

Why the Universe Remembers So Little

A New Perspective on Nature's Most Puzzling Numbers

Keith Taylor

VERSF Theoretical Physics Program

The Mystery of Two Numbers

Physics has a problem—one that's been called "the worst prediction in the history of science."

When physicists calculate how much energy empty space should contain, they get a number that's roughly **10¹²⁰ times larger** than what we actually observe. That's a 1 followed by 120 zeros. If you wrote out both numbers, the difference would stretch across pages.

The tiny number we actually measure is called the **cosmological constant**, denoted Λ (lambda). It controls how fast the universe's expansion is accelerating. And it's absurdly, almost impossibly small: about 10^{-122} in natural units.

Meanwhile, there's another mysterious number in physics: the **fine-structure constant**, written as α (alpha). It's approximately 1/137, or about 0.007. This number controls how strongly light interacts with matter. It determines the size of atoms, the colors of fireworks, and whether chemistry works at all.

These two numbers—one cosmically large in its implications, one seemingly modest—appear to have nothing to do with each other. α governs the tiny world of atoms and photons. Λ governs the vast scale of cosmic expansion.

But what if they're secretly connected?

The Universe as a Running Program

Here's an unusual way to think about reality: **What if the universe is more like a running computer program than a static mathematical structure?**

Not literally a computer—we're not claiming someone built the universe on cosmic hardware. But consider: any system that processes information over time faces certain unavoidable constraints.

Think about your laptop:

- It can only process information so fast (limited by the speed of electrical signals)
- It can only store so much data (limited by memory capacity)
- Most of what happens inside it is never permanently saved (only a tiny fraction of processor activity becomes stored files)

The universe faces analogous constraints:

- Information can only travel at light speed
- Any region of space can only hold a finite amount of distinguishable information
- Most of what happens at the microscopic level never becomes a permanent "record"

This last point is crucial. The universe is seething with activity—quantum fields fluctuating, virtual particles appearing and vanishing, countless microscopic events occurring every instant. But almost none of this becomes what we might call *history*—stable, retrievable records that persist over cosmic time.

The ratio of activity to permanent record is a key parameter. And we propose that this ratio is controlled by α , the fine-structure constant.

What Counts as "Remembered"?

When does a microscopic event become part of the universe's permanent record?

Consider what has to happen for a single photon detection to be "remembered":

1. A photon must interact with an atom (requires electromagnetic coupling)
2. The atom must become excited (electromagnetic process)
3. This excitation must trigger a cascade of further effects (electromagnetic amplification)
4. The cascade must propagate to macroscopic scales (electromagnetic interactions in matter)
5. The final state must be stable against thermal noise (electromagnetic binding in solids)

Every step in this chain depends on the strength of electromagnetic interactions—which is controlled by α . If α were smaller, each step would be less likely to succeed. The "message" would more often get lost along the way.

Now here's the key insight: **to become truly permanent, a record must survive through many such steps.** The more steps required, the rarer successful completion becomes.

If each step succeeds with some probability p , and you need M steps, then the overall success rate is roughly p^M —which drops exponentially as M increases.

And here's the critical connection to α : **the number of steps M required for durability scales inversely with electromagnetic coupling strength.** When α is small (weak coupling), you need

more successful electromagnetic interactions to build up the same level of redundancy and stability.

This gives us:

$$\text{Success probability} \approx \exp(-K/\alpha)$$

where K is an ordinary number encoding the durability requirements.

The Disappearing Λ (And Why That Matters)

Before connecting α and Λ , we had to check whether such a connection was even necessary.

We calculated two things independently:

1. **How many "bits" could the universe potentially produce?** (Limited by available energy and time)
2. **How many bits can it store?** (Limited by the cosmic horizon set by Λ)

Here's what we found: **both quantities scale the same way with Λ .** When you compare them, the Λ -dependence cancels out completely.

This might seem like a failure—we wanted to explain Λ , and it disappeared from the equation! But actually, it's a crucial diagnostic. It tells us that the *balance* between production and storage doesn't depend on Λ at all. The cosmological constant doesn't appear in the simple throughput-capacity comparison.

This means any connection between α and Λ must enter through the microscopic physics—specifically, through the extreme selectivity of which events become permanent records.

The Result: An Ordinary Number

Putting everything together:

- The exponential registration gate (controlled by α) determines how rare permanent records are
- The horizon capacity (controlled by Λ) determines how many can exist
- Matching these gives a relationship between α and Λ

When we plug in the observed values of α ($\approx 1/137$) and Λ ($\approx 10^{-122}$ in Planck units) and solve for K , we get:

$K \approx 0.67$

That's it. An ordinary number, close to 1, requiring no fine-tuning.

This is the key result. The 122-order-of-magnitude hierarchy between the Planck scale and the cosmological constant is generated entirely by the exponential structure $\exp(-K/\alpha)$, combined with α 's modest value of about 1/137. We don't need K to be some exotic number. We don't need any suspicious coincidences. The mathematics does the work.

If K had come out to be 0.0001 or 10,000, we'd be worried—that would mean we'd just traded one fine-tuning problem for another. But $K \approx 0.67$? That's what we'd expect if the model is right: the durability requirements are substantial but not extreme, and the per-stage losses in the registration cascade are moderate but not catastrophic.

Testing the Idea

Good science makes predictions that can be proven wrong. Here's what this framework predicts:

α and Λ should vary together across cosmic history—and Λ should be extremely sensitive to α .

Specifically: a 1% change in α should produce roughly a 180% change in Λ . A tiny shift in the strength of electromagnetic interactions should cause a much larger shift in the rate of cosmic expansion.

Current observations are consistent with both constants being exactly fixed over cosmic time. But they're also consistent with any model that predicts constant α and constant Λ —including models with no connection between them. So we haven't *confirmed* the prediction yet; we've only avoided falsification.

The model becomes genuinely testable when:

- We develop instruments precise enough to detect tiny variations (next-generation spectrographs like ESPRESSO and ELT-HIRES are approaching this)
- We detect α variation without corresponding Λ variation (which would rule out this model)
- We detect Λ variation without corresponding α variation (which would also rule it out)

The amplification factor of roughly 10,000 means that any detected change in α would have dramatic implications for cosmology—and vice versa.

What Does This Mean?

If this framework is correct, it suggests a profound reinterpretation of what the cosmological constant actually *is*.

Traditional view: Λ is some kind of vacuum energy density—and we have no idea why it's so small.

Runtime view: Λ reflects the universe's capacity to store distinguishable history—and its small value tells us how extremely selective the registration process is.

The 122-order-of-magnitude suppression isn't a bizarre accident or a fine-tuning mystery. It's a consequence of how hard it is for microscopic activity to become macroscopic record. Most of what happens in the universe is *forgotten*—it thermalizes, decoheres locally, or exits the cosmic horizon before it can become part of the permanent structure.

Only an exponentially rare fraction of events—roughly $\exp(-0.67/0.0073) \approx 10^{-40}$ —successfully navigate the gauntlet from quantum fluctuation to durable, globally accessible record.

The smallness of Λ is telling us how much the universe forgets.

The Bigger Picture

This work is part of a larger program called VERSF (Void Energy-Regulated Space Framework), which seeks to understand fundamental physics through operational constraints—asking not "what are the fundamental entities?" but "what are the necessary conditions for a finite, evolving, distinguishable universe to exist?"

In this view:

- \hbar (Planck's constant) sets the minimum granularity of distinguishable change
- c (light speed) sets the maximum rate of causal influence
- α controls how readily activity becomes permanent record
- Λ controls how much record can exist within a causally connected region
- G (Newton's constant) sets the "cost" of storing information in spacetime geometry

These aren't arbitrary numbers written into the universe's source code. They're operational parameters that any finite update process must have—and their values are constrained by self-consistency requirements.

The connection between α and Λ developed here is one example of such a constraint. There may be others linking different constants, waiting to be discovered.

Summary

1. **The puzzle:** Why is the cosmological constant Λ so incredibly small (10^{-122} in Planck units)?
2. **The framework:** Treat the universe as a runtime system that must balance information production against storage capacity.
3. **The key insight:** The Λ -dependence cancels in the basic throughput-capacity comparison—any α - Λ connection must enter through the microscopic physics of record formation.
4. **The mechanism:** Permanent records require surviving a multi-stage electromagnetic cascade. The probability of success is exponentially suppressed as $\exp(-K/\alpha)$.
5. **The result:** Matching observed α and Λ gives $K \approx 0.67$ —an ordinary number requiring no fine-tuning.
6. **The prediction:** Λ is exponentially sensitive to α , with amplification factor ~ 180 . Any detected α variation should correlate with Λ variation.
7. **The interpretation:** The extreme smallness of Λ reflects how much the universe forgets—how exponentially rare it is for microscopic activity to become permanent cosmic history.
