Finite Distinguishability and Irreversible
Commitment: A No-Go Result for Infinite-
Precision Physics

Abstract

We establish that irreversible commitment—the process by which physical possibilities resolve
into definite facts—is impossible in any system with infinite distinguishability. This result
functions as a no-go theorem: no physical theory permitting unbounded state resolution in finite
regions can accommodate irreversible measurement outcomes, monotonic entropy increase,
persistent records, or asymmetric temporal ordering. Finite distinguishability is therefore not an
empirical discovery or modeling convenience, but a necessary condition for fact-producing
physics. We formalize this argument, address objections from quantum mechanics and
eternalism, connect the result to established information-theoretic bounds, and identify the class
of physical frameworks excluded by this constraint.

Plain Language Summary. When you flip a coin and it lands heads, that outcome becomes a
fact—you can't "un-flip" it. But many mathematical models of physics are perfectly reversible: in
principle, every process can be run backward. How can irreversible facts exist in a reversible
universe? This paper shows that facts can only exist if there's a limit to how finely we can
distinguish physical states. If we could make infinitely precise distinctions, any apparent "fact"
could always be undone by accessing finer details. The existence of genuine facts—measurement
outcomes, memories, records—therefore requires that physical distinguishability be finite. This
isn't just a practical limitation; it's a logical requirement for facts to exist at all.
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1. Introduction: The Problem of Facts

Modern physics relies fundamentally on irreversible facts. Detector clicks occur, records persist,
memories form, entropy increases, and causal chains produce outcomes that cannot be undone.
Yet the mathematical structures most commonly used to model physical reality—continuous
state spaces, infinite-precision variables, and reversible dynamics—quietly permit perfect
recoverability in principle. This tension between irreversible physical commitment and reversible
mathematical description has remained unresolved.

This paper addresses a single foundational question: under what conditions is irreversible
commitment physically possible at all?

We establish a necessity result: irreversibility cannot arise in systems with infinite
distinguishability. If arbitrarily fine distinctions between states are physically accessible, then
any apparent many-to-one evolution can be refined into an information-preserving mapping,
rendering commitment illusory. Finite physical distinguishability is therefore not an assumption
imposed for convenience, but a structural requirement for the existence of facts.

Remark (Minimal empirical premise). The premise "facts exist" is used in the weakest
operational sense: experiments yield stable, reproducible records that can be compared across
observers and times. Any theory that denies this undermines the empirical practice by which the
theory itself is justified. The argument therefore treats record existence as a minimal
precondition for doing physics at all.

No assumption is made here about the metaphysical uniqueness of outcomes beyond the
operational existence of stable records; the argument concerns the physical possibility of record-
finality within an admissible domain. This framing is compatible with relational, perspectival, or
even Everettian interpretations, provided they acknowledge that within an accessible domain,
records must stabilize.

The argument operates at the level of admissibility—identifying which mathematical
descriptions can correspond to fact-producing physics—rather than proposing specific dynamics.
This generality is a strength: the result constrains all candidate theories regardless of their
particular field equations or interpretive commitments.

2. Formal Definitions and Framework
2.1 State Spaces and Distinguishability

Let S denote a state space representing physically possible configurations of a bounded region.



Definition 1 (Distinguishability). Two states s, s2 € S are physically distinguishable if there
exists a physically realizable procedure M that reliably yields different outcomes for s and s
using finite resources.

In plain terms: Two states are distinguishable if you can actually tell them apart using some
physical measurement or procedure. This is different from being mathematically different—two
numbers can differ in their trillionth decimal place, but no physical apparatus could detect that
difference.

Definition 2 (Infinite Distinguishability). A state space S has infinite distinguishability if, for
any € > 0 and any partition of S into cells of diameter ¢, each cell contains states that are
themselves physically distinguishable by some finer procedure.

Equivalently: S has infinite distinguishability if there is no minimum resolution below which
distinctions become physically inaccessible.

Moreover, the refinement is iteratable: for any physically distinguishable pair si # s2, there exists
a procedure distinguishing them at strictly finer resolution, and this can be repeated without
terminal scale. This ensures the induction in the main proof (§3.3) is well-founded.

Definition 3 (Finite Distinguishability). A state space S has finite distinguishability if there
exists some & > 0 such that states separated by less than & (in an appropriate metric) are not
physically distinguishable by any realizable procedure.

Finite distinguishability implies a maximum information content: the number of distinguishable
states in any bounded region is finite.

In plain terms: Infinite distinguishability means you can always "zoom in" further and find finer
distinctions that are physically real and accessible. Finite distinguishability means there's a
bottom level—a finest grain—beyond which no physical procedure can detect differences. Think
of it like pixels on a screen: below the pixel level, there's nothing finer to see.

Remark (Metric-independence). The €/6 language is used only to express an operational idea:
whether there exists a minimum physically resolvable scale of distinction. The argument does
not depend on a particular metric choice; any operational distinguishability relation induces a
topology of resolvable distinctions. "Infinite distinguishability" means there is no terminal scale
at which refinements become physically inaccessible.

Remark (Non-vacuity). The infinite-distinguishability condition is intentionally strong because
it targets the precise claim made—often implicitly—by infinite-precision physics: that arbitrarily
fine distinctions are not merely mathematically labelable but physically recoverable in principle.
Many idealized frameworks (e.g., exact classical phase-space realism with infinite precision,
continuum field models taken as literally complete at arbitrarily fine scales, or block-universe
pictures with unlimited microstate specification) effectively commit to this stance. The theorem
therefore functions as a diagnostic: it identifies which idealizations cannot be treated as complete
descriptions of fact-producing reality.



Remark (Continuous spaces with finite distinguishability). Finite distinguishability does not
require discrete state spaces at the mathematical level. A continuous manifold with a minimum
resolvable scale o has finite distinguishability: the effective state count is V/0" where V is the
volume and n the dimension. The mathematical description may employ real numbers; what
matters is that no physical procedure can distinguish states separated by less than . The
discreteness is operational, not necessarily structural. Physics may use R for convenience while
physical distinguishability remains finite.

2.2 Irreversible Commitment

Definition 4 (Irreversible Commitment). A physical process P: S — S exhibits irreversible
commitment if:

(1) There exist distinct states si, s2 € S such that P(s1) = P(s2), and
(i1) There exists no physically realizable process Q: S — S such that Q(P(si)) = s; for all such s;.

Condition (i) requires genuine many-to-one mapping: multiple prior states yield the same
outcome. Condition (ii) requires that this mapping be non-invertible in principle, not merely in
practice.

Clarification (Accessible domain). Irreversible commitment is non-invertibility with respect to
the physically accessible degrees of freedom and admissible operations on them. This domain
restriction is essential: the question is not whether some hypothetical super-observer with access
to all correlations in the universe could invert the process, but whether inversion is possible using
resources within the accessible domain. If information is "preserved" only in degrees of freedom
outside this domain, it is not preserved in any operationally meaningful sense.

[rreversible commitment is thus distinguished from:

e Reversible dynamics (one-to-one mappings)

o Epistemic coarse-graining (information hidden but recoverable within accessible
domain)

e Practical irreversibility (recovery difficult but possible in principle within accessible
domain)

In plain terms: Irreversible commitment is what happens when multiple possibilities collapse
into a single definite outcome that cannot be "uncollapsed." When a detector clicks, when you
remember something, when a record is written—these are commitments. The key question is
whether such commitments are genuine (the alternatives are truly gone from the accessible
domain) or merely apparent (the alternatives are hidden somewhere accessible and could in
principle be recovered).



2.3 Physical Realizability

The phrase "physically realizable" requires explicit definition to avoid circularity.

Definition 5 (Physical Realizability). A process is physically realizable if it can be
implemented using:

(1) Finite energy

(i1) Finite time

(iii) Finite spatial extent

(iv) Operations that do not presuppose access to information that has been irreversibly
committed elsewhere

Condition (iv) prevents definitional circularity: we cannot define recoverability by appealing to a
"cosmic ledger" whose existence already presupposes irreversible commitment.

Clarification on condition (iv): This condition prevents a specific circularity: defining
"recoverability" by appealing to a hypothetical cosmic ledger that records all information. Such a
ledger would itself require irreversible commitment to exist—the ledger's records must be facts.
The condition ensures we don't smuggle commitment in through the back door while asking
whether commitment is possible. Operationally: a recovery procedure must work using resources
available within the light cone of the process, not by consulting an external record whose
existence presupposes what we're trying to establish.

2.4 Admissibility Versus Mathematical Possibility

Throughout this paper, we distinguish mathematical possibility from physical admissibility.

Mathematical structures may permit infinite state density, perfect reversibility, or unbounded
precision without internal contradiction. Physical admissibility, however, requires that states be
preparable, distinguishable, and evolvable using finite physical resources.

Admissibility thus functions as a constraint layer on formal theories. It determines which
mathematical descriptions correspond to realizable physics. The central result of this paper
operates entirely at this level.



3. The No-Go Theorem
3.0 Assumptions (Admissibility Layer)

The following assumptions define the admissibility framework within which the theorem
operates. Making them explicit controls the logical terrain and clarifies what the theorem does
and does not assume.

(A1) Operationality. Distinguishability is defined by physically realizable tests under bounded
resources. Two states are distinguishable if and only if some admissible procedure can reliably
separate them.

(A2) Refinement Accessibility. If arbitrarily fine distinctions are physically accessible (infinite
distinguishability), then there exists an admissible refinement procedure that can preserve (track)
those distinctions through any process that does not itself constitute commitment at that refined
level.

(A3) Record Minimality. "Facts exist" means stable records exist that can be compared across
observers and times. This is the minimal empirical premise required for physics to be possible.

(A4) Domain Restriction. Irreversible commitment is non-invertibility with respect to the
physically accessible degrees of freedom and admissible operations on them—not with respect to
hypothetical extensions beyond physical accessibility.

These assumptions are not hidden premises smuggled into the argument; they are the explicit
conditions under which the theorem holds. Rejecting any of them has consequences: rejecting
(A1) makes distinguishability undefined; rejecting (A2) defines finite distinguishability by fiat;
rejecting (A3) abandons empirical grounding; rejecting (A4) allows "cosmic ledger" escapes that
presuppose what they deny.

Remark (Transcendental status of A3). The premise "facts exist" is not a metaphysical
assumption but a transcendental condition for the practice of physics. Any argument against this
premise would itself require formulation, communication, and evaluation—all of which
presuppose the existence of the facts being argued about (the statements made, the records of the
argument, the outcome of evaluation). Denying A3 is not merely uncomfortable but
performatively incoherent: the denial cannot be maintained as a fact.

The argument thus has the structure: if physics is possible at all, then finite distinguishability

holds. This is not circular but conditional, and the condition is one that anyone engaging in
physics has already accepted.

3.1 Refinement Lemma

Before stating the main theorem, we establish a key lemma that makes the role of refinement
explicit.
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Lemma (Refinement Lemma). If two states s, s2 € S are physically distinguishable, then there
exists: (1) An admissible refinement variable @, and (ii) An admissible measurement M
producing values in O,

such that M(s1) # M(s2). That is, @ separates s: and sa.

Proof. By Definition 1, distinguishability means there exists a physically realizable procedure
that reliably yields different outcomes for s: and s.. Let M be such a procedure and @ its outcome
space. Then M(s1) # M(s2) by construction. The procedure M is admissible by hypothesis (it is
physically realizable under bounded resources). m

This lemma is nearly tautological—it simply unpacks what "distinguishable" means
operationally. Its importance lies in making explicit the step that critics often attack: the
"appearance" of @ is not an addition of structure but a naming of structure that distinguishability
already commits us to.

3.2 Statement

Theorem (No-Go for Infinite-Precision Irreversibility). Let S be a state space with infinite
distinguishability. Then no process P: S — S can exhibit irreversible commitment.

Equivalently: Irreversible commitment requires finite distinguishability.

What this means: 1f you can always find finer and finer physical distinctions, then nothing is ever
truly lost. Any process that seems to erase information or collapse possibilities is actually
preserving that information in finer details you haven't looked at yet. Real, permanent facts—like
measurement outcomes or memories—can only exist if there's a limit to how finely the universe
can be carved up.

3.3 Proof

Suppose S has infinite distinguishability and P: S — S appears to exhibit irreversible
commitment, with P(s:) = P(s2) = s* for distinct si, s2.

Step 1 (Many-to-one implies distinguishable inputs): Since P(s:) = P(s2) with s1 # s2, we have
at least two distinct input states mapping to the same output.

Step 2 (Apply Refinement Lemma): By infinite distinguishability, s: and s2 are physically
distinguishable. By the Refinement Lemma (§3.1), there exists an admissible refinement variable
® and measurement M such that M(s1) = @1 # @2 = M(s2).

Step 3 (Construct lifted process): Define the extended state space S'= S x ®@. The key

observation is that the process P, being physical, must act through some physical mechanism that
engages the degrees of freedom in ®. Define:
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P'(s, ¢) = (P(s), ¢_out(s, ¢))

where ¢ out(s, @) is the actual final state of the ® degrees of freedom after P acts on state (s, ¢).
This is not a constructed mathematical function but a description of what physically happens to
all accessible degrees of freedom.

The critical point: under infinite distinguishability, ¢ out is itself physically accessible. Since s:
and s: are distinguishable via @, and the process P cannot "erase" this distinction without
engaging @ (erasure being physical), the distinction persists in ¢ out unless P explicitly destroys
it—but explicit destruction would constitute irreversible commitment at the @ level,
contradicting the hypothesis that no irreversible commitment occurs under infinite
distinguishability.

Step 4 (Lifted process is injective): By construction:

e P'projects to P under coarse-graining (ignoring ®)
e P'isinjective: P'(s1, @1) # P'(s2, ¢2) since @ _out(s1, ¢1) # ¢_out(sz, ¢2)

Step S (Invertibility at refined level): Since P' is injective and @ is physically accessible (by
assumption A2), the process is invertible at the refined level. Therefore P does not exhibit
irreversible commitment—the apparent information loss is recoverable.

Step 6 (Induction): If apparent loss remains at level S', repeat. By infinite distinguishability,
refinement is always available. By induction, no information loss is ever final.

Conclusion: Under infinite distinguishability, all apparent irreversibility is an artifact of
incomplete description. No process exhibits genuine irreversible commitment. m

Remark (Mathematical vs. physical invertibility). A map can be mathematically invertible yet
physically non-invertible because the inverse would require operations outside admissibility
(infinite precision, infinite memory, infinite control). Conversely, a map can be mathematically
many-to-one yet appear irreversible only because we haven't accessed sufficiently fine degrees of
freedom. The no-go theorem establishes that under infinite distinguishability, every apparently
irreversible map falls into the second category: the "irreversibility" is always an artifact of
incomplete description, never a feature of the physics. This is the core claim. Finite
distinguishability is what makes some maps genuinely non-invertible within the admissible
domain.

Clarification (No hidden-register escape). The refinement argument is not an addition of
hidden variables; it is an explicit statement of what infinite distinguishability means
operationally. If arbitrarily fine distinctions are physically accessible, then any purported
information loss can be tracked by physically accessible refinements. The lifted space S x ® is
therefore not a metaphysical extension but a formal representation of accessible structure that the
infinite-distinguishability hypothesis already commits us to. If such refinements are not
physically accessible, then distinguishability is finite in the relevant sense.
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The construction doesn't posit new physics. It makes explicit what infinite distinguishability
means operationally. To claim s: and sz are physically distinguishable just IS to claim there exists
some physically accessible degree of freedom that differs between them. The lifted space doesn't
add @; it names what distinguishability already commits us to. If no such ® exists, then s: and s
weren't distinguishable in the first place—which is precisely finite distinguishability.

Remark (Recovery vs. non-disturbance). The no-go targets the existence of a physically
realizable inverse in principle, not an intervention-free readout. If distinctions are physically
accessible under infinite distinguishability, then there exists some admissible procedure that can
recover them, even if recovery requires interaction. If no such recovery procedure exists in
principle, then the distinctions were not physically accessible and distinguishability is finite in
the relevant sense.

Clarification (What is and is not assumed about information preservation). The argument
does not assume a separate axiom of "information conservation." It uses only the operational
meaning of infinite distinguishability: if arbitrarily fine distinctions are physically accessible,
then there exists an admissible procedure that can track those distinctions through any process
that does not explicitly erase them. If a process truly destroys those distinctions while they
remain physically accessible, then the process itself constitutes irreversible commitment—
contradicting the hypothesis that irreversible commitment is impossible under infinite
distinguishability. Thus the incompatibility is structural: either (a) distinctions remain accessible
and therefore cannot be irreversibly collapsed without finite distinguishability, or (b) they are not
accessible, which is precisely finite distinguishability.

Clarification (Local commitment vs. global unitarity). The no-go result does not require that
information be destroyed "in the universe as a whole." It requires only that certain distinctions
become inadmissible to recover within the physical resources and degrees of freedom that
remain operationally accessible after commitment. A globally unitary completion may conserve
information in an enlarged description, but if that enlarged description remains physically
accessible in bounded regions, then commitment does not occur. If it is not physically accessible,
then distinguishability is finite in the relevant operational sense.

3.4 Contrapositive Formulation

The contrapositive is equally important:

Corollary. If irreversible commitment occurs in a physical system, then that system has finite
distinguishability.

Since we observe irreversible facts—measurement outcomes, records, memories, entropy
increase—we conclude that physical reality has finite distinguishability. This is an empirical
conclusion, not merely a definitional one.

Clarification (Chaos does not create commitment). Chaotic mixing and practical

unpredictability can explain why inversion is difficult, but not why it is inadmissible in principle.
The present result targets principled non-invertibility: if arbitrarily fine distinctions remain
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physically accessible, then any apparent irreversibility can always be re-described as reversible
information flow into finer structure. Chaos accelerates loss of practical trackability, but it does
not, by itself, create irreversible commitment.

3.5 Scope and Generality

The theorem makes no assumptions about:

e Specific dynamics or field equations

e Quantum versus classical physics

e Continuous versus discrete underlying structure
e Determinism versus indeterminism

It applies to any candidate physical theory. The constraint is structural: infinite distinguishability
and irreversible commitment are logically incompatible.

4. Information-Theoretic Formalization

The conceptual argument of §3 can be made mathematically precise using information theory.
This formalization connects the no-go result to established theorems, provides quantitative
bounds, and makes the argument auditable by mathematical physicists.

Why information theory? Information theory provides a rigorous language for talking about what
can be known, transmitted, and lost. "Entropy" measures uncertainty or information content;
"mutual information" measures how much knowing one thing tells you about another. By
translating our definitions into this language, we can prove precise theorems and connect to
established results like the Data Processing Inequality and channel capacity bounds.

4.1 Setup and Notation

Let X be a random variable representing the pre-process state, drawn from a state space S with
probability distribution p(x). The Shannon entropy is:

H(X) = —Zx p(x) log p(x)
Intuition: Entropy measures "how much you don't know" or equivalently "how much
information is contained." A fair coin has entropy 1 bit; a biased coin has less. A system with N

equally likely states has entropy log N.

For a physical process P: S — S, let Y = P(X) denote the post-process state. The mutual
information between input and output is:
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I(X; Y) = H(X) - HX[Y) = H(Y) — H(Y[X)

where H(X]Y) is the conditional entropy—the remaining uncertainty about X given knowledge
of Y.

Intuition: Mutual information I(X; Y) measures how much information about the input survives
in the output. If [(X; Y) = H(X), nothing was lost. If [(X; Y) < H(X), some information was
destroyed.

Remark (Link between geometric and entropic formulations). The information-theoretic
formalization treats distinguishability as an induced hierarchy of coarse-grainings P1 < P2 < ---
on the state space, where refinement corresponds to physically accessible discrimination
procedures. "Infinite distinguishability”" in §2 means there is no terminal partition; the entropic
condition in §4 captures the same fact by asserting that accessible refinements can increase
H(X_ P) without bound. The two formulations are equivalent descriptions of the same
operational constraint.

Definition (Refinement Sequence). A refinement sequence on state space S is a chain of
partitions P: < P2 < --- where P+ refines P; (every cell of Pi+1 is contained in some cell of P;),
and each partition corresponds to a physically realizable discrimination procedure. S has infinite
distinguishability if and only if every refinement sequence can be extended: for all P, there
exists Pp+1 with H(X|Pyr1) < H(X|P,) for some distribution over S.

This makes the "unbounded refinement" condition precise and connects the geometric and
entropic formulations rigorously.

4.2 Reformulated Definitions

Irreversible Commitment (Information-Theoretic): A process P exhibits irreversible
commitment if there exists an admissible input ensemble p(x) such that:

I(X;Y) <H(X)

Equivalently: H(X|Y) > 0 for some admissible distribution. This formulation avoids trivial cases
(e.g., delta distributions where H(X) = 0) by requiring that information loss occurs for at least
one physically preparable input ensemble.

Finite Distinguishability (Information-Theoretic): A bounded region has finite
distinguishability if and only if there exists a maximum entropy H max < oo such that for all
preparable distributions:

H(X) <H max

This is equivalent to the state space having finite effective cardinality N = 2*(H_max).
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Infinite Distinguishability (Information-Theoretic): A system has infinite distinguishability if,
for any description at resolution level P with entropy H(X 2P), there exists a finer resolution P'
with:

HX P')>HX P)

and all distinctions in P' are physically accessible.

4.3 The Information-Theoretic No-Go Theorem

Theorem (Information-Theoretic No-Go). Let S have infinite distinguishability. For any
process P with apparent information loss H(X|Y) > 0 at description level P, there exists a
refinement ' such that:

(X Y') = H(X)

where X' and Y are the refined descriptions. All apparently lost information is recoverable at
finer resolution.

Proof.
(1) Suppose at description level P we have H(X|Y) > 0 (apparent information loss).

(2) The conditional entropy H(X|Y) > 0 means that multiple distinct input states map to the same
output:

3 x1 £x2: P(x1) = P(x2) = y*

(3) By infinite distinguishability, there exists a refinement P' that resolves finer structure within
the P-equivalence classes. Let ® denote these additional degrees of freedom.

(4) Define the extended output:
Y'=(Y, D)
where @ encodes the information distinguishing x: from x..

(5) Since @ is physically accessible (by infinite distinguishability) and tracks the input
distinctions, we have:

HX'Y') = HX'Y, ®) =0
(6) Therefore:
(X" Y") = H(X') - HXY') = H(X)

All information is preserved.
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(7) If apparent loss remains at level ', repeat the refinement. By infinite distinguishability,
refinement is always available.

(8) By induction, no information loss is ever final at any resolution level.

Conclusion: Under infinite distinguishability, all apparent irreversibility is an artifact of
incomplete description. No process exhibits genuine irreversible commitment. m

Remark (Sufficient statistics formulation). The information-theoretic result can be stated more
precisely using the concept of sufficient statistics. Under infinite distinguishability, refinements
can always be chosen so that Y' becomes a sufficient statistic for X'—that is, H(X'|Y') =0,
meaning Y' captures all information about X' with no residual uncertainty. In finite
distinguishability, no such sufficient refinement exists beyond the terminal partition. The output
cannot be refined into a sufficient statistic for the input because the refinement hierarchy
terminates. This is the information-theoretic essence of irreversible commitment: commitment
occurs precisely when no sufficient statistic for the input is physically accessible from the output.

4.4 Connection to the Data Processing Inequality

The Data Processing Inequality (DPI) states that for any Markov chain X — Y — Z:
I(X;2)<I(X;Y)

Processing cannot create information about the source. However, DPI does not guarantee that
information IS lost—it permits I(X; Y) = H(X) (perfect preservation).

In plain terms: DPI says you can't make information appear out of nowhere by processing data.
But it doesn't say information must be lost—you might preserve everything. The question is:
when must information actually be destroyed?

The finite distinguishability constraint provides the complementary bound. Let N be the
maximum number of distinguishable states. Then for any process with [input states| > |output
states|:

H(X|Y) > log(|input states|) — log(N)

At some resolution, loss becomes genuine because no further refinement exists. The state space
"bottoms out."

In plain terms: 1f you try to cram more information than a system can hold, some must be lost.
Finite distinguishability sets a hard limit on how much information any region can contain.

Exceed that limit, and information is genuinely destroyed—not just hidden.

Together, DPI and finite distinguishability yield:
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Proposition. In a system with finite distinguishability (maximum N states), any process mapping
M > N equiprobable input states to K < M output states exhibits irreversible commitment of at
least:

H(X]Y) > log(M/N)

Derivation: For an equiprobable ensemble over M distinguishable inputs and an admissible
output domain of capacity N, basic counting bounds imply this inequality whenever M > N. The
pigeonhole principle guarantees that at least [M/N] inputs map to some common output, forcing

conditional uncertainty.

This is a quantitative lower bound on information loss—not merely the assertion that loss occurs,
but how much must occur.

4.5 Channel Capacity Interpretation

A physical process P can be viewed as a noisy channel with input X and output Y. The channel
capacity is:

C=max_ {p(x)} I(X;Y)

For a deterministic process (no noise in the forward direction), Y is a function of X, so H(Y|X) =
0 and:

I(X; Y)=H(Y)

If P is many-to-one (irreversible commitment), then |range(P)| < |domain(P)|, so:
H(Y) < H(X)

and information is genuinely lost.

Under infinite distinguishability, any channel can be "upgraded" to a refinement with:
C'=H(X")

by accessing finer output degrees of freedom. The effective channel capacity is always equal to
source entropy—no information is ever lost.

Under finite distinguishability, channel capacity is bounded:
C<H max=IlogN

This hard ceiling forces information loss when input entropy exceeds capacity.
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4.6 Worked Example: Bit Erasure

Consider the simplest case: erasure of a single bit.
Why this matters. Erasing a bit—resetting a memory cell to zero, for instance—is the most
elementary irreversible operation. If we can't genuinely erase one bit, we can't genuinely erase

anything. This example shows exactly where the argument bites.

Setup: Input X € {0, 1} with H(X) = 1 bit. The erasure process maps both states to a single
output:

P(0)=P(1)=0
At the coarse level:
e H(Y) =0 (output is constant)
e H(X]|Y)=1 bit (complete loss)

Under infinite distinguishability:

The erasure process necessarily involves physical degrees of freedom—heat dissipation, material
reconfiguration, field dynamics. If distinguishability is infinite, these carry a record:

Y'= (0, ¢) where ¢ € {@o, ¢1}
The extended output distinguishes the two cases:

« P(0)=(2, 9o)
o P(H)=(@, 91

Now H(Y'") =1 bit and I(X; Y') = 1 bit. No information lost.

If further refinement is always possible, this escape is always available. Erasure never completes.
Under finite distinguishability:

Suppose the physical substrate has N distinguishable states. The erasure process must map both
inputs to states within this finite set. If both inputs map to indistinguishable final states (as
required for erasure), then:

H(X]Y") = 1 bit (genuinely lost)

No refinement can recover the distinction because no finer physical structure exists.
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Landauer's bound follows: The 1 bit of lost information must be compensated by entropy
increase elsewhere (heat dissipation > kT In 2), since total information is conserved but local
information is destroyed.

4.7 Measurement as Capacity Saturation

Quantum measurement can be understood as channel capacity saturation.
Setup: A quantum system in state [y) = X 0,]i) is measured in the {[i)} basis.

Pre-measurement: The quantum state encodes information in amplitudes {oi} and relative
phases. For a d-dimensional system:

H quantum = log d (maximum distinguishable outcomes)

Measurement as channel: The measurement process M maps quantum states to classical
outcomes:

M: |y) — 1 with probability |oi|?
Information accounting:

o Input entropy: H(y) can be arbitrarily large if we consider continuous parameters
e Output entropy: H(outcome) < log d
e Under finite distinguishability: H max = log d

The measurement channel saturates capacity. All information beyond log d bits is irreversibly
lost. The recorded outcome i constitutes an irreversible commitment precisely because:

1. The finite-dimensional output space cannot encode finer distinctions
2. No physical refinement accesses additional degrees of freedom
3. H(input|output) > 0 genuinely and irrecoverably

Born rule compatibility: Finite-outcome commitment is naturally consistent with Born-rule
statistics. The structure |oi|? is compatible with:

o Finite output distinguishability (d outcomes)
o Unitarity at the pre-measurement level
o Consistency across subsystems

This suggests a route by which Born-rule statistics can be viewed as compatible with finite-
outcome commitment under unitary pre-measurement evolution; a full derivation would require
additional assumptions (e.g., noncontextuality or symmetry constraints) beyond the scope of this

paper.
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4.8 Entropy Increase as Information Compression

The Second Law can be reformulated as forced information compression.

Consider an isolated system with N_max distinguishable macrostates. At time ti, the system
occupies one of W1 microstates consistent with macrostate Mi:

Si= k_B IOg Wi

At time t2, it occupies one of W2 microstates consistent with macrostate Mo:

S: = k_B log W2

Under infinite distinguishability: All Wi microstates remain individually trackable. The
system's microstate is always recoverable. Entropy is merely a coarse-grained description with
no fundamental status:

H(micro|lmacro) = log W

but H(micro_tzjmicro_ti) = 0.

Under finite distinguishability: Microstate distinctions exceeding N_max are physically
inaccessible. When dynamics mix states beyond the resolution limit:

H(micro_tzjmicro_ti) > 0 (genuine information loss)
Entropy increase is real, not merely epistemic. The Second Law holds because:

1. Dynamics tend to spread distributions across state space
2. Finite distinguishability prevents tracking of fine structure
3. Information is genuinely destroyed, not merely hidden

The entropy bound S max =k B log N_max is the thermodynamic reflection of finite
distinguishability.

Summary of §4: The information-theoretic formalization shows that irreversibility isn't just a
philosophical puzzle—it has precise mathematical content. Information loss requires finite
distinguishability because infinite distinguishability always provides an "escape route" where
supposedly lost information persists in finer details. Established results like the Data Processing
Inequality and channel capacity bounds confirm this structure. The Second Law of
thermodynamics, Landauer's bound on erasure, and the finality of quantum measurements all
emerge as consequences of finite distinguishability.
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5. Addressing Potential Objections

This section anticipates and responds to the most common objections to the argument. Readers
already convinced may skip to §6.

5.1 Is the Argument Circular?

Objection: The definition of "physically realizable" presupposes finite resources, making the
conclusion trivial.

Response: The argument can be run in two independent modes.

Empirical mode: We observe irreversible facts (detector clicks, persistent records, entropy
increase). These observations falsify infinite distinguishability as a property of physical reality,
regardless of how we define admissibility.

The empirical mode does not depend on any definition of admissibility. It runs as follows:

1. We observe irreversible facts—this is not a theoretical claim but the precondition of
observation itself. Every measurement, every record, every memory constitutes an
irreversible commitment.

2. The no-go theorem proves: if distinguishability is infinite, irreversible facts cannot occur.

3. By modus tollens: distinguishability is finite.

This is an empirical conclusion from observable phenomena, analogous to inferring finite speed
of information propagation from relativistic observations. The argument does not assume
finiteness; it derives it.

The Empirical Argument (Summary)
Independent of all definitions of admissibility:

1. We observe irreversible facts (measurements yield stable outcomes, records persist,
entropy increases).

2. The no-go theorem proves: infinite distinguishability = no irreversible facts.

3. By contraposition: irreversible facts = finite distinguishability.

4. Therefore: physical reality has finite distinguishability.

This has the same logical status as inferring finite light speed from the observed failure of
superluminal signaling, or inferring energy conservation from the observed failure of perpetual
motion.

Structural mode: Even granting the definitional point, the argument has substantive content. It

identifies which mathematical structures are compatible with fact-producing physics. Many
candidate frameworks—exact classical mechanics, unitarily closed quantum mechanics, block
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universes with infinite precision—are revealed as incomplete. Not because they violate known
laws, but because they cannot accommodate the existence of facts.

Even granting unbounded resources, infinite distinguishability still blocks principled
commitment, because any apparent many-to-one mapping can be refined into a one-to-one
mapping whenever distinguishability remains unbounded.

The argument thus functions as a compatibility filter, not a derivation from nothing. The no-go is
not merely a "finite resources" statement; it is a structural incompatibility claim: if arbitrarily
fine distinctions remain physically accessible, then commitment cannot be final, regardless of
available resources.

5.2 Does Quantum Mechanics Already Solve This?

Objection: Quantum mechanics already limits distinguishability through complementarity and
uncertainty. The argument adds nothing new.

Response: Quantum mechanics limits simultaneous distinguishability of non-commuting
observables, but does not obviously impose finite distinguishability in the relevant sense:

1. Hilbert spaces may be infinite-dimensional
2. Position and momentum eigenstates form continuous spectra
3. Unitary evolution is perfectly reversible

The measurement problem persists precisely because standard quantum mechanics lacks a native
mechanism for irreversible commitment. The projection postulate is added by hand; decoherence
displaces but does not destroy information; many-worlds avoids commitment entirely.

The present argument identifies what any solution to the measurement problem must provide: a
finite bound on distinguishable outcomes that cannot be refined away by accessing finer degrees
of freedom.

Complementarity limits joint sharpness of certain observables, but does not by itself guarantee a
finite bound on recordable, irreversibly committed distinctions in bounded regions; a theory can
have continuous spectra and unitary reversibility while still respecting uncertainty.

Quantum mechanics is compatible with finite distinguishability (POVMs have finite outcome
sets), but does not guarantee it at the foundational level. The no-go theorem clarifies what is
required. Finite distinguishability in this paper concerns the physically committable distinctions
that can be stabilized as records, not the mathematical cardinality of spectra in the kinematic
formalism.

The objection correctly notes that POVMs have finite outcome sets. But this observation
relocates rather than resolves the problem. Why do measurements have finite outcomes? The
projection postulate is added axiomatically; it doesn't follow from unitary dynamics. The
question is whether finite outcomes reflect (a) a fundamental constraint on distinguishability, or
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(b) a contingent feature of measurement apparatus that could in principle be refined. If (b), then
measurement finality is illusory. If (a), then quantum mechanics implicitly assumes finite
distinguishability—precisely the condition this paper identifies as necessary. The no-go theorem
clarifies what any interpretation must provide: not merely finite outcomes in practice, but a
principled account of why refinement terminates.

5.2.1 Decoherence Does Not Create Commitment

A common response holds that decoherence explains irreversibility: environmental entanglement
makes recovery practically impossible by spreading information across enormous numbers of
degrees of freedom. But practical impossibility is not principled inadmissibility.

The distinction between practical and principled irreversibility is not academic fastidiousness—it
determines whether facts are real or apparent. If information persists in environmental
correlations, then the outcome is not a fact but an indexical appearance relative to a subsystem
description. The "collapse" is revealed as coarse-graining, not commitment.

This has consequences: if decoherence preserves information in principle, then quantum
Darwinism describes apparent robustness of records, not genuine factuality. The bat-and-ball
becomes the bat-and-ball-and-environment-and-everything-it-correlates-with, never settling into
a definite event. The claim "this ball went there" becomes permanently provisional—always
recoverable by a sufficiently powerful observer who can track environmental correlations.

More fundamentally: if practical difficulty sufficed for factuality, then factuality would be
technology-dependent. What counts as a "fact" would change as measurement precision
improves. This conflates epistemology with ontology. The present argument targets whether
facts exist at all, not whether we can access them.

Decoherence explains why interference disappears from local observations. It does not explain
why outcomes become facts. That requires finite distinguishability.

5.3 What About Many-Worlds?

Objection: In Everettian quantum mechanics, commitment is branch-relative. Information is
globally conserved (unitarity preserved) while facts exist relative to branches. This satisfies both
the "facts exist" premise and global reversibility.

Response: Many-worlds relocates commitment to branch-relative description without explaining
it. Within each branch, observers record definite outcomes. But what makes branch-relative facts
facts?

If branches are merely labels on a globally unitary evolution, and inter-branch coherence is in
principle recoverable at finer scales, then branch-relative "facts" inherit the same problem as any
other apparent commitment under infinite distinguishability. The branching structure would be
refinable, not fundamental.
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The Everettian faces a dilemma:

(a) Accept that branches themselves have finite distinguishability—making the branching
structure discrete and non-refinable. But then finite distinguishability is built into the
interpretation, conceding the present result.

(b) Acknowledge that branch-relative facts are not genuine commitments but indexical
descriptions of a fully reversible whole. But this faces the self-undermining objection: the
Everettian's own assertion of many-worlds is itself a branch-relative "fact" with no genuine
factuality.

Option (a) is compatible with this paper's framework. Option (b) renders the interpretation self-
undermining in the sense of §5.4.

5.4 What About Block Universe Interpretations?

Objection: Eternalism holds that past and future events are equally real. This doesn't require
infinite distinguishability.

Response: Block-universe interpretations face a dilemma:

If the block has infinite precision: All microstates are fully specified with unlimited resolution.
But then no irreversible commitment occurs—"commitment" becomes an indexical illusion
rather than a physical process. The apparent arrow of time has no structural basis.

If the block has finite information density: The temporal asymmetry we observe reflects genuine
structural features of the block. Certain directions accumulate commitments; others do not. The
framework is then compatible with our result, but the block is not the causally inert manifold
often imagined.

The present framework does not refute eternalism per se. It constrains which versions of
eternalism remain physically admissible. Specifically, the result constrains eternalism to versions

with finite information density if one wants irreversibility to be a physical feature of the block
rather than merely an indexical description.

5.5 Why Not Just Accept Reversibility?

Objection: Perhaps reality is fundamentally reversible and irreversibility is merely apparent or
perspectival.

Response: This position faces severe difficulties:

1. Empirical: Trreversibility is not merely observed but constitutive of observation. Without
irreversible records, no measurement could ever be completed or remembered.
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2. Self-undermining: The claim "irreversibility is illusory" is itself a factual claim that
requires irreversible commitment to formulate, communicate, and record.

3. Explanatory vacuum: If all processes are reversible, why do we universally experience
temporal asymmetry? Boundary conditions alone cannot explain this without
presupposing the very asymmetry they purport to derive.

Accepting fundamental reversibility does not dissolve the problem; it makes it insoluble.

Clarification (Bullet-biting is incoherent). One might attempt to "bite the bullet" and
consistently accept that all facts, including the assertion of universal reversibility, are illusory.
But bullet-biting here is not merely uncomfortable—it is operationally incoherent. The claim "I
accept universal reversibility" cannot be meant in any standard sense. To assert is to commit; to
communicate is to create a record; to argue is to constrain future admissible responses. The
consistent reversibilist cannot consistently do anything that constitutes assertion, since assertion
requires their interlocutor to be unable to "un-receive" the message. The position is not wrong
but unoccupiable—it cannot be maintained by any process that could convey it.

5.6 Is This Just Effective Field Theory?

Objection: All you've shown is that physics has UV cutoffs. This is standard effective field
theory—new physics appears at shorter scales, and our current theories are effective descriptions
valid above some minimum length. Nothing new here.

Response: The relationship to effective field theory deserves clarification. EFT holds that
descriptions valid at scale L may break down at scales << L, where new physics appears. This is
compatible with either:

(a) Finite distinguishability: Physics terminates at some fundamental scale. There is no "new
physics" below some minimum; the scale is absolute.

(b) Infinite distinguishability: New physics appears at every scale, with no terminus. Each
effective theory is replaced by a finer one, ad infinitum.

Standard EFT is agnostic between these options. The present argument establishes that option (b)
1s incompatible with facts. This is not a claim about any particular EFT's validity, but about the
necessary structure of whatever fundamental theory underlies all effective descriptions. EFT tells
us that our current theories break down at short scales; the no-go theorem tells us that this
breakdown must eventually terminate in finite distinguishability, not continue indefinitely.

5.7 What About Non-Local Correlations?

Objection: Information about local alternatives might be preserved in non-local correlations,
accessible only through measurements on distant systems. Entanglement could preserve
information that appears locally lost.
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Response: Non-local correlations do not alter the core argument. If information about a local
commitment is preserved in correlations with distant systems, then either:

(a) Those correlations are themselves physically accessible from the local region—in which case
commitment hasn't occurred locally; the information is still available.

(b) They are not physically accessible from the local region—in which case finite
distinguishability holds locally, which is the relevant operational domain.

The no-go theorem applies to the operationally relevant domain. If facts are local (as they appear
to be—my detector clicks here, my memory forms here), then distinguishability must be finite in
bounded regions. Global preservation in non-local correlations would render local facts illusory,
returning us to the self-undermining problems of §5.5.

5.8 What About Bohmian Mechanics?

Objection: Bohmian mechanics has definite particle positions at all times, deterministic
dynamics, and produces definite measurement outcomes—yet it uses continuous configuration
space. Doesn't this escape the no-go theorem?

Response: Bohmian mechanics presents an interesting case that illuminates rather than escapes
the argument. Analysis reveals it faces the same dilemma:

(a) If particle positions have infinite precision (continuous configuration space taken literally),
then measurement outcomes are determined by infinitely precise initial conditions. But this
precision is not physically accessible—no finite procedure can determine positions to arbitrary
accuracy. The apparent definiteness of outcomes reflects our epistemic coarse-graining, not
genuine commitment. The theory describes a universe of infinitely precise facts that are
operationally indistinguishable from probabilistic outcomes. The "facts" are not operationally
accessible facts in the sense of §2.

(b) If configuration space has finite effective precision (positions distinguishable only to some 9),
then Bohmian mechanics implicitly incorporates finite distinguishability, and the no-go theorem
is satisfied. The continuous mathematics is a convenience; the physics respects finite resolution.

Bohmian mechanics is thus compatible with finite distinguishability but does not escape the
theorem. Its apparent definiteness either reflects finite operational distinguishability (satisfying
the theorem) or is merely mathematical rather than physical (the "facts" being inaccessible and
hence not facts in the operational sense).

The same analysis applies to any hidden-variable theory: if the hidden variables have infinite

precision, they cannot ground operational facts; if they have finite precision, finite
distinguishability holds.
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6. Information-Theoretic Connections

6.1 The Bekenstein Bound

The Bekenstein bound states that the maximum entropy of a region is proportional to its
boundary area:

S <2nkRA / (hc)
where R is the region's radius and A its surface area. This implies finite information content in

bounded regions—precisely the finite distinguishability condition derived here from
admissibility requirements alone.

6.2 The Holographic Principle

The holographic principle generalizes this insight: the information content of any spatial volume
is bounded by the information that can be encoded on its boundary, at roughly one bit per Planck
area:

I max=A /(41 _P?»

where 1 P = 1.6 x 1073°* m is the Planck length.

This is not infinite. A region of radius R contains at most:
N_states =~ exp(nR? /1 P?)

distinguishable configurations—a vast but finite number.
6.3 Conceptual Foundation

The present argument provides a conceptual foundation for such bounds. They are not merely
empirical regularities or quantum-gravitational predictions to be derived from more fundamental
principles. They are necessary conditions for the existence of irreversible facts.

Scope note. The bounds cited here are used as consistent exemplars of finite-information
principles already suggested in established physics. The no-go result does not depend on their
validity. Rather, it provides a conceptual foundation for why any successful fundamental theory
is expected to implement some finite-information constraint, whether or not it takes the precise
holographic form.

Any theory violating holographic bounds would permit infinite distinguishability and therefore

fail to accommodate commitment. The bounds are not negotiable features of specific models;
they are admissibility requirements that any fact-producing physics must satisfy.
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7. Entropy, Erasure, and Landauer's Principle
7.1 Entropy Requires Finite Resolution

Entropy is standardly interpreted as:
S=k BInQ

where Q) is the number of microstates consistent with macroscopic constraints. This formula
presupposes that Q is finite or at least that state space has bounded effective resolution.

If distinguishability were infinite, entropy could never meaningfully increase. Any apparent
entropy growth would correspond to redistribution of information across scales, not genuine loss.

One could always define finer-grained entropies that remain constant.

Entropy monotonicity (the Second Law) therefore presupposes finite distinguishability. Without
it, the Second Law becomes a bookkeeping convention rather than a physical constraint.

7.2 Information Erasure

Information erasure is the paradigmatic irreversible commitment. To erase a bit is to render the
prior distinction (0 vs 1) physically inaccessible.

If arbitrarily fine degrees of freedom remained accessible, erasure would be impossible in

principle. The "erased" information would persist in finer structure. True erasure requires a finite
state space within which all distinctions can be exhausted.

7.3 Landauer's Principle as Consequence

Landauer's principle states that erasing one bit of information requires dissipating at least:
E>k BTIn2
of energy as heat.

This principle is often taken as foundational, linking information and thermodynamics. However,
the present analysis reveals it as contingent on finite distinguishability.

Only when erasure is a genuine physical operation—possible only with finite state spaces—can

an energetic cost be meaningfully assigned. In systems with infinite distinguishability, no bit is
ever fully erased, and Landauer's bound loses operational meaning.
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Finite distinguishability is thus logically prior to Landauer's principle.
7.4 Entropy as Commitment Ledger

From this perspective, entropy increase tracks the accumulation of irreversible commitments.
Each commitment eliminates prior alternatives from physical accessibility. Entropy is not a
measure of ignorance but a ledger of lost possibilities.

This interpretation unifies thermodynamic irreversibility with measurement, memory, and

causation. All arise from the same structural requirement: finite distinguishability enables
commitment; entropy records its accumulation.

8. Measurement and Outcome Finality
8.1 Measurement as Commitment

Measurement is the paradigmatic instance of irreversible commitment. A measurement does not
merely reveal a pre-existing value; it produces a definite outcome from a set of prior
possibilities. Once registered, alternative outcomes are no longer physically accessible.

This finality distinguishes genuine measurement from reversible interaction. Any account
preserving full recoverability fails to explain why outcomes ever become definite.

8.2 Finite Outcome Sets

In quantum mechanics, measurements are represented by positive-operator-valued measures
(POVMs). A POVM partitions the state space into a finite or countable set of outcomes:

{E_l} where X E; = LE >0

Each outcome corresponds to a physically distinguishable result. This partitioning encodes the
physical limits of distinguishability.

If outcome resolution were infinite, measurement would never complete. The system would

remain indefinitely suspended among ever-finer alternatives. Finite outcome sets are required for
closure.
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8.3 Collapse as Closure

The apparent "collapse" of the quantum state has traditionally been interpreted as dynamical
disturbance. Once finite distinguishability is acknowledged, collapse admits reinterpretation as
closure rather than force.

Prior to measurement, the system encodes a space of admissible possibilities. Measurement
selects one outcome and renders others inaccessible. No additional mechanism is required
beyond admissible completion of the outcome set.

Collapse reflects the exhaustion of distinguishability at the measurement resolution, not a
violation of unitary evolution at finer scales.

8.4 The Emergence of Classicality

Classical behavior emerges when irreversible commitments accumulate faster than quantum
coherences can be sustained. Finite distinguishability ensures eventual domination by committed
facts, producing:

e Stable measurement outcomes
e Persistent records
o Effective classicality at macroscopic scales

This is not decoherence in the standard sense (which merely delocalizes information). It is
commitment-induced closure enabled by finite state resolution.

8.5 Selection Mechanism

Remark (What this framework does and does not explain). The present framework
establishes that commitment must occur but does not specify the selection mechanism—how one
outcome is selected from the admissible set. This is intentional. The no-go theorem is a necessity
result (commitment requires finite distinguishability) not a dynamical proposal (here is how
commitment works).

Candidate selection mechanisms compatible with finite distinguishability include:

o Objective stochastic processes (GRW-type spontaneous collapse)

e Gravitationally-induced decoherence (Penrose objective reduction)

e Relational actualization (perspectival but operationally non-trivial)

o Entropic selection (outcome probabilities from accessible state volumes)

e Pilot-wave dynamics (Bohmian selection via particle positions, with finite effective
precision)

Each supplies dynamics; the present paper supplies the structural constraint any such dynamics
must satisfy. The Born rule, in particular, may emerge from such dynamics under additional
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assumptions (symmetry, noncontextuality, decision-theoretic constraints), but this derivation lies
beyond our scope.

The framework is thus compatible with multiple dynamical proposals while being neutral among
them. What it excludes is any account that preserves infinite distinguishability—including
interpretations where "selection" is merely apparent or indexical without genuine commitment.

9. Time, Causation, and Temporal Direction

This section explores implications of the framework for understanding time and causation. These
implications range from relatively secure (temporal asymmetry requires commitment
accumulation) to more speculative (time as emergent from commitment ordering).

We distinguish between:

o Constraint claims: Any account of temporal asymmetry must invoke something with the
structure of irreversible commitment. This follows from the no-go theorem.

o Constitutive claims: Time is commitment ordering; before/after are created by facts. This
1s a stronger interpretive proposal compatible with but not strictly entailed by the
theorem.

Readers may accept the constraints while remaining agnostic about the constitutive claims. The
former are results; the latter are suggestions.

9.1 Time as Commitment Ordering

Time is commonly modeled as a coordinate parameter. Such representations struggle to account
for temporal directionality and irreversibility.

Within the present framework, time is reinterpreted as an ordering relation over irreversible
commitments:

e Each commitment establishes a before/after distinction
e The accumulation of such distinctions generates a partial order
o This order is physical time

This is a constitutive claim. More conservatively, one might say: this order is isomorphic to
physical time, or grounds our experience of time. The no-go theorem establishes only that such
an order requires finite distinguishability; it does not settle whether time is this order or merely
correlates with it.
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In plain terms: We usually think of time as a river that events float down. But perhaps it's the
reverse: "before" and "after" are created when possibilities become facts. Time doesn't contain
events; events generate time.

Remark (Modal neutrality). The framework is neutral on the modal status of pre-commitment
alternatives. Whether alternatives are "real possibilities" in a robust metaphysical sense, or
merely formal placeholders in an admissibility structure, commitment still functions to eliminate
them from physical accessibility. The no-go theorem applies regardless: infinite
distinguishability prevents any transition from having the structure of elimination, whether what
is eliminated is "real possibilities" or "admissible descriptions."

9.2 Why Time Has a Direction

Standard explanations of temporal asymmetry appeal to:

1. Boundary conditions (low-entropy past)
2. Dynamical asymmetries (CP violation)

Both face regress: Why those boundary conditions? Why that asymmetry?
Finite distinguishability offers a structural alternative. Temporal direction is constituted by
irreversible commitment, not imposed on a pre-existing temporal manifold. The asymmetry

requires no prior explanation because it is not derived from something more basic.

To ask "why does time flow forward?" is to ask why facts exist rather than not—a question that
lies outside physics.

9.3 Causation as Constraint Propagation

Causation arises naturally as the propagation of constraints induced by commitments:

1. An outcome is committed
2. This commitment restricts the space of admissible future states
3. Later states are constrained by earlier commitments

Causes are identified with prior commitments that limit future possibilities. This requires no
metaphysical notion of "influence" or "power." Causal structure is bookkeeping over eliminated

alternatives.

Finite distinguishability ensures such eliminations are genuine and irreversible, grounding
causation in physical structure.
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9.4 Discrete Temporal Structure

Because commitments are discrete events, time inherits a counting structure. While macroscopic
time appears continuous, it is underwritten by sequences of finite commitments.

Let N(t1, t2) denote the number of irreversible commitments between events t: and t.. Physical
duration corresponds to this count, not to an independent geometric parameter.

This perspective supports event-based frameworks in which time is fundamentally discrete,
emerging from commitment density rather than presupposed as a continuum.

10. Excluded Physical Frameworks

The no-go theorem isn't merely abstract philosophy—it has teeth. This section identifies which
approaches to fundamental physics are ruled out as complete descriptions of reality, and which
remain viable.

10.1 What Infinite Distinguishability Would Entail

To appreciate what the theorem excludes, consider what a universe with infinite
distinguishability would actually be like:

A universe with infinite distinguishability would lack:
e Genuine facts (all states recoverable in principle)
e Meaningful entropy increase (information never lost)
o Final measurement outcomes (always refinable)
o Persistent records (always reversible)

e Temporal direction (no asymmetry in commitment)

Such a universe could not contain observers, since observation requires irreversible recording.
10.2 Classification of Frameworks

The following table classifies physical frameworks by their compatibility with irreversible
commitment:

Framework Infinite Admits Status
Distinguishability? 1C?
Classical mechanics Excluded as complete, fact-
Yes No . .
(exact) producing description
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Framework R Sy Status
Distinguishability? 1C?

Unitary QM (no .

collapse) Effectively yes No Incomplete

QM + projection No (finite outcomes) Yes Admissible

postulate

Many-worlds (all Yes (globally) No Relocates commitment to

branches real) branch-relative records

Block universe (infinite

. Yes No Excluded
precision)
Block universe (finite ..
info) No Yes Admissible
Discrete spacetime No Yes Admissible
models
|Holographic theories HNO (area-bounded) HYes HAdmissible

Reading the table: "Excluded" means the framework cannot be a complete description of a
universe containing facts. "Incomplete" means additional structure is needed. "Admissible"
means the framework is compatible with irreversible commitment. Note that exclusion doesn't
mean useless—classical mechanics remains extraordinarily powerful as an effective theory.

10.3 Interpretation of Exclusions

"Excluded" does not mean mathematically inconsistent or empirically falsified. It means
incompatible with being a complete description of fact-producing reality.

Excluded frameworks may remain extraordinarily useful as:
o Effective theories (accurate within domains)
e (Calculational tools (mathematically tractable)

o Limiting cases (idealized descriptions)

But they cannot be literal descriptions of a universe containing irreversible facts.
10.4 Constraint-Based Physics

The exclusions identified here are not philosophical preferences. They follow from the empirical
existence of irreversible facts. Finite distinguishability functions as an admissibility constraint,
analogous to:

e Energy conservation

e (Causal locality
e Lorentz invariance
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Such constraints identify necessary structural features of physical reality without specifying
particular dynamics.

11. Empirical Content and Constraints

11.1 Is This Empirically Meaningful?

One might ask whether an admissibility argument has empirical content. It does, in three senses:

Diagnostic: The argument explains why certain physical structures exist. Discreteness scales,
entropy bounds, and measurement finality are not contingent features but necessary conditions
for facts.

Constraining: Any proposed fundamental theory must respect finite distinguishability. Theories
postulating infinite precision, exact reversibility, or unbounded information density are ruled out
as complete descriptions.

Empirical Constraints: The framework implies:

A fundamental minimum scale for distinguishability (independent of technology)
Minimum entropy production for any fact-establishing process

Discreteness in any complete spacetime theory

Area-scaling (not volume-scaling) of maximum information content

bl

These implications align with quantum uncertainty, Landauer's bound, holographic entropy
bounds, and approaches to quantum gravity—suggesting the framework captures genuine
physical structure.

11.2 Relation to Existing Physics

The finite distinguishability requirement does not conflict with established physics. Rather, it
provides conceptual foundations for features often introduced heuristically:

| Physical Feature H Standard Status H Present Framework ‘
|Quantum uncertainty HFundamental postulate HConsequence of FD ‘
|Landauer's bound ‘|Empirical/therm0dynamic HRequires FD ‘
|Bekenstein bound HQuantum gravity result HAdmissibility requirement ‘
|Measurement finality HInterpretive addition HEnabled by FD ‘
|Second Law HStatistical/axiomatic HRequires FD ‘
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12. Conclusion

The argument of this paper can be summarized simply: facts require finitude. If the universe
could be carved infinitely finely, nothing would ever be settled—every apparent outcome could
be undone by looking closer. The existence of genuine facts, memories, records, and the arrow of
time all depend on there being a limit to physical distinguishability. This isn't a discovery about
how physics happens to work; it's a requirement for any universe that contains facts at all.

12.1 Summary of Results

This paper has established:

1. No-Go Theorem: Irreversible commitment is impossible in systems with infinite
distinguishability.

2. Necessity Result: Finite distinguishability is required for the existence of facts, entropy
increase, measurement outcomes, records, causation, and temporal direction.

3. Framework Exclusions: Physical pictures relying on infinite precision, exact
reversibility, or unbounded information density are excluded as complete descriptions of
reality.

4. Conceptual Foundations: Information-theoretic bounds (Bekenstein, holographic) and
thermodynamic limits (Landauer) are revealed as admissibility requirements, not merely
empirical regularities.

12.2 Broader Implications

The result has implications for:

Quantum Foundations: Any solution to the measurement problem must provide a mechanism
for finite-outcome commitment that cannot be refined away.

Quantum Gravity: Discrete spacetime structures are not optional modeling choices but
admissibility requirements.

Philosophy of Time: Temporal direction is constituted by commitment accumulation, not
imposed by boundary conditions.

Computation: Physical computation is bounded by finite distinguishability, not merely by
energy or time constraints.

12.3 Outlook

The framework developed here is intentionally minimal. It identifies necessary conditions
without proposing specific dynamics. This opens a programmatic path:
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Derive specific physical structures as minimal realizations of finite distinguishability

. Determine the relationship between distinguishability bounds and known physics (Planck
scale, holographic bounds)

3. Develop quantitative models of commitment-based temporal emergence

N —

The present result serves as a foundation: it establishes why such structures must exist, leaving
how they are realized to further investigation.

Appendix A: Formal Statement and Proof

This appendix provides two formal treatments of the no-go theorem: a metric-space formulation
(§A.1-A.4) and a measure-theoretic formulation using c-algebras (§A.5—A.7). The latter is
included for mathematical rigor and to connect with standard probability theory.

A.1 Metric Space Formulation: Definitions

Let (S, d) be a metric space of physical states.

Definition A1. S has e-distinguishability if for all si, s2 € S with d(s1, s2) > €, there exists a
physically realizable measurement distinguishing s: from s..

Definition A2. S has infinite distinguishability if it has e-distinguishability for all € > 0.
Definition A3. A map P: S — S exhibits irreversible commitment if:

e dsi#s2:P(s1) =P(s2)
e A physically realizable Q : Q e P =1id on {si, s2}

A.2 Theorem (Metric Formulation)

Theorem. If S has infinite distinguishability, then no map P: S — S exhibits irreversible
commitment.

A.3 Proof

Let S have infinite distinguishability. Suppose P: S — S with P(s1) = P(s2) = s* for some s1 # s2.
Let € = d(s1, s2)/2 > 0. By infinite distinguishability, 3 measurement M with:

. M(Sl) =1

o M(Sz) = M2
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e MmiFm:
Define the extended state space S' =S x M where M is the outcome space of M.
Define P": S' — S' by P'(s, m) = (P(s), M(s)).
Then:
e P'(si, mi) = (s*, mi)
o P'(s2, m2) = (s*, m2)
o (s*, mi)# (s*, mz) since mi # mz
Hence P' is injective on {(si, m1), (S2, m2)}.
Define Q': S' — S' by Q'(s*, mi) = (si, m;). Then Q' o P'=1id.

The map Q' is physically realizable since M is (by hypothesis) physically realizable and Q'
merely conditions on M's outcome.

Thus P does not exhibit irreversible commitment; the apparent information loss is recoverable
via the finer description (S', P'). m

A.4 Corollary

Corollary. Irreversible commitment implies finite distinguishability.

Proof: Contrapositive of theorem. m
A.5 Measure-Theoretic Formulation: 6-Algebras

For mathematical precision, we reformulate the result using c-algebras, which provide the
standard framework for probability and measurability.

Definition A4 (Physically Decidable Events). Let S be a state space. A o-algebra of physically
decidable events is a c-algebra A S 2”S such that for each A € A, there exists a physically

realizable procedure that determines whether s € A for any state s.

Definition A5 (Distinguishability via c-algebras). Two states si, sz are A#-distinguishable if
there exists A € A with s1 € A and s2 € A.

Definition A6 (Refinement of c-algebras). A c-algebra A' refines A (written A € A') if every
setin A is also in A'.
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Definition A7 (Infinite Distinguishability, c-algebra version). A system has infinite
distinguishability if for every physically decidable c-algebra <A, there exists a finer physically
decidable c-algebra A' O A that separates at least one pair of states not separated by A.
Equivalently: the supremum of physically decidable c-algebras is the discrete c-algebra 2”S.

Definition A8 (Measurable Commitment). A measurable map P: (S, A) — (S, A) exhibits 4~
irreversible commitment if:

e 3 A€ Awith |P(A)| > 1 containing A-distinguishable states
e A measurable Q: (S, A) — (S, A) with Q o P| {P'(A)} =id

A.6 Theorem (c-Algebra Formulation)

Theorem. If a system has infinite distinguishability (Definition A7), then no measurable map
exhibits A-irreversible commitment for any physically decidable A.

A.7 Proof

Suppose P: (S, A) — (S, A) appears to exhibit irreversible commitment: P(s:) = P(s2) = s* for
A-distinguishable s1, s2.

By infinite distinguishability, there exists a finer c-algebra A' O A and a set B € A' with s1 € B
and sz € B.

Extend P to P": (S, A") — (S, A') by preserving the indicator of B:

P'(s) = (P(s), 1_B(s))

where we adjoin the Boolean value 1 _B(s) to the output.

Then P'(s1) #P'(s2) since 1 B(si))=1#0=1_B(s2).

The inverse Q' defined by Q'(s*, b) = s; where 1_B(s;) = b is A'-measurable.

By induction over refinements, any c-algebra A admits an extension under which apparent
commitment becomes recoverable.

Conclusion: Irreversible commitment requires a terminal c-algebra—one that cannot be further
refined by physically decidable procedures. This is precisely finite distinguishability. m

Remark (Codomain extension). The construction formally extends the codomain from S to S x
{0,1}. This is legitimate because we are asking whether any physically accessible description
renders the process invertible. If the finer c-algebra A' includes the indicator 1 B, and 1 B is
physically decidable (which it is, by the definition of A'), then the extended output (P(s), 1_B(s))
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is physically accessible. The "output space" of a physical process includes all accessible
information about the post-process state, not merely a pre-designated mathematical codomain.
The construction makes explicit the information that infinite distinguishability guarantees is
available.

A.8 Connection to Information Theory

The c-algebra formulation connects directly to information theory:
e A c-algebra A on S induces a partition P_A (the atoms of A)
o H(X|P_A) measures uncertainty about X given A-resolution
o Infinite distinguishability: for all A, 3 A' with H(X|P_A") < H(X|P_A)
o Finite distinguishability: 3 terminal A* with no proper refinement

The entropic formulation of §4 and the c-algebra formulation are thus formally equivalent.

Appendix B: Classical Illustration—Bat and Ball

To illustrate how irreversible commitment operates even in classical contexts, consider a bat
striking a ball.

B.1 Standard Causal Narrative

Conventionally: the bat swings, contacts the ball, transfers momentum, and the ball departs along
a trajectory. The bat "causes" the ball's motion. Time orders these events passively.

B.2 Pre-Impact: Admissible Histories

Prior to contact, the system does not occupy a unique microstate. Microscopic variations exist in:

o Batangle and speed

o Contact point geometry

o Ball position and spin

e Material deformation profiles

These variations define a space of admissible interaction histories, not a single predetermined
trajectory.

Before impact, "which point on the bat will strike which point on the ball" has no factual
answer—only a range of admissible possibilities.
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B.3 Impact as Commitment

The moment of contact constitutes irreversible commitment:
e Momentum is redistributed
e Microscopic deformations occur
e Sound and heat are generated
o Information about alternative geometries is lost
o Entropy increases

One interaction history becomes factual; alternatives are eliminated.
B.4 Retrospective Fixation

Only after commitment can a definite causal story be told:

"A specific point on the bat struck a specific point on the ball with a particular force profile,
producing this trajectory."

These details were not pre-existing facts revealed by impact. They are fixed by the committed
outcome. The event selects which prior configuration was actualized.

B.5 No Backward Causation

This account involves no backward-propagating signals. The bat does not receive information
from the future. Rather, the temporal ordering itself is generated by commitment.

Asking "does cause precede effect?" presupposes a temporal structure that commitment creates.
B.6 Classical Intuition Explained

At macroscopic scales, commitment occurs rapidly with large entropy production. Alternative
histories are eliminated almost instantaneously, creating the appearance of continuous
deterministic causation.

Classical cause—effect reasoning emerges as effective bookkeeping over dense commitment

sequences. It is not fundamental but derivative—a coarse-grained description of underlying
commitment dynamics.
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Appendix C: Glossary of Key Terms

Admissibility: The condition of being physically realizable using finite resources; distinct from
mathematical possibility.

Commitment: The irreversible transition from multiple admissible possibilities to a single
factual outcome.

Distinguishability: The capacity to reliably differentiate states using finite physical procedures.

Finite Distinguishability (FD): The condition that bounded regions contain only finitely many
distinguishable states.

Infinite Distinguishability: The condition that arbitrarily fine distinctions remain physically
accessible.

Irreversible Commitment (IC): A process producing outcomes from which prior alternatives
cannot be recovered by any physically realizable operation.

Physical Realizability: Implementability using finite energy, time, spatial extent, and without
presupposing inaccessible information.

Appendix D: Operational Lift, Admissibility Tightening,
and Empirical Contours

D.1 Motivation and Scope

This appendix strengthens two aspects of the main text that are likely to attract the greatest
scrutiny from skeptical readers:

(1) The construction in §3.3 (Step 3), where apparent irreversibility is resolved by lifting the
description to include finer-grained accessible degrees of freedom.

(2) The connection between finite distinguishability and concrete physical bounds (e.g., Planck-
scale or holographic limits), which in the main text is intentionally gestural in order to preserve
generality.

The purpose of this appendix is not to modify the core no-go theorem, but to make explicit why
the lifted description is operationally forced rather than mathematically optional, and to clarify
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the empirical contours implied by finite distinguishability without over-claiming specific
numerical scales.

D.2 The Operational Lift Principle

In §3.3 the proof appeals to an extended or “lifted” description of the process output in order to
track distinctions that remain physically accessible under infinite distinguishability. This step
may appear, at first glance, to introduce auxiliary structure by hand. The present subsection
makes explicit that no such addition is being made.

Definition (Operational Transcript).

For any physically realizable process P acting on an initial state s within a bounded region,
define the operational transcript O(P, s) as the totality of degrees of freedom within the
admissible domain that are physically accessible after the process has occurred. This includes,
but is not limited to:

* pointer variables of measuring devices,

* emitted radiation or fields remaining within the domain,

« thermodynamic changes (heat, work, dissipation),

« any other degrees of freedom that can, in principle, be interrogated by admissible procedures.

The operational transcript is not a mathematical construct but a physical one: it is simply
“everything that is left available to be known” after the process completes.

Operational Lift Principle (OLP).

The physically relevant output of a process is not an arbitrarily chosen coarse-grained variable,
but the full operational transcript O(P, s). Any claim of information loss or irreversible
commitment must therefore be evaluated with respect to this transcript.

D.3 Reframing Step 3 of §3.3

With the Operational Lift Principle in place, Step 3 of §3.3 can be reformulated without
introducing an explicit product space S x @.

Let P be a process such that, at a coarse description level, P(s1) = P(sz) for distinct input states s:

75 S2.

Define the operationally lifted map:
P:S—Q, P(s)=0(,s),

where Q is the space of possible operational transcripts.
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If s1 and sz are physically distinguishable under infinite distinguishability, then by definition
there exists an admissible procedure capable of distinguishing them. If the operational transcripts
were identical, O(P, s1) = O(P, s2), then no admissible post-process procedure could distinguish
whether s: or sz occurred. In that case, the distinction between s: and s> would have been
eliminated from the admissible domain.

But elimination of a physically accessible distinction is precisely irreversible commitment.
Therefore, under the hypothesis that no irreversible commitment occurs at this refined level, it
must be the case that:

O(P, s1) # O(P, s2).
This establishes injectivity of the operationally lifted map P on distinguishable inputs, without
appeal to hidden registers or artificial extensions.

D.4 Lemma: No Erased-but-Accessible Distinctions

Lemma.

If a distinction between two states is physically accessible prior to a process and no irreversible
commitment occurs during that process, then the distinction must remain recoverable from the
operational transcript.

Proof.

Suppose a distinction is physically accessible but not recoverable from the operational transcript.
Then, by definition, no admissible post-process procedure can retrieve it. The distinction has
therefore been eliminated from the admissible domain, which constitutes irreversible
commitment. Contradiction. m

This lemma makes explicit the dichotomy at the heart of the argument: either distinctions persist
in accessible transcripts, or commitment has occurred.

D.5 Environment and Nonlocal Correlations

A common response invokes environmental or nonlocal correlations as repositories of “lost”
information. The Operational Lift Principle clarifies that such correlations only matter insofar as
they are physically accessible within the admissible domain.

If environmental degrees of freedom encoding the distinction are accessible, then the operational
transcript differs and reversibility is restored. If they are not accessible, then the distinction is
operationally destroyed and finite distinguishability holds in the relevant domain.

Thus, appeals to environment or global unitarity do not evade the theorem; they merely relocate
which domain exhibits finite distinguishability.

D.6 Empirical Contours Without Scale Fixing
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The no-go theorem is structural rather than dynamical. It does not determine the numerical value
of the minimum distinguishability scale. However, it does imply empirical contours that any
fundamental theory must respect.

These include:

* A finite upper bound on the number of stably distinguishable states in any bounded region.

* A maximum mutual information that a region can retain about its past.

* A non-zero minimum entropy production associated with establishing a new irreversible record.
* A fundamental coarse-graining scale that cannot be surpassed by improved technology.

Existing physics already contains candidate realizations of these contours, including Bekenstein-
type entropy bounds, holographic area scaling, and Landauer’s principle. The present result
explains why some bound of this general kind must exist, independent of its precise numerical
value.

D.7 Relation to Planck and Holographic Scales

The theorem does not derive the Planck length, Planck area, or holographic entropy bounds.
Instead, it provides a conceptual explanation for why any successful quantum-gravitational
theory is expected to implement a finite information bound per bounded region.

Determining whether the realized bound coincides with Planck-scale discreteness, holographic
area laws, or another regulator is a separate empirical and theoretical task. The admissibility
result constrains the space of viable theories but does not fix their detailed implementation.

D.8 Falsifiability Criterion

The framework developed in this paper would be falsified if one could demonstrate a physically
realizable process that simultaneously:

(1) Produces stable, reproducible records (irreversible commitment), and

(2) Permits unbounded refinement of physically distinguishable states within the same bounded
admissible domain.

No such process is currently known.
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