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Abstract 

We derive a criticality theorem establishing that a universe capable of supporting both coherent 

quantum dynamics and stable classical facts must operate near a reversible/irreversible phase 

boundary. The framework rests on a single structural constraint: the Taylor Limit, which restricts 

physically admissible observable prediction functionals to those that are analytic, Lipschitz 

continuous, and effectively finite. From this constraint alone, we derive that collapse 

(irreversible fact creation) occurs when the distinguishability load D(ψ) of a quantum state 

exceeds the reversible representational capacity C of the local coherent sector. This yields a 

deterministic, capacity-driven collapse mechanism requiring no stochastic postulate or observer-

dependent projection rule. We translate abstract quantities into experimentally measurable 

proxies and propose a decisive test using large-molecule matter-wave interferometry. The 

measurement problem, on this view, reduces to a question of representational capacity—and 

when capacity is exceeded, collapse is what happens. 

 

Abstract for General Readers 

Why do quantum superpositions collapse into definite outcomes? 

Quantum mechanics tells us that particles can exist in multiple states simultaneously—a 

phenomenon called superposition. Yet when we measure a particle, we always get a single 

definite result. For nearly a century, physicists have treated this "collapse" as a fundamental 

mystery, adding it to quantum theory as an unexplained rule. 

This paper argues that collapse isn't mysterious at all. It's what happens when a system runs out 

of representational capacity. 
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Think of a juggler keeping balls in the air. A skilled juggler can handle five balls, maybe seven. 

But if you keep tossing them more balls, eventually they must drop some—not because they 

choose to, but because they've hit a physical limit. Quantum systems face the same constraint: 

they can only track so many possibilities at once. When interactions with the environment add 

possibilities faster than the system can handle, it must "drop" some by collapsing into a definite 

state. 

We prove mathematically that: 

1. There's a capacity limit. Every quantum system has a maximum "complexity budget" 

determined by its internal structure. 

2. Collapse is forced, not chosen. When complexity exceeds capacity, collapse isn't 

optional—it's the only way for physics to remain well-defined. 

3. The universe must operate in a critical window. Too little environmental interaction 

means no stable facts ever form. Too much means quantum effects are instantly 

destroyed. Only in between can both quantum phenomena and classical reality coexist. 

4. This is testable. We predict that the threshold for quantum collapse should depend on a 

molecule's internal complexity, not just its size. This can be checked in existing matter-

wave interferometry experiments. 

The measurement problem, on this view, was never about physics being incomplete. It was about 

representations having finite capacity. Collapse is just what happens when the juggler runs out of 

hands. 

 

Scope and Non-Claims 

To prevent misreading, we clarify what this paper does and does not claim: 

• We do not derive the Born rule as a probability postulate. We take p = |ψ|² as the 

standard mapping from amplitudes to probabilities and constrain the resolution scale at 

which those probabilities become operationally meaningful. 

• We do not propose a microphysical collapse equation. We derive collapse as an 

operational necessity under the Taylor Limit, not as a modification to the Schrödinger 

equation. 

• We do not claim the Taylor Limit is derivable from deeper principles here. We treat 

it as a minimal operational constraint encoding finite precision and finite resources, 

consonant with finite-precision and finite-information approaches in the literature, but 

here elevated to a criterion on admissible observables that drives a collapse threshold. 
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1. Introduction and Motivation 

1.1 The Measurement Problem Restated 

Standard quantum mechanics faces a foundational tension: unitary evolution preserves 

superposition indefinitely, yet measurements yield definite outcomes. The conventional 

resolution introduces the Born rule and projection postulate as additional axioms, leaving 

unexplained why and when collapse occurs. 

We propose that collapse is not a fundamental postulate but a consequence of representational 

capacity limits. The central insight is: 

• A quantum state ψ can coherently represent only a finite number of Born-resolvable 

alternatives. 

• Interactions continuously inject new distinguishable alternatives into the system. 

• When the number of resolvable alternatives exceeds representational capacity, phase 

information cannot be tracked and must be discarded. 

• That discard is measurement. 

For the general reader: Imagine a juggler who can keep five balls in the air. If you keep tossing 

them more balls, eventually they must drop some—not because they choose to, but because 

they've hit a physical limit. Quantum systems face an analogous constraint: they can only 

"juggle" so many possibilities at once. When environmental interactions add too many 

possibilities too fast, the system must "drop" some by collapsing into a definite state. This paper 

makes that intuition mathematically precise. 

1.2 Key Claim 

Collapse is deterministic and capacity-driven. The quantum–classical boundary is a critical 

surface in distinguishability space, not a fundamental divide. 

Terminological note: We use "collapse" and "irreversible fact creation" interchangeably 

throughout this paper, with the latter emphasizing the operational content—the permanent 

commitment of distinguishability into stable records. 

 

2. Mathematical Framework 

For the general reader: This section establishes the precise mathematical language we'll use. 

The key objects are: (1) a space of possible configurations, (2) quantum states that assign 

probability amplitudes to those configurations, and (3) a set of rules (the "Taylor Limit") that 

physical predictions must obey. If you're comfortable with the intuition from Section 1, you can 

skim the definitions and focus on the boxed interpretations. 
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2.1 Configuration Space and States 

Let (Λ, d) denote a finite distinguishability metric space with |Λ| = N ≥ 3. Elements λ ∈ Λ label 

distinguishable micro-configurations. The metric d : Λ × Λ → ℝ≥0 quantifies distinguishability 

between configurations. 

Intuition: Think of Λ as the set of all meaningfully different states a system could be in—like 

the set of all possible positions of a particle that your measuring apparatus could actually 

distinguish. 

Remark on finiteness. The finiteness of Λ is not an assumption of fundamental discreteness but 

an operational restriction induced by ε₀-resolution distinguishability. Λ represents the Born-

resolvable configuration set at scale ε₀; configurations differing by less than ε₀ in all admissible 

observables are identified. Any underlying continuum is coarse-grained to finite Λ by the 

resolution threshold. One might ask whether the choice of ε₀ determines everything downstream; 

the answer is that ε₀ is not freely chosen but constrained by the Lipschitz condition—it is the 

scale below which no admissible observable can reliably discriminate states. The precise value of 

ε₀ is system-dependent (set by the best available measurement resolution), but its existence is 

guaranteed by the requirement that L_P < ∞ for all P ∈ 𝒫. 

Definition 2.1 (Pure State). A pure state is an amplitude assignment ψ : Λ → ℂ satisfying the 

normalization condition: 

∑_{λ∈Λ} |ψ(λ)|² = 1 

The Born probability vector p_ψ is defined by p_ψ(λ) = |ψ(λ)|². Interference sensitivity is carried 

by the relative phases of ψ. 

Intuition: A quantum state assigns a complex number (amplitude) to each possible 

configuration. The squared magnitude gives the probability; the phase (angle) of the complex 

number determines interference patterns. Two states can have identical probabilities but different 

phases—and those phases matter for quantum behavior. 

2.2 Reversible Dynamics 

Let G be the group of isometries of (Λ, d), i.e., bijections g : Λ → Λ preserving d(gλ, gμ) = d(λ, 

μ). Reversible dynamics act on amplitudes via the induced unitary representation U : G → 

U(ℂᴺ): 

(U_g ψ)(λ) = ψ(g⁻¹λ) 

Between fact-creation events, ψ(t) evolves under such unitary actions. This ensures that micro-

dynamics preserve distinguishability structure. 



 6 

Intuition: "Reversible dynamics" means evolution that can be undone—no information is lost. 

Standard quantum evolution (the Schrödinger equation) is reversible. Measurement is not. We're 

asking: when does nature have to switch from reversible to irreversible? 

2.3 The Taylor Limit 

The Taylor Limit is the central regularity constraint. It restricts physically admissible observable 

prediction functionals P : S → [0,1], where S is the unit sphere in ℂᴺ, to a controlled analytic 

class. 

For the general reader: The Taylor Limit says that physical predictions must be "well-behaved" 

in three specific ways: smooth (no sudden jumps), stable (small changes in the state produce 

small changes in predictions), and resource-bounded (any prediction can only depend on finitely 

many aspects of the state). These aren't arbitrary assumptions—they reflect the fact that real 

measurements have finite precision and real apparatus has finite complexity. 

Definition 2.2 (Taylor-Admissible Functional). Fix a coordinate chart on S ⊂ ℝ²ᴺ. A 

functional P is Taylor-admissible if it satisfies: 

(i) Analyticity. P is real-analytic on S, admitting a convergent Taylor expansion in local 

coordinates. 

Plain language: The prediction varies smoothly—you can approximate it with a polynomial. 

(ii) Lipschitz Continuity. There exists L_P < ∞ such that for all ψ, φ ∈ S: 

|P(ψ) − P(φ)| ≤ L_P · ‖ψ − φ‖₂ 

Plain language: Similar states give similar predictions. There's a maximum "sensitivity" to state 

changes. 

(iii) Effective Finiteness. For every ε > 0, there exists K = K(P, ε) such that for all ψ there is a 

subset S_ε(ψ) ⊂ Λ with |S_ε(ψ)| ≤ K and: 

∑_{λ∉S_ε(ψ)} |ψ(λ)|² ≤ ε 

and P(ψ) depends only on ψ restricted to S_ε(ψ) up to error ≤ ε. 

Plain language: Any prediction effectively depends on only finitely many configurations. You 

don't need infinite resources to compute it. 

Remark. The Lipschitz condition captures finite measurement resolution. Effective finiteness 

captures finite physical resources: only finitely many modes can be operationally relevant to any 

physical prediction. Together, these encode the constraint that physics operates with bounded 

precision and bounded complexity. 
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3. Distinguishability Load and Capacity 

For the general reader: This section defines the two key quantities: the "load" D (how complex 

the quantum state is) and the "capacity" C (how much complexity the system can handle). The 

main theorem will say: when load exceeds capacity, collapse happens. 

3.1 Effective Support 

Definition 3.1 (Effective Support). For ε ∈ (0, 1), define K_ε(ψ) as the minimal integer k such 

that there exists S ⊂ Λ with |S| = k and: 

∑_{λ∉S} |ψ(λ)|² ≤ ε 

This is the smallest number of configurations needed to capture probability mass 1 − ε. 

Intuition: If a quantum state is spread across many configurations, K_ε is large. If it's 

concentrated on just a few, K_ε is small. This measures "how many possibilities are seriously in 

play." 

3.2 Distinguishability Load 

Definition 3.2 (Load). Fix a reference resolution ε₀ ∈ (0, 1), interpreted as the Born-rule coarse-

graining threshold. The distinguishability load is: 

D(ψ) := log₂ K_{ε₀}(ψ) 

D(ψ) measures the log-number (in bits) of distinguishable configurations that must be coherently 

tracked to represent ψ at resolution ε₀. 

Intuition: D counts (in bits) how many "slots" the quantum state is using. A state concentrated 

on one configuration has D ≈ 0. A state spread uniformly over 1000 configurations has D ≈ 10 

bits. 

Alternative (Entropy Load). For computational convenience, one may use the Shannon 

entropy: 

H(p_ψ) = −∑_λ p_ψ(λ) log₂ p_ψ(λ) 

For broadly spread distributions without heavy tails (e.g., near-uniform over the effective 

support), H(p_ψ) and log₂ K_ε(ψ) coincide up to O(1) factors. The effective-support definition is 

preferred for theoretical precision; the entropy form is often more tractable experimentally. 

3.3 Reversible Capacity 
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Definition 3.3 (Reversible Distinguishability Capacity). Fix the Taylor-admissible class 𝒫 of 

observable functionals and resolution ε₀. The reversible capacity C is: 

C := sup { D ≥ 0 : for all ψ(t) evolving under G-induced unitaries, and all P ∈ 𝒫, the map t ↦ 

P(ψ(t)) remains Taylor-admissible whenever D(ψ(t)) ≤ D } 

Plain language: C is the maximum complexity a quantum state can have while still allowing all 

physical predictions to remain well-behaved under reversible evolution. 

Interpretation. C is the largest log-effective-support load that can be carried while keeping all 

admissible predictions stable, analytic, and finite-resource-trackable. 

Crucial Point. C is a property of the local coherent sector (system plus immediately coupled 

environment), not a universal constant. It depends on: 

• Available degrees of freedom in the local Hilbert space 

• Coupling topology between system and environment 

• The resolution threshold ε₀ 

For a system with internal Hilbert space dimension d_int, we have the scaling: 

C_system ∝ log(d_int) 

under mild assumptions on the coupling structure. 

Intuition: A molecule with more internal vibration modes can "juggle" more quantum 

possibilities before hitting its limit. Capacity scales with the system's internal complexity. 

Constructive Bound on C. The definition of C may appear circular (defined in terms of what it 

preserves). To ground C physically, we note an upper bound: 

C ≤ log₂ d_coh(ε₀) 

where d_coh(ε₀) is the number of mutually distinguishable quantum states that can be coherently 

maintained at resolution ε₀ within the local sector. This is bounded by the effective Hilbert space 

dimension accessible to the system plus immediate environment, which in turn depends on: (i) 

the bandwidth of coherent coupling (modes within thermal/dynamical coherence time), (ii) the 

spatial extent of phase-correlated degrees of freedom, and (iii) the resolution threshold ε₀ itself. 

In many-body systems, the number of coherently accessible degrees of freedom often scales 

polynomially or sub-exponentially with the count of active modes within the coherence 

bandwidth; we write d_coh(ε₀) ~ N_active^{k_eff} only as a schematic placeholder, not a 

derived result. A more precise C estimate can be extracted from experimentally measured 

coherence times, accessible mode bandwidth, and effective local Hilbert dimension inferred from 

spectroscopy. The precise value is system-dependent, but the existence of a finite bound is 

guaranteed by finite local resources. 
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3.4 Distinguishability Influx 

Definition 3.4 (Influx via Load Growth). Let ψ_S(t) denote the reduced system state. The 

distinguishability influx is: 

Φ(t) := dD(ψ_S(t))/dt 

interpreted as an upper Dini derivative when D is not differentiable. 

Intuition: Φ measures how fast new "possibilities" are being injected into the system by its 

environment. High Φ means the environment is rapidly creating new distinguishable alternatives. 

Definition 3.5 (Influx via Information Flow). Equivalently, define: 

Φ_I(t) := dI(S:E)_t/dt 

where I(S:E) is the mutual information between system and environment. 

Remark on Equivalence. These definitions coincide when environmental correlations faithfully 

record system alternatives—that is, when each distinguishable system configuration becomes 

correlated with a distinguishable environmental state. This condition holds in matter-wave 

interferometry when scattered particles (photons or gas molecules) carry away which-path 

information without significant recombination or erasure. In such settings, the decoherence rate 

directly measures Φ. However, in systems with non-Markovian environments or significant 

back-action, the two definitions may diverge; this would constitute a systematic uncertainty in 

any experimental test (see Section 6.4). 

 

4. The Criticality Theorem 

For the general reader: This is the heart of the paper. We prove that when the complexity of a 

quantum state (D) exceeds the system's capacity to track it (C), collapse must occur—not as a 

postulate, but as a mathematical necessity. The theorem also shows that fact-producing universes 

must operate in a "critical window" where both quantum coherence and classical facts can 

coexist. 

4.1 Phase Indistinguishability Beyond Capacity 

Before proving the threshold lemma, we establish a key structural result that makes the necessity 

argument precise. 

Proposition 4.1 (Phase Indistinguishability Beyond Effective Finiteness). Let 𝒫 be a class of 

Taylor-admissible functionals satisfying effective finiteness with uniform bound K_max = 

max_P K(P, ε₀). Suppose ψ and φ are two states with: 
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(i) Identical Born distributions: p_ψ = p_φ 

(ii) Effective support size K_{ε₀}(ψ) = K_{ε₀}(φ) > K_max 

(iii) For every subset S ⊂ Λ with |S| ≤ K_max, the restrictions ψ|_S and φ|_S are identical up to 

an S-dependent global phase, yet ψ and φ are not globally phase-equivalent. 

Such pairs (ψ, φ) exist whenever the phase degrees of freedom exceed the observable phase 

budget K_max—for example, by assigning phases on Λ \ S so that all K_max-restricted 

marginals agree while global phase consistency fails. This is not a pathological construction but 

a natural consequence of exceeding the observable phase budget. 

Then for all P ∈ 𝒫: |P(ψ) − P(φ)| ≤ 2ε₀. 

Plain language: If a quantum state is spread over more configurations than any measurement 

can track, then two states with different phases become indistinguishable. The interference 

pattern that would reveal their difference simply cannot be detected. 

Proof. By effective finiteness, each P depends on ψ only through its restriction to some subset 

S_P with |S_P| ≤ K_max, up to error ε₀. By condition (iii), ψ|{S_P} and φ|{S_P} are phase-

equivalent (up to global phase, which P cannot detect). Hence |P(ψ) − P(ψ|{S_P})| ≤ ε₀ and |P(φ) 

− P(φ|{S_P})| ≤ ε₀, with P(ψ|{S_P}) = P(φ|{S_P}). By the triangle inequality, |P(ψ) − P(φ)| ≤ 

2ε₀. ∎ 

Corollary. When the effective support exceeds K_max, there exist pairs of states with distinct 

interference signatures that are operationally indistinguishable to all P ∈ 𝒫. Interference at that 

scale is not merely unmeasured but undefined within the admissible observable class. 

This proposition makes precise why exceeding capacity forces collapse: the physics cannot track 

the phase information that would distinguish coherent superposition from mixture. 

4.2 Threshold Lemma 

Lemma 4.2 (Regularity Breakdown Under Overload). Assume Taylor-admissibility. If on 

some interval D(ψ_S(t)) exceeds C while Φ is bounded away from zero, then there exists P ∈ 𝒫 

such that t ↦ P(ψ_S(t)) cannot remain simultaneously analytic, Lipschitz, and effectively finite 

unless the dynamics performs an irreversible coarse-graining. 

Plain language: When load exceeds capacity and keeps growing, something has to give. The 

nice mathematical properties we required of physical predictions cannot all be maintained. The 

only way out is collapse. 

Proof Sketch. Effective finiteness implies each P can depend on at most K modes at accuracy ε₀. 

If D = log₂ K_{ε₀}(ψ) rises above C, then the minimal effective support exceeds the maximal 

trackable mode budget compatible with Taylor-admissibility across 𝒫. 
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Maintaining Lipschitz continuity while preserving interference requires phase sensitivity across 

the entire effective support. This becomes impossible once the support exceeds the trackable 

budget: the functional would need to track more phase relationships than can be represented 

within the analyticity constraints. Formally, Proposition 4.1 shows that beyond K_max there 

exist phase-distinct states that are indistinguishable to all admissible observables, so phase-

resolved coherence ceases to be definable within 𝒫 unless the dynamics reduces effective 

support. 

Necessity of phase-sensitive observables. One might ask: why must some P ∈ 𝒫 track phase 

relationships across the full effective support? The answer is that interference is phase 

sensitivity. If no admissible observable were sensitive to relative phases across the support, then 

superpositions over that support would be empirically indistinguishable from mixtures—

interference would be operationally meaningless at that scale. But by assumption, we are in the 

regime where interference exists (D < C was previously satisfied). Therefore, some P ∈ 𝒫 must 

have been phase-sensitive. When D crosses C, this P cannot maintain its regularity properties. 

Restricting 𝒫 to exclude all such phase-sensitive functionals would not avoid collapse—it would 

be collapse, merely redescribed as a restriction on observables rather than a projection of states. 

The physical content is identical. 

The only admissible resolution is projection/coarse-graining into robust records, which reduces 

effective support and removes inaccessible phase correlations. ∎ 

4.3 Capacity-Driven Collapse 

Theorem 4.3 (Capacity-Driven Fact Creation). Under the Taylor Limit and reversible (G-

isometric) micro-dynamics: 

(i) If D(ψ_S) < C, coherent unitary evolution is admissible. 

(ii) If D(ψ_S) > C, analytic regularity fails and irreversible coarse-graining (fact creation) is 

forced. 

Extended coexistence of coherence and stable classical facts is possible only near D(ψ_S) ≈ C. 

The bottom line: Below capacity, quantum mechanics works normally. Above capacity, 

collapse is forced. The quantum-classical boundary is where load meets capacity. 

Why collapse is forced, not merely permitted. One might ask: when D exceeds C, why not 

allow predictions to simply become undefined or unstable, rather than forcing collapse? The 

answer is that a universe with undefined or unstable predictions is not fact-producing. Persistent 

records require stable correlations between system and environment; science requires 

reproducible measurement outcomes; observers require reliable information storage. A regime 

where predictions fluctuate or fail to exist cannot support any of these. Since we are 

characterizing fact-producing universes (the only kind that can contain observers asking such 

questions), the alternative of "undefined predictions" is not physically admissible—it would 

constitute a failure of the universe to produce facts, which is precisely the subcritical regime κ < 
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κ₁. Thus, when D > C, the only resolution compatible with continued fact-production is collapse 

into a reduced state with D < C. 

What this argument establishes and what it leaves open. The above shows that superposition 

must give way to mixture (operationally indistinguishable alternatives), and that mixture must 

resolve to definite facts for the universe to remain fact-producing. In operational terms, the 

forced transition is first to a classical mixture over robust records; the emergence of a single 

realized outcome from that mixture is handled by standard probabilistic selection governed by 

the Born rule. What this argument does not derive is which outcome occurs or with what 

probability. The Born rule p = |ψ|² governs outcome selection; we take this as the standard 

probability mapping and do not claim to derive it here. Our contribution is identifying when 

collapse occurs (D > C), not the mechanism by which one outcome is selected from the resulting 

mixture. The selection mechanism remains an open question, though we note it must reproduce 

Born statistics to match observation. 

Corollary 4.4 (Collapse Criterion). The operational boundary condition is: 

D(ψ_S) ≈ C (load form) 

or equivalently: 

Φ · τ ≈ C (integrated rate form) 

where τ is the interaction time. 

4.4 The Criticality Parameter 

Definition 4.5. Define the criticality parameter: 

κ := (Φ · τ) / C 

This dimensionless ratio compares distinguishability injection to representational capacity. 

Intuition: κ is like a "stress ratio" for the quantum system. κ < 1 means the system can handle 

the incoming complexity; κ > 1 means it's overwhelmed and must collapse. 

Theorem 4.6 (Criticality Theorem for Fact-Producing Universes). There exist constants 0 < 

κ₁ < κ₂ such that: 

(i) Subcritical regime (κ ≤ κ₁): Distinguishability influx is insufficient to overcome analytic 

regularity. Correlations remain reversible and cannot be stabilized into records. The universe 

fails to be fact-producing. 

(ii) Supercritical regime (κ ≥ κ₂): Distinguishability influx exceeds reversible capacity. 

Analytic tracking of alternatives fails, forcing immediate coarse-graining and projection-like 

behavior. Coherence is rapidly destroyed. 
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(iii) Critical window (κ₁ < κ < κ₂): Both coherent dynamics and stable fact creation can coexist. 

This is the only regime supporting the physics we observe. 

 

Theorem Summary. A fact-producing universe must operate in a critical window: too little 

environmental coupling prevents stable records; too much destroys coherence. The quantum–

classical boundary is this window's edge. 

 

For the general reader: This theorem explains why we see the world we do. If the universe 

operated in the subcritical regime, nothing would ever become definite—no measurements, no 

records, no facts. If it operated in the supercritical regime, quantum effects would be instantly 

destroyed and we'd never see interference, entanglement, or quantum computing. The universe 

we inhabit—where both quantum phenomena and classical facts exist—can only occur in the 

critical window between these extremes. 

Remark on κ₁, κ₂. The existence of a critical window is the theorem's core claim; the precise 

numerical values of κ₁ and κ₂ are system-dependent and not claimed here. What follows from the 

Taylor Limit structure alone is: 

• κ₁ > 0: Record formation requires nonzero distinguishability influx (a universe with Φ = 0 

produces no facts). 

• κ₂ < ∞: Coherence requires bounded influx (unbounded Φ destroys all superposition). 

• κ₁ < κ₂: The subcritical and supercritical failure modes are distinct, so an intermediate 

window must exist. 

Order-of-magnitude estimates for laboratory systems interacting with thermal environments 

suggest κ₁ ~ O(0.1) and κ₂ ~ O(10), with the observable quantum–classical boundary near κ ≈ 1. 

These estimates are placeholders; deriving precise bounds requires specifying the coupling 

topology, environmental spectrum, and resolution threshold ε₀ for each physical system. The 

theoretical content lies in the existence and structure of the window, not in particular numerical 

values. 

 

5. Physical Interpretation 

For the general reader: This section translates the abstract mathematics into concrete physical 

quantities that experimentalists can measure. 

5.1 Translation to Physical Proxies 
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Abstract Quantity Physical Proxy Everyday Analogy 

D(ψ) — 

distinguishability 

load 

Effective Hilbert-space dimension at Born 

resolution; approximately the Shannon entropy of 

the Born distribution 

Number of balls the 

juggler is trying to keep 

in the air 

C — reversible 

capacity 

Maximum coherent mode budget of system + 

local environment; bounded by available degrees 

of freedom and coupling topology 

Maximum balls the 

juggler can handle 

Φ — 

distinguishability 

influx 

Rate of entanglement/mutual information flow to 

environment; experimentally approximated by 

decoherence rate, scattering rate, or amplification 

gain 

Rate at which new balls 

are being tossed to the 

juggler 

κ — criticality 

parameter 

Ratio of environmental injection rate to coherent 

processing capacity 

Stress level: incoming 

balls per unit time 

divided by juggling 

capacity 

5.2 Physical Examples 

Large molecules: Decohere when environmental scattering injects distinguishable paths faster 

than internal coherence can track. A molecule in vacuum can maintain quantum superposition of 

paths; add gas molecules that scatter off it, and the "which-path" information leaks to the 

environment, driving D above C. 

Measurement devices: Engineered so amplification gain guarantees Φ ≫ C, ensuring rapid fact 

creation. A Geiger counter, for instance, amplifies a single ionization into an avalanche of ~10⁸ 

electrons—deliberately pushing the system deep into the supercritical regime so that a definite 

"click" is guaranteed. 

Mesoscopic systems: Remain quantum because Φ ≈ C for experimentally accessible times; they 

operate in the critical window. This explains why systems like superconducting qubits can 

maintain coherence for microseconds—they're carefully engineered to sit just below the collapse 

threshold. 

5.3 What This Framework Explains 

1. No stochastic collapse postulate. Collapse is deterministic capacity saturation—not a 

roll of cosmic dice, but an inevitable consequence of exceeding representational limits. 

2. No observer dependence. The threshold D ≈ C is objective and physical. Collapse 

doesn't require consciousness or observation—it requires only that the system's 

complexity exceed its tracking capacity. 

3. Born rule integration. The Born rule, measurement threshold, and quantum–classical 

boundary share a single scale ε₀. Born probabilities remain the standard mapping from 

amplitudes to operational frequencies; the Taylor Limit selects the resolution scale ε₀ at 

which those probabilities are physically discriminable and stable. Below ε₀, probability 

differences cannot be reliably resolved by any admissible observable. The appearance of 
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the same ε₀ in the capacity definition and the collapse threshold is not a coincidence but a 

consequence of both being set by the regularity requirements on physical predictions. 

4. Criticality is structural. The critical window is not fine-tuned but follows from the 

requirement that physics be both coherent and fact-producing. We don't need to explain 

why the universe is "tuned" to allow both quantum and classical behavior—the theorem 

shows this is the only regime where observers can exist to ask the question. 

5. Graceful failure. Quantum mechanics fails at the capacity limit in a predictable, 

continuous way—not mysteriously. There's no "quantum magic" that suddenly switches 

off; there's a smooth transition as load approaches and exceeds capacity. 

 

6. Experimental Test 

For the general reader: A theory is only as good as its testable predictions. This section 

proposes a specific experiment that could distinguish our framework from standard quantum 

mechanics. The key prediction: the threshold for losing quantum interference should depend on a 

system's internal complexity, not just its size or mass. 

6.1 Core Prediction 

The framework predicts that loss of quantum interference occurs when the number of Born-

resolvable alternatives injected into the system exceeds the reversible representational capacity 

C. 

Key distinction from standard decoherence: 

• Standard decoherence predicts monotonic visibility loss driven by environmental 

coupling strength, with visibility declining continuously as coupling increases. 

• Capacity-driven criticality predicts a crossover that is systematically sharper across 

molecular families, and—more importantly—exhibits a universal curve collapse when 

plotted against Φτ/C. 

Analogy: Standard decoherence is like turning up background noise—signal quality degrades 

smoothly. Capacity-driven collapse exhibits a sharper crossover structure, and crucially, data 

from different systems should collapse onto one curve when properly normalized. 

6.2 Proposed Experiment: Large-Molecule Matter-Wave Interferometry 

System. Use a matter-wave interferometer with progressively larger molecules (e.g., 

oligoporphyrins, nanoclusters, or tailored macromolecules), extending experiments by Arndt and 

collaborators. 

Control parameters: 

• Molecular complexity (internal degrees of freedom, determining C) 
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• Environmental scattering rate (background gas pressure, determining Φ) 

• Interferometer path separation and interaction time τ 

6.3 Experimental Protocol 

1. Prepare molecular beams spanning a range of internal complexity (vibrational mode 

count, conformational degrees of freedom), controlling for mass and scattering cross-

section as much as feasible—or explicitly normalizing for standard decoherence 

parameters. 

2. For each molecular species, vary environmental coupling (gas pressure or photon 

scattering) and measure interference visibility V. 

3. Extract the critical scattering rate or pressure at which V collapses. 

4. Compare scaling of the critical point with molecular internal complexity, after factoring 

out mass and cross-section dependence predicted by standard decoherence. 

Alternative framing: Compare molecular families with similar cross-sections but differing 

internal state densities (e.g., rigid vs. floppy molecules of comparable size). The capacity 

framework predicts residual dependence on internal complexity beyond what standard 

decoherence parameters account for. 

Systematic uncertainties. Two potential sources of systematic error deserve attention: (i) The 

equivalence between load-growth and mutual-information definitions of Φ assumes faithful 

environmental recording (see Section 3.4). In matter-wave interferometry with gas scattering, 

this assumption is well-justified since scattered molecules carry away which-path information 

irreversibly. However, in setups with significant photon reabsorption or non-Markovian effects, 

the measured decoherence rate may not accurately reflect the true distinguishability influx. (ii) 

Estimating C from internal mode counts requires assumptions about which modes are coherently 

coupled; spectroscopic validation of the effective mode budget would strengthen any claimed C 

value. 

6.4 Discriminating Predictions 

Addressing apparent thresholds in standard decoherence. One might object that standard 

decoherence already produces sharp-looking thresholds in practice, due to detection limits, 

postselection, or noise floors. This is true but does not undermine our discriminant. The capacity-

driven prediction is not merely that thresholds exist, but that: 

1. The threshold location should shift systematically with internal complexity at fixed mass 

and geometry (or after normalizing for standard decoherence parameters). 

2. Visibility curves from different molecular species should collapse onto a universal 

function when plotted against Φτ/C. 

Standard decoherence does not predict this collapse under capacity-normalized scaling. The 

scaling test, not the mere existence of a threshold, is the discriminant. 

Standard decoherence predicts: 
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• Critical scattering rate depends primarily on mass, cross-section, and coupling strength 

• Internal degrees of freedom act only indirectly via heating or effective noise 

• Visibility decays monotonically with environmental coupling 

Capacity-driven criticality predicts: 

• Critical point shifts systematically with internal complexity, even at fixed mass and 

geometry 

• Systems with larger internal Hilbert-space budgets (larger C) tolerate higher 

environmental coupling before collapse 

• Visibility remains high until a sharp threshold, then drops rapidly 

• Curves for different molecular complexities collapse when plotted against Φ·τ/C 

6.5 Observable Signature 

The distinguishing signature is a nonlinear, threshold-like dependence of interference visibility 

on environmental coupling, with the threshold location scaling with internal representational 

capacity. 

Predicted scaling law: 

V = f(Φ · τ / C) 

where f is a universal function with f(x) ≈ 1 for x ≪ 1 and f(x) → 0 rapidly for x > 1. 

What to look for: Plot interference visibility against the "stress parameter" Φτ/C. If this 

framework is correct, data from molecules of wildly different sizes and structures should all fall 

on the same curve. That universal collapse is the smoking gun. 

Graphical test: Plot visibility V against the scaled variable Φ·τ/C. Data from molecules of 

different internal complexity should collapse onto a single curve. 

6.6 Why This Test Is Decisive 

This experiment directly probes whether collapse is driven by environmental noise alone 

(standard decoherence) or by saturation of reversible representational capacity (this framework). 

A positive result would: 

• Provide the first empirical support for a capacity-based collapse mechanism 

• Explain why mesoscopic quantum systems exist at all 

• Establish criticality as a physical, measurable boundary 

• Vindicate the Taylor Limit as a fundamental constraint on physical predictions 
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7. Discussion 

7.1 Relation to Other Approaches 

Decoherence theory: Our framework is compatible with decoherence but adds a threshold 

mechanism. Decoherence describes how environmental entanglement suppresses interference; 

we explain when this suppression becomes irreversible. Standard decoherence is the "how"; 

capacity saturation is the "when." 

Objective collapse models (GRW, Penrose): These introduce stochastic or gravitational 

collapse triggers. Our approach derives collapse from information-theoretic capacity limits 

without new physical postulates. Where GRW adds randomness and Penrose adds gravity, we 

add only the requirement that physical predictions be well-behaved. 

QBism and relational interpretations: These locate collapse in the observer's knowledge 

update. Our framework locates it in objective capacity saturation, independent of observers. The 

threshold D ≈ C exists whether or not anyone is watching. 

7.2 The Status of the Taylor Limit 

The Taylor Limit functions as the foundational constraint in this framework, but one may ask: 

why does it hold? Several perspectives are available: 

(a) Brute physical fact. The Taylor Limit may simply characterize our universe's physics—an 

empirical regularity with no deeper explanation, akin to the dimensionality of space or the 

existence of conservation laws. 

(b) Consequence of deeper principles. The three Taylor conditions (analyticity, Lipschitz 

continuity, effective finiteness) may follow from more fundamental constraints. Information-

theoretic approaches suggest that finite channel capacity implies effective finiteness; 

thermodynamic considerations suggest that finite free energy implies bounded sensitivity 

(Lipschitz); and the requirement that predictions be computable or simulable may enforce 

analyticity. These connections remain to be rigorously established. 

(c) Observer selection. Only universes with Taylor-admissible physics may produce stable 

records, and hence observers capable of formulating physical theories. On this view, we observe 

the Taylor Limit because we could not exist in a universe without it—an anthropic constraint on 

admissible physics. 

Importantly, the criticality theorem itself is non-anthropic; observer selection is discussed only as 

one possible explanation for why the Taylor Limit holds, not as part of the derivation. The 

theorem follows from the Taylor Limit alone, regardless of its ultimate justification. 

We do not commit to a resolution here. The Taylor Limit may be fundamental, derived, or 

selected; what matters for the present argument is that it holds and yields testable consequences. 

Investigating its origins is a task for future work. 
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7.3 Open Questions 

1. Explicit computation of κ₁, κ₂ for specific physical systems (e.g., spin chains, harmonic 

oscillators coupled to thermal baths). 

2. Connection to gravity: Does gravitational interaction provide a natural capacity bound, 

as Penrose suggests? Could spacetime curvature limit local representational capacity? 

3. Cosmological implications: What does criticality imply for the early universe and the 

emergence of classical spacetime? Was there a phase transition as the universe cooled 

into the critical window? 

4. Biological systems: Do living systems exploit the critical window for quantum 

coherence in functional processes? Photosynthesis and bird navigation show hints of 

quantum effects—is biology optimized to operate near κ ≈ 1? 

7.4 Conclusion 

We have established that a fact-producing universe must operate near a reversible/irreversible 

phase boundary. The quantum–classical transition is not a fundamental mystery but a capacity-

driven threshold: when distinguishability load exceeds representational capacity, coherent 

superposition gives way to definite fact. 

This framework: 

• Derives collapse from the Taylor Limit alone 

• Predicts a measurable criticality threshold 

• Unifies the Born rule, measurement, and classicality under a single scale 

• Offers decisive experimental tests 

The measurement problem, on this view, was never a problem of physics but of representation—

and representations have finite capacity. 

Final thought for the general reader: For nearly a century, physicists have struggled to explain 

why quantum superpositions collapse into definite outcomes. We've shown that collapse doesn't 

require modifying the unitary equations of quantum mechanics; it follows once we impose the 

minimal operational constraint that physical predictions must remain stable and finite-resource. 

Just as a computer runs out of memory, a quantum system runs out of "coherence budget." When 

it does, it must make a choice. That choice is measurement. That's all measurement ever was. 

 

Appendix A: Notation Summary 

Symbol Definition 

(Λ, d) Finite distinguishability metric space 

N = |Λ| Number of micro-configurations 

ψ : Λ → ℂ Pure state (amplitude assignment) 
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Symbol Definition 

p_ψ(λ) = |ψ(λ)|² Born probability 

G Isometry group of (Λ, d) 

U_g Unitary induced by isometry g 

ε₀ Born-rule resolution threshold 

K_ε(ψ) Effective support at resolution ε 

D(ψ) = log₂ K_{ε₀}(ψ) Distinguishability load (bits) 

C Reversible capacity 

Φ = dD/dt Distinguishability influx 

κ = Φτ/C Criticality parameter 

𝒫 Class of Taylor-admissible functionals 

 

Appendix B: Proof Details for Lemma 4.2 

Note on proof methodology. The following is a regularity argument: it shows that maintaining 

Taylor-admissibility under the stated conditions is impossible, forcing a transition to a coarse-

grained description. This is not a functional-analytic existence proof but a structural necessity 

argument. The conclusion—that collapse must occur—follows from the incompatibility of the 

regularity conditions with the state's complexity, not from constructing an explicit collapse 

mechanism. 

Full Proof of Regularity Breakdown. 

Let 𝒫 be the class of Taylor-admissible functionals and suppose D(ψ_S(t)) > C on an interval [t₀, 

t₁] with Φ(t) ≥ Φ_min > 0. 

By Definition 3.3, C is the supremum over loads D such that all P ∈ 𝒫 remain Taylor-admissible 

under unitary evolution. Since D(ψ_S) > C, there exists P* ∈ 𝒫 such that at least one of the three 

Taylor conditions fails for t ↦ P*(ψ_S(t)). 

Case 1: Analyticity failure. If P*(ψ_S(t)) develops a singularity, the Taylor expansion diverges. 

This signals a breakdown of stable phase-resolved predictions; operationally, this is 

indistinguishable from decoherence at resolution ε₀. 

Case 2: Lipschitz failure. If |P*(ψ) − P*(φ)|/‖ψ − φ‖ → ∞, infinitesimal state changes produce 

finite prediction changes. Operationally, this is indistinguishable from outcome selection: 

infinitesimal perturbations amplify into macroscopically different records, yielding effectively 

discrete outcomes at resolution ε₀. 

Case 3: Effective finiteness failure. If the minimal K(P*, ε) exceeds all bounds, P* depends on 

arbitrarily many modes. This cannot be realized with finite physical resources; the system must 

project onto a tractable subspace. 
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In all cases, restoring Taylor-admissibility requires reducing D(ψ_S) below C. The only 

dynamically available mechanism is irreversible coarse-graining: projecting onto robust record 

states that reduce effective support while discarding inaccessible phase correlations. 

Since Φ > 0, new distinguishability is continuously injected. Without coarse-graining, D would 

continue to grow, perpetuating the violation. Thus coarse-graining is not merely permitted but 

forced by the dynamics. ∎ 
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