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An RAL Example: Why the Tensor Product 

Rule Emerges Naturally 

This document provides a simple, intuitive example—using Resonant Assembly Language 

(RAL)—to explain why the tensor product rule arises naturally in quantum mechanics. The goal 

is not to assume quantum formalism, but to show how it becomes unavoidable once we treat 

quantum systems as oscillatory assemblies rather than discrete particles. 

Important clarification: RAL is not offering an alternative formalism or competing 

interpretation. The mathematics of quantum mechanics remains unchanged. What RAL provides 

is an explanatory framework showing why the existing formalism has the structure it does. 
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For the General Reader 

Before diving into the physics, here's the key idea in plain language: 

When physicists combine two quantum systems (like two electrons), they use something called 

the "tensor product" to describe all possible joint states. In many textbooks, this rule is 

introduced as a postulate—a starting axiom to be accepted without deeper justification. There are 

operational reconstructions that motivate it from measurement-level axioms (Hardy, 2001; 

Chiribella et al., 2011), but these typically don't give a pre-measurement physical picture for why 

amplitudes must compose this way. 

RAL offers a different perspective. Instead of treating quantum particles as tiny billiard balls that 

happen to obey strange probabilistic rules, RAL treats them as oscillating patterns—like 

vibrations on a drum or waves on water. Before measurement, these oscillations are real and 

ongoing; measurement is what "freezes" them into definite outcomes. 

Once you adopt this view, the tensor product rule stops being mysterious. It's simply saying: 

when you have two vibrating systems, every vibration pattern of the first can combine with every 

vibration pattern of the second. The mathematics follows from the physics, rather than being 

imposed on it. 

 

1. One Quantum System as an Oscillatory Assembly 

Consider a single electron spin. In standard quantum mechanics, it has two basis states: spin up 

|↑⟩ and spin down |↓⟩. In RAL terms, this electron is an assembly that supports two orthogonal 

oscillatory modes. Before measurement, the system is not in one state or the other—it is actively 

oscillating across both modes simultaneously. 
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The Core Assumption 

RAL adopts the minimal physical assumption that quantum superpositions correspond to real, 

unresolved dynamical processes—that is, oscillatory assemblies—rather than merely epistemic 

catalogues of unknown definite states. This is sometimes called a "realist" or "ontic" 

interpretation of the wavefunction. 

The argument that follows shows that if this assumption holds, then the tensor product rule is 

unavoidable. Readers who maintain that the wavefunction is purely epistemic (a bookkeeping 

device for observer knowledge) will find the derivation unconvincing—but that disagreement 

concerns the premise, not the logic. 

It is worth noting that the ontic reading is not adopted here merely as a taste preference. Results 

in the ψ-ontology literature—most famously the Pusey–Barrett–Rudolph theorem (2012)—

strongly constrain broad classes of "purely epistemic" wavefunction models under natural 

independence assumptions. RAL does not depend on PBR, but PBR makes the ontic premise 

materially less ad hoc than it might otherwise appear. 

General reader note: Think of a guitar string that can vibrate in two different ways at once. 

Before you "measure" it (touch it to stop the vibration), both vibration patterns are genuinely 

present, superimposed on each other. RAL says quantum systems really do this—they're not 

secretly in one state with us merely ignorant of which. 

The strength of each oscillation corresponds to an amplitude α ∈ ℂ, and the relative alignment of 

the oscillations corresponds to phase θ. The general state takes the form: 

|ψ⟩ = α|↑⟩ + β|↓⟩ 

where |α|² + |β|² = 1. 

At this stage, nothing is decided. The system is in superposition: a live oscillatory process, not a 

classical mixture of hidden definite states. 

 

2. Adding a Second System 

Now introduce a second electron spin. It too is an independent assembly with its own two 

orthogonal oscillatory modes |↑⟩ and |↓⟩. Importantly, neither system has been measured. Both 

remain fully oscillatory and unresolved. 

We denote the first system's state as |ψ_A⟩ and the second as |ψ_B⟩: 

|ψ_A⟩ = α₁|↑⟩_A + β₁|↓⟩_A 

|ψ_B⟩ = α₂|↑⟩_B + β₂|↓⟩_B 
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The question now becomes: what structure must the joint system possess? 

General reader note: Imagine two separate drums, each vibrating independently. We're asking: 

when we treat them as a single combined system, what vibration patterns must we allow? 

 

3. What the Joint System Must Support 

The key question RAL asks is: what oscillations must the combined system be able to support? 

Physics gives a clear answer. Every oscillatory mode of the first system must be able to coexist 

and resonate with every oscillatory mode of the second. To impose any restriction—to say that 

mode |↑⟩_A cannot resonate with mode |↓⟩_B, for instance—would be to assert an arbitrary 

constraint on which combinations nature permits. No physical principle justifies such a 

restriction at the level of composition. 

(Constraints like superselection sectors or identical-particle symmetrisation do restrict which 

states are physically realisable, but they act as restrictions within the composite space rather than 

replacing the underlying composition rule. For identical particles, the physical state space is the 

symmetric or antisymmetric subspace of V_A ⊗ V_B; this constrains admissible states but does 

not change the underlying composition rule.) 

Therefore, the joint system must support four independent joint oscillations: 

Joint Mode Configuration 
 ↑↑⟩ 

 ↑↓⟩ 
 ↓↑⟩ 
 ↓↓⟩ 

This is not a mathematical choice—it is a physical necessity. The dimension of the joint space is 

dim(V_A) × dim(V_B) = 2 × 2 = 4. 

General reader note: If drum A can make sounds X and Y, and drum B can make sounds P and 

Q, then the combined system must be able to make sounds X+P, X+Q, Y+P, and Y+Q. 

Forbidding any combination would require some special law—but no such law exists at the 

fundamental level. 

Why Not Direct Sums? 

A natural question arises: why does the joint space have dimension 2 × 2 = 4 rather than 2 + 2 = 

4? (In this case the numbers coincide, but for larger systems—say 3 × 3 = 9 versus 3 + 3 = 6—

they diverge.) 
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The answer lies in what each operation represents: 

• Direct sum (⊕) corresponds to exclusive alternatives: the system is in subspace A or 

subspace B, but not both. This describes classical uncertainty about which system you 

have. 

• Tensor product (⊗) corresponds to simultaneous coexistence: both systems exist and 

oscillate together, unresolved, at the same time. 

Since RAL treats superposition as real oscillatory coexistence rather than epistemic uncertainty, 

the tensor product is the correct composition rule. Direct sums are appropriate for mutually 

exclusive sectors (including superselection sectors), whereas tensor products describe joint 

degrees of freedom. The physical situation of two electrons existing simultaneously calls for the 

latter. 

General reader note: Direct sum is like having either a cat or a dog but not knowing which. 

Tensor product is like having both a cat and a dog at the same time. Quantum systems genuinely 

coexist before measurement—they don't secretly reduce to one-or-the-other. 

 

4. Why Amplitudes Multiply 

In RAL, amplitudes represent resonance strength. Joint resonance requires simultaneous 

alignment of oscillations across both subsystems. Because both oscillations must contribute for 

joint resonance to occur, weakening either one weakens the whole. 

Consider system A oscillating in mode |↑⟩_A with amplitude α₁, and system B oscillating in 

mode |↓⟩_B with amplitude β₂. The joint resonance strength for the combined mode |↑↓⟩ must 

reflect that: 

• If α₁ → 0, the joint resonance vanishes (system A contributes nothing to this mode) 

• If β₂ → 0, the joint resonance vanishes (system B contributes nothing to this mode) 

• The joint strength scales linearly with each individual strength 

The Bilinearity Assumption 

We make this explicit as an assumption: 

Independence + linear response: For fixed B, the joint amplitude depends linearly on A's 

amplitude assignment, and vice versa. 

This is the assumption of bilinearity. It says that if you double A's amplitude in some mode 

while holding B fixed, the joint amplitude in the corresponding joint mode also doubles. 

Why linear? Because "superposition" is precisely the empirical statement that when a system 

can realise two oscillatory modes, it can also realise their sum, and interference depends 
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continuously on relative scaling and phase. If two subsystems are independent, scaling the 

oscillatory contribution of A while holding B fixed should scale the joint contribution 

proportionally, and vice versa. This is the minimal compositional compatibility between 

superposition and independence; mathematically, it is bilinearity. Bilinearity is not "Hilbert 

space by stealth"—it is "superposition behaves like wave addition in each subsystem." 

Why not nonlinear composition? If the joint-amplitude map were nonlinear in either 

subsystem—for example depending on |ψ_A(a)|²ψ_B(b) rather than ψ_A(a)ψ_B(b)—then 

"superposition" would cease to behave like wave addition under composition. Concretely, 

interference visibility would generally depend on absolute intensities rather than relative phase 

alone, and rescaling or decomposing a preparation into different superposed descriptions would 

change joint predictions. This would break the operational invariance that experimentally 

characterises superposition: the statistics depend on the complex amplitudes (including phase) 

and combine additively under coherent recombination. Bilinearity is therefore not a 

mathematical convenience but the minimal requirement that composition respect coherent 

additivity in each subsystem. 

Up to an overall scaling and choice of basis, bilinearity picks out the standard product map that 

becomes the tensor product under linearisation: 

Ψ(↑,↓) = α₁ · β₂ 

More generally, for configurations a ∈ Λ_A and b ∈ Λ_B: 

Ψ(a,b) = ψ_A(a) · ψ_B(b) 

Therefore, the joint-amplitude map is bilinear; the tensor product is the unique linearisation of 

bilinear composition. This multiplicative structure is exactly what appears mathematically as the 

tensor product. It is not a quantum oddity—it is how composite wave-like systems compose 

throughout physics, from classical wave interference to signal processing. For example, in 

classical wave mechanics the joint amplitude for two independent modes is the product of their 

complex phasors, and in Fourier analysis separable 2D signals factor as F(ω_x, ω_y) = 

F_x(ω_x)F_y(ω_y)—the same rank-1 (product) structure that tensor products formalise. 

General reader note: For independent systems, the probability of joint outcomes factorises (like 

coin flips: P(heads AND heads) = ½ × ½). Quantum theory implements this by having 

amplitudes compose bilinearly (multiplying in the product basis), so that probabilities computed 

from squared norms also factorise correctly. 

 

5. Entanglement as a Shared Mode 

Not all joint states can be written as products of individual states. Consider: 

|Φ⁺⟩ = (1/√2)(|↑↑⟩ + |↓↓⟩) 
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This state cannot be factored into |ψ_A⟩ ⊗ |ψ_B⟩ for any choice of individual states. 

Mathematically, no α₁, β₁, α₂, β₂ exist such that: 

(α₁|↑⟩ + β₁|↓⟩) ⊗ (α₂|↑⟩ + β₂|↓⟩) = (1/√2)(|↑↑⟩ + |↓↓⟩) 

Expanding the left side gives α₁α₂|↑↑⟩ + α₁β₂|↑↓⟩ + β₁α₂|↓↑⟩ + β₁β₂|↓↓⟩. Matching coefficients 

requires α₁β₂ = 0 and β₁α₂ = 0, but also α₁α₂ = β₁β₂ = 1/√2. These conditions are mutually 

incompatible. 

In RAL terms, |Φ⁺⟩ represents a global oscillatory mode—a standing wave that belongs to the 

whole system rather than emerging from independent oscillations in each part. The phase 

relationships are intrinsically correlated: the two subsystems oscillate in lockstep, and this 

correlation cannot be decomposed into separate phase evolutions. 

Entanglement is therefore not mysterious in RAL. It is the natural result of composite oscillatory 

assemblies forming resonant modes that span the entire system. 

General reader note: Imagine two tuning forks that were coupled while being set into a single 

standing-wave pattern; once separated, the shared pattern can persist even without continued 

physical coupling. Entanglement is like this: a vibration pattern that inherently involves both 

systems at once, with no way to split it into "your vibration" and "my vibration." 

 

6. Measurement and Collapse 

When a measurement occurs, oscillatory energy is irreversibly transferred into a macroscopic 

record. One mode locks in, superposition ends, and the dynamically active superposition is 

converted into a stable macroscopic record. 

For the entangled state |Φ⁺⟩, measuring system A and finding |↑⟩_A instantly constrains system B 

to |↑⟩_B—not because information travels between them, but because the global oscillatory 

mode |Φ⁺⟩ only supports correlated configurations. The measurement resolves the global mode, 

and the resolution is inherently joint. 

For the recorded branch, what remains operationally are classical correlations between outcomes. 

The tensor product formalism remains mathematically valid, but the physical role of active 

superposition has ended for that measurement event. 

General reader note: This is the phenomenon Einstein famously worried about—but RAL 

suggests it's not action at all. It's somewhat like discovering that two gloves in separate boxes are 

a matching pair: the correlation was built into the system from the start, and measurement reveals 

rather than creates it. However, unlike the glove case, quantum correlations can exceed any 

classical hidden-variable model (Bell, 1964); the point here is only that correlation does not 

require superluminal signalling. 
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Bell correlations in the RAL picture. In RAL terms, an entangled pair is a single global 

oscillatory mode with joint phase structure; the reduced descriptions of each subsystem are 

incomplete because they omit that shared phase relation. Local measurements probe the global 

mode in different local bases, and the joint statistics reflect those pre-existing global constraints. 

No superluminal signal is required because nothing is transmitted at measurement time: the 

correlation is a property of the shared mode, and locality is respected in the sense that each 

outcome is generated by a local interaction with the measuring device. What Bell rules out are 

local hidden-variable factorisations of the joint probabilities, not the existence of nonseparable 

global states. 

Scope note. The present document uses only a minimal measurement assumption: measurement 

corresponds to an effectively irreversible coupling to macroscopic degrees of freedom that yields 

a stable record and ends coherent interference for that event. A full RAL treatment would still 

owe (i) a dynamical account of how "record formation" suppresses alternative branches/modes, 

and (ii) an explanation of outcome selection (or why outcome selection is the wrong framing). 

Those questions are interpretation-sensitive and remain open here. 

 

7. Conclusion 

In RAL terms, the tensor product rule is simply the statement that unresolved oscillatory 

assemblies must allow all joint oscillations, with amplitudes combining bilinearly. Once this is 

accepted: 

• Tensor products are not mysterious mathematical postulates—they are the unique 

structure preserving superposition and locality 

• Entanglement is not spooky action—it is the existence of global resonant modes 

• Measurement collapse is not paradoxical—it is the irreversible resolution of oscillatory 

possibility into definite record 

The formalism of quantum mechanics emerges as physically necessary given the core 

assumptions of real superposition, bilinear composition, and locality—not arbitrarily imposed. 

 

Proposition: The RAL Tensor Product Rule 

Assumptions: 

1. Real superposition — Pre-measurement states are ontic oscillatory modes, not epistemic 

uncertainty 

2. Independence — Subsystems have independent configuration spaces prior to 

interaction/measurement 
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3. Superposition closure — Admissible amplitude assignments are closed under linear 

combination 

4. Bilinear compositional response — Scaling amplitude in either subsystem scales the 

joint amplitude proportionally 

5. Locality — Reversible operations on A act as U_A ⊗ I_B on the composite 

Conclusion: The composite state space is (up to isomorphism) V_A ⊗ V_B, with product-basis 

amplitudes Ψ(a,b) = ψ_A(a)·ψ_B(b), and the unique extension of local operations is U_A ⊗ 

I_B. 

(All uniqueness claims are up to isomorphism and choice of basis/normalisation.) 

 

Mathematical Support for the RAL Tensor 

Product Rule 

This section provides a minimal mathematical formalisation of the RAL intuition presented 

above. The goal is to demonstrate that the tensor product rule arises inevitably once we impose 

superposition, locality, and independence on unresolved oscillatory systems. 

General reader note: This section is more technical, but the key point is simple: we're showing 

that the intuitive arguments above translate into rigorous mathematics. If you accept the physical 

premises, the tensor product is logically forced. 

 

1. Amplitude Spaces 

Let system A have a finite set of distinguishable configurations Λ_A = {a₁, a₂, …, aₙ} and system 

B have Λ_B = {b₁, b₂, …, bₘ}. Pre-measurement states are amplitude assignments: 

ψ_A : Λ_A → ℂ 

ψ_B : Λ_B → ℂ 

The collections of all such assignments form complex vector spaces: 

V_A = ℂ^|Λ_A| ≅ ℂⁿ 

V_B = ℂ^|Λ_B| ≅ ℂᵐ 
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2. Product Resonance and Bilinearity 

The joint configuration space is the Cartesian product Λ_A × Λ_B. RAL requires that 

simultaneous oscillations combine via a joint-amplitude map: 

Ψ : V_A × V_B → V_AB 

We impose the bilinearity assumption: for fixed ψ_B, the map ψ_A ↦ Ψ(ψ_A, ψ_B) is linear, 

and vice versa. This captures the physical requirement that joint resonance strength responds 

linearly to each subsystem's amplitude. (The physical justification for bilinearity—and why 

nonlinear alternatives fail—is given in Part I, §4.) 

The bilinear composition corresponding to independent joint configurations is: 

Ψ(a,b) = ψ_A(a) · ψ_B(b) 

This defines separable or product states: 

|ψ_A⟩ ⊗ |ψ_B⟩ 

 

3. Superposition Closure 

Physical admissibility requires closure under superposition. If Ψ₁ and Ψ₂ are both valid joint 

states, then so is any linear combination: 

Ψ = c₁Ψ₁ + c₂Ψ₂ , for c₁, c₂ ∈ ℂ 

Hence all linear combinations of product resonances must be included. The smallest vector space 

containing all product states is the algebraic tensor product: 

V_A ⊗ V_B 

This space has dimension dim(V_A) × dim(V_B) = n × m, with basis elements |aᵢ⟩ ⊗ |bⱼ⟩. 

Key theorem: The tensor product V_A ⊗ V_B is the unique (up to isomorphism) vector space 

that linearises bilinear maps from V_A × V_B. This is the universal property of tensor products. 

 

4. Why Tensor Products, Not Direct Sums 

It is worth pausing to address why the composition rule is ⊗ (tensor product) rather than ⊕ 

(direct sum). 
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The direct sum V_A ⊕ V_B has dimension n + m, not n × m. It represents mutually exclusive 

alternatives: the system is described by a state in V_A or a state in V_B, but not both 

simultaneously. This is appropriate for classical ignorance—when you have one of two possible 

systems but don't know which. 

The tensor product V_A ⊗ V_B, by contrast, represents simultaneous coexistence. Both systems 

exist; both are oscillating; neither has been resolved. Every mode of A can resonate with every 

mode of B. 

Given the RAL assumption that pre-measurement superpositions are real oscillatory processes 

(not epistemic uncertainty), simultaneous coexistence is the correct physical picture. Hence: 

Real coexistence ⟹ Tensor product, not direct sum 

 

5. Locality 

Local reversible operations must act independently on each subsystem. For a unitary operation 

U_A acting only on system A: 

(U_A ⊗ I_B)(|ψ_A⟩ ⊗ |ψ_B⟩) = (U_A|ψ_A⟩) ⊗ |ψ_B⟩ 

The universal property of the tensor product guarantees that this extension to the full joint space 

is unique and well-defined. Any bilinear map from V_A × V_B factors uniquely through V_A ⊗ 

V_B: 

For f : V_A × V_B → W bilinear, ∃! f ̃: V_A ⊗ V_B → W linear 

 

6. Inner Product and Probability 

With probabilities given by squared norms (the Born rule), independence of measurements on 

separate systems requires factorisation of inner products: 

⟨ψ_A ⊗ ψ_B | φ_A ⊗ φ_B⟩ = ⟨ψ_A|φ_A⟩ · ⟨ψ_B|φ_B⟩ 

This extends by linearity to all states in V_A ⊗ V_B. For infinite-dimensional systems, 

completing the algebraic tensor product under the induced norm yields the Hilbert space tensor 

product: 

ℋ_A ⊗ ℋ_B = cl(V_A ⊗ V_B) 
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where cl(·) denotes norm completion. The completion introduces limits of Cauchy sequences, 

which is where infinite-dimensional subtleties reside (see Reed & Simon, 1980, Vol. I, Ch. II). 

For finite-dimensional systems (such as spin-½ particles), the algebraic and Hilbert tensor 

products coincide. 

 

7. Entanglement 

States in V_A ⊗ V_B that cannot be written as a single product |ψ_A⟩ ⊗ |ψ_B⟩ correspond to 

global resonant modes. These are entangled states. 

Formally, a pure state |Ψ⟩ ∈ V_A ⊗ V_B is entangled if and only if its Schmidt rank exceeds 1. 

Any joint state admits a Schmidt decomposition (Nielsen & Chuang, 2010, §2.5): 

|Ψ⟩ = Σₖ λₖ |aₖ⟩ ⊗ |bₖ⟩ 

where λₖ > 0 are the Schmidt coefficients and r is the Schmidt rank. Product states have r = 1; 

entangled states have r ≥ 2. 

 

8. Summary 

The tensor product rule follows directly from four physical requirements, given the foundational 

assumption of real superposition: 

Requirement Mathematical Consequence 

Bilinear composition Joint amplitudes multiply; tensor product as unique linearisation 

Superposition closure Linear combinations of product states → full tensor space 

Locality Independent operations → universal property satisfied 

Probability consistency Factorised inner product → Hilbert tensor product 

The tensor product rule is therefore physically forced given real superposition, bilinear 

composition, locality, and independence—not mathematically assumed as a bare axiom. 

 

Positioning Against Standard Accounts of the 

Tensor Product Rule 
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To clarify what is new in the RAL account, it is useful to contrast it explicitly with how the 

tensor product rule is usually introduced in quantum mechanics. 

 

1. Standard Textbook Account: Postulate 

In most quantum mechanics textbooks (Griffiths, 2018; Sakurai & Napolitano, 2017; Cohen-

Tannoudji et al., 1977), the tensor product rule is introduced as a basic postulate: when two 

systems are combined, their joint state space is the tensor product of their individual Hilbert 

spaces. 

ℋ_AB = ℋ_A ⊗ ℋ_B 

No physical derivation is offered; the rule is presented as part of the formal machinery that must 

be accepted to proceed. This approach is operationally effective but foundationally silent. It 

explains how to calculate, but not why nature requires this specific composition rule over any 

alternative. 

General reader note: Imagine learning arithmetic by being told "multiplication exists" without 

any explanation of what it means or why it works. You could still do calculations, but you 

wouldn't understand why the rules are what they are. 

 

2. Mathematical Account: Vector Space Composition 

A more sophisticated presentation, common in mathematical physics texts (Isham, 1995; Hall, 

2013), motivates the tensor product by appealing to linear algebra: the tensor product is 

described as the universal bilinear construction—the natural way to combine vector spaces while 

preserving linearity and independence. 

While mathematically correct, this argument assumes that Hilbert spaces are fundamental objects 

of nature rather than derived structures. From a foundational perspective, this explanation is 

circular: it presupposes the very framework whose physical origin is under examination. 

The question "why tensor products?" becomes "why Hilbert spaces?"—which remains 

unanswered. 

 

3. Operational and Information-Theoretic Accounts 
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In quantum information theory and axiomatic reconstruction programmes (Hardy, 2001; 

Chiribella et al., 2011; Masanes & Müller, 2011; Barrett, 2007), the tensor product is often 

justified indirectly through operational constraints: 

• No-signalling: Local operations cannot transmit information 

• Local tomography: Joint states are determined by local measurements 

• Bell inequality violations: Certain correlations exceed classical bounds (Bell, 1964; 

Aspect et al., 1982) 

These approaches successfully derive or constrain the tensor product structure from operational 

axioms. However, they do not provide a pre-measurement physical picture for why amplitudes 

compose bilinearly. Composition is characterised by what measurements reveal, rather than 

derived from the physics of superposition prior to measurement. 

 

4. Historical Precedent: Wave Mechanics 

It should be acknowledged that the oscillatory or wave-mechanical view of superposition is not 

unique to RAL. Schrödinger (1926) himself emphasised that quantum states represent genuine 

wave phenomena, not merely probability catalogues. De Broglie's pilot wave theory (de Broglie, 

1927; Bohm, 1952) and modern approaches like stochastic electrodynamics (de la Peña & Cetto, 

1996) share this intuition. 

What RAL contributes is not a new physical picture but a systematic derivation: showing 

precisely how the tensor structure follows from treating superposition as real oscillatory process. 

RAL organises and extends the wave-mechanical intuition into a rigorous explanatory 

framework. 

General reader note: Schrödinger always believed quantum waves were physically real, not just 

mathematical tools. RAL builds on this idea and shows that if you take it seriously, much of 

quantum formalism follows automatically. 

 

5. The RAL Account: Pre-Measurement Necessity 

The RAL account differs from all of the above in its explanatory target. It does not begin with 

Hilbert space, nor with operational constraints on measurement outcomes. Instead, it starts from 

the physical assumption that unmeasured quantum systems behave as oscillatory assemblies 

supporting superposition. 

From this starting point, the tensor product emerges as the unique way to combine unresolved 

oscillatory systems while preserving: 
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1. All joint oscillations: No mode combinations arbitrarily forbidden 

2. Bilinear composition: Joint amplitude responds linearly to each subsystem 

3. Superposition: Closure under linear combination 

4. Locality: Independent operations on subsystems 

5. Probability: Factorised inner products for independent measurements 

The rule governs how possibilities combine before any measurement occurs, not how outcomes 

correlate afterwards. 

 

6. Summary of Differences 

Account Status of Tensor Product Rule Explanatory Basis 

Textbook Postulated None (axiom) 

Mathematical Justified Abstract vector space properties 

Operational Derived/constrained Measurement-level axioms 

RAL Derived Pre-measurement oscillatory physics 

This positioning clarifies that RAL is not offering an alternative formalism, but a deeper 

explanation of why the existing formalism has the structure it does. The mathematics of quantum 

mechanics remains entirely unchanged; what changes is our understanding of where that 

mathematics comes from. 

RAL and operational reconstructions are complementary rather than competing: operational 

approaches characterise quantum structure from measurement statistics; RAL explains why a 

world with real superpositions would necessarily have that structure. 

 

7. Implications 

If the RAL account is correct, several consequences follow: 

1. The tensor product rule is not contingent: Given real superposition and bilinearity, it 

could not have been otherwise 

2. Entanglement is demystified: It reflects global oscillatory modes, not action at a 

distance 

3. Quantum mechanics is less arbitrary: Its structure is physically forced, not 

axiomatically chosen 

4. Foundational debates shift: From "which interpretation?" to "what is oscillating?" 

The last question—what physical substrate supports these oscillations—remains open and 

connects RAL to deeper questions about the nature of quantum fields and spacetime itself. 
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Pre-emptive Reviewer Q&A (Objections & 

Replies) 

Q1. "Aren't you just assuming Hilbert space by assuming bilinearity?" 

A. No. The bilinearity requirement is not adopted as abstract linear algebra; it's the minimal 

compatibility condition between (i) real superposition (coherent additivity of oscillatory modes) 

and (ii) independence (scaling one subsystem's oscillatory contribution while holding the other 

fixed should scale the joint contribution proportionally). If composition were nonlinear, joint 

predictions would depend on arbitrary decompositions of a preparation into superposed 

components, and interference visibility would generically depend on intensity rather than relative 

phase—contradicting the operational invariances that define coherent superposition. 

Q2. "Why must the joint configuration space be the Cartesian product Λ_A × Λ_B?" 

A. Because we are modelling two simultaneously existing subsystems with independent 

configuration degrees of freedom prior to measurement. The Cartesian product is the minimal 

joint label set that allows each distinguishable configuration of A to co-occur with each 

distinguishable configuration of B. Restrictions like superselection or particle indistinguishability 

constrain admissible states within the composite space (e.g., to symmetric/antisymmetric 

subspaces), but they do not replace the underlying composition rule. 

Q3. "There are many bilinear maps V_A × V_B → V_AB. Why is Ψ(a,b) = ψ_A(a)ψ_B(b) 

special?" 

A. We are not claiming mathematical uniqueness of bilinear maps in the abstract. We pick out 

the bilinear map that realises independent joint configurations in the product basis—i.e., the map 

that assigns the joint amplitude for (a,b) as the simultaneous contribution of the amplitude for a 

and the amplitude for b. The universal property then guarantees that this bilinear composition 

linearises uniquely into the tensor product structure (up to isomorphism and choice of 

basis/normalisation). 

Q4. "Operational reconstructions already 'derive' the tensor product rule—what's new?" 

A. Operational reconstructions derive/constrain composition from measurement statistics and 

information-theoretic axioms. RAL targets a different explanatory layer: a pre-measurement 

physical picture for why amplitudes compose bilinearly when superposition is treated as a real 

oscillatory process. The approaches are complementary: operational frameworks tell you what 

must be true of observed statistics; RAL explains why a world with real superpositions naturally 

realises that structure. 



 17 

Q5. "Your argument depends on a 'real superposition' premise. Isn't that just an 

interpretation choice?" 

A. It is a premise, explicitly stated. The note is conditional: if pre-measurement superpositions 

correspond to real unresolved dynamics, then the tensor product rule follows. That premise is not 

arbitrary: ψ-ontology results (e.g., PBR under natural independence assumptions) strongly 

constrain broad classes of purely epistemic wavefunction models. RAL does not rely on PBR, 

but it makes the ontic premise materially less ad hoc. 

Q6. "How does RAL account for Bell-inequality violations without signalling?" 

A. In RAL terms, entangled systems are single global oscillatory modes with joint phase 

structure. Local descriptions omit the shared phase relation, so classical factorisations of joint 

probabilities fail. Local measurements probe the same global mode in different local bases; the 

joint statistics reflect pre-existing global constraints, not signals sent at measurement time. Bell 

rules out local hidden-variable factorisations, not nonseparable global states. 

Q7. "What about identical particles, fermions/bosons, and symmetrisation?" 

A. Symmetrisation constrains the physical state space to the symmetric/antisymmetric subspace 

of V_A ⊗ V_B. This restricts admissible states but does not replace the composition rule; it is a 

constraint within the composite space. 

Q8. "What does RAL add about measurement? Why does one outcome occur?" 

A. This note adopts only a minimal measurement assumption: measurement corresponds to an 

effectively irreversible coupling that produces a stable macroscopic record and ends coherent 

interference for that event. A full RAL account would still owe a dynamical model of record 

formation and an account of outcome selection (or why that framing is wrong). Those issues are 

interpretation-sensitive and are treated as open here. 

Q9. "Does the argument generalise beyond finite-dimensional spins?" 

A. Yes at the structural level. The algebraic tensor product is defined for general vector spaces; 

for infinite-dimensional Hilbert spaces one takes the appropriate completion under the induced 

norm to obtain ℋ_A ⊗ ℋ_B. The note focuses on finite-dimensional spins only to keep the 

intuition transparent. 

Q10. "Is this just 'wave mechanics' restated?" 

A. RAL's novelty is not the claim that quantum states are wave-like; that has historical 

precedent. The novelty is the systematic derivation: from real superposition + independence + 

locality + bilinear response to the tensor product via the universal property, with explicit pre-

emption of standard objections (direct sum confusion, superselection/indistinguishability, 

Bell/no-signalling). 
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Glossary for General Readers 

Amplitude: A complex number describing the "strength" of a quantum oscillation. Its squared 

magnitude gives probability. 

Basis states: The fundamental, distinguishable configurations a system can be found in upon 

measurement (like spin up vs. spin down). 

Bell inequality / Bell correlations: Mathematical constraints that any local hidden-variable 

theory must satisfy. Quantum mechanics predicts—and experiments confirm—that entangled 

particles violate these inequalities, demonstrating that quantum correlations cannot be explained 

by pre-existing local properties. This rules out certain classical explanations but does not imply 

faster-than-light signalling. 

Bilinear: A function of two variables that is linear in each variable separately. If you double one 

input while holding the other fixed, the output doubles. 

Complex number (ℂ): Numbers of the form a + bi, where i = √(−1). They encode both 

magnitude and phase. 

Direct sum (⊕): A way of combining vector spaces representing exclusive alternatives—one or 

the other, but not both. 
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Entanglement: A quantum state of multiple systems that cannot be described as independent 

states of each part. The systems share a global oscillatory mode. 

Epistemic: Relating to knowledge or belief. An epistemic interpretation treats the wavefunction 

as representing what we know, not what exists. 

Hilbert space: The mathematical space containing all possible quantum states of a system. A 

complete vector space with an inner product. 

Inner product ⟨ψ|φ⟩: A way of measuring "overlap" between two quantum states. Used to 

calculate probabilities. 

Measurement: An irreversible interaction that transfers quantum information into a macroscopic 

record, resolving superposition. 

Ontic: Relating to reality or existence. An ontic interpretation treats the wavefunction as 

representing something physically real. 

Phase: The timing or alignment of an oscillation. Two waves can interfere constructively or 

destructively depending on their relative phase. 

Schmidt decomposition: A way of writing any joint quantum state as a sum of product terms, 

revealing how entangled it is. 

Superposition: The simultaneous existence of multiple oscillatory modes before measurement. 

Not a mixture, but genuine coexistence. 

Superselection rule: A constraint prohibiting superpositions between certain states (e.g., 

different electric charges). Acts within the tensor product structure, not as a replacement for it. 

Tensor product (⊗): The mathematical operation combining two vector spaces representing 

simultaneous coexistence. Dimension multiplies: n × m. 

Unitary operation: A reversible quantum transformation that preserves probabilities. Rotations 

in Hilbert space. 

Universal property: A mathematical characterisation stating that the tensor product is the 

unique space through which all bilinear maps factor. 
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