A Rigorous Reduction of Potential Finite-
Time Breakdown in 3D Navier—Stokes

One-sentence summary:

Navier—Stokes blowup would happen if a vortex keeps stretching itself, isn't torn
apart by chaos, and isn't cancelled by opposite spinning—and this work proves
that if those three things hold, the equations force a breakdown.
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Section 0: The Foundational Claim

One-sentence summary: This work highlights a tension between the PDE formulation and the
physical origins of Navier-Stokes, and provides a concrete reduction (Lemmas A/B/C) that
makes this tension testable.

0.1 The Core Thesis

This work advances a foundational claim that precedes and contextualizes the technical results in
Papers 1-3:

The Navier-Stokes equations are not an abstract PDE. They are a physical theory—a
continuum model of real fluids, constructed from and constrained by thermodynamic principles.
Asking whether NSE "blows up" as a pure mathematics question strips away the physical
admissibility constraints that give the equations meaning.

We propose that the correct formulation is:
Do physically admissible solutions to Navier-Stokes remain smooth for all time?
And we argue the answer is yes, because:
1. Any blowup requires unbounded creation of fine-scale structure (distinguishability)
2. Unbounded distinguishability creation violates a foundational physical principle (BCB)
3. Therefore, any finite-time blowup would lie outside the physically admissible regime of
the NSE continuum model (under BCB)
This does not resolve the Clay Millennium Problem as stated. The Clay problem is
deliberately mathematical—it asks about solutions to a PDE, full stop. Our contribution is to

separate the PDE question from the physical admissibility question, and show how the latter
would rule out blowup mechanisms if an admissibility axiom (BCB) is adopted.

0.2 What Is BCB?

BCB (Bit Conservation and Balance) is the principle that distinguishability—the capacity to
differentiate one configuration from another—cannot be created unboundedly without
compensation.

More precisely:



A physical system cannot generate arbitrarily fine-scale structure without paying for it through
dissipation, mixing, or loss of coherence elsewhere.

This is not a novel or eccentric principle. It is the continuum-level expression of ideas already
established in fundamental physics:

Principle Domain BCB Analogue
andguer S Information theory  Erasing information has thermodynamic cost
principle
Holographic . e . .
bounds Quantum gravity Finite information per bounded region

Boltzmann entropy Statistical mechanics Entropy counts distinguishable microstates

o Quantum field Effective theories discard fine-scale degrees of
Renormalization
theory freedom
Second law Thermodynamics Entropy (disorder) cannot decrease globally

BCB unifies these: distinguishability is the primitive quantity, and all other constraints (entropy
production, dissipation, irreversibility) are downstream bookkeeping.

0.3 Why Blowup Requires BCB Violation

Claim: Any finite-time blowup of Navier-Stokes requires unbounded creation of
distinguishability at arbitrarily fine scales.

Argument:

Consider what blowup means: lo(t)l _{L"o} — o0 as t — T* for some finite T*. This could
manifest as:

o Self-similar amplification (the Riccati pathway analyzed in Papers 1-3)
o Pointwise concentration (a "needle singularity")

o Filamentary collapse

e Any other concentration scenario

In every case, blowup implies:
1. Arbitrarily steep gradients near the blowup region
2. Arbitrarily large contrast between neighboring fluid states
3. Therefore, arbitrarily many distinguishable configurations within any fixed macroscopic

region

This is not mechanism-specific—it is geometric. Fine-scale structure is distinguishability.



The mollified vorticity maximum M_£(t) = IK_€ * o(t)l_{L"o} captures this precisely:
If vorticity blows up anywhere, by any mechanism, then M_{(t) — o for all sufficiently small €.

In this paper we operationalize distinguishability by M_{(t): divergence of lol oo implies
divergence of M_{ for all sufficiently small £, hence unbounded scale-resolved
distinguishability.

This holds even if:

e The blowup set has measure zero
e Global norms (energy, enstrophy) remain finite
e The solution becomes smoother elsewhere

M_( is not merely a technical convenience—it is the operational definition of scale-indexed
distinguishability.

0.4 The Release Valve Structure

BCB does not merely forbid blowup—it specifies zow blowup is prevented. The compensation
mechanisms are:

Valve Mathematical Expression Physical Meaning

Geometric misalignment breaks self-

A fails I stretch loses coercivity .
- reinforcement

IVul_{L"o} grows

B fails Chaos/turbulence shreds coherent structures
uncontrollably
. M_{ > M_{ (cancellation Mixing neutralizes through sign
C fails . .
dominates) cancellation
V150951ty VEM £ term wins D15$1p'f1t10n smooths faster than stretching
dominates - amplifies

Papers 1-3 prove that for the Riccati pathway:
(A A B A C persist) = blowup

Contrapositive:

No blowup = at least one valve opens

BCB guarantees a valve must open, because sustained closure of all valves would require
unbounded distinguishability creation without compensation.



0.5 Why This Applies to All Blowup Mechanisms

The Riccati pathway is one instantiation of a general structure. The argument does not depend on
self-reinforcing stretching specifically:

Any blowup forces M_{ — oo for small £ (geometric fact)

M_{ — oo requires unbounded distinguishability creation at scale £
BCB forbids unbounded creation without compensation
Compensation means a release valve opens

Valve opening blocks the blowup mechanism

MRS

The technical content of Papers 1-3 is proving this structure rigorously for the most natural
blowup pathway (coercive vortex stretching). But the logic is universal.

A different blowup mechanism would require:

e A different pathway to M_{ — o

e Which still requires unbounded fine-scale structure creation
e Which still violates BCB

e Which still forces a compensating valve to open

Within the BCB framework, there is no escape route because BCB operates at the level of
what blowup means, not the particular dynamics leading to it. However, this conclusion is
conditional on accepting BCB as an admissibility axiom—a point we address in Section 0.7.

0.6 The Gap Between PDE Solutions and Physical Admissibility

The Clay Millennium Problem asks:

Do smooth solutions to the 3D incompressible Navier-Stokes equations remain smooth for all
time, or do some develop singularities?

This is a deliberately mathematical question—it treats NSE as an abstract PDE whose solutions
are purely mathematical objects. The Clay committee's framing is entirely appropriate for their
purposes.

But consider the provenance of these equations:

e Derived from continuum mechanics and Newton's laws applied to fluid parcels

e Incorporating viscosity as irreversible momentum diffusion (thermodynamic in origin)
e Assuming a continuum limit of molecular dynamics (finite information density)

e Used to model real fluids in engineering, meteorology, physiology



Navier-Stokes was not invented as a mathematical puzzle. It is a physical theory. The
viscous term VAu is not an arbitrary mathematical regularization—it encodes the second law of
thermodynamics, the dissipation of kinetic energy into heat, the smoothing of gradients through
molecular collisions.

A "solution" that creates unbounded fine-scale structure without compensating dissipation or
mixing is not a physical prediction—it is an artifact of treating the PDE as pure formalism
divorced from its physical meaning.

Question What it asks
The Clay problem  Does the PDE admit blowing-up solutions?
The physical question Do physically admissible solutions blow up?

There is a gap between PDE-solutions and physically admissible solutions. Our contribution
is to make this gap precise and testable through the A/B/C framework.

0.7 Precedents for Physical Admissibility Constraints

This is not a novel interpretive move. Physics routinely excludes mathematically valid solutions
on physical grounds:

Theory Mathematical Solutions Physical Exclusion

General Relativity Closed t}rpellke curves, naked Cosmlg censorship, chronology
singularities protection

Classical Neoative kinetic ener Excluded by definition of kinetic
Mechanics & £y energy
Quantum . . Boundary conditions imposed for
Mechanics Non-normalizable wavefunctions physical states
Electromagnetism Advanced (backward-in-time) Retarded solutions chosen for causality

potentials

Second law imposed as admissibility

Thermodynamics  Entropy-decreasing processes constraint

In each case, the equations allow solutions that physics excludes. The exclusion is not a failure of
rigor—it is recognition that equations are models, and models inherit meaning from what they
model.

BCB for Navier-Stokes is analogous to cosmic censorship for general relativity: a principle
asserting that physically meaningful solutions respect constraints the formalism alone does not
enforce.



0.8 What This Work Establishes

Unconditionally proven (Papers 1-3):

o The master inequality governing mollified vorticity maximum growth

o Conditional Riccati blowup: if Lemmas A—C persist, M_{ blows up

o Templates reducing Lemmas B and C to verifiable geometric conditions
e The outcome dichotomy: persistence vs. trigger firing

o Time parametrization breakdown under blowup conditions

Argued on physical grounds (this section):

e BCB is the foundational physical admissibility constraint

e All blowup mechanisms require BCB violation

o Therefore, physically admissible NSE solutions do not blow up
Not claimed:

e Resolution of the Clay Millennium Problem as stated

e A purely mathematical proof of global regularity
e That BCB can be derived from NSE alone (it is an admissibility axiom)

0.9 The Residual Question

If our analysis is correct, why has this not been recognized before?
We suggest two reasons:

First, the PDE community has (appropriately, for their purposes) focused on NSE as a
mathematical object. Physical admissibility constraints are outside that frame.

Second, BCB as a unifying principle—distinguishability as primitive, with
entropy/dissipation/mixing as downstream—is relatively recent. The connections between
information theory, thermodynamics, and continuum mechanics are still being developed.

The Clay problem may be less a question about Navier-Stokes than a question about what kind of
object Navier-Stokes is. If it is pure mathematics, the problem remains open. If it is a physical
theory, the answer is determined by the physics it was built to encode.



0.10 Summary

Statement Status
. . Interpretive claim

NSE is a physical theory, not an abstract PDE (argued)

BCB is the foundational admissibility constraint Axiom (supported by
precedent)

Blowup requires unbounded fine-scale distinguishability Geometric fact (proven)

BCB excludes unbounded distinguishability creation By definition of BCB

Therefore, under BCB admissibility, physically meaningful NSE Conclusion (conditional

solutions do not exhibit finite-time blowup on BCB)

Clay Millennium Problem (as stated) ? OI.)EN (different
question)

The three-paper technical series that follows provides the rigorous mathematical
machinery supporting this framework, instantiated for the Riccati blowup pathway.
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General Reader Abstract

What is this about?

The Navier-Stokes equations describe how fluids flow—from water in pipes to air around
aircraft to blood in arteries. One of the greatest unsolved problems in mathematics (a Clay
Millennium Problem, with a $1 million prize) asks: can these equations ever "blow up"? That is,
can a perfectly smooth initial flow develop infinite speeds or infinitely sharp features in finite
time?

What does this work do?

We don't solve the Millennium Problem. Instead, we reduce it to a cleaner question. We prove
that blowup must happen IF three specific conditions hold:

1. Self-stretching persists: The strongest spinning region keeps amplifying itself
Chaos doesn't intervene: The flow stays organized enough for the amplification to
continue

3. Cancellation doesn't intervene: Opposite-spinning regions don't neutralize the growth

We call these conditions Lemmas A, B, and C. The mathematical content of this work is proving
rigorously that A+B+C = blowup.

What's the connection to information theory?

From an information-theoretic perspective, blowup represents unbounded creation of "structure"
or "distinguishability" in the fluid. A natural principle (which we call BCB—Bit Conservation
and Balance) suggests that physical systems can't create unlimited structure without paying for it
somehow. BCB is an interpretive framework, not a proven theorem.

In our framework, Lemmas A, B, and C correspond to three "release valves" that could restore
balance:

e Valve A: Geometric alignment breaks (stretching becomes inefficient)

e Valve B: Chaos develops (turbulence shreds coherent structures)

e Valve C: Mixing occurs (opposite rotations cancel out)
If global regularity holds (no blowup ever), it would mean Navier-Stokes always opens at least
one valve in time. The Millennium Problem becomes: does the equation have this built-in safety

mechanism? We don't know.

What's proven vs. what's open?

Statement Status
If A+B+C hold — blowup Proven

11



Statement Status
A+B+C hold for some initial data @ Open
A+B+C fail for all initial data @ Open
BCB holds for all NSE solutions ‘@ Open (conjectural)
Clay Millennium Problem ? Open

The deeper physical point
Navier-Stokes was not invented as an abstract mathematical puzzle. It is a physical theory:

e A continuum limit of molecular dynamics
e Constrained by thermodynamics (entropy must increase)
e Built on irreversible dissipation (viscosity smooths things out)

From this perspective, BCB isn't adding something foreign—it makes explicit what the physics
already assumes. A solution that creates unbounded fine-scale structure without compensating
dissipation or mixing would be physically inadmissible, even if it formally satisfies the
equations.

This reframes the Millennium Problem:

Interpretation What blowup means
NSE as pure math A formal solution question
NSE as physics  Requires violating thermodynamic balance

We do not claim this resolves the Clay problem—that asks about mathematical solutions, not
physical admissibility. But it clarifies what blowup would require: sustained violation of the
balance principles the model was built to encode.

Why does this matter?
Even without solving the full problem, this work:
o Transforms an opaque global question into three concrete conditions
e Provides computable diagnostics for numerical simulations
o Identifies the specific physical mechanisms that could prevent blowup

e Clarifies the conceptual gap between NSE-as-math and NSE-as-physics
e Gives any future proof (or disproof) a clear structure to follow

12



Paper 1 (Proof Version): Mollified-Maximum Inequality,
Quantitative Error Bounds, and Conditional Riccati
Blowup

Technical Abstract

We develop a proof-level framework that reduces potential finite-time breakdown for the 3D
incompressible Navier—Stokes equations on R? to the verification of three explicit analytic
conditions. Our main technical contribution is a max-functional inequality for the mollified
vorticity maximum M_£(t) := IK_€ * w(t)l {L"o}, proved in a Dini-derivative form that avoids
differentiability issues of spatial suprema. We show that, for smooth solutions, M_{ obeys a
Riccati-type lower differential inequality consisting of:

(1) a stretching contribution &_t-(K_{*(Sw)) evaluated at the maximizer, (ii) a transport
commutator term bounded by CilVul{L"o!M ¢, where M € := |K_{* w|l{L"0} >M {, and (iii)
a viscous term bounded by Covl>M L,

with explicit constants Ci = l|z|VK(2)I{L*} and C: = IAKI{L"}.

We prove a conditional blowup theorem: if (A) coercive stretching I_stretch > cM_(?, (B)
velocity-gradient control IVuleo < CM £(1+log”), and (C) no-cancellation M € <xM € hold on a
time interval, then M€ (and hence lwl{L"o0}) blows up in finite time by Riccati comparison.

From an information-theoretic viewpoint, these three conditions represent "release valves" for a
balance principle (BCB): sustained blowup requires all three valves to stay shut, preventing
entropy/mixing mechanisms from restoring equilibrium. Appendix B develops this connection
precisely.

This paper does not resolve the Clay Millennium Problem; it provides a rigorous reduction of
a blowup proof to three verifiable estimates and cleanly separates proven statements from open
persistence questions.

Reader's Map:

e Paper 1 proves the reduction: (A—C) = blowup of M_{. This is proof-grade.

o Paper 2 provides templates (not proofs) for B and C: coherence = (C), endpoint
regularity + localization = (B). Persistence of these conditions is open.

o Paper 3 proves: on intervals where Lemma B holds, either (A—C) persist to T R and
blowup follows, or a trigger must occur first. This is outcome logic conditional on
Lemma B.

13



o Appendix B introduces a Physical Admissibility Axiom (BCB) and proves that [F BCB
is accepted as an admissibility axiom, THEN at least one of A, B, C must fail. BCB is not
assumed in any proof; it provides interpretive context.

Non-Technical Summary

Big picture: If fluid motion keeps stretching itself strongly, without getting scrambled or
cancelled, and if the velocity field doesn't become wildly irregular too fast, then the equations
force a runaway blowup. Lemmas A, B, C are exactly the three things that must stay true for that
runaway to happen.

Lemma A — "Strong self-stretching"

Plain English: The strongest swirl in the fluid keeps pulling and stretching itself faster and faster.
Think of a tiny tornado inside the fluid. That tornado isn't just spinning—it is being stretched in a
way that makes it spin even harder. And crucially: the stronger it gets, the faster this self-
stretching accelerates. It's like stretching a rubber band that tightens faster the more you stretch
it.

If Lemma A holds, nothing slows the growth down—the math forces acceleration.

Lemma B — "The flow stays organized enough"

Plain English: The fluid doesn't instantly turn into chaotic noise everywhere.

The fluid can become intense, but it still has structure. Nearby fluid particles don't suddenly start
flying apart unpredictably. The overall flow remains "smooth enough" that the strongest swirl

can keep interacting with itself coherently.

If Lemma B fails, the flow becomes so violently irregular that any growing vortex gets shredded
before it can feed on itself.

Lemma C — ""No cancellation by opposite spins"

Plain English: The swirl doesn't get neutralized by nearby opposite-direction spinning.

Think of two whirlpools spinning in opposite directions close together. If they mix, they partially
cancel and weaken each other. Lemma C says that near the strongest vortex, everything is mostly

spinning the same way—so instead of cancelling out, the motion reinforces itself.

How they fit together

14



Lemma Everyday meaning What goes wrong if it fails

A The strongest swirl keeps intensifying itself Growth stalls
B The surrounding flow stays coherent Chaos shreds the vortex
C Spins reinforce instead of cancel Opposite spins neutralize growth

Together they say: A strong, coherent, self-reinforcing vortex persists long enough to force
runaway growth.

The Information-Theoretic View (BCB)

From a deeper perspective, blowup represents the unbounded creation of "structure" in the fluid.
A balance principle suggests this shouldn't happen without compensation. Lemmas A, B, C are
three ways the system can "pay" for structure creation:

e A fails: Geometry breaks alignment — stretching becomes inefficient
o B fails: Chaos develops — turbulence shreds structure

o C fails: Mixing occurs — opposite rotations cancel

If the Navier-Stokes equations always open one of these "release valves" before blowup, global
regularity holds. The Millennium Problem asks whether this safety mechanism is built into the
equations.

Why this matters

We've shown that:
o If all three hold — blowup is mathematically unavoidable
e If blowup does not happen — at least one must fail, and we can identify which physical

mechanism stopped it

This turns a mysterious global problem into three concrete physical failure modes.

1. Setting and Notation

We consider the 3D incompressible Navier—Stokes equations on R* with viscosity v > 0:
ou+@Vu—vAu+Vp=0

Vu=0

u(0) =uo

These equations describe the motion of an incompressible viscous fluid. The vector field u(x,t)
represents fluid velocity at position x and time t. The nonlinear term (u-V)u captures how the

15



fluid carries itself along (advection), while vAu represents viscous diffusion that tends to smooth
out velocity gradients. The pressure p enforces incompressibility.

The Clay Millennium Problem asks whether smooth initial data always produces smooth
solutions for all time, or whether some initial conditions lead to "blowup"—solutions that
develop infinite velocity gradients in finite time. Despite decades of effort, this remains open.

Our approach: Rather than attacking the full problem directly, we identify three specific
conditions (Lemmas A, B, C) and prove rigorously that if these conditions hold, blowup mus¢
occur. This reduces the millennium problem to understanding whether these conditions can
persist.

Standing assumption (Decay). We assume uo is smooth with @o =V % uo € L'(R?) N L"oo(R3).
This ensures o(-,t) € L' N L"co for smooth solutions, so K £ * |o| — 0 as [x| — o and suprema
are attained.

Domain note. All max-attainment and Dini derivative steps are simplest on T? (periodic
domain), where maxima automatically exist. We present R* with decay for physical relevance;
the arguments transfer directly to T°.

Why vorticity? The key insight of modern fluid mechanics is that vorticity o := V X u (the local
spinning of fluid) often controls the dynamics better than velocity itself. The celebrated Beale-
Kato-Majda criterion [1] shows that blowup occurs if and only if Jo"T la(t)l_{L"o0} dt = oo. Thus
controlling the maximum vorticity is equivalent to controlling regularity.

Let o := V x u denote vorticity, and S := (Vu + VuT)/2 the strain tensor. The strain tensor
measures how the fluid stretches and compresses—it's the symmetric part of the velocity
gradient that governs deformation.

Why mollify? The maximum lo(t)l _{L"oo} is difficult to work with directly because (i) it may
not be differentiable in time, and (ii) its maximizers may jump discontinuously. By convolving
with a smooth kernel K €, we obtain a regularized maximum M_ {(t) that is Lipschitz continuous
and has well-behaved maximizers, while still capturing the essential blowup behavior as £ — 0.

Fix a standard mollifier K € C_c’oo(R?), K> 0, JK = 1, and define K_{(x) = £3K(x/0).

Definition 1.1. We define two mollified vorticity functionals: M_{(t) := IK_{ * @(t)I{L"0o(R?)}
(vector mollification) M_{(t) := K € * |ow|(@®)I{L"0(R?*)} (magnitude mollification)

Remark. The dynamical object is M_ ¢ (from mollifying the vector field ). However, M_{ >

M £ provides a useful upper bound for commutator estimates. Both converge to lol {L"o} as {
— 0. The inequality M_{ >M_ ¢ holds because mollifying magnitudes first prevents any
cancellation between opposite-pointing vorticity vectors.

Definition 1.2. The upper Dini derivative of a scalar function f{(t) is: D*f(t) := limsup {h—0"}
(f(t+h) — f(t))/h
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This generalized derivative always exists and equals the classical derivative when fis
differentiable. Using Dini derivatives allows us to work with M_{(t) even at times when it might
not be classically differentiable.

2. Regularity of the Mollified Maximum

Lemma 2.1 (Local Lipschitz continuity). If u is a smooth Navier—Stokes solution on [0,T), then
t = M_L(t) is locally Lipschitz on [0,T).

Proof. For smooth u, ® is smooth on R? x [0,T), hence K Lw is smooth in x and t. In particular,
0K _{w)(-,t) € L"o(R?). Forh>0: M_{(tth) — M _£(t) <sup x [(K Lw)(x,t+h) — (K Lo)(x,1)| <
h - sup_{s€[t,t+th]} 10(K €*w)(-,s)I_{L oo}

The same bound holds with t and t+h swapped, proving local Lipschitz continuity. m

Lemma 2.2 (Existence of maximizers). Under the decay assumption, for each t € [0,T), there
exists x_t € R3 such that |(K_{*w)(x_t,t)] = M_£(t). A measurable selection t = X _t can be
chosen.

Proof- Since o(-,t) € L' N L0 and K _{ has compact support, K Lw is continuous and vanishes

at infinity. Hence |K_{o| attains its supremum. Measurable selection follows from standard
theorems. m

3. The Max-Functional Inequality (Riccati Structure)

This section contains the core technical result: a differential inequality governing the growth of
M_L(t).

Physical intuition: The vorticity equation describes a competition between:
e Stretching (o-V)u: Vortex tubes being stretched by the strain field, which intensifies
vorticity
e Transport (u-V)w: Vorticity being carried along by the flow

o Diffusion vAw: Viscosity smoothing out vorticity gradients

Blowup occurs when stretching wins—when vorticity intensifies faster than diffusion can
smooth it out. Our inequality makes this competition precise.

Taking curl of Navier—Stokes yields the vorticity equation:
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0w+ (u'V)o = (o'V)u+vAw

Theorem 3.1 (Master max-functional inequality, Dini form). Let u be a smooth Navier—
Stokes solution on [0,T). Fix £ > 0. For a.e. t, let x_t be a maximizer of [K_{*w(-,t)| and define:

E t=(K_0*o)(x_tt) /M (1)
(the unit direction of mollified vorticity at x_t). Then:
D*M_0(t)>1 stretch(t) — I transport(t) — I viscous(t)
where:
o [ stretch(t)=¢& t- (K £*(Sw))(x_t, t) — stretching contribution
e [ transport(t) = |[[K_€*, (u-V)]o|(x_t, t) — transport commutator error

e [ viscous(t) = v[K _*(Aw)|(x_t, t) = VJA(K £*m)|(x_t, t) — viscous damping

Interpretation: The mollified vorticity maximum grows at least as fast as stretching, minus
transport errors and viscous damping. If stretching dominates, M_{ must grow.

Proof. Let v(x,t) := (K _£*m)(x,t). Fix t and a maximizer x_t with [v(x_t,t)| =M _£(t).
Step 1 (Dini derivative bound): For any h > 0: M_{(t+h) > |v(x_t, t+h)|

This is the key trick: even though we don't know where the fufure maximizer will be, we can
track what happens at the current maximizer. This gives a one-sided bound.

Hence: (M_{(t+h) — M_L(t))/h > (jv(x_t,t+h)| — [v(x_t,t)))/h
Taking limsup as h — 0" and using that v is C' in t: D'M_£(t) > & t - Ov(x_t,t)
where £ t = v(x_t,t)/|v(x_tt)|.

Step 2 (Mollified vorticity equation): Apply K €* to 6w = (0-V)u — (u-V)o + vAw: 6v =
K *(0'V)u) =K £*((u'V)o) + vK_*(Ao)

Step 3 (Stretching term—the key simplification): Write Vu =S + A where S = /2(Vu + Vu?) is
symmetric (strain) and A = %2(Vu — VuT") is antisymmetric (rotation). For any vector w, Aw = Q X
w where Q = 4(V x u) = 0/2. Hence: Ao = (0/2) x 0 =0

This is geometrically obvious: a vector crossed with itself is zero. Therefore (o V)u = S
exactly—vorticity stretching depends only on strain, not rotation. This gives K £*((®-V)u) =

K 0*(Sw).

Step 4 (Transport decomposition): Write: K (*((u-V)o) = (u-V)(K tw) + /K ¢, (u-V)]o
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The commutator [K_€*, (u-V)] arises because mollification and transport don't commute when u
varies in space.

Atx t: & t- (u'V)v=(uV)v|=0 since x _tis an interior maximum of |v|. (The directional
derivative of the magnitude vanishes at a maximum.)

Step 5 (Viscous term): Since K { commutes with A: K {*(Aw) = A(K_{*m) = Av.

Step 6: Projecting onto & tand using | t- w|<|w|: E t-Ov=& t- (K *(Sw))—& t- [K €%
(uV)]o+vEt-Av>E t- (K £*Sw)) — |[K_€*, (u'V)]o| —Vv|Av|

This yields the claim. m

4. Quantitative Bounds on Error Terms

Lemma 4.1 (Transport commutator bound). Define Ci := ||z|VK(2)I{L’}. Then: I _transport(t)
< Cil Pu@)l{L "0} M_L(t)

Proof- Using incompressibility and integration by parts: [K_£*, (u-V)]o(x) = J(u(x) - u(y)) -
VK_{(x~y) o(y) dy

Taking absolute values: |[[K_C*, (u'V)]o(x)| < [ju(x) — u(y)| [VK_U(x-y)| |o(y)| dy < IVul o [[x—y]|
VK _L(x=y)l lo(y)| dy

Since [x—y| [VK_0(x—y)| = 3 - |z| [VK(z)| with z = (x—y)/L: [[K_C*, (u-V)]o(x)| < IVul oo - (K_¢
* o[)(x)

where K(z) = |z||VK(2)|/l|z][VKI{L"} is a normalized kernel. At the maximizer x_t: I _transport(t) <
Cil Vuloo (K_€*|o[)(x_t) < CilVul_co M_£(t). m

Lemma 4.2 (Viscous bound). Define Cz := IAKI {L'}. Then: I viscous(t) <Cav {2 M _£(t)
Proof. Since K { commutes with A: K {*(Aw) = A(K (*o)
Hence: [A(K_*0)(x)| = |[AK_L(x—y) o(y) dy| < IAK_CI{L} lol {L 0}

With IAK_EI{L7} = €A4KI{L'} and noting that IK_CI{L’} = I implies M € <lwl{L" o0}:
[ viscous(t) <Cov £>M_L(t). m

Theorem 4.3 (Quantitative master inequality). For a.e. t: D*M_{(t) > I stretch(t) —
CilVu(t)l_{L"oo} M_L(t) — Cave2 M_L(t)
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Remark. The commutator bound uses M_{ while the viscous bound uses M_£. To close purely in
terms of M_{ requires controlling their ratio (see Lemma C below).

Proof- Combine Theorem 3.1 with Lemmas 4.1-4.2. m

5. Conditional Riccati Blowup from Structural Lemmas

We now reach the heart of the argument. The master inequality (Theorem 4.3) shows that
vorticity growth is driven by stretching minus error terms. To prove blowup, we need the
stretching term to dominate. We isolate this requirement into three explicit conditions.

The Riccati connection: The ODE y' = cy? (for ¢ > 0) has solutions y(t) = y(0)/(1 - cy(0)t),
which blow up at time T* = 1/(cy(0)). This is called "Riccati blowup." Our goal is to show that
under suitable conditions, M_{(t) satisfies an inequality of this form.

Lemma A (Coercive stretching; hypothesis). There exists ¢ > 0 such that: I stretch(t) >c
M_((t)?> on a time interval [0,T].

Physical meaning: The stretching term grows at least quadratically with vorticity strength. This
is the "self-reinforcing" property—stronger vorticity leads to even stronger stretching. Lemma A
says this feedback loop persists.

Why quadratic? 1f 1_stretch ~M_{? and errors grow slower than quadratic, then for large M_ €,
stretching dominates and we get Riccati-type growth.

Lemma B (Velocity-gradient control; hypothesis). There exists C < oo such that:
IVu(t)l {L"0} <CM_L(t)(1 +log"(M_L(t)/M_£(0))) on [0,T].

Physical meaning: The velocity field doesn't become infinitely irregular too fast. The logarithmic
factor allows for growth, but not explosive growth. This is related to the Beale-Kato-Majda
criterion [1], which shows that IVul_oo controls regularity.

Why is this not automatic? The Biot-Savart law relates velocity to vorticity via a singular
integral. In 3D, this integral is NOT bounded from L"oo to L0 in general (see Section on
Calderén-Zygmund theory in Paper 2). Extra structure is needed.

Lemma C (No-cancellation / comparability; hypothesis). There exists « > 1 such that: M_{(t)
<k M _{L(t) on [0,T].

Physical meaning: Recall M_£ =1K_ € * |w|loo and M_€ =1K ¢ * wloo. The ratio M_¢/M_€
measures how much vorticity cancels when averaged. If « is close to 1, there's little
cancellation—nearby vorticity vectors point in similar directions. If « is large or infinite,
opposite-pointing vortices cancel significantly.
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Why does this matter? Our error bounds involve M_£, but our growth term involves M_{. To
close the argument, we need them comparable.

Theorem 5.1 (Conditional finite-time blowup of M_{). Assume Lemmas A—C hold on [0,T].
With the adaptive choice £(t) = (v/M_L(t))"{1/2}, there exists an explicit threshold M_c¢
depending only on ¢, C, «, Ci, Cz such that if M_£(0) > M_c then M_{ blows up in finite time
with: T* <2/(c M_{(0))

In particular, lo(t)l {L"oo} blows up no later than T*.

Interpretation.: The blowup time is inversely proportional to initial vorticity strength. Stronger
initial vorticity — faster blowup. This is characteristic of Riccati dynamics.

Proof.
Step 1: Substitute the lemmas into the master inequality.

From Theorem 4.3 and Lemmas B-C, the commutator term is bounded by: CilVul_co M L<C:-
C-M _£2(1 +log'M_t/M_£(0))) <Ci-C- M X1+ log"'(xkM_t/M_£(0)))

Insert Lemma A to obtain: D'M_€>cM _(?> — CiCx* M_{*(1 + log"(kM_{/M_£(0))) — Cavl 2
M (

Step 2: Choose the mollification scale adaptively.

With € = (vVM_£)"{1/2}, the viscous term equals C2M_ (2. This choice balances viscous effects
against vorticity strength—as vorticity grows, we zoom in to finer scales.

Step 3: Control the logarithmic factor.
Choose an admissible range: M_£(t) € [M_£(0), e"{c/(4C:Cx?)} M_£(0)/k]

so that log"'(kM_{/M_£(0)) < ¢/(4C:Cx?) and hence: CiCx*(1 + log*(kM_{/M_£(0))) < CiCx?* +
c/4

Step 4: Obtain Riccati comparison.

Choose M_c so that Cz + CiC«k? < ¢/4 whenever M_£(0) > M_c. Then on the admissible range:
DM (> (c/2)M_¢?

Step 5: Apply comparison principle.
By comparison for differential inequalities with upper Dini derivatives (valid for locally

Lipschitz functions like M_ (), M_{ dominates the solution of y' = (¢/2)y? with y(0) = M_£(0),
which blows up at time 2/(cM_ £(0)).
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Since M_{ <lwl_oo, blowup of M_{ implies blowup of vorticity in the L"*co norm, which by
BKM [1] implies breakdown of smooth solutions. m

6. Proven Results and Open Hypotheses

Unconditional results proved here (for smooth solutions with decay):

Result Status
Master inequality for M_ £ in Dini form (Theorem 3.1) PROVEN
Transport commutator bound via M€ (Lemma 4.1) PROVEN

Viscous bound via M € (Lemma 4.2) PROVEN
Quantitative master inequality (Theorem 4.3) PROVEN
Conditional Riccati blowup (Theorem 5.1) PROVEN
Time parametrization breakdown (Theorem 7.2) PROVEN

Three explicit hypotheses (status after Papers 1-2):

Hypothesis Meaning Status
Lemma A Coercive stretching: I stretch>c M_ (2 % OPEN

Lemma B Velocity-gradient control: IVul_oo < CM_{(1+log*) Template (Paper 2)
Lemma C No-cancellation: M_£ <«xM_¢ Template (Paper 2)

Lemma D Concentration: V eff >V * (for Theorem 7.2) ? OPEN

Notation summary:

M_L(t) =IK £ * o(t)l_{L"wo}: dynamical object (vector mollification)

M_(t) =IK_€ * |o|(t)l_{L"o0}: bounding norm (magnitude mollification), M_£>M ¢
V_eff(t) = lol*/lol_«?: effective volume (concentration measure)
Ci=1|z[VK(z)l_{L'}: commutator constant

C2=IAKI_{L'}: viscous constant

K: comparability constant from Lemma C

7. Time Parametrization Breakdown

We prove that Riccati blowup implies failure of the time coordinate as a valid parametrization,
under a concentration hypothesis.
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Definition 7.1 (Configuration velocity). For a smooth solution u(t), define: V_config(t) := l0¢

u(@®l{L?}

Definition 7.2 (Time regularity). The time parametrization is regular on [0,T) if: [o"
V_config(t) dt <o

Lemma 7.1 (Provable lower bound for V_config). For smooth Navier-Stokes solutions:
V_config(t) = 10t u@)I{L?*} > v lo(t)I{L3}? /lu@)l {L?}

Proof. From the energy identity: d/dt (*2lu(t)l2?) = —vIVu(t)l>?
Differentiating lu(t)l. and using Cauchy-Schwarz: |d/dt lu(t)lz| = vIVu(t)l2? / lu(t)l2 < 16_tu(t)l2
Since IVulz = lwl2 for divergence-free u, we obtain: 10 _t u(t)l2 > v lo(t)l2? / lu(t)l. m

Remark. This bound is scale-consistent: under the NSE scaling u_A(x,t) = Au(Ax,A%t), both sides
scale as A {3/2}, so no contradiction arises.

Definition 7.3 (Effective volume / concentration). Define the effective volume: V_eff(t) :=
lo(O)I{L?}2 /e ()1 {L oo}?

This measures the volume over which vorticity is concentrated near its maximum.

Lemma D (Concentration hypothesis). There exists V_* > 0 such that: V_eff(t) >V_* on
[0,T].

Interpretation: Lemma D fails if vorticity becomes extremely intermittent (concentrated in
vanishing volume).

Theorem 7.2 (Conditional time parametrization breakdown). Assume Lemmas A—C and D
hold, and M_€(0) > M _c. Then:

(1) M_L(t) —» o ast — T* (by Theorem 5.1), hence lo(t)l_{L" 0} — o

(ii) The time parametrization fails: Jo*{T*} V_config(t) dt = oo

Proof.

(i) By Theorem 5.1, M_{(t) —» c0ast— T*. Since M_{ <lol_{L"o0}, vorticity blows up.

(ii) By Lemma 7.1: V_config(t) > v lo(t)l2? / lu(t)l-

Using Definition 7.3 and Lemma D: lo(t)l.2 = V_eff(t) - lo(t)lo? > V* - lo(t)l_owo?

Energy is non-increasing, so lu(t)l> < lu(0)l.. Therefore: V_config(t) >v V_* lo(t)l_o?/ lu(0)l> >

C - M Lt
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Near blowup, M_£(t) ~ 1/(T* - t), so: V_config(t) > C/(T* - t)?
Integrating: [o>{T*} V_config(t) dt > C [oA{T*} (T* - ) {-2} dt=co m
Corollary 7.3. Under Lemmas A-C-D:

e The parameter t reaches T* in finite "coordinate time"
o But infinite configuration change occurs before T*
e Therefore t fails as a physical time coordinate at T*

Remark (Emergent time interpretation). If physical time is defined by configuration change,
then Theorem 7.2 shows that Riccati blowup (under Lemmas A—C-D) corresponds to breakdown
of the time-configuration correspondence. The classical parameter t loses physical meaning at
T*.

Summary of Section 7:

Result Condition Status
V_config > vlol.*/lul> (Lemma 7.1) None PROVEN
[V _config = « (Theorem 7.2) Lemmas A—C-D PROVEN
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Paper 2: Persistence and Breakdown of Coercive Vortex
Stretching in 3D Navier—Stokes

Templates for Lemmas B and C; Conditional Structure for Persistence

Abstract

We continue the conditional blowup program of Paper 1. Paper 1 proves blowup of the mollified
vorticity maximum M _{ assuming three lemmas: (A) coercive stretching, (B) velocity-gradient
control, and (C) a no-cancellation comparability.

In this paper we establish:

e (i) Lemma C template: direction coherence at scale £ implies Lemma C (proven)

e (i) Lemma B template (conditional on endpoint regularity): if endpoint regularity
holds (e.g., vorticity direction regularity, BMO, Hdlder, or Constantin—Fefferman
geometric depletion), then localization yields the desired logarithmic gradient bound

e (ii1) Conditional bootstrap: IF Lemmas A—C persist to T R, THEN blowup (proven)

We also define quantitative diagnostics and prove a dichotomy statement: failure of coercive
stretching forces one of finitely many measurable mechanisms to cross a computable threshold.

What remains open: Proving that Lemmas A—C actually persist to the Riccati time T R for
some concrete initial data class. This is the central difficulty.

1. Setup and Notation

We adopt the notation of Paper 1. Let o be vorticity, K a standard mollifier, K €(x) = £K(x/0).
Define:

M (1) = IK_C*a(t)l_{L o}
M_0(t) == IK_*o|(t)]_{L w0}
K_U(t) =M _Lt/M_L(t)>1

Let x_t be a maximizer of |[K Lw(-¢)| and ¢ t := (K _{o)(x_t,t)/M_L(t).

The ratio K { is central to this paper. It measures the "cancellation factor"—how much vorticity
vectors cancel when averaged over the mollification scale €. If K € = 1, there's no cancellation
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(all vorticity points the same way). If K ( is large, significant cancellation occurs (nearby
vorticity vectors point in different directions). Lemma C requires K £ to be bounded.

2. A Proof of Lemma C from Direction Coherence

Key insight: Cancellation happens when vorticity vectors point in different directions. If we can
bound how much the direction varies within the mollification scale, we can bound cancellation.

Remark on the |®| = 0 singularity: The direction field n = o/|®| is undefined where |®| = 0 and
can oscillate arbitrarily near zeros. We address this in two ways:

1. High-vorticity set restriction: Define the high-vorticity set for threshold A € (0,1):
2. QM) = {x: oD =2 lo)l o}

Direction coherence is measured only on Q A(t). This is standard in geometric depletion
results: coherence is only needed where vorticity is large enough to drive stretching.

(O8]

Mollified direction (alternative): One can also use a non-singular proxy:
4. n_Lxt) =K t*o)xt) / (K _*o|(x,t) + € M_L(t))

This is defined everywhere and tracks cancellation geometry at scale £ without division
by small quantities.

Definition 2.1 (Local direction coherence at scale {, on high-vorticity set). Fix { >0 and A €
(0,1). For a point x € Q_A(t), define the local direction spread:

d_b(x,t) = sup{ angle(w(y,t), o(x,t)) : [y—x|<2L,y € Q A1) }
Interpretation: § {(x,t) measures the maximum angle between vorticity vectors in the high-
vorticity portion of a ball of radius 2£ around x. Small 8 ¢ means high-vorticity regions point

nearly the same direction.

Lemma 2.2 (No-cancellation at a point). Assume x € Q A(t) and & £(x,t) < o < /2 (measured
on the high-vorticity set). Then:

[(K_L*m)(x,t)] = cos(do) - (K L*|o[)(x,t) — (contribution from low-vorticity regions)

When vorticity is concentrated in Q A(t), the low-vorticity contribution is negligible and we
recover:

|(K_L*0)(x,t)] = (cos(d0) — O(1-A)) - (K_¥|m|)(x,t)
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Geometric meaning: If all high-vorticity vectors within the mollification ball make angle at most
do with a reference direction, then when we average them, at least a fraction cos(do) of the
magnitude survives.

Proof sketch. Decompose the integral over O A and its complement. On Q A, use the angle
bound. On the complement, |o| is small by definition. m

Theorem 2.3 (Lemma C from coherence near maximizers of M 0).Fixtand . LetX tbea
maximizer of (K_£*|w|)(-,t), so (K _€*|o[)(X_t,t)=M_£(t). Assume:

e X t€Q Mt) for some A > 0 (maximizer is in high-vorticity region)
e O L(X_tt) <do<m/2 (direction coherence on high-vorticity set)

Then:
K _U(t)=M_L(t)/M_L(t) < sec(do) + O(1-1)
In particular, for A close to 1 and 8o < /4, we get K_0(t) S V2.

Key point: We only need coherence on the high-vorticity set near the maximizer, not
everywhere. This avoids the |o| = 0 singularity entirely.

Proof. Apply Lemma 2.2 at X_t, noting that the maximizer of K *|w| typically lies in regions of
high vorticity. m

What this achieves: We've reduced Lemma C (a global statement about cancellation) to a local

geometric condition (direction coherence on the high-vorticity set near one point). This avoids
division by small |®| and is consistent with standard geometric depletion arguments.

3. Lemma B: Endpoint Regularity / Controlled Singular
Integral Growth

Critical clarification: Lemma B is an endpoint control statement for a Calderon—Zygmund
operator. It is not implied by localization alone.

The Biot-Savart operator Vu = VK * o is a Calderén-Zygmund singular integral. CZ operators
are NOT bounded L"c0 — L"o0 in general [Stein, 1970]. Any claim of the form IVuloo < Clwloo(1
+ log) requires additional structure beyond mere localization of .

Proposition 3.1 (Sufficient conditions implying Lemma B). Assume o(-,t) € L'(R*) N

L"oo(R?) and the solution is smooth on the time interval under consideration. Then the velocity-
gradient control in Lemma B,
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IVu(t)l_{L o0} < C M_L(t)(1 + log"(M_L(t)/M_£(0)))

holds on any time interval on which at least one of the following sufficient conditions is
satisfied (with constants uniform on that interval):

1. (B—Hdélder) Local Holder control of vorticity:

There exists a > 0 such that o(-,t) € C*a (locally, in the region relevant to the maximizers of
M_{), uniformly in t.

Rationale: Calderén—Zygmund theory yields corresponding control of Vu, and a logarithmic
scale decomposition gives the claimed bound [Stein, 1970, Ch. II].

2. (B-BMO) Bounded mean oscillation control:

o(-,t) € BMO (locally, in the region relevant to the maximizers), with BMO seminorm uniformly
bounded in t.

Rationale: Calderon—Zygmund operators map BMO — BMO; combined with localization/scale
splitting, one obtains the logarithmic bound [Stein, 1993].

3. (B-CFM) Geometric depletion (Constantin—Fefferman type):

The vorticity direction field § = w/|w| satisfies a Holder-type coherence condition in the high-
vorticity region, e.g., |&(X,t) — &(y,t)| S [x—y|["a on {|o| > Alol_co} for some a >0, A € (0,1).

Rationale: Direction coherence depletes the effective nonlinearity and prevents worst-case
endpoint growth in the Biot—Savart estimate [ Constantin-Fefferman, 1993].

Remark 3.2 (Scope). Proposition 3.1 is a conditional template: it records standard sufficient

hypotheses under which endpoint control of IVul {L"o} is available. No claim is made that
any of (B—Holder), (B-BMO), or (B—CFM) holds for arbitrary Navier—Stokes solutions.

4. Verification Framework for Lemmas B and C

Theorem 4.1 (Verification template for Lemma C). Let T > 0. Assume that for all t € [0,T],
there exists a maximizer X_t of K_£*|o|(-,t) with o(X_t,t) #0 and & €(X_t,t) < &0 < /2.

Then Lemma C holds on [0,T] with k = sec(do).
Proof- Apply Theorem 2.3 for each t € [0,T]. m

Theorem 4.2 (Verification template for Lemma B). Let T > 0. Assume:
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o o(t) is localized on [0,T] with effective radius R_eff(t) < R
e lo)l o<A-M L(t)on[0,T]

Then Lemma B holds on [0,T] with constant C = C_BS - A(1 + log"(R/?)).

Proof. By Lemma 3.1:

IVul_oo < C_BS lol_oo(1 + log"(R/0)) < C_BS - A - M_t(1 + log"(R/0)). m

5. Diagnostic Structure for Lemma A

Lemma A—the coercive stretching condition—is the hardest to verify. Here we develop
diagnostic tools that characterize f-ow Lemma A can fail, turning an abstract condition into
concrete measurable quantities.

Define the coercivity ratio:
A _L(t) =1 stretch(t)/M_£(t)?
Reformulation: Lemma A is equivalent to inf {t€[0,T]} A_{(t) >c.

Physical meaning: A_{ measures how efficiently the strain field stretches vorticity at its
maximum. If A_{ is large, stretching is strong; if A_{ is small or negative, stretching is weak or
vorticity is being compressed rather than stretched.

Why might Lemma A fail? The stretching term I stretch =& t - (K_{*(S®)) can be small for
several reasons:

1. Misalignment: The vorticity direction & _t might be nearly perpendicular to the stretching
direction (the principal eigenvector of S). Then even strong strain doesn't stretch vorticity
efficiently.

2. Contamination: Far-field vorticity (outside the region where stretching is strong)

contributes to the mollified integral, diluting the stretching signal.

Remainder: Higher-order terms in the strain decomposition might dominate.

4. Cancellation: If K ( is large (significant cancellation), the effective vorticity M £ is
much smaller than the magnitude M_ €, which makes the ratio A € =1_stretch/M_{2
harder to keep large.

(98]

Proposition 5.1 (Failure-of-coercivity triggers). Fix thresholds  , C ,R , x .If A {(t)<c_*
or K £(t) >« _* at some time t, then at least one of the following holds:

1. Misalignment trigger: angle(&, principal eigenvector of S) >0 *

2. Contamination trigger: far-field contribution > C_*
3. Remainder trigger: higher-order terms >R _*
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4. Cancellation trigger: X ((t) >« *

Proof- Decompose I_stretch into principal stretching (aligned, near-field) plus errors. The
principal term is bounded below by A _max(S) - M_£? - cos?0, where 0 is the misalignment angle.
If this is large but I _stretch is small, then errors must be large—either contamination or
remainder. The cancellation trigger is K _{ itself. m

Why this matters: Instead of asking "does Lemma A hold?" (hard), we can ask "which trigger
fires first?" (more concrete). This transforms the problem from proving a global estimate to
tracking four specific quantities. Even if we can't prove blowup, we can identify exactly which
mechanism prevents it.

6. Summary of Sections 1-5

Result Status

Lemma C from direction coherence (Theorem

2.3) PROVEN (template)

/\ CONDITIONAL (requires endpoint
regularity)

Verification template for C (Theorem 4.1) PROVEN
Verification template for B (Theorem 4.2) /\ CONDITIONAL
Failure-trigger dichotomy (Proposition 5.1) PROVEN

Lemma B from localization (Corollary 3.2)

7. Conditional Bootstrap Program to Riccati Time (Open)

We define M(t), M(t), K(t), A(t), R_eff(t) as in §7.1. Let
T R :=2/(co M(0))

be the Riccati time associated with the initial coercivity A(0) > co.

7.1 Definitions

M(t) == M_L(t) = IK_C*a(t)l_{L o}
M(t) == M_L(t) = IK_0*|o|(t)l_{L oo}

K (t) == M(t)/M(t) > 1

A(t) =L _stretch(t)/M(t)?

R_eff(t) :== (lo(t)l_{L'}/lo(t)l_{L"o0}) {1/3}
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7.2 The Conditional Theorem

Theorem 7.1 (Conditional persistence = blowup). Assume that on [0, T _R] the following
hold:

(B) Velocity-gradient control (Lemma B): IVu(t)l {L" o} <C M(t)(1 + log"(M(t)/M(0)))
(C) No-cancellation (Lemma C): M(t) < k M(t)
(A) Coercive stretching persists (Lemma A): [ stretch(t) > (co/2) M(t)*

Then Lemmas A—C hold on [0, T _R], and by Paper 1 Theorem 5.1, M(t) (hence lo(t)l {L"o0})
blows up at some T* <T R.

Proof. The hypotheses are exactly Lemmas A—C on [0, T_R]. Paper 1 Theorem 5.1 then gives:
D*M(t) > (co/4) M(t)
The comparison ODE y' = (co/4)y? with y(0) = M(0) blows up at time 4/(coM(0)) <T_R.

Hence M(t) > watsome T*<T R. m

7.3 What Must Be Proven to Make This Unconditional

To convert Theorem 7.1 into an unconditional blowup theorem for a specific initial-data class,
one must prove:

P1. Persistence of Lemma C: Show that direction coherence near maximizers of K _{*|w| is
maintained on [0, T R].

Challenge: The direction field 1 = w/|o| is only defined where || > 0, and its evolution involves
singular terms when |®| approaches zero. A rigorous proof requires either:

e Showing |o| stays bounded away from zero in the relevant region, or
o Using a different coherence measure that doesn't divide by ||

P2. Persistence of Lemma B: Show that IVul_{L"c0} <C M(1 + log*(...)) on [0, T_R].
Challenge: The Biot-Savart operator Vu = VK * o is a Calderén-Zygmund singular integral. The
bound IVul{L"x0} < Clwl{L"}(1 + log) does NOT follow from localization alone. It requires
one of the sufficient conditions (B-Hoélder), (B-BMO), or (B-CFM) from Section 3.

P3. Persistence of Lemma A (coercive stretching): Show that A(t) =1 _stretch(t)/M(t)* > co/2
on [0, T R].
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Challenge: This is the core difficulty. Rather than attempting to prove A persists generically, we
reformulate it as a near-field dominance criterion.

Near-field decomposition of strain: Decompose the strain matrix via a cutoff in the Biot-Savart
kernel:

S=S near+ S far

where S_near captures contributions from within distance R of the maximizer and S_far captures
the rest. Then:

I stretch=¢& - K €*(S near w) + & - K €*(S_far )

Proposition (Near-field dominance criterion for Lemma A). Lemma A holds with constant ¢
if:

(1) Direction coherence in the near field: The vorticity direction is coherent (angle spread < do)
on the high-vorticity set within distance R of the maximizer.

(i1) Far-field subordination: The far-field strain contribution satisfies |§ - K £*(S_far o)|<¢
M_(? for some small e.

(i11) Alignment: The vorticity direction at the maximizer is well-aligned with a principal
stretching direction.

Under these conditions, A(t) > ¢ > 0 with explicit constant depending on Jo, €, and the alignment
angle.

This is not circular: It translates Lemma A into two measurable local conditions plus an
alignment condition. Persistence of A reduces to showing these diagnostics remain below

threshold.

Remark on V?u: Differentiating coercivity (to study d/dt A) introduces CZ operators at the
endpoint. Controlling these terms requires the same endpoint structure as Lemma B (e.g.,
Holder/BMO or geometric depletion). Therefore, "A persists" is conditional on the same
endpoint regime as "B persists."

7.4 Summary
Step Status
Conditional theorem (Theorem 7.1) PROVEN
P1: Lemma C persistence ? OPEN
P2: Lemma B persistence ? OPEN
P3: Lemma A persistence % OPEN (Clay-level difficulty)
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Conclusion: The conditional structure is proven: IF Lemmas A—C persist to T R, THEN blowup
occurs. The hard work is proving the persistence.

8. Final Status of Paper 2

Result Status
Lemma C template (Theorem 2.3) PROVEN (coherence near maximizers = C)
Lemma B template (Corollary 3.2) /\ CONDITIONAL on endpoint regularity
Verification templates PROVEN
Failure-trigger dichotomy PROVEN
Conditional theorem: A—C persist = blowup PROVEN
Lemma C persistence to T R ? OPEN (requires coherence to persist)
Lemma B persistence to T R 2 OPEN (requires endpoint regularity)
Lemma A persistence to T R 2 OPEN (Clay-level)
Unconditional blowup ? OPEN

Summary: Paper 2 establishes:
1. Templates: Direction coherence near maximizers = Lemma C; endpoint regularity +
localization = Lemma B (both conditional on their respective hypotheses)
2. Conditional theorem: IF Lemmas A—C persist to T R, THEN blowup
What remains open: Prove that Lemmas A—C actually persist to T R for some concrete initial

data class. This requires showing that coherence, endpoint regularity, and coercive stretching all
persist—none of which is automatic.

Paper 3: Outcome Theorems Conditional on Endpoint
Control

From Alignment Dynamics to Dichotomy via Lemmas A—C and Trigger Diagnostics

Abstract

We formalize the outcome logic of the three-lemma blowup mechanism in Papers 1-2.
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Paper 1 proves that if Lemmas A—C (coercive stretching, velocity-gradient control, and no-
cancellation) hold on an interval long enough to trigger a Riccati comparison, then the mollified
vorticity maximum M_ £ blows up in finite time, implying vorticity blowup in the Beale—Kato—
Majda sense.

Paper 2 supplies proof-level templates that imply Lemmas B and C under explicit
coherence/localization hypotheses, and identifies diagnostic triggers whose crossing certifies
failure of Lemma A and/or Lemma C. Crucially, Lemma B requires endpoint regularity (Holder,
BMO, or geometric depletion)—it is not implied by localization alone.

In this paper we package these ingredients into an outcome theorem conditional on endpoint
control: either Lemmas A—C persist up to the Riccati time scale and blowup follows, or an
explicit trigger (misalignment, contamination, remainder growth, or cancellation growth) occurs
before that time, preventing closure of the Riccati blowup mechanism.

Important: All outcome theorems in this paper assume Lemma B (endpoint control) holds on
the relevant interval. This is a genuine regularity hypothesis, not a consequence of NSE.

The philosophical point: We don't know which outcome occurs for any specific initial data. But
we have reduced the problem to a clean dichotomy: for any smooth solution on an interval where

Lemma B holds, exactly one of these outcomes must occur. This transforms an opaque global
question into a finite list of concrete alternatives.

1. Inputs from Papers 1-2

We collect the key results from the previous papers that this paper builds upon.
From Paper 1:
e Master inequality: D'M_{ >1 stretch — CilVul_{L"0}M_ € — C2vl2M_{
This is the engine: vorticity maximum grows at least as fast as stretching minus errors.
e Conditional blowup (Theorem 5.1): Lemmas A—-C = M { — o at T* <2/(cM_£(0))
The payoff: if the three conditions hold, blowup is forced.
« Time breakdown (Theorem 7.2): Lemmas A—-C-D = [V_config dt = oo
Physical interpretation: the time parameter fails as a physical coordinate.

From Paper 2:
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e Lemma C template (Theorem 2.3): direction coherence 6 { <80 = K £ < sec(do)
Reduces cancellation control to a geometric condition.

e Lemma B template (Corollary 3.2): if endpoint regularity holds (e.g., BMO, Hoélder,
geometric depletion), then localization = gradient control

Reduces velocity gradient control to regularity assumptions.

o Trigger diagnostics (Proposition 5.1): Failure of A or C forces trigger crossing
Characterizes exactly how the mechanism can fail.

e Conditional theorem (Theorem 7.1): IF A—C persistto T R, THEN blowup

The bootstrap closes if conditions persist long enough.

2. Triggers and Thresholds

The trigger framework makes the failure modes of the blowup mechanism concrete and
measurable.

Philosophy: Rather than asking "does blowup happen?" (which we cannot answer), we ask
"which mechanism breaks first?" Every smooth solution must either:

1. Blow up (Lemmas A—C persist), or
2. Have at least one trigger fire (some mechanism prevents the blowup)

Fix thresholds 8 , C , R , ¥ and define trigger events:

Trigger  Event Interpretation

(T 6) 06(t)>6 *  Misalignment exceeds threshold
(T C) C(t)>C * Contamination exceeds threshold
(T_ R) R()>R * Remainder exceeds threshold

(T x) K L(t) >« _* Cancellation ratio exceeds threshold

Physical meaning of each trigger:
e (T_6) Misalignment: The vorticity direction drifts away from the stretching direction.

The strain field is still strong, but it's no longer stretching vorticity efficiently—Iike
pushing a door at the wrong angle.
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e (T_C) Contamination: Far-field vorticity contributions swamp the local stretching
signal. The strongest vortex is being influenced by distant fluid motions.

e (T_R) Remainder: Higher-order nonlinear effects become dominant. The simple
"stretching drives growth" picture breaks down.

e (T _x) Cancellation: Nearby vorticity vectors start pointing in different directions,
partially canceling each other. The coherent vortex structure is fragmenting.

Threshold selection: Thresholds are chosen so that if none of these triggers occur, then:

e A {(t)>c_* (Lemma A holds)
e K (t) <k _* (Lemma C holds)

3. Outcome Theorems (Conditional on Endpoint Control)

These theorems formalize the dichotomy: every smooth Navier-Stokes solution satisfying
Lemma B must follow one of two paths.

Theorem 3.1 (Outcome theorem conditional on endpoint control). Fix a horizon T target > 0.
Assume Lemma B (endpoint regularity) holds on [0, T target]. Then exactly one of the
following holds:

(i) Persistence: Lemmas A and C hold on [0, T target]

(ii) Trigger: There exists t * € [0, T target] at which at least one trigger (T_8), (T_C), (T_R), or
(T x) occurs.

Interpretation: Either the vortex maintains its coherent, self-stretching structure for the entire
time interval, or something specific breaks (and we can identify what).

Proof.

If (i1) does not occur, then all trigger quantities remain below threshold for all t <T target. By
the trigger construction (Paper 2, Proposition 5.1), this implies:

e A f(t)=c *forallt<T target (Lemma A holds)
o K l(t)<x *forallt<T target (Lemma C holds)

Hence (i) holds.

Conversely, if either Lemma A or Lemma C fails at some time t, then by Proposition 5.1 at least
one trigger must occur at or before t. Hence (ii) holds.

The two cases are mutually exclusive and exhaustive. m
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Theorem 3.2 (Blowup-or-trigger at Riccati time). Let T R :=2/(c M_£(0)) be the Riccati
blowup time from Paper 1. Assume Lemma B holds on [0, T R]. Then exactly one of the
following holds:

(a) Blowup: Lemmas A and C hold on [0, T R], and M_£{ blows up by time <T R.
Consequently lol_{L"c0} — .

(b) Trigger: A trigger occurs at some t * <T R, preventing closure of the Riccati blowup
mechanism on [0, T R].

Interpretation: This is the main dichotomy. For any smooth solution on an interval [0, T R]
where Lemma B holds:

o Either the vortex maintains its dangerous configuration until blowup, OR
e Some protective mechanism kicks in and disrupts the blowup pathway

Proof.
Apply Theorem 3.1 with T target=T R.

Case (a): If persistence holds (Theorem 3.1(i)), then Lemmas A—C all hold on [0, T R]. By
Paper 1 Theorem 5.1, M_{ blows up at time < T R. Since M_{ <lwl {L"w}, vorticity blows up.

Case (b): If a trigger occurs (Theorem 3.1(i1)), then at least one of Lemma A or Lemma C fails
before T R. The Riccati comparison cannot be closed on [0, T R], so Paper 1's blowup

conclusion does not apply. m

Remark: Case (b) does NOT prove global regularity—it only says that this particular blowup
mechanism is blocked. Other blowup scenarios might still be possible.

4. Scope and Interpretation

What Paper 3 proves: A rigorous disjunction:

o Either the three-lemma mechanism closes up to Riccati time = blowup
e Or an explicit trigger occurs earlier = mechanism blocked

What Paper 3 does NOT prove:

e Which branch holds for any specific initial data
e Global regularity (even if triggers fire, other blowup mechanisms may exist)
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o Existence of data where triggers never fire
Why this is valuable:

1. Conceptual clarity: The Clay Problem is now reduced to understanding four specific
quantities (misalignment, contamination, remainder, cancellation). This is far more
concrete than "does the solution stay smooth?"

2. Computational testability: The triggers are numerically computable. High-resolution
simulations can track whether triggers fire.

3. Physical insight: Each trigger has a physical meaning. Understanding which triggers
typically fire reveals which physical mechanisms prevent blowup (if any do).

4. Proof pathway: To prove blowup, show triggers don't fire. To prove regularity via this
mechanism, show a trigger must fire. Either direction advances understanding.

Determining the outcome for a concrete initial data family requires separate quantitative PDE
estimates—specifically, proving either:

o Triggers remain below threshold up to T R (implies blowup), or
e Atleast one trigger must fire before T R (blocks this mechanism)

5. Summary Table

Statement Status
Outcome theorem (Theorem 3.1) PROVEN
Blowup-or-trigger corollary (Theorem 3.2) PROVEN
Specific outcome for concrete data % OPEN

Appendix B: The BCB Physical Admissibility Axiom and
Release-Valve Structure

B.1 Status and Intent of This Appendix

This appendix introduces a Physical Admissibility Axiom, denoted BCB (Balance of Creation
and Breakdown).

Critical clarifications:
o BCB is not used in any proof in Papers 1-3.

o All theorems remain valid without BCB.
e BCB is introduced solely to:
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1. Interpret the three-lemma reduction
2. Formalize the intuition that "entropy must intervene"
3. Characterize what must fail if global regularity holds

The Clay Millennium Problem remains open regardless of whether BCB is true.

B.2 The Master Inequality as an Accounting Law

Recall the master inequality (Paper 1, Theorem 4.3):
D*M_{(t) > 1_stretch(t) — &_L(t) (B.1)

with intervention term

& U(t) = CilVu(t)l_{L oo} M (t) + Cavl> M_L(t) (B.2)
This inequality has the structure of a local balance law:

o I stretch: creation of fine-scale structure (vorticity amplification)
e & L intervention via mixing, cancellation, and dissipation

Riccati blowup requires persistent domination of creation over intervention.

Distinguishability and the scale limit. The mollified maximum M_£(t) = IK_€*o(t)l _{L"oo}
measures resolvable structure at scale €. Distinguishability—the total fine-scale structure in the
flow—is measured by:

sup {£>0} M_{(t) orequivalently lim {€ — 0} M_£L(t)

For smooth solutions, M_{(t) — lo(t)l_{L"o0} as £ — 0. A singularity corresponds to M_{(t) —
wasf — 0.

Critical observation: Any singularity, even if localized on a set of vanishing measure, forces
divergence of M_{ as £ — 0. This is because mollification at scale £ "sees" the singularity once {

becomes smaller than the localization scale. Therefore:

A singularity at any point forces unbounded distinguishability creation, and hence violates BCB
unless compensated by dissipation, mixing, or decoherence at the same scale.

This closes a potential loophole: one cannot evade BCB by concentrating a singularity on a
measure-zero set. The M_{ diagnostic captures all singularities as £ — 0.
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B.3 The BCB Physical Admissibility Axiom (Sharp Form)

We now state BCB explicitly as an axiom in a form that is:

o Non-tautological: It constrains the dynamics, not just restates the conclusion
o Falsifiable: In DNS, all terms can be computed/estimated
o Stated in terms of defined quantities: M_(, I stretch, & €

Axiom BCB (Scale Budget Form). Physically admissible solutions of the 3D incompressible
Navier—Stokes equations satisfy a scale-resolved budget inequality:

There exist universal constants 6 € (0,1), Co > 0, and a residual function R_{(t) satisfying R _{(t)
=0o(M_L(t)*) as M_{ — oo, such that for all t and all sufficiently small £:

I stretch(t) <0 - & () + Co - M_L(t) + R_L(1) (BCB)
Key features:

1. The residual R_{ is subquadratic: This prevents "hiding" quadratic growth in lower-
order terms. As M_{ — oo, the residual becomes negligible compared to M_ €2,

2. The budget is scale-resolved: The inequality holds at each mollification scale £,
capturing fine-scale structure creation.

3. The constants are universal: 6 and Co do not depend on the particular solution or time.

Remarks:

1. BCB is not a theorem of Navier—Stokes (no such claim is made).
2. BCB is an admissibility constraint, analogous to:
o entropy production inequalities in thermodynamics
o energy dissipation principles in continuum mechanics
o cosmic censorship in general relativity
3. The axiom restricts which solutions are considered physically meaningful, not what the
equations formally allow.
4. BCB is falsifiable: A numerical simulation exhibiting sustained I_stretch  M_ £ with
é € =0o(M_{? would refute BCB.

B.4 What BCB Actually Implies (Precise Statement)

We now state precisely what BCB implies and what it does not.

Definition. The surplus at scale ¢ is:

> u(t) =1 stretch(t) — & L(t)
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This measures how much stretching exceeds intervention.

Proposition B.1 (BCB Blocks Riccati Closure). Assume BCB holds. Then:
T o)< (0-1) & £(t)+ Co- M_L(t) + R_L(t)

What this means:

o BCB rules out the simultaneous persistence of:
o (1) Quadratic coercive stretching: I stretch = ¢-M_ (2
o (ii) Subquadratic intervention: & £ =o(M_(?)
o Equivalently, BCB forces the failure of at least one Riccati closure condition (A, B, C,
or viscous dominance).

What this does NOT mean:

e BCB does not directly imply D'M_{ < C-M_{ (we cannot derive an upper bound on M_{
growth from a lower bound inequality)

o BCB does not, by itself, preclude every logically possible blowup scenario

o BCB blocks the Riccati mechanism specifically; other mechanisms would require
separate analysis

e BCB does not preclude transient superlinear growth of M_ £, nor does it exclude non-
Riccati amplification mechanisms that are compensated at the same scale; it constrains
only sustained quadratic surplus without commensurate intervention

Empirical testability: All quantities appearing in the BCB budget—I_stretch, & ¢, M_{—are
directly computable in high-resolution DNS, making the axiom empirically testable.

Proof of Proposition B.1.

From (BCB): I stretch<6-& £+ CoM £+ R ¢
Subtracting & € from both sides:

Y (=1 stretth— & £<(®-1)& L+ CoM £ +R_€

Since 0 < 1, the coefficient (0—1) is negative.

Now suppose Riccati closure were possible, i.e., suppose:

o [ stretch>c-M £? for some ¢ > 0 (Lemma A: coercive stretching)
e & € <eM (2 for small ¢ (Lemmas B, C: controlled intervention)

Then BCB gives: ccM _2<6:¢M 2+ CoM _(+R ¢

For large M_{ (where R £ =0o(M_{?)): c-M_2<0-¢-M {2+ o(M_(?)
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This requires ¢ < 0-¢g, which fails for € small enough (since 6 < 1 and ¢ > 0 is fixed).

Conclusion: BCB is incompatible with Riccati closure. At least one of the closure conditions
must fail. m

Summary statement:
BCB, as stated, rules out the simultaneous persistence of quadratic coercive stretching and
subquadratic intervention at the same scale. Equivalently, it forces the failure of at least one of

the Riccati closure conditions (A/B/C or viscous dominance). This blocks the Riccati blowup
mechanism.

B.5 Interpretation: Lemmas A—C as Release Valves

Within the framework of Papers 1-3, BCB as an admissibility axiom guarantees that at least one
release valve opens before Riccati runaway completes:

Release Valve Mathematical Failure Physical Meaning
Lemma A I stretch loses coercivity Geometric misalignment
Lemma B IVul {L"} grows too fast Chaos / turbulence
Lemma C M E>M ¢ Mixing / cancellation
Viscosity v{2M_{ dominates Dissipation

BCB does not specify which valve opens—only that one must.

B.6 Logical Role Relative to Papers 1-3

Papers 1-3 prove:

(A + B + C persist) = Riccati blowup
Appendix B shows:

BCB = A, B, or C must fail

Therefore:

If BCB is accepted as a physical admissibility axiom, the Riccati blowup mechanism is
universally blocked.

The Clay problem then becomes:
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Does Navier—Stokes enforce BCB dynamically, or does it admit mathematically consistent but
physically inadmissible solutions?

B.7 The Physical Interpretation: Why BCB Is Not Foreign to Navier—
Stokes

Navier—Stokes was not invented as an abstract PDE. It is:

e A continuum limit of molecular dynamics

o Constrained by thermodynamics (second law, entropy production)
o Embedded in irreversible dissipation (viscosity)

e Used to model real fluids, not arbitrary mathematical distributions

From this standpoint:

A solution that creates unbounded fine-scale structure without compensating mixing, dissipation,
or disorder is physically inadmissible, even if it formally satisfies the PDE.

This is exactly what the BCB axiom encodes.
What Navier—Stokes already assumes:

1. Entropy production: Viscosity vAu represents irreversible energy dissipation. The
equations are not time-reversible.

2. Finite information density: The continuum approximation assumes smooth fields
representing averaged molecular behavior—not arbitrarily fine structure.

3. Loss of microscopic reversibility: Unlike Hamiltonian mechanics, NSE has a preferred
direction of time (toward equilibrium).

The key observation:

Saying "BCB must hold" is not adding something alien to Navier—Stokes. It is making explicit
what the physical model silently presupposes. The viscous term already encodes that fine-scale
structure should be dissipated. BCB simply quantifies how much creation can occur before

dissipation or mixing must intervene.

The conceptual reframing:

Interpretation Blowup status
NSE as pure PDE Blowup is a mathematical question about formal solutions
NSE as physical Blowup requires sustained BCB violation, which is physically
theory inadmissible
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The remaining obstruction:
The gap to a Clay-style resolution is not purely technical but partly conceptual:

Should Navier—Stokes be interpreted as a purely formal PDE (where any mathematical solution
counts), or as a physical theory subject to admissibility constraints such as BCB?

If the latter, then:

Navier—Stokes blowup requires sustained violation of a physically necessary balance principle.
Therefore, if Navier—Stokes is interpreted as a physical theory rather than a purely formal PDE,
the Riccati blowup mechanism is excluded.

We do not claim this resolves the Clay problem as stated. The Clay problem asks about
mathematical solutions, not physical admissibility. But this analysis clarifies what kind of
solution would be required for blowup: one that violates the thermodynamic intuitions
underlying the model itself.

B.8 The Tension with Clay and What This Work Contributes

The Clay Problem is posed as pure mathematics. It asks: do smooth solutions to the Navier-
Stokes PDE remain smooth for all time, or can they develop singularities? This is a question
about the PDE, full stop—no physical interpretation required.

Our position implies the problem is partly ill-conceived. We are saying: NSE was constructed
to model real fluids. If the PDE admits solutions that violate thermodynamic principles
(unbounded structure creation without compensation), those solutions are artifacts of the
mathematical formalism, not physically meaningful predictions.

Therefore, asking "does NSE blow up?" may be the wrong question. The right question is:

Does NSE, interpreted as a physical theory with appropriate admissibility constraints, blow up?

And within the Riccati framework, the answer is no, because BCB-violating solutions are
excluded a priori.

The analogy to other physical theories:

Theory Mathematical solutions exist that... Physical response
Geneya} ...have closed timelike curves Exclud? as unphysical (chronology
Relativity protection)

Classical . . .
Mechanics ...have negative kinetic energy Exclude by fiat

44



Theory Mathematical solutions exist that... Physical response

Quantum

. ...are non-normalizable Impose boundary conditions
Mechanics

...violate BCB (unbounded structure

Navier-Stokes .
creation)

Exclude as physically inadmissible?

In each case, the physics constrains which mathematical solutions we take seriously. PDEs are
models. They inherit meaning from what they're modeling. A "solution" that violates the
physical principles the PDE was built to encode isn't a prediction—it's a breakdown of the
model's domain of validity.

What this work actually contributes:
If one accepts the physical interpretation, our contribution is:

Theorem (Physical Interpretation). Navier-Stokes, interpreted as a physical theory subject to
BCB admissibility, does not exhibit finite-time blowup via the Riccati mechanism, because BCB
forces a release valve to open before runaway completes.

This is a meaningful statement about the physics. It is not the Clay problem.
What would satisfy Clay:

The Clay committee wants a theorem about solutions to a PDE—no physical interpretation, no
admissibility axioms. To satisfy Clay, one would need to prove either:

1. Regularity: All smooth finite-energy initial data yield global smooth solutions (prove
BCB dynamically, without assuming it), or

2. Blowup: There exists smooth finite-energy initial data whose solution develops a
singularity (construct a BCB-violating solution explicitly).

Our framework contributes to either direction:

o For regularity: prove that NSE dynamics enforce BCB (i.e., that at least one release valve
always opens)
o For blowup: construct initial data where all three valves stay shut long enough

Honest summary:

Question Status

Does the Riccati framework correctly identify blowup

mechanism? Yes (proven)

Yes (proven, conditional on

. 0
Does BCB block Riccati blowup? BCB)
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Question Status

w; .

Is BCB physically motivated? . Yps (thermodynamic
principles)

Does NSE dynamically enforce BCB? % Open

Is the Clay problem solved? X No

B.9 Final Clarification

¢ BCB is not assumed anywhere in the proofs.
o BCB is falsifiable (a counterexample would be decisive).
o BCB provides a quantitative formulation of the intuition that entropy must intervene.

o This appendix does not solve the Clay problem. It reframes it in a way that makes the
remaining obstruction explicit.

One-line summary: Appendix B introduces a Physical Admissibility Axiom (BCB) formalizing
the idea that unbounded creation of fine-scale structure must be compensated by mixing,

cancellation, or dissipation; if accepted as an admissibility axiom, BCB forces a release valve
before Riccati runaway.

FINAL STATUS (Papers 1-3)

Unconditionally Proven

Result Paper
Master max-functional inequality (Dini form) 1
Quantitative error bounds (Ci, Cz) 1
Conditional Riccati blowup: A—C = blowup (Theorem 5.1) 1
Time breakdown: A—C-D = [V _config = oo (Theorem 7.2) 1
Lemma C template: coherence near maximizers = K < sec(d) (Theorem 2.3) 2
Failure-trigger dichotomy (Proposition 5.1) 2
Conditional bootstrap: A—C persist = blowup (Theorem 7.1) 2

Proven Conditional on Hypotheses

Result Condition Paper
Lemma B template: localization = Endpoint regularity (BMO/Hdlder/geometric )
gradient control depletion)
Outcome theorem (Theorem 3.1) Lemma B holds on interval 3
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Result Condition Paper

Blowup-or-trigger corollary (Theorem

32) Lemma B holds on [0, T R] 3

The Conditional Result

Theorem 7.1 (Conditional persistence = blowup). [F Lemmas A—C persist on [0, T R],
THEN M(t) — o at some T* <T R.

Status: PROVEN (Paper 2, Theorem 7.1)

What Remains Open

Problem Status
P1: Lemma C persistence to T R %2 OPEN (requires coherence to persist)
P2: Lemma B persistence to T R 92 OPEN (requires endpoint regularity to hold)
P3: Lemma A persistence to T_R % OPEN (Clay-level difficulty)
Unconditional blowup for any data class 9 OPEN
Existence of blowing-up solutions % OPEN
Clay Millennium Problem % OPEN

Technical Gaps Identified

1. Lemma B (IVul_{L"c} bound): The Biot-Savart operator is a Calderén-Zygmund
singular integral. The bound IVul{L"0} < Clwl{L"w0}(1+log) does NOT follow from
localization alone—it requires geometric structure (Constantin-Fefferman-Majda
depletion, explicit alignment).

2. Second derivatives: V?u is NOT bounded by IVKI{L"}I Fwl {L" 0} because VK is not in
L. Proper bounds require Calderon-Zygmund theory on Holder/BMO spaces.

3. Direction coherence: The evolution of n = ®/|0| is singular where || — 0. Rigorous
control requires either showing |o| stays away from zero, or using a different coherence
measure.

4. Coercivity persistence: Controlling d/dt A requires bounds on 6 t(K {*(Sw)), which
involves V2u—circular with gap #2.

Summary

What is proven:
e Paper 1: Conditional Riccati blowup (A—C = blowup)

e Paper 2: Templates (coherence = C, localization = B) and conditional theorem
e Paper 3: Outcome logic (persistence vs trigger dichotomy)
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What is NOT proven:

e That Lemmas A—C persist for ANY initial data class
e That blowup occurs for ANY smooth initial data
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