliminating Circularity: Ontological Hierarchy 

8.1 The Correct Hierarchy 

Level Concept Status 

0 Ticks (worldline-local) Primitive (irreducible event increments) 

1 Atoms (context-relative) Primitive (elementary distinguishable outcomes) 

1′ Bits Derived (n = ⌈log₂ N_dist⌉ from atom count) 

2 Energy, Entropy, Duration Derived (from bit–tick ratios and counts) 

Ticks are primitive along worldlines. They are the minimal event increments on clock records. 

They do not presuppose energy, forces, or duration—duration is defined by tick count. 

Atoms are primitive within measurement contexts. They are the N_dist elementary 

distinguishable outcomes. Bits are the information capacity: n = ⌈log₂ N_dist⌉ binary questions 

needed to specify which atom occurred. 

Energy is derived from bits-per-tick: 

E = (ℏ/τ₀) × γ 

This is a measurement definition, not a causal mechanism. 

8.2 No Circularity 

The hierarchy is strictly ordered: Level n depends only on levels < n. 

• Ticks don't require bits (they're event increments, period) 

• Bits don't require ticks (they're outcome atoms, period) 

• Energy requires both (it's their ratio) 
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9. Mathematical Consistency Checks 

9.1 Planck's Relation 

Assume one bit per cycle of period T. 

• Ticks per cycle: N = T/τ₀ 

• Bits per tick: γ = τ₀/T 

From E = (ℏ/τ₀) × γ: 

E = ℏ/T = hf ✓ 

9.2 Boltzmann Entropy 

Let ℳ be a macrostate with Ω_ℳ compatible micro-histories. Then: 

S = k_B ln Ω_ℳ ✓ 

Entropy counts compatible tick-histories through configuration space. 

9.3 Fine-Structure Constant 

The standard QED expression: 

α = e²/(4πε₀ℏc) ≈ 1/137 

can be rewritten in terms of vacuum impedance Z₀ and the von Klitzing constant R_K = h/e²: 

α = (Z₀/2) / R_K 

Bit-tick interpretation. In this framework, α admits an information-theoretic reading: it 

quantifies the efficiency with which electromagnetic ticks (field oscillations) convert into 

distinguishable bits (detection events). The impedance ratio measures conversion efficiency at 

the vacuum-matter interface. 

Note. This paper does not derive α ≈ 1/137 from first principles—it provides an interpretation 

consistent with QED. Geometric derivation of constants is developed separately. 
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10. No-Go Theorems: The Forced Choice 

10.1 No-Go for Non-Bit Distinctions 

Theorem. Any ontology denying bits (binary capacity of maximal contexts) as primitive while 

satisfying Axioms 1–4 is inconsistent. 

To deny bits, you must accept: Consequence 

Infinite perfectly distinguishable states in bounded 

regions 
Violates Axiom 1 (Bekenstein bound) 

Distinctions inaccessible to any experiment Violates Axiom 3 

Infinite distinguishable preparations under bounded 

I(prep:outcome) 

Violates Axiom 4 (Holevo/channel 

capacity) 

Proof. Any alternative must either: 

• Have infinite N_dist (violates A1) 

• Have finite N_dist with maximal contexts whose Boolean algebras have n = ⌈log₂ N_dist⌉ 
bits of capacity (accepts bits) 

• Claim infinite preparation classes are distinguishable under finite resources (violates A4) 

∎ 

10.2 No-Go for Non-Tick Time 

Theorem. Any ontology denying ticks (worldline-local successor increments) while satisfying 

Axioms 1–4 is inconsistent. 

To deny ticks, you must accept: Consequence 

Time parameter no clock realizes Violates Axiom 2 

Global absolute time Contradicts GR; violates A2 

Continuous proper time as 

fundamental 

Operationally indistinguishable from ticks under 

∼_{ℛ,ε} 

Duration without physical transitions Operationally meaningless; violates A3 

Proof. Along any worldline with clock events, the structure satisfying A2 and (T1)–(T3) is 

unique: (ℕ, S). The tick is the atomic increment of this structure. Continuous proper time τ ∈ ℝ 

may exist as a mathematical idealization, but under finite-resource measurements, it collapses to 

tick-counts: any two proper times τ, τ′ with |τ − τ′| below resolution are operationally equivalent. 

The operational content of continuous time is the tick structure. ∎ 
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10.3 Forced Choice Table 

If you want... You must accept... 
Which violates / 

collapses to... 

Non-bit distinguishability 
∞ perfect distinguishability OR inaccessible 

distinctions OR unbounded I(prep:outcome) 
A1 OR A3 OR A4 

Continuous state space as 

fundamental 

Infinite distinguishable preparations under 

finite resources 

A4; collapses to finite 

ε-net 

Continuous time as 

fundamental 
Infinite precision time measurements 

Collapses to tick-

count under ∼_{ℛ,ε} 

Non-tick time structure Non-operational time OR global time 
A2 OR contradicts 

GR 

10.4 The Exhaustive Trilemma 

Any alternative to BTS must fall into at least one of three failure modes: 

Failure Mode 1: Surplus Structure 

The framework posits distinctions not reflected in E_{ℛ,ε}. 

Example: Hidden variables with no experimental signature; unobservable degrees of freedom. 

→ Killed by Axiom 3 (no surplus structure beyond operational access). 

Failure Mode 2: Infinite Finite-Resource Distinguishability 

The framework claims unbounded distinguishable preparation labels under fixed ℛ. 

Example: Asserting that all points on a continuous state space are physically distinct at finite 

resolution. 

→ Killed by Axiom 4 (bounded mutual information / finite ε-net). 

Failure Mode 3: Non-Operational Time 

The framework treats "time" as primitive without grounding in clock-event succession. 

Example: Background time parameter with no physical realization; global simultaneity. 

→ Killed by Axiom 2 (operational time via clocks). 

Meta-Theorem (Exhaustive Trilemma). Any ontology not equivalent to BTS_{ℛ,ε} must fall 

into at least one of: 
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1. Surplus structure (violates A3) 

2. Infinite finite-resource distinguishability (violates A4) 

3. Non-operational time (violates A2) 

Hence BTS exhausts the operationally admissible class. ∎ 

This is a completeness result: BTS is not merely a valid substrate—it is the only substrate 

compatible with operational grounding at finite resources. 

10.5 Reduction Sketches: How Standard Frameworks Project onto BTS 

Rather than saying "other frameworks fail," we show they reduce to BTS under operational 

equivalence. The message is: 

Whatever you believe, once you impose (ℛ, ε)-equivalence, you land here. 

Classical Phase Space 

The projection π: (q, p) ↦ [q, p]_{ℛ,ε} bins phase space into resolution cells consistent with (ℛ, 

ε). 

• Continuous coordinates (q, p) → finite grid of distinguishable cells 

• Liouville measure → counting measure on cells 

• Hamiltonian flow → discrete update rules on cell labels 

• Surplus: sub-resolution phase space detail (collapses under π) 

Quantum Field Theory 

The projection π combines energy cutoff with detector coarse-graining: 

• Infinite-dim Fock space → finite accessible mode content under energy bound 

• Continuous field amplitudes → finite outcome alphabet after measurement 

• S-matrix elements → context-change maps Φ_M 

• Surplus: UV modes beyond energy cutoff; sub-resolution amplitude differences 

String Theory / Moduli 

The projection π maps continuous moduli to effective low-energy observables: 

• Moduli space M → effective scattering/observable distributions 

• Unresolved moduli collapse under ε-equivalence 

• Compactification details → surplus (operationally equivalent configurations) 

• What remains: finite set of distinguishable low-energy signatures 

Loop Quantum Gravity 
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The projection π coarse-grains spin networks above resolution: 

• Spin network states → equivalence classes under (ℛ, ε) 

• Area/volume eigenvalues above Planck scale → finite distinguishable set 

• Surplus: sub-Planckian structure; gauge-equivalent configurations 

Causal Set Theory 

The projection π extracts worldline record counts and finite event distinguishability: 

• Causal set C → worldline tick-counts (already discrete) 

• Event labels → equivalence classes under coarse-graining 

• Closest to BTS of standard approaches; mainly adds causal ordering detail 

• Surplus: specific causal relations below resolution 

Summary Table 

Framework Surplus (collapses under π) Core that survives 

Classical mechanics Sub-resolution (q, p) Finite phase cells 

QFT UV modes; amplitude detail Finite effective states 

String theory Moduli beyond resolution Low-energy signatures 

LQG Sub-Planckian structure Finite area/volume classes 

Causal sets Fine causal structure Tick-counts + bit capacity 

In each case: the operational core is BTS. 

10.6 Precise Failure Claims for Continuous Ontologies 

To prevent strawman objections, we state precisely what continuous frameworks must accept: 

Claim (Continuous Fields). A continuous field ontology φ(x) is permissible as a 

representational device. However: 

1. If it asserts physically meaningful distinctions at scales below (ℛ, ε), it violates Axiom 3 

(surplus structure). 

2. If it insists those distinctions are operationally extractable at fixed resources, it violates 

Axiom 4 (infinite distinguishability). 

3. If it remains agnostic about sub-resolution structure, it reduces to BTS under π. 

Claim (Continuous Time). Continuous proper time τ ∈ ℝ is permissible as a mathematical 

idealization. However: 

1. If it asserts duration has physical meaning independent of clock readings, it violates 

Axiom 2 (non-operational time). 
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2. If it claims arbitrarily fine time resolution is achievable at finite resources, it violates 

Axiom 4. 

3. If it accepts that measured time is clock-event counting, it reduces to tick structure. 

The choice is always: reduce to BTS, or violate an axiom. There is no third option. 

 

11. Discussion 

11.1 The Role of Axiom 4 

Axioms 1–3 are standard in operational approaches to physics. Axiom 4 (finite accessible 

information) provides the physical grounding for true finiteness of the operational core. 

Logical status of Axiom 4. The bounds motivating A4 (Holevo, Bekenstein, channel capacity, 

quantum speed limits) are theorems within specific physical frameworks (quantum mechanics, 

GR). This creates a potential bootstrap concern: if bit-tick structure is supposed to be prior to 

these frameworks, can we use their theorems to justify A4? 

The resolution: A4 is an empirically motivated constraint, not a theorem within bit-tick theory. 

We observe that all known physics respects finite-information bounds. We abstract this empirical 

regularity as A4. We then prove that A4 (plus A1–A3) forces bit-tick structure. The logic is: 

Empirical evidence for finite-information bounds → Axiom 4 → Bit-tick substrate theorem 

This is not circular. It's the standard scientific pattern: generalize from observations, then derive 

consequences. If future physics discovered infinite-information phenomena, A4 would need 

revision—but all current evidence supports it. 

Without Axiom 4, one obtains: 

• Bits as information capacity of maximal contexts ✓ 

• Ticks as worldline-local successor structure ✓ 

• But potentially infinite operationally distinct preparations 

With Axiom 4: 

• Finite ε-net of distinguishable preparation classes ✓ 

• True finiteness of operational core ✓ 

• Continuous parameters collapse under statistical equivalence ✓ 
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11.2 What Uniqueness Means 

The bit–tick substrate is unique in this sense: 

1. Structural uniqueness. The operational core of any A1–A4 theory is finite, with 

contextual Boolean structure and worldline (ℕ, S) structure. 

2. Isomorphism uniqueness. Theories agreeing operationally have isomorphic bit–tick 

substrates. 

3. Elimination of alternatives. Every alternative violates at least one axiom grounded in 

established physics or methodology. 

4. Universal property. BTS is the terminal object among operational prediction carriers 

(Section 6.5). 

11.3 Invariant Completeness: Why Bits and Ticks Exhaust the Primitives 

Bits and ticks are the only two operational invariants that survive quotienting by (ℛ, ε)-

equivalence: 

Invariant 1: Outcome Structure 

What can be told apart? → Maximal distinguishability capacity N_dist → n = ⌈log₂ N_dist⌉ bits 

Invariant 2: Temporal Structure 

What can be counted as "later"? → Event-successor on clock records → (ℕ, S) ticks 

Proposition (Invariant Completeness). Any operational theory must provide: 

1. A maximal test structure (determining what can be distinguished), and 

2. An event-successor structure on records (determining what counts as temporal order). 

There is no third independent primitive that survives quotienting by operational equivalence at 

finite resources. 

Argument. Consider what else might be proposed: 

• Spatial structure? Requires distinguishing locations → reduces to bits (which positions 

are distinguishable). 

• Causal structure? Requires temporal ordering → reduces to ticks (which events precede 

which). 

• Field values? Requires distinguishing configurations → reduces to bits (which 

configurations are distinguishable). 

• Particle identity? Requires distinguishing entities → reduces to bits. 

• Continuous parameters? Collapse under (ℛ, ε)-equivalence → reduce to finite bit 

classes. 
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Every proposed primitive either: 

1. Reduces to bits (distinguishability structure), or 

2. Reduces to ticks (temporal structure), or 

3. Is surplus (operationally inaccessible). 

Hence BTS = (bits, ticks, context-change maps) is the complete basis for operational physics. 

11.4 Relation to Other Programs 

Program Relation 

It from Bit (Wheeler) Bits fundamental; we add contextual structure and ticks 

Causal Set Theory 
Order structure matches worldline ticks; we add contextual 

bits 

QBism 
Operational focus compatible; we add explicit resolution 

bounds 

Constructor Theory Counterfactual structure; compatible framing 

Holographic Principle Motivates Axiom 1 directly 

Hardy/Chiribella 

reconstructions 

Operational axioms for QM; we extend to include time 

structure 

11.5 Implications 

If the bit–tick ontology is correct: 

• Spacetime emerges from worldline-local tick structures 

• Fields are patterns of bit propagation across worldlines 

• Particles are stable bit configurations in maximal contexts 

• Quantum amplitudes are sub-resolution preparation parameters 

• Physical constants encode tick-to-bit conversion efficiencies 

11.6 Scope and Limitations 

This paper establishes a structural result: the unique kinematic substrate of operationally 

grounded physics. It does not resolve several important questions: 

What this paper does: 

• Proves that A1–A4 force bit-tick structure 

• Shows the axioms are independent and well-motivated 

• Demonstrates compatibility with quantum mechanics 

• Rules out alternative substrates without violating established bounds 

What this paper does not do: 
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• Derive the Born rule internally from bit-tick axioms alone (though P = |ψ|² is derived in 

companion work [16] from geometric axioms compatible with the bit-tick substrate) 

• Determine which specific dynamics governs bit-tick evolution 

• Explain why physical constants have their observed values 

• Derive spatial structure or gravity from bit-tick primitives 

These limitations are not defects but scope boundaries. The paper contributes a uniqueness 

theorem for kinematic structure, analogous to results showing that spacetime must be 

Lorentzian or that quantum states must form a Hilbert space. Such structural theorems are 

valuable even when they leave dynamics and probability undetermined. 

The open questions (Appendix D) define the research program beyond this work. 

 

12. Conclusion 

By requiring: 

• Axiom 1: Finite perfect distinguishability 

• Axiom 2: Operational time (worldline-local) 

• Axiom 3: No surplus structure 

• Axiom 4: Finite accessible information (supported by three independent routes: 

information-theoretic, decision-theoretic, thermodynamic) 

we have proven: 

1. Bits are the binary capacity of maximal measurement contexts (n = ⌈log₂ N_dist⌉) 
2. Ticks are the successor increments of worldline temporal structure (ℕ, S) 

3. The bit–tick substrate BTS_{ℛ,ε} is unique up to isomorphism, with a universal 

property (terminal object among operational prediction carriers) 

4. Invariant completeness: bits and ticks exhaust the operational primitives—no third 

invariant survives (ℛ, ε)-quotienting 

5. Exhaustive trilemma: every alternative must violate surplus structure, finite 

distinguishability, or operational time 

6. All standard frameworks (QFT, string theory, LQG, causal sets) reduce to BTS under 

operational equivalence 

7. Quantum mechanics fits naturally with amplitudes collapsing under statistical 

equivalence 

The bit–tick framework is the unique minimal invariant of operationally grounded, resource-

bounded physics. Whatever you believe about the ultimate nature of reality, once you impose 

operational equivalence at finite resources, you land here. 
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Appendix A: Formal Proofs 

A.1 Stone Representation (Finite Boolean Algebras) 

Theorem. Every finite Boolean algebra B is isomorphic to 𝒫(Atoms(B)). 

Proof. Define φ: B → 𝒫(Atoms(B)) by φ(b) = {a ∈ Atoms(B) : a ≤ b}. This is a well-defined 

Boolean homomorphism. Injectivity: if φ(b) = φ(b′), then b and b′ sit above the same atoms; 

since each element is the join of atoms below it, b = b′. Surjectivity: for S ⊆ Atoms(B), let b = 

⋁S; then φ(b) = S. ∎ 

A.2 Uniqueness of (ℕ, S) 

Theorem. Any countable, discrete, well-ordered set with minimum and no maximum is 

isomorphic to (ℕ, ≤). 

Proof. Define f: ℕ → T inductively: f(0) = min(T), f(n+1) = successor of f(n) in T. By 

discreteness, successors exist and are unique. By no-maximum, the sequence is unbounded. By 

well-ordering, f is surjective. By construction, f is order-preserving and injective. ∎ 

A.3 Finite ε-Nets of Outcome Distributions 

Theorem. Let the feasible coarse-grained outcomes under resource bound ℛ form a finite 

alphabet of size K = K(ℛ). Then the set of feasible outcome distributions lies in the (K−1)-

simplex Δ_{K-1}, which is compact. Under total variation distance (or any metric inducing the 

standard topology), Δ_{K-1} admits finite ε-nets. Hence the quotient under d_TV(p,q) ≤ ε has 

finite cardinality bounded by the ε-covering number N(ε, K). 

Proof. 

1. Outcome distributions over K outcomes form the probability simplex: 

Δ_{K-1} = {p ∈ ℝ^K : pᵢ ≥ 0, Σᵢ pᵢ = 1} 

2. Δ_{K-1} is compact (closed and bounded subset of ℝ^K). 

3. Total variation distance d_TV(p,q) = ½ Σᵢ |pᵢ − qᵢ| is a metric on Δ_{K-1}. 

4. For any ε > 0, the ε-covering number N(ε, Δ_{K-1}) is finite by compactness. 

5. Explicit bound: N(ε, Δ_{K-1}) ≤ (3/ε)^{K-1} (standard covering number estimate for 

simplices). 

6. Define equivalence: p ∼_ε q iff d_TV(p,q) ≤ ε. 

7. The quotient Δ_{K-1}/∼ε has at most N(ε, Δ{K-1}) classes. 

8. Since preparations map to distributions via Φ_M, the quotient S/∼_{ℛ,ε} is also finite. 

∎ 
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Remark. This is the correct topology for the finiteness argument. The equivalence is on 

distributions (living in a compact simplex), not on preparation parameters (which may be non-

compact). Compactness of Δ_{K-1} is automatic once outcomes are coarse-grained to finite K. 

 

Appendix B: Contextual Boolean Structure in Quantum 

Mechanics 

B.1 The Kochen-Specker Situation 

The Kochen-Specker theorem shows that quantum observables cannot all be assigned 

simultaneous definite values consistently. This reflects the non-Boolean global structure of 

quantum propositions. 

However, within any single context (compatible set of observables), the logic is Boolean. The 

bit–tick framework operates at this contextual level: 

• Each maximal context defines a Boolean algebra of outcomes 

• Bits are atoms of these contextual algebras 

• No global Boolean algebra is claimed 

B.2 Effect Algebras and Orthomodular Lattices 

The global structure of quantum events is an orthomodular lattice (projection lattice of Hilbert 

space) or more generally an effect algebra (for POVMs). 

These structures: 

• Are non-Boolean globally 

• Contain Boolean subalgebras (one per context) 

• Have the contextual Boolean algebras as "local" structure 

The bit–tick ontology operates at the level of maximal Boolean subalgebras: atoms are the 

elementary outcomes, and bits are their information capacity (n = ⌈log₂ N_dist⌉). This is fully 

compatible with orthomodular global structure. 
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Appendix C: Worldline Structure in Relativity 

C.1 No Global (ℕ, S) 

In Minkowski spacetime, events have a partial order (causal order) but no global total order. 

Different inertial observers disagree on simultaneity. 

The tick structure is therefore worldline-local: 

• Along any timelike worldline, events are totally ordered 

• This total order has (ℕ, S) structure for discrete clocks 

• Different worldlines accumulate different tick counts (time dilation) 

C.2 Compatibility with General Relativity 

In GR, proper time along a worldline is: 

τ = ∫ dτ = ∫ √(−g_μν dx^μ dx^ν) 

For a discrete clock, this integral counts ticks: 

τ = N_ticks × τ₀ 

The tick ontology is fully compatible with relativistic proper time—it identifies τ₀ as the 

fundamental tick duration and τ as the accumulated count. 

 

Appendix D: Open Question 

1. Born rule derivation and scope. The Born rule is derived uniquely within the broader 

VERSF–RAL framework, specifically in Part II: The Double Square Rule [16], where 

quantum probability is shown to follow inevitably from discrete informational geometry, 

reversible isometries, and irreversible selection acting on path-correlation structures. No 

probabilistic postulate, Hilbert space, or amplitude rule is assumed; the quadratic form P 

= |ψ|² is proven to be the unique solution compatible with positivity, normalization, 

relabeling invariance, factorization, and interference. 

The present paper focuses on establishing the bit–tick substrate as the unique kinematic 

invariant of operationally grounded physics. While fully compatible with—and indeed 

motivating—the Double Square Rule, this paper does not re-derive the Born rule 

internally from the bit–tick axioms alone. Instead, it provides the substrate on which the 

Double Square probability law acts. 
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Integrating the Double Square Rule directly into the bit–tick axiom set—thereby deriving 

quantum probability entirely from bit–tick primitives without additional geometric 

axioms—remains an important unification task for future work. 

 

Appendix E: Methodological Status of Axiom 4 and 

Interpretive Remarks on Dimensionless Constants 

 

E.1 The Status of Axiom 4 (Finite Accessible Information) 

Axiom 4 asserts that, for any bounded experiment with finite physical resources, the mutual 

information extractable between preparation procedures and measurement outcomes is finite. In 

the main text, this axiom is motivated by several well-established bounds—such as the Holevo 

bound, the Bekenstein entropy bound, and quantum speed limits—which arise within specific 

physical frameworks. 

A potential concern is that these bounds are themselves derived within quantum mechanics or 

general relativity, whereas the bit–tick substrate is intended to apply at a more foundational level. 

This appendix clarifies the logical status of Axiom 4 and resolves any appearance of circularity. 

 

E.1.1 Axiom 4 as a Methodological Constraint 

Axiom 4 need not be regarded as a derived physical law. Instead, it may be taken as a 

methodological constraint on admissible physical theories: 

Physics should make only finite experimental claims. 

That is, any theory that purports to describe physical reality must, at minimum, allow its 

predictions to be operationally decidable using finite resources. A theory that requires infinite 

precision, infinite outcome alphabets, or unbounded distinguishability under fixed experimental 

conditions fails to define empirically meaningful propositions. 

Under this interpretation, Axiom 4 does not presuppose the mathematical structure of quantum 

mechanics, general relativity, or any other specific framework. Rather, it constrains the class of 

theories that qualify as operationally well-posed physical theories at all. 

 

E.1.2 Role of Information-Theoretic and Thermodynamic Bounds 

The Holevo bound, Bekenstein bound, channel-capacity limits, and quantum speed limits should 

therefore be understood not as foundations for Axiom 4, but as consistency checks: 

• They demonstrate that all empirically successful existing theories respect the finite-

accessible-information constraint. 

• They provide concrete instantiations of Axiom 4 within established frameworks. 

• They corroborate that Axiom 4 captures a robust empirical regularity rather than an ad 

hoc restriction. 

The logical structure is therefore: 
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Methodological finiteness requirement 

→ Axiom 4 

→ Bit–tick substrate theorem 

No step in the bit–tick substrate theorem relies on the numerical form of any specific bound. 

 

E.1.3 Independence from Bit–Tick Conclusions 

Crucially, the bit–tick substrate theorem does not depend on the numerical form of any particular 

bound. Any constraint—whatever its origin—that limits operationally accessible distinctions to a 

finite set under bounded resources suffices. If future physics were to revise or replace existing 

bounds while preserving operational finiteness, the conclusions of this paper would remain 

unchanged. 

 

E.2 Interpretive Status of the Fine-Structure Constant 

Section 9.3 of the main text briefly discusses the fine-structure constant α in relation to the bit–

tick framework. This appendix clarifies the intent and limits of that discussion. 

 

E.2.1 No Derivation or Prediction Claimed 

This paper does not derive the numerical value of the fine-structure constant, nor does it 

constrain its magnitude. No novel prediction concerning α is asserted here. The bit–tick substrate 

theorem is entirely independent of the value of any dimensionless coupling constant. 

 

E.2.2 Heuristic Interpretation 

The fine-structure constant is given by 

α = e² / (4π ε₀ ℏ c) ≈ 1 / 137 

It may also be written in terms of the vacuum impedance Z₀ and the von Klitzing constant Rₖ = h 

/ e² as 

α = (Z₀ / 2) / Rₖ 

This representation highlights α as a dimensionless ratio comparing vacuum response properties 

to discrete charge–action conversion scales. 

Within the bit–tick ontology, this structure admits a heuristic interpretation: α may be viewed 

as characterizing the efficiency with which electromagnetic field oscillations (ticks) are 

converted into distinguishable detection events (bits) at the vacuum–matter interface. This 

reading is offered solely as conceptual alignment with the informational perspective developed in 

the paper. 

 

E.2.3 Scope Limitation 

No explanatory burden is placed on this interpretation. A quantitative account of coupling 

constants would require a full dynamical theory governing bit–tick interactions, renormalization, 

and field-mediated distinguishability—topics that lie beyond the scope of the present work and 

are addressed separately in the broader VERSF framework. 
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Accordingly, references to the fine-structure constant in this paper should be understood as 

interpretive remarks, not as extensions of the substrate theorem or its proofs. 

 

E.3 Summary 

• Axiom 4 may be taken as a methodological finiteness requirement, independent of any 

specific physical theory. 

• Established information-theoretic and thermodynamic bounds function as empirical 

consistency checks, not logical foundations. 

• Discussion of the fine-structure constant is explicitly non-derivational and non-

predictive, and carries no logical weight in the core argument. 

With these clarifications, the bit–tick substrate theorem stands as a purely structural result, free 

of hidden assumptions about particular dynamical laws or numerical constants. 

 

 

Appendix F: Formal Rigor Addendum (Information 

Bounds, ε-Nets, and Universality) 

F.1 Formal Setup: Resource-Bounded Experiments and Statistical 

Equivalence 

Let Σ be the set of admissible preparation procedures, and let 𝓔(ℛ) be the set of experiments 

feasible under resource bound ℛ (energy, runtime, apparatus size, bandwidth, memory). 

For any experiment E ∈ 𝓔(ℛ), outcomes lie in a finite alphabet Ω_E with |Ω_E| = K_E < ∞ 

(finite detector readout). Each preparation σ ∈ Σ induces an outcome distribution: 

P_E(· | σ) ∈ Δ_{K_E−1} 

Define the ℛ,ε operational equivalence relation on preparations: 

σ ∼_{ℛ,ε} σ′ iff for all E ∈ 𝓔(ℛ), d_TV(P_E(·|σ), P_E(·|σ′)) ≤ ε 

where total variation distance is: 

d_TV(p, q) = ½ ∑_{i=1}^{K} |p_i − q_i| 

The ℛ,ε operational core is the quotient: 

Core_{ℛ,ε} := Σ / ∼_{ℛ,ε} 
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The goal of this appendix is to give explicit, standard sufficient conditions under which 

Core_{ℛ,ε} is finite, and to sharpen the universality claim. 

 

F.2 Finite Core from Finite Accessible Information (Axiom 4 → explicit 

bound) 

Axiom 4 may be stated in a form directly usable for finiteness: 

There exists a finite constant I_max(ℛ) such that for any random preparation label X supported 

on a finite subset of Σ, and any feasible experiment E ∈ 𝓔(ℛ) producing outcome Y_E, 

I(X : Y_E) ≤ I_max(ℛ) 

Now fix ε > 0. Consider any family of preparations {σ_1, …, σ_M} such that they are pairwise 

distinguishable at level ε under ℛ. Formally, for each i ≠ j, there exists some E_{ij} ∈ 𝓔(ℛ) 

with: 

d_TV(P_{E_{ij}}(·|σ_i), P_{E_{ij}}(·|σ_j)) > ε 

Assume the experimenter chooses, for each i, a decoding procedure that guesses i from outcomes 

(standard hypothesis testing). Let the (best-achievable) average classification error be P_e. 

A standard information-theoretic inequality (Fano’s inequality) gives: 

P_e ≥ 1 − (I(X:Y) + log₂ 2) / log₂ M 

where X is uniform on {1,…,M} and Y is the measurement outcome (for the chosen optimal 

discrimination strategy). Rearranging: 

log₂ M ≤ I(X:Y) + 1 / (1 − P_e) 

In particular, if the class is ε-distinguishable, there exists a measurement strategy whose error is 

bounded away from 1 (and in the ideal limit, one can take P_e < 1/2). Taking the conservative 

choice P_e ≤ 1/2 yields: 

log₂ M ≤ 2(I(X:Y) + 1) 

Using Axiom 4, I(X:Y) ≤ I_max(ℛ), so: 

M ≤ 2^{2(I_max(ℛ) + 1)} 

Conclusion (Explicit Packing Bound). Under Axiom 4, the number of mutually ε-distinguishable 

preparation classes under resource bound ℛ is finite, with an explicit bound: 
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|Core_{ℛ,ε}| ≤ 2^{2(I_max(ℛ) + 1)} 

This makes “finite accessible information ⇒ finite operational core” a standard corollary of 

Fano’s inequality. 

Remark. This bound is not claimed tight. Its purpose is to show that finiteness follows from a 

widely accepted inequality once I_max(ℛ) is assumed finite. 

 

F.3 Geometric ε-Net Bound on Outcome Distributions (compactness → 

explicit covering number) 

For any fixed feasible experiment E with K_E outcomes, the outcome simplex Δ_{K_E−1} is 

compact. The covering number under total variation distance satisfies a standard bound: 

N(ε, Δ_{K−1}, d_TV) ≤ (3/ε)^{K−1} 

Thus, for fixed E, the set {P_E(·|σ) : σ ∈ Σ} admits an ε-net of size at most (3/ε)^{K_E−1}. 

If 𝓔(ℛ) is finite (as it is under any finite-description experimental catalogue), then taking the 

product metric over experiments yields a finite joint ε-net, hence a finite quotient Core_{ℛ,ε}. 

Even if 𝓔(ℛ) is infinite, any finite experimental campaign uses only finitely many E, and the 

induced operational partition is finite. 

This gives a second, purely geometric route to finiteness consistent with the main text’s 

Appendix A.3. 

 

F.4 Successor Structure Theorem (Worldline-Local) with Minimal 

Assumptions 

Let W be a clock record: a sequence of recorded events on a timelike worldline. Model W as a 

set with a strict total order “<”. 

Assumptions: 

(W1) Discreteness: For every event e ∈ W except the first, there exists an immediate predecessor 

pred(e), and for every event except the last (if any), there exists an immediate successor succ(e). 

(W2) Well-founded past: There exists a first event e₀ ∈ W with no predecessor. 

(W3) No terminal event: For every e ∈ W, succ(e) exists (no last tick). 
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Then the map f: ℕ → W defined inductively by: 

f(0) = e₀ 

f(n+1) = succ(f(n)) 

is an order-isomorphism between (ℕ, <) and (W, <). Hence the tick structure is isomorphic to (ℕ, 

S), where S(n) = n+1. 

Remark. This avoids requiring global spacetime well-ordering; it only uses the discrete successor 

property on the worldline record, which is exactly the operational content of a clock. 

 

F.5 Formal Universality (Terminal Object) in the Category of 

Operational Prediction Carriers 

Define a category 𝒞_{ℛ,ε} as follows. 

Objects: Triples A = (Core_A, {B_M}_A, {Φ_M}_A) where: 

• Core_A is a finite set (operational classes) 

• {B_M}A is a family of finite Boolean algebras (maximal contexts) 

• For each context M, Φ_M maps Core_A → Δ{K−1} giving coarse-grained outcome 

distributions 

Morphisms: A morphism f: A → A′ is a pair of maps: 

f_Core: Core_A → Core_{A′} 

f_B: {B_M}A → {B_M}{A′} 

such that for every context M, the following compatibility holds: 

Φ′_M ∘ f_Core = Φ_M 

(Interpretation: f preserves all operational predictions.) 

Define BTS_{ℛ,ε} to be the object built from: 

• Core_{ℛ,ε} = Σ / ∼_{ℛ,ε} 

• contextual Boolean algebras for maximal contexts 

• the induced prediction maps Φ_M 

• plus worldline-local tick structure (ℕ, S) as an attached component (formally, a functorial 

“time-record” assignment per worldline) 
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Claim (Terminal Object Property). For any admissible ontology object A in 𝒞_{ℛ,ε}, there 

exists a unique morphism: 

A → BTS_{ℛ,ε} 

Proof sketch. The quotient map π: Σ → Σ/∼{ℛ,ε} is canonical. Any object A that carries only 

operational content factors through π by construction of ∼{ℛ,ε}. Uniqueness follows because 

any morphism must agree on equivalence classes, and the compatibility condition forces 

agreement on Φ_M. Therefore BTS_{ℛ,ε} receives a unique prediction-preserving map from 

any A. □ 

This makes the “universal receiver” language in the main text fully formal. 

 

F.6 What This Appendix Adds 

This appendix supplies: 

1. An explicit information-theoretic bound showing Core_{ℛ,ε} is finite (Fano route). 

2. An explicit geometric covering number bound (ε-net route). 

3. A tightened successor theorem with minimal worldline assumptions. 

4. A fully formal category definition and a terminal-object proof sketch. 

None of these modify the main theorem; they make its proof obligations easier for a referee to 

verify line-by-line. 

 

Appendix G: Structural Strengthening of Axiom 4 

G.1 Motivation 

Axiom 4 in the main text is stated as a bound on accessible mutual information under finite 

resources. While convenient, this formulation can itself be derived from more primitive 

constraints on experimental practice and physical realisability. This appendix presents two such 

constraints and shows that, taken together, they imply Axiom 4 as stated. 

 

G.2 Finite Experiment Structure (Operational Constraints) 

For fixed experimental resources ℛ, assume: 
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A4a (Finite Outcome Alphabet) 

For any feasible experiment E under ℛ, the detector readout alphabet is finite: 

|Ω_E| = K_E(ℛ) < ∞. 

A4b (Finite Sampling Budget) 

Under resources ℛ, any experiment can generate at most N(ℛ) outcome samples. 

A4c (Finite Statistical Resolution) 

There exists ε(ℛ) > 0 such that, for any two preparations σ and σ′, if for all feasible experiments 

E, 

d_TV(P_E(·|σ), P_E(·|σ′)) ≤ ε(ℛ), 

then σ and σ′ cannot be reliably distinguished under ℛ. 

Here the total variation distance is 

d_TV(p, q) = ½ ∑_{i=1}^{K} |p_i − q_i|. 

These three conditions define what it means for an experiment to be finite in readout, duration, 

and resolution. 

 

G.3 Finite Specification and Control (Physical Realisability Constraint) 

A4d (Finite Specification / Finite Control) 

For fixed resources ℛ, any preparation procedure or measurement apparatus can be specified 

and controlled only up to finite description length L(ℛ). 

Equivalently, the number of physically realisable preparation protocols and experimental 

configurations under ℛ is finite, bounded by 

N_spec(ℛ) ≤ 2^{L(ℛ)}. 

This reflects the fact that experimental devices must be built, programmed, calibrated, and 

stabilised using finite physical resources, and therefore cannot encode or enact infinitely many 

distinct procedures. 
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G.4 Derivation of Finite Accessible Information 

We now show that A4a–A4d imply the finiteness condition used in the main text. 

From A4a, each experimental outcome carries at most log₂ K_E bits of raw information per trial. 

From A4b, only N(ℛ) trials are available. 

From A4c, distinctions below ε(ℛ) are operationally invisible. 

Therefore, for any preparation label X and any feasible experiment E producing outcome Y_E, 

I(X : Y_E) ≤ N(ℛ) · log₂ K_E(ℛ) < ∞. 

This yields a finite upper bound I_max(ℛ) on accessible mutual information, recovering Axiom 

4 as stated in Section 2. 

Independently, from A4d, the number of physically realisable preparation labels is finite. Even 

before statistical coarse-graining, only finitely many operationally distinct procedures exist under 

ℛ. Hence the operational partition of preparations must be finite. 

Thus both routes—finite experiment structure and finite physical specification—converge on the 

same conclusion: under fixed ℛ, only finitely many distinctions are operationally accessible. 

 

G.5 Equivalence to Axiom 4 

The original formulation of Axiom 4 in the main text may therefore be regarded as a compact 

summary of the stronger structural constraints A4a–A4d. 

For the purposes of the core universality theorem, either formulation suffices. The strengthened 

version clarifies that finiteness arises not from any specific physical theory, but from the 

combined facts that experiments have finite readout, finite duration, finite resolution, and finite 

physical control. 

 

G.6 Interpretation 

Axiom 4 is thus not a single assumption but a convergence point: 

• Operational finiteness (what experiments can resolve), and 

• Physical finiteness (what experiments can be built and controlled to do) 
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both independently force the collapse of continuous structure into a finite operational core. The 

bit–tick substrate theorem follows from this convergence, not from any particular information 

bound. 
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