
 1 

Finite Distinguishability and Irreversible 

Commitment: A No-Go Result for Infinite-

Precision Physics 

Abstract 

We establish that irreversible commitment—the process by which physical possibilities resolve 

into definite facts—is impossible in any system with infinite distinguishability. This result 

functions as a no-go theorem: no physical theory permitting unbounded state resolution in finite 

regions can accommodate irreversible measurement outcomes, monotonic entropy increase, 

persistent records, or asymmetric temporal ordering. Finite distinguishability is therefore not an 

empirical discovery or modeling convenience, but a necessary condition for fact-producing 

physics. We formalize this argument, address objections from quantum mechanics and 

eternalism, connect the result to established information-theoretic bounds, and identify the class 

of physical frameworks excluded by this constraint. 

Plain Language Summary. When you flip a coin and it lands heads, that outcome becomes a 

fact—you can't "un-flip" it. But many mathematical models of physics are perfectly reversible: in 

principle, every process can be run backward. How can irreversible facts exist in a reversible 

universe? This paper shows that facts can only exist if there's a limit to how finely we can 

distinguish physical states. If we could make infinitely precise distinctions, any apparent "fact" 

could always be undone by accessing finer details. The existence of genuine facts—measurement 

outcomes, memories, records—therefore requires that physical distinguishability be finite. This 

isn't just a practical limitation; it's a logical requirement for facts to exist at all. 
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1. Introduction: The Problem of Facts 

Modern physics relies fundamentally on irreversible facts. Detector clicks occur, records persist, 

memories form, entropy increases, and causal chains produce outcomes that cannot be undone. 

Yet the mathematical structures most commonly used to model physical reality—continuous 

state spaces, infinite-precision variables, and reversible dynamics—quietly permit perfect 

recoverability in principle. This tension between irreversible physical commitment and reversible 

mathematical description has remained unresolved. 

This paper addresses a single foundational question: under what conditions is irreversible 

commitment physically possible at all? 

We establish a necessity result: irreversibility cannot arise in systems with infinite 

distinguishability. If arbitrarily fine distinctions between states are physically accessible, then 

any apparent many-to-one evolution can be refined into an information-preserving mapping, 

rendering commitment illusory. Finite physical distinguishability is therefore not an assumption 

imposed for convenience, but a structural requirement for the existence of facts. 

Remark (Minimal empirical premise). The premise "facts exist" is used in the weakest 

operational sense: experiments yield stable, reproducible records that can be compared across 

observers and times. Any theory that denies this undermines the empirical practice by which the 

theory itself is justified. The argument therefore treats record existence as a minimal 

precondition for doing physics at all. 

No assumption is made here about the metaphysical uniqueness of outcomes beyond the 

operational existence of stable records; the argument concerns the physical possibility of record-

finality within an admissible domain. This framing is compatible with relational, perspectival, or 

even Everettian interpretations, provided they acknowledge that within an accessible domain, 

records must stabilize. 

The argument operates at the level of admissibility—identifying which mathematical 

descriptions can correspond to fact-producing physics—rather than proposing specific dynamics. 

This generality is a strength: the result constrains all candidate theories regardless of their 

particular field equations or interpretive commitments. 

 

2. Formal Definitions and Framework 

2.1 State Spaces and Distinguishability 

Let S denote a state space representing physically possible configurations of a bounded region. 
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Definition 1 (Distinguishability). Two states s₁, s₂ ∈ S are physically distinguishable if there 

exists a physically realizable procedure M that reliably yields different outcomes for s₁ and s₂ 

using finite resources. 

In plain terms: Two states are distinguishable if you can actually tell them apart using some 

physical measurement or procedure. This is different from being mathematically different—two 

numbers can differ in their trillionth decimal place, but no physical apparatus could detect that 

difference. 

Definition 2 (Infinite Distinguishability). A state space S has infinite distinguishability if, for 

any ε > 0 and any partition of S into cells of diameter ε, each cell contains states that are 

themselves physically distinguishable by some finer procedure. 

Equivalently: S has infinite distinguishability if there is no minimum resolution below which 

distinctions become physically inaccessible. 

Moreover, the refinement is iteratable: for any physically distinguishable pair s₁ ≠ s₂, there exists 

a procedure distinguishing them at strictly finer resolution, and this can be repeated without 

terminal scale. This ensures the induction in the main proof (§3.3) is well-founded. 

Definition 3 (Finite Distinguishability). A state space S has finite distinguishability if there 

exists some δ > 0 such that states separated by less than δ (in an appropriate metric) are not 

physically distinguishable by any realizable procedure. 

Finite distinguishability implies a maximum information content: the number of distinguishable 

states in any bounded region is finite. 

In plain terms: Infinite distinguishability means you can always "zoom in" further and find finer 

distinctions that are physically real and accessible. Finite distinguishability means there's a 

bottom level—a finest grain—beyond which no physical procedure can detect differences. Think 

of it like pixels on a screen: below the pixel level, there's nothing finer to see. 

Remark (Metric-independence). The ε/δ language is used only to express an operational idea: 

whether there exists a minimum physically resolvable scale of distinction. The argument does 

not depend on a particular metric choice; any operational distinguishability relation induces a 

topology of resolvable distinctions. "Infinite distinguishability" means there is no terminal scale 

at which refinements become physically inaccessible. 

Remark (Non-vacuity). The infinite-distinguishability condition is intentionally strong because 

it targets the precise claim made—often implicitly—by infinite-precision physics: that arbitrarily 

fine distinctions are not merely mathematically labelable but physically recoverable in principle. 

Many idealized frameworks (e.g., exact classical phase-space realism with infinite precision, 

continuum field models taken as literally complete at arbitrarily fine scales, or block-universe 

pictures with unlimited microstate specification) effectively commit to this stance. The theorem 

therefore functions as a diagnostic: it identifies which idealizations cannot be treated as complete 

descriptions of fact-producing reality. 
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Remark (Continuous spaces with finite distinguishability). Finite distinguishability does not 

require discrete state spaces at the mathematical level. A continuous manifold with a minimum 

resolvable scale δ has finite distinguishability: the effective state count is V/δⁿ where V is the 

volume and n the dimension. The mathematical description may employ real numbers; what 

matters is that no physical procedure can distinguish states separated by less than δ. The 

discreteness is operational, not necessarily structural. Physics may use ℝ for convenience while 

physical distinguishability remains finite. 

2.2 Irreversible Commitment 

Definition 4 (Irreversible Commitment). A physical process P: S → S exhibits irreversible 

commitment if: 

(i) There exist distinct states s₁, s₂ ∈ S such that P(s₁) = P(s₂), and 

(ii) There exists no physically realizable process Q: S → S such that Q(P(sᵢ)) = sᵢ for all such sᵢ. 

Condition (i) requires genuine many-to-one mapping: multiple prior states yield the same 

outcome. Condition (ii) requires that this mapping be non-invertible in principle, not merely in 

practice. 

Clarification (Accessible domain). Irreversible commitment is non-invertibility with respect to 

the physically accessible degrees of freedom and admissible operations on them. This domain 

restriction is essential: the question is not whether some hypothetical super-observer with access 

to all correlations in the universe could invert the process, but whether inversion is possible using 

resources within the accessible domain. If information is "preserved" only in degrees of freedom 

outside this domain, it is not preserved in any operationally meaningful sense. 

Irreversible commitment is thus distinguished from: 

• Reversible dynamics (one-to-one mappings) 

• Epistemic coarse-graining (information hidden but recoverable within accessible 

domain) 

• Practical irreversibility (recovery difficult but possible in principle within accessible 

domain) 

In plain terms: Irreversible commitment is what happens when multiple possibilities collapse 

into a single definite outcome that cannot be "uncollapsed." When a detector clicks, when you 

remember something, when a record is written—these are commitments. The key question is 

whether such commitments are genuine (the alternatives are truly gone from the accessible 

domain) or merely apparent (the alternatives are hidden somewhere accessible and could in 

principle be recovered). 
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2.3 Physical Realizability 

The phrase "physically realizable" requires explicit definition to avoid circularity. 

Definition 5 (Physical Realizability). A process is physically realizable if it can be 

implemented using: 

(i) Finite energy 

(ii) Finite time 

(iii) Finite spatial extent 

(iv) Operations that do not presuppose access to information that has been irreversibly 

committed elsewhere 

Condition (iv) prevents definitional circularity: we cannot define recoverability by appealing to a 

"cosmic ledger" whose existence already presupposes irreversible commitment. 

Clarification on condition (iv): This condition prevents a specific circularity: defining 

"recoverability" by appealing to a hypothetical cosmic ledger that records all information. Such a 

ledger would itself require irreversible commitment to exist—the ledger's records must be facts. 

The condition ensures we don't smuggle commitment in through the back door while asking 

whether commitment is possible. Operationally: a recovery procedure must work using resources 

available within the light cone of the process, not by consulting an external record whose 

existence presupposes what we're trying to establish. 

2.4 Admissibility Versus Mathematical Possibility 

Throughout this paper, we distinguish mathematical possibility from physical admissibility. 

Mathematical structures may permit infinite state density, perfect reversibility, or unbounded 

precision without internal contradiction. Physical admissibility, however, requires that states be 

preparable, distinguishable, and evolvable using finite physical resources. 

Admissibility thus functions as a constraint layer on formal theories. It determines which 

mathematical descriptions correspond to realizable physics. The central result of this paper 

operates entirely at this level. 
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3. The No-Go Theorem 

3.0 Assumptions (Admissibility Layer) 

The following assumptions define the admissibility framework within which the theorem 

operates. Making them explicit controls the logical terrain and clarifies what the theorem does 

and does not assume. 

(A1) Operationality. Distinguishability is defined by physically realizable tests under bounded 

resources. Two states are distinguishable if and only if some admissible procedure can reliably 

separate them. 

(A2) Refinement Accessibility. If arbitrarily fine distinctions are physically accessible (infinite 

distinguishability), then there exists an admissible refinement procedure that can preserve (track) 

those distinctions through any process that does not itself constitute commitment at that refined 

level. 

(A3) Record Minimality. "Facts exist" means stable records exist that can be compared across 

observers and times. This is the minimal empirical premise required for physics to be possible. 

(A4) Domain Restriction. Irreversible commitment is non-invertibility with respect to the 

physically accessible degrees of freedom and admissible operations on them—not with respect to 

hypothetical extensions beyond physical accessibility. 

These assumptions are not hidden premises smuggled into the argument; they are the explicit 

conditions under which the theorem holds. Rejecting any of them has consequences: rejecting 

(A1) makes distinguishability undefined; rejecting (A2) defines finite distinguishability by fiat; 

rejecting (A3) abandons empirical grounding; rejecting (A4) allows "cosmic ledger" escapes that 

presuppose what they deny. 

Remark (Transcendental status of A3). The premise "facts exist" is not a metaphysical 

assumption but a transcendental condition for the practice of physics. Any argument against this 

premise would itself require formulation, communication, and evaluation—all of which 

presuppose the existence of the facts being argued about (the statements made, the records of the 

argument, the outcome of evaluation). Denying A3 is not merely uncomfortable but 

performatively incoherent: the denial cannot be maintained as a fact. 

The argument thus has the structure: if physics is possible at all, then finite distinguishability 

holds. This is not circular but conditional, and the condition is one that anyone engaging in 

physics has already accepted. 

3.1 Refinement Lemma 

Before stating the main theorem, we establish a key lemma that makes the role of refinement 

explicit. 
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Lemma (Refinement Lemma). If two states s₁, s₂ ∈ S are physically distinguishable, then there 

exists: (i) An admissible refinement variable Φ, and (ii) An admissible measurement M 

producing values in Φ, 

such that M(s₁) ≠ M(s₂). That is, Φ separates s₁ and s₂. 

Proof. By Definition 1, distinguishability means there exists a physically realizable procedure 

that reliably yields different outcomes for s₁ and s₂. Let M be such a procedure and Φ its outcome 

space. Then M(s₁) ≠ M(s₂) by construction. The procedure M is admissible by hypothesis (it is 

physically realizable under bounded resources). ∎ 

This lemma is nearly tautological—it simply unpacks what "distinguishable" means 

operationally. Its importance lies in making explicit the step that critics often attack: the 

"appearance" of Φ is not an addition of structure but a naming of structure that distinguishability 

already commits us to. 

3.2 Statement 

Theorem (No-Go for Infinite-Precision Irreversibility). Let S be a state space with infinite 

distinguishability. Then no process P: S → S can exhibit irreversible commitment. 

Equivalently: Irreversible commitment requires finite distinguishability. 

What this means: If you can always find finer and finer physical distinctions, then nothing is ever 

truly lost. Any process that seems to erase information or collapse possibilities is actually 

preserving that information in finer details you haven't looked at yet. Real, permanent facts—like 

measurement outcomes or memories—can only exist if there's a limit to how finely the universe 

can be carved up. 

3.3 Proof 

Suppose S has infinite distinguishability and P: S → S appears to exhibit irreversible 

commitment, with P(s₁) = P(s₂) = s* for distinct s₁, s₂. 

Step 1 (Many-to-one implies distinguishable inputs): Since P(s₁) = P(s₂) with s₁ ≠ s₂, we have 

at least two distinct input states mapping to the same output. 

Step 2 (Apply Refinement Lemma): By infinite distinguishability, s₁ and s₂ are physically 

distinguishable. By the Refinement Lemma (§3.1), there exists an admissible refinement variable 

Φ and measurement M such that M(s₁) = φ₁ ≠ φ₂ = M(s₂). 

Step 3 (Construct lifted process): Define the extended state space S' = S × Φ. The key 

observation is that the process P, being physical, must act through some physical mechanism that 

engages the degrees of freedom in Φ. Define: 
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P'(s, φ) = (P(s), φ_out(s, φ)) 

where φ_out(s, φ) is the actual final state of the Φ degrees of freedom after P acts on state (s, φ). 

This is not a constructed mathematical function but a description of what physically happens to 

all accessible degrees of freedom. 

The critical point: under infinite distinguishability, φ_out is itself physically accessible. Since s₁ 

and s₂ are distinguishable via Φ, and the process P cannot "erase" this distinction without 

engaging Φ (erasure being physical), the distinction persists in φ_out unless P explicitly destroys 

it—but explicit destruction would constitute irreversible commitment at the Φ level, 

contradicting the hypothesis that no irreversible commitment occurs under infinite 

distinguishability. 

Step 4 (Lifted process is injective): By construction: 

• P' projects to P under coarse-graining (ignoring Φ) 

• P' is injective: P'(s₁, φ₁) ≠ P'(s₂, φ₂) since φ_out(s₁, φ₁) ≠ φ_out(s₂, φ₂) 

Step 5 (Invertibility at refined level): Since P' is injective and Φ is physically accessible (by 

assumption A2), the process is invertible at the refined level. Therefore P does not exhibit 

irreversible commitment—the apparent information loss is recoverable. 

Step 6 (Induction): If apparent loss remains at level S', repeat. By infinite distinguishability, 

refinement is always available. By induction, no information loss is ever final. 

Conclusion: Under infinite distinguishability, all apparent irreversibility is an artifact of 

incomplete description. No process exhibits genuine irreversible commitment. ∎ 

Remark (Mathematical vs. physical invertibility). A map can be mathematically invertible yet 

physically non-invertible because the inverse would require operations outside admissibility 

(infinite precision, infinite memory, infinite control). Conversely, a map can be mathematically 

many-to-one yet appear irreversible only because we haven't accessed sufficiently fine degrees of 

freedom. The no-go theorem establishes that under infinite distinguishability, every apparently 

irreversible map falls into the second category: the "irreversibility" is always an artifact of 

incomplete description, never a feature of the physics. This is the core claim. Finite 

distinguishability is what makes some maps genuinely non-invertible within the admissible 

domain. 

Clarification (No hidden-register escape). The refinement argument is not an addition of 

hidden variables; it is an explicit statement of what infinite distinguishability means 

operationally. If arbitrarily fine distinctions are physically accessible, then any purported 

information loss can be tracked by physically accessible refinements. The lifted space S × Φ is 

therefore not a metaphysical extension but a formal representation of accessible structure that the 

infinite-distinguishability hypothesis already commits us to. If such refinements are not 

physically accessible, then distinguishability is finite in the relevant sense. 
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The construction doesn't posit new physics. It makes explicit what infinite distinguishability 

means operationally. To claim s₁ and s₂ are physically distinguishable just IS to claim there exists 

some physically accessible degree of freedom that differs between them. The lifted space doesn't 

add Φ; it names what distinguishability already commits us to. If no such Φ exists, then s₁ and s₂ 

weren't distinguishable in the first place—which is precisely finite distinguishability. 

Remark (Recovery vs. non-disturbance). The no-go targets the existence of a physically 

realizable inverse in principle, not an intervention-free readout. If distinctions are physically 

accessible under infinite distinguishability, then there exists some admissible procedure that can 

recover them, even if recovery requires interaction. If no such recovery procedure exists in 

principle, then the distinctions were not physically accessible and distinguishability is finite in 

the relevant sense. 

Clarification (What is and is not assumed about information preservation). The argument 

does not assume a separate axiom of "information conservation." It uses only the operational 

meaning of infinite distinguishability: if arbitrarily fine distinctions are physically accessible, 

then there exists an admissible procedure that can track those distinctions through any process 

that does not explicitly erase them. If a process truly destroys those distinctions while they 

remain physically accessible, then the process itself constitutes irreversible commitment—

contradicting the hypothesis that irreversible commitment is impossible under infinite 

distinguishability. Thus the incompatibility is structural: either (a) distinctions remain accessible 

and therefore cannot be irreversibly collapsed without finite distinguishability, or (b) they are not 

accessible, which is precisely finite distinguishability. 

Clarification (Local commitment vs. global unitarity). The no-go result does not require that 

information be destroyed "in the universe as a whole." It requires only that certain distinctions 

become inadmissible to recover within the physical resources and degrees of freedom that 

remain operationally accessible after commitment. A globally unitary completion may conserve 

information in an enlarged description, but if that enlarged description remains physically 

accessible in bounded regions, then commitment does not occur. If it is not physically accessible, 

then distinguishability is finite in the relevant operational sense. 

3.4 Contrapositive Formulation 

The contrapositive is equally important: 

Corollary. If irreversible commitment occurs in a physical system, then that system has finite 

distinguishability. 

Since we observe irreversible facts—measurement outcomes, records, memories, entropy 

increase—we conclude that physical reality has finite distinguishability. This is an empirical 

conclusion, not merely a definitional one. 

Clarification (Chaos does not create commitment). Chaotic mixing and practical 

unpredictability can explain why inversion is difficult, but not why it is inadmissible in principle. 

The present result targets principled non-invertibility: if arbitrarily fine distinctions remain 
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physically accessible, then any apparent irreversibility can always be re-described as reversible 

information flow into finer structure. Chaos accelerates loss of practical trackability, but it does 

not, by itself, create irreversible commitment. 

3.5 Scope and Generality 

The theorem makes no assumptions about: 

• Specific dynamics or field equations 

• Quantum versus classical physics 

• Continuous versus discrete underlying structure 

• Determinism versus indeterminism 

It applies to any candidate physical theory. The constraint is structural: infinite distinguishability 

and irreversible commitment are logically incompatible. 

 

4. Information-Theoretic Formalization 

The conceptual argument of §3 can be made mathematically precise using information theory. 

This formalization connects the no-go result to established theorems, provides quantitative 

bounds, and makes the argument auditable by mathematical physicists. 

Why information theory? Information theory provides a rigorous language for talking about what 

can be known, transmitted, and lost. "Entropy" measures uncertainty or information content; 

"mutual information" measures how much knowing one thing tells you about another. By 

translating our definitions into this language, we can prove precise theorems and connect to 

established results like the Data Processing Inequality and channel capacity bounds. 

4.1 Setup and Notation 

Let X be a random variable representing the pre-process state, drawn from a state space S with 

probability distribution p(x). The Shannon entropy is: 

H(X) = −Σₓ p(x) log p(x) 

Intuition: Entropy measures "how much you don't know" or equivalently "how much 

information is contained." A fair coin has entropy 1 bit; a biased coin has less. A system with N 

equally likely states has entropy log N. 

For a physical process P: S → S, let Y = P(X) denote the post-process state. The mutual 

information between input and output is: 
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I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y|X) 

where H(X|Y) is the conditional entropy—the remaining uncertainty about X given knowledge 

of Y. 

Intuition: Mutual information I(X; Y) measures how much information about the input survives 

in the output. If I(X; Y) = H(X), nothing was lost. If I(X; Y) < H(X), some information was 

destroyed. 

Remark (Link between geometric and entropic formulations). The information-theoretic 

formalization treats distinguishability as an induced hierarchy of coarse-grainings 𝒫₁ ≺ 𝒫₂ ≺ ⋯ 

on the state space, where refinement corresponds to physically accessible discrimination 

procedures. "Infinite distinguishability" in §2 means there is no terminal partition; the entropic 

condition in §4 captures the same fact by asserting that accessible refinements can increase 

H(X_𝒫) without bound. The two formulations are equivalent descriptions of the same 

operational constraint. 

Definition (Refinement Sequence). A refinement sequence on state space S is a chain of 

partitions 𝒫₁ ≺ 𝒫₂ ≺ ⋯ where 𝒫ᵢ₊₁ refines 𝒫ᵢ (every cell of 𝒫ᵢ₊₁ is contained in some cell of 𝒫ᵢ), 

and each partition corresponds to a physically realizable discrimination procedure. S has infinite 

distinguishability if and only if every refinement sequence can be extended: for all 𝒫ₙ, there 

exists 𝒫ₙ₊₁ with H(X|𝒫ₙ₊₁) < H(X|𝒫ₙ) for some distribution over S. 

This makes the "unbounded refinement" condition precise and connects the geometric and 

entropic formulations rigorously. 

4.2 Reformulated Definitions 

Irreversible Commitment (Information-Theoretic): A process P exhibits irreversible 

commitment if there exists an admissible input ensemble p(x) such that: 

I(X; Y) < H(X) 

Equivalently: H(X|Y) > 0 for some admissible distribution. This formulation avoids trivial cases 

(e.g., delta distributions where H(X) = 0) by requiring that information loss occurs for at least 

one physically preparable input ensemble. 

Finite Distinguishability (Information-Theoretic): A bounded region has finite 

distinguishability if and only if there exists a maximum entropy H_max < ∞ such that for all 

preparable distributions: 

H(X) ≤ H_max 

This is equivalent to the state space having finite effective cardinality N = 2^(H_max). 
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Infinite Distinguishability (Information-Theoretic): A system has infinite distinguishability if, 

for any description at resolution level 𝒫 with entropy H(X_𝒫), there exists a finer resolution 𝒫' 

with: 

H(X_𝒫') > H(X_𝒫) 

and all distinctions in 𝒫' are physically accessible. 

4.3 The Information-Theoretic No-Go Theorem 

Theorem (Information-Theoretic No-Go). Let S have infinite distinguishability. For any 

process P with apparent information loss H(X|Y) > 0 at description level 𝒫, there exists a 

refinement 𝒫' such that: 

I(X'; Y') = H(X') 

where X' and Y' are the refined descriptions. All apparently lost information is recoverable at 

finer resolution. 

Proof. 

(1) Suppose at description level 𝒫 we have H(X|Y) > 0 (apparent information loss). 

(2) The conditional entropy H(X|Y) > 0 means that multiple distinct input states map to the same 

output: 

∃ x₁ ≠ x₂ : P(x₁) = P(x₂) = y* 

(3) By infinite distinguishability, there exists a refinement 𝒫' that resolves finer structure within 

the 𝒫-equivalence classes. Let Φ denote these additional degrees of freedom. 

(4) Define the extended output: 

Y' = (Y, Φ) 

 

where Φ encodes the information distinguishing x₁ from x₂. 

(5) Since Φ is physically accessible (by infinite distinguishability) and tracks the input 

distinctions, we have: 

H(X'|Y') = H(X'|Y, Φ) = 0 

(6) Therefore: 

I(X'; Y') = H(X') − H(X'|Y') = H(X') 

 

All information is preserved. 
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(7) If apparent loss remains at level 𝒫', repeat the refinement. By infinite distinguishability, 

refinement is always available. 

(8) By induction, no information loss is ever final at any resolution level. 

Conclusion: Under infinite distinguishability, all apparent irreversibility is an artifact of 

incomplete description. No process exhibits genuine irreversible commitment. ∎ 

Remark (Sufficient statistics formulation). The information-theoretic result can be stated more 

precisely using the concept of sufficient statistics. Under infinite distinguishability, refinements 

can always be chosen so that Y' becomes a sufficient statistic for X'—that is, H(X'|Y') = 0, 

meaning Y' captures all information about X' with no residual uncertainty. In finite 

distinguishability, no such sufficient refinement exists beyond the terminal partition. The output 

cannot be refined into a sufficient statistic for the input because the refinement hierarchy 

terminates. This is the information-theoretic essence of irreversible commitment: commitment 

occurs precisely when no sufficient statistic for the input is physically accessible from the output. 

4.4 Connection to the Data Processing Inequality 

The Data Processing Inequality (DPI) states that for any Markov chain X → Y → Z: 

I(X; Z) ≤ I(X; Y) 

Processing cannot create information about the source. However, DPI does not guarantee that 

information IS lost—it permits I(X; Y) = H(X) (perfect preservation). 

In plain terms: DPI says you can't make information appear out of nowhere by processing data. 

But it doesn't say information must be lost—you might preserve everything. The question is: 

when must information actually be destroyed? 

The finite distinguishability constraint provides the complementary bound. Let N be the 

maximum number of distinguishable states. Then for any process with |input states| > |output 

states|: 

H(X|Y) ≥ log(|input states|) − log(N) 

At some resolution, loss becomes genuine because no further refinement exists. The state space 

"bottoms out." 

In plain terms: If you try to cram more information than a system can hold, some must be lost. 

Finite distinguishability sets a hard limit on how much information any region can contain. 

Exceed that limit, and information is genuinely destroyed—not just hidden. 

Together, DPI and finite distinguishability yield: 
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Proposition. In a system with finite distinguishability (maximum N states), any process mapping 

M > N equiprobable input states to K < M output states exhibits irreversible commitment of at 

least: 

H(X|Y) ≥ log(M/N) 

Derivation: For an equiprobable ensemble over M distinguishable inputs and an admissible 

output domain of capacity N, basic counting bounds imply this inequality whenever M > N. The 

pigeonhole principle guarantees that at least ⌈M/N⌉ inputs map to some common output, forcing 

conditional uncertainty. 

This is a quantitative lower bound on information loss—not merely the assertion that loss occurs, 

but how much must occur. 

4.5 Channel Capacity Interpretation 

A physical process P can be viewed as a noisy channel with input X and output Y. The channel 

capacity is: 

C = max_{p(x)} I(X; Y) 

For a deterministic process (no noise in the forward direction), Y is a function of X, so H(Y|X) = 

0 and: 

I(X; Y) = H(Y) 

If P is many-to-one (irreversible commitment), then |range(P)| < |domain(P)|, so: 

H(Y) < H(X) 

and information is genuinely lost. 

Under infinite distinguishability, any channel can be "upgraded" to a refinement with: 

C' = H(X') 

by accessing finer output degrees of freedom. The effective channel capacity is always equal to 

source entropy—no information is ever lost. 

Under finite distinguishability, channel capacity is bounded: 

C ≤ H_max = log N 

This hard ceiling forces information loss when input entropy exceeds capacity. 
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4.6 Worked Example: Bit Erasure 

Consider the simplest case: erasure of a single bit. 

Why this matters: Erasing a bit—resetting a memory cell to zero, for instance—is the most 

elementary irreversible operation. If we can't genuinely erase one bit, we can't genuinely erase 

anything. This example shows exactly where the argument bites. 

Setup: Input X ∈ {0, 1} with H(X) = 1 bit. The erasure process maps both states to a single 

output: 

P(0) = P(1) = ∅ 

At the coarse level: 

• H(Y) = 0 (output is constant) 

• I(X; Y) = 0 

• H(X|Y) = 1 bit (complete loss) 

Under infinite distinguishability: 

The erasure process necessarily involves physical degrees of freedom—heat dissipation, material 

reconfiguration, field dynamics. If distinguishability is infinite, these carry a record: 

Y' = (∅, φ) where φ ∈ {φ₀, φ₁} 

The extended output distinguishes the two cases: 

• P'(0) = (∅, φ₀) 

• P'(1) = (∅, φ₁) 

Now H(Y') = 1 bit and I(X; Y') = 1 bit. No information lost. 

If further refinement is always possible, this escape is always available. Erasure never completes. 

Under finite distinguishability: 

Suppose the physical substrate has N distinguishable states. The erasure process must map both 

inputs to states within this finite set. If both inputs map to indistinguishable final states (as 

required for erasure), then: 

H(X|Y') = 1 bit (genuinely lost) 

No refinement can recover the distinction because no finer physical structure exists. 
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Landauer's bound follows: The 1 bit of lost information must be compensated by entropy 

increase elsewhere (heat dissipation ≥ kT ln 2), since total information is conserved but local 

information is destroyed. 

4.7 Measurement as Capacity Saturation 

Quantum measurement can be understood as channel capacity saturation. 

Setup: A quantum system in state |ψ⟩ = Σᵢ αᵢ|i⟩ is measured in the {|i⟩} basis. 

Pre-measurement: The quantum state encodes information in amplitudes {αᵢ} and relative 

phases. For a d-dimensional system: 

H_quantum = log d (maximum distinguishable outcomes) 

Measurement as channel: The measurement process M maps quantum states to classical 

outcomes: 

M: |ψ⟩ → i with probability |αᵢ|² 

Information accounting: 

• Input entropy: H(ψ) can be arbitrarily large if we consider continuous parameters 

• Output entropy: H(outcome) ≤ log d 

• Under finite distinguishability: H_max = log d 

The measurement channel saturates capacity. All information beyond log d bits is irreversibly 

lost. The recorded outcome i constitutes an irreversible commitment precisely because: 

1. The finite-dimensional output space cannot encode finer distinctions 

2. No physical refinement accesses additional degrees of freedom 

3. H(input|output) > 0 genuinely and irrecoverably 

Born rule compatibility: Finite-outcome commitment is naturally consistent with Born-rule 

statistics. The structure |αᵢ|² is compatible with: 

• Finite output distinguishability (d outcomes) 

• Unitarity at the pre-measurement level 

• Consistency across subsystems 

This suggests a route by which Born-rule statistics can be viewed as compatible with finite-

outcome commitment under unitary pre-measurement evolution; a full derivation would require 

additional assumptions (e.g., noncontextuality or symmetry constraints) beyond the scope of this 

paper. 
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4.8 Entropy Increase as Information Compression 

The Second Law can be reformulated as forced information compression. 

Consider an isolated system with N_max distinguishable macrostates. At time t₁, the system 

occupies one of W₁ microstates consistent with macrostate M₁: 

S₁ = k_B log W₁ 

At time t₂, it occupies one of W₂ microstates consistent with macrostate M₂: 

S₂ = k_B log W₂ 

Under infinite distinguishability: All W₁ microstates remain individually trackable. The 

system's microstate is always recoverable. Entropy is merely a coarse-grained description with 

no fundamental status: 

H(micro|macro) = log W 

but H(micro_t₂|micro_t₁) = 0. 

Under finite distinguishability: Microstate distinctions exceeding N_max are physically 

inaccessible. When dynamics mix states beyond the resolution limit: 

H(micro_t₂|micro_t₁) > 0 (genuine information loss) 

Entropy increase is real, not merely epistemic. The Second Law holds because: 

1. Dynamics tend to spread distributions across state space 

2. Finite distinguishability prevents tracking of fine structure 

3. Information is genuinely destroyed, not merely hidden 

The entropy bound S_max = k_B log N_max is the thermodynamic reflection of finite 

distinguishability. 

Summary of §4: The information-theoretic formalization shows that irreversibility isn't just a 

philosophical puzzle—it has precise mathematical content. Information loss requires finite 

distinguishability because infinite distinguishability always provides an "escape route" where 

supposedly lost information persists in finer details. Established results like the Data Processing 

Inequality and channel capacity bounds confirm this structure. The Second Law of 

thermodynamics, Landauer's bound on erasure, and the finality of quantum measurements all 

emerge as consequences of finite distinguishability. 
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5. Addressing Potential Objections 

This section anticipates and responds to the most common objections to the argument. Readers 

already convinced may skip to §6. 

5.1 Is the Argument Circular? 

Objection: The definition of "physically realizable" presupposes finite resources, making the 

conclusion trivial. 

Response: The argument can be run in two independent modes. 

Empirical mode: We observe irreversible facts (detector clicks, persistent records, entropy 

increase). These observations falsify infinite distinguishability as a property of physical reality, 

regardless of how we define admissibility. 

The empirical mode does not depend on any definition of admissibility. It runs as follows: 

1. We observe irreversible facts—this is not a theoretical claim but the precondition of 

observation itself. Every measurement, every record, every memory constitutes an 

irreversible commitment. 

2. The no-go theorem proves: if distinguishability is infinite, irreversible facts cannot occur. 

3. By modus tollens: distinguishability is finite. 

This is an empirical conclusion from observable phenomena, analogous to inferring finite speed 

of information propagation from relativistic observations. The argument does not assume 

finiteness; it derives it. 

The Empirical Argument (Summary) 

Independent of all definitions of admissibility: 

1. We observe irreversible facts (measurements yield stable outcomes, records persist, 

entropy increases). 

2. The no-go theorem proves: infinite distinguishability ⟹ no irreversible facts. 

3. By contraposition: irreversible facts ⟹ finite distinguishability. 

4. Therefore: physical reality has finite distinguishability. 

This has the same logical status as inferring finite light speed from the observed failure of 

superluminal signaling, or inferring energy conservation from the observed failure of perpetual 

motion. 

Structural mode: Even granting the definitional point, the argument has substantive content. It 

identifies which mathematical structures are compatible with fact-producing physics. Many 

candidate frameworks—exact classical mechanics, unitarily closed quantum mechanics, block 
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universes with infinite precision—are revealed as incomplete. Not because they violate known 

laws, but because they cannot accommodate the existence of facts. 

Even granting unbounded resources, infinite distinguishability still blocks principled 

commitment, because any apparent many-to-one mapping can be refined into a one-to-one 

mapping whenever distinguishability remains unbounded. 

The argument thus functions as a compatibility filter, not a derivation from nothing. The no-go is 

not merely a "finite resources" statement; it is a structural incompatibility claim: if arbitrarily 

fine distinctions remain physically accessible, then commitment cannot be final, regardless of 

available resources. 

5.2 Does Quantum Mechanics Already Solve This? 

Objection: Quantum mechanics already limits distinguishability through complementarity and 

uncertainty. The argument adds nothing new. 

Response: Quantum mechanics limits simultaneous distinguishability of non-commuting 

observables, but does not obviously impose finite distinguishability in the relevant sense: 

1. Hilbert spaces may be infinite-dimensional 

2. Position and momentum eigenstates form continuous spectra 

3. Unitary evolution is perfectly reversible 

The measurement problem persists precisely because standard quantum mechanics lacks a native 

mechanism for irreversible commitment. The projection postulate is added by hand; decoherence 

displaces but does not destroy information; many-worlds avoids commitment entirely. 

The present argument identifies what any solution to the measurement problem must provide: a 

finite bound on distinguishable outcomes that cannot be refined away by accessing finer degrees 

of freedom. 

Complementarity limits joint sharpness of certain observables, but does not by itself guarantee a 

finite bound on recordable, irreversibly committed distinctions in bounded regions; a theory can 

have continuous spectra and unitary reversibility while still respecting uncertainty. 

Quantum mechanics is compatible with finite distinguishability (POVMs have finite outcome 

sets), but does not guarantee it at the foundational level. The no-go theorem clarifies what is 

required. Finite distinguishability in this paper concerns the physically committable distinctions 

that can be stabilized as records, not the mathematical cardinality of spectra in the kinematic 

formalism. 

The objection correctly notes that POVMs have finite outcome sets. But this observation 

relocates rather than resolves the problem. Why do measurements have finite outcomes? The 

projection postulate is added axiomatically; it doesn't follow from unitary dynamics. The 

question is whether finite outcomes reflect (a) a fundamental constraint on distinguishability, or 
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(b) a contingent feature of measurement apparatus that could in principle be refined. If (b), then 

measurement finality is illusory. If (a), then quantum mechanics implicitly assumes finite 

distinguishability—precisely the condition this paper identifies as necessary. The no-go theorem 

clarifies what any interpretation must provide: not merely finite outcomes in practice, but a 

principled account of why refinement terminates. 

5.2.1 Decoherence Does Not Create Commitment 

A common response holds that decoherence explains irreversibility: environmental entanglement 

makes recovery practically impossible by spreading information across enormous numbers of 

degrees of freedom. But practical impossibility is not principled inadmissibility. 

The distinction between practical and principled irreversibility is not academic fastidiousness—it 

determines whether facts are real or apparent. If information persists in environmental 

correlations, then the outcome is not a fact but an indexical appearance relative to a subsystem 

description. The "collapse" is revealed as coarse-graining, not commitment. 

This has consequences: if decoherence preserves information in principle, then quantum 

Darwinism describes apparent robustness of records, not genuine factuality. The bat-and-ball 

becomes the bat-and-ball-and-environment-and-everything-it-correlates-with, never settling into 

a definite event. The claim "this ball went there" becomes permanently provisional—always 

recoverable by a sufficiently powerful observer who can track environmental correlations. 

More fundamentally: if practical difficulty sufficed for factuality, then factuality would be 

technology-dependent. What counts as a "fact" would change as measurement precision 

improves. This conflates epistemology with ontology. The present argument targets whether 

facts exist at all, not whether we can access them. 

Decoherence explains why interference disappears from local observations. It does not explain 

why outcomes become facts. That requires finite distinguishability. 

5.3 What About Many-Worlds? 

Objection: In Everettian quantum mechanics, commitment is branch-relative. Information is 

globally conserved (unitarity preserved) while facts exist relative to branches. This satisfies both 

the "facts exist" premise and global reversibility. 

Response: Many-worlds relocates commitment to branch-relative description without explaining 

it. Within each branch, observers record definite outcomes. But what makes branch-relative facts 

facts? 

If branches are merely labels on a globally unitary evolution, and inter-branch coherence is in 

principle recoverable at finer scales, then branch-relative "facts" inherit the same problem as any 

other apparent commitment under infinite distinguishability. The branching structure would be 

refinable, not fundamental. 
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The Everettian faces a dilemma: 

(a) Accept that branches themselves have finite distinguishability—making the branching 

structure discrete and non-refinable. But then finite distinguishability is built into the 

interpretation, conceding the present result. 

(b) Acknowledge that branch-relative facts are not genuine commitments but indexical 

descriptions of a fully reversible whole. But this faces the self-undermining objection: the 

Everettian's own assertion of many-worlds is itself a branch-relative "fact" with no genuine 

factuality. 

Option (a) is compatible with this paper's framework. Option (b) renders the interpretation self-

undermining in the sense of §5.4. 

5.4 What About Block Universe Interpretations? 

Objection: Eternalism holds that past and future events are equally real. This doesn't require 

infinite distinguishability. 

Response: Block-universe interpretations face a dilemma: 

If the block has infinite precision: All microstates are fully specified with unlimited resolution. 

But then no irreversible commitment occurs—"commitment" becomes an indexical illusion 

rather than a physical process. The apparent arrow of time has no structural basis. 

If the block has finite information density: The temporal asymmetry we observe reflects genuine 

structural features of the block. Certain directions accumulate commitments; others do not. The 

framework is then compatible with our result, but the block is not the causally inert manifold 

often imagined. 

The present framework does not refute eternalism per se. It constrains which versions of 

eternalism remain physically admissible. Specifically, the result constrains eternalism to versions 

with finite information density if one wants irreversibility to be a physical feature of the block 

rather than merely an indexical description. 

5.5 Why Not Just Accept Reversibility? 

Objection: Perhaps reality is fundamentally reversible and irreversibility is merely apparent or 

perspectival. 

Response: This position faces severe difficulties: 

1. Empirical: Irreversibility is not merely observed but constitutive of observation. Without 

irreversible records, no measurement could ever be completed or remembered. 
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2. Self-undermining: The claim "irreversibility is illusory" is itself a factual claim that 

requires irreversible commitment to formulate, communicate, and record. 

3. Explanatory vacuum: If all processes are reversible, why do we universally experience 

temporal asymmetry? Boundary conditions alone cannot explain this without 

presupposing the very asymmetry they purport to derive. 

Accepting fundamental reversibility does not dissolve the problem; it makes it insoluble. 

Clarification (Bullet-biting is incoherent). One might attempt to "bite the bullet" and 

consistently accept that all facts, including the assertion of universal reversibility, are illusory. 

But bullet-biting here is not merely uncomfortable—it is operationally incoherent. The claim "I 

accept universal reversibility" cannot be meant in any standard sense. To assert is to commit; to 

communicate is to create a record; to argue is to constrain future admissible responses. The 

consistent reversibilist cannot consistently do anything that constitutes assertion, since assertion 

requires their interlocutor to be unable to "un-receive" the message. The position is not wrong 

but unoccupiable—it cannot be maintained by any process that could convey it. 

5.6 Is This Just Effective Field Theory? 

Objection: All you've shown is that physics has UV cutoffs. This is standard effective field 

theory—new physics appears at shorter scales, and our current theories are effective descriptions 

valid above some minimum length. Nothing new here. 

Response: The relationship to effective field theory deserves clarification. EFT holds that 

descriptions valid at scale L may break down at scales ≪ L, where new physics appears. This is 

compatible with either: 

(a) Finite distinguishability: Physics terminates at some fundamental scale. There is no "new 

physics" below some minimum; the scale is absolute. 

(b) Infinite distinguishability: New physics appears at every scale, with no terminus. Each 

effective theory is replaced by a finer one, ad infinitum. 

Standard EFT is agnostic between these options. The present argument establishes that option (b) 

is incompatible with facts. This is not a claim about any particular EFT's validity, but about the 

necessary structure of whatever fundamental theory underlies all effective descriptions. EFT tells 

us that our current theories break down at short scales; the no-go theorem tells us that this 

breakdown must eventually terminate in finite distinguishability, not continue indefinitely. 

5.7 What About Non-Local Correlations? 

Objection: Information about local alternatives might be preserved in non-local correlations, 

accessible only through measurements on distant systems. Entanglement could preserve 

information that appears locally lost. 
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Response: Non-local correlations do not alter the core argument. If information about a local 

commitment is preserved in correlations with distant systems, then either: 

(a) Those correlations are themselves physically accessible from the local region—in which case 

commitment hasn't occurred locally; the information is still available. 

(b) They are not physically accessible from the local region—in which case finite 

distinguishability holds locally, which is the relevant operational domain. 

The no-go theorem applies to the operationally relevant domain. If facts are local (as they appear 

to be—my detector clicks here, my memory forms here), then distinguishability must be finite in 

bounded regions. Global preservation in non-local correlations would render local facts illusory, 

returning us to the self-undermining problems of §5.5. 

5.8 What About Bohmian Mechanics? 

Objection: Bohmian mechanics has definite particle positions at all times, deterministic 

dynamics, and produces definite measurement outcomes—yet it uses continuous configuration 

space. Doesn't this escape the no-go theorem? 

Response: Bohmian mechanics presents an interesting case that illuminates rather than escapes 

the argument. Analysis reveals it faces the same dilemma: 

(a) If particle positions have infinite precision (continuous configuration space taken literally), 

then measurement outcomes are determined by infinitely precise initial conditions. But this 

precision is not physically accessible—no finite procedure can determine positions to arbitrary 

accuracy. The apparent definiteness of outcomes reflects our epistemic coarse-graining, not 

genuine commitment. The theory describes a universe of infinitely precise facts that are 

operationally indistinguishable from probabilistic outcomes. The "facts" are not operationally 

accessible facts in the sense of §2. 

(b) If configuration space has finite effective precision (positions distinguishable only to some δ), 

then Bohmian mechanics implicitly incorporates finite distinguishability, and the no-go theorem 

is satisfied. The continuous mathematics is a convenience; the physics respects finite resolution. 

Bohmian mechanics is thus compatible with finite distinguishability but does not escape the 

theorem. Its apparent definiteness either reflects finite operational distinguishability (satisfying 

the theorem) or is merely mathematical rather than physical (the "facts" being inaccessible and 

hence not facts in the operational sense). 

The same analysis applies to any hidden-variable theory: if the hidden variables have infinite 

precision, they cannot ground operational facts; if they have finite precision, finite 

distinguishability holds. 
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6. Information-Theoretic Connections 

6.1 The Bekenstein Bound 

The Bekenstein bound states that the maximum entropy of a region is proportional to its 

boundary area: 

S ≤ 2πkRA / (ℏc) 

where R is the region's radius and A its surface area. This implies finite information content in 

bounded regions—precisely the finite distinguishability condition derived here from 

admissibility requirements alone. 

6.2 The Holographic Principle 

The holographic principle generalizes this insight: the information content of any spatial volume 

is bounded by the information that can be encoded on its boundary, at roughly one bit per Planck 

area: 

I_max ≈ A / (4l_P²) 

where l_P ≈ 1.6 × 10⁻³⁵ m is the Planck length. 

This is not infinite. A region of radius R contains at most: 

N_states ≈ exp(πR² / l_P²) 

distinguishable configurations—a vast but finite number. 

6.3 Conceptual Foundation 

The present argument provides a conceptual foundation for such bounds. They are not merely 

empirical regularities or quantum-gravitational predictions to be derived from more fundamental 

principles. They are necessary conditions for the existence of irreversible facts. 

Scope note. The bounds cited here are used as consistent exemplars of finite-information 

principles already suggested in established physics. The no-go result does not depend on their 

validity. Rather, it provides a conceptual foundation for why any successful fundamental theory 

is expected to implement some finite-information constraint, whether or not it takes the precise 

holographic form. 

Any theory violating holographic bounds would permit infinite distinguishability and therefore 

fail to accommodate commitment. The bounds are not negotiable features of specific models; 

they are admissibility requirements that any fact-producing physics must satisfy. 
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7. Entropy, Erasure, and Landauer's Principle 

7.1 Entropy Requires Finite Resolution 

Entropy is standardly interpreted as: 

S = k_B ln Ω 

where Ω is the number of microstates consistent with macroscopic constraints. This formula 

presupposes that Ω is finite or at least that state space has bounded effective resolution. 

If distinguishability were infinite, entropy could never meaningfully increase. Any apparent 

entropy growth would correspond to redistribution of information across scales, not genuine loss. 

One could always define finer-grained entropies that remain constant. 

Entropy monotonicity (the Second Law) therefore presupposes finite distinguishability. Without 

it, the Second Law becomes a bookkeeping convention rather than a physical constraint. 

7.2 Information Erasure 

Information erasure is the paradigmatic irreversible commitment. To erase a bit is to render the 

prior distinction (0 vs 1) physically inaccessible. 

If arbitrarily fine degrees of freedom remained accessible, erasure would be impossible in 

principle. The "erased" information would persist in finer structure. True erasure requires a finite 

state space within which all distinctions can be exhausted. 

7.3 Landauer's Principle as Consequence 

Landauer's principle states that erasing one bit of information requires dissipating at least: 

E ≥ k_B T ln 2 

of energy as heat. 

This principle is often taken as foundational, linking information and thermodynamics. However, 

the present analysis reveals it as contingent on finite distinguishability. 

Only when erasure is a genuine physical operation—possible only with finite state spaces—can 

an energetic cost be meaningfully assigned. In systems with infinite distinguishability, no bit is 

ever fully erased, and Landauer's bound loses operational meaning. 
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Finite distinguishability is thus logically prior to Landauer's principle. 

7.4 Entropy as Commitment Ledger 

From this perspective, entropy increase tracks the accumulation of irreversible commitments. 

Each commitment eliminates prior alternatives from physical accessibility. Entropy is not a 

measure of ignorance but a ledger of lost possibilities. 

This interpretation unifies thermodynamic irreversibility with measurement, memory, and 

causation. All arise from the same structural requirement: finite distinguishability enables 

commitment; entropy records its accumulation. 

 

8. Measurement and Outcome Finality 

8.1 Measurement as Commitment 

Measurement is the paradigmatic instance of irreversible commitment. A measurement does not 

merely reveal a pre-existing value; it produces a definite outcome from a set of prior 

possibilities. Once registered, alternative outcomes are no longer physically accessible. 

This finality distinguishes genuine measurement from reversible interaction. Any account 

preserving full recoverability fails to explain why outcomes ever become definite. 

8.2 Finite Outcome Sets 

In quantum mechanics, measurements are represented by positive-operator-valued measures 

(POVMs). A POVM partitions the state space into a finite or countable set of outcomes: 

{E_i} where Σᵢ Eᵢ = I, Eᵢ ≥ 0 

Each outcome corresponds to a physically distinguishable result. This partitioning encodes the 

physical limits of distinguishability. 

If outcome resolution were infinite, measurement would never complete. The system would 

remain indefinitely suspended among ever-finer alternatives. Finite outcome sets are required for 

closure. 
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8.3 Collapse as Closure 

The apparent "collapse" of the quantum state has traditionally been interpreted as dynamical 

disturbance. Once finite distinguishability is acknowledged, collapse admits reinterpretation as 

closure rather than force. 

Prior to measurement, the system encodes a space of admissible possibilities. Measurement 

selects one outcome and renders others inaccessible. No additional mechanism is required 

beyond admissible completion of the outcome set. 

Collapse reflects the exhaustion of distinguishability at the measurement resolution, not a 

violation of unitary evolution at finer scales. 

8.4 The Emergence of Classicality 

Classical behavior emerges when irreversible commitments accumulate faster than quantum 

coherences can be sustained. Finite distinguishability ensures eventual domination by committed 

facts, producing: 

• Stable measurement outcomes 

• Persistent records 

• Effective classicality at macroscopic scales 

This is not decoherence in the standard sense (which merely delocalizes information). It is 

commitment-induced closure enabled by finite state resolution. 

8.5 Selection Mechanism 

Remark (What this framework does and does not explain). The present framework 

establishes that commitment must occur but does not specify the selection mechanism—how one 

outcome is selected from the admissible set. This is intentional. The no-go theorem is a necessity 

result (commitment requires finite distinguishability) not a dynamical proposal (here is how 

commitment works). 

Candidate selection mechanisms compatible with finite distinguishability include: 

• Objective stochastic processes (GRW-type spontaneous collapse) 

• Gravitationally-induced decoherence (Penrose objective reduction) 

• Relational actualization (perspectival but operationally non-trivial) 

• Entropic selection (outcome probabilities from accessible state volumes) 

• Pilot-wave dynamics (Bohmian selection via particle positions, with finite effective 

precision) 

Each supplies dynamics; the present paper supplies the structural constraint any such dynamics 

must satisfy. The Born rule, in particular, may emerge from such dynamics under additional 
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assumptions (symmetry, noncontextuality, decision-theoretic constraints), but this derivation lies 

beyond our scope. 

The framework is thus compatible with multiple dynamical proposals while being neutral among 

them. What it excludes is any account that preserves infinite distinguishability—including 

interpretations where "selection" is merely apparent or indexical without genuine commitment. 

 

9. Time, Causation, and Temporal Direction 

This section explores implications of the framework for understanding time and causation. These 

implications range from relatively secure (temporal asymmetry requires commitment 

accumulation) to more speculative (time as emergent from commitment ordering). 

We distinguish between: 

• Constraint claims: Any account of temporal asymmetry must invoke something with the 

structure of irreversible commitment. This follows from the no-go theorem. 

• Constitutive claims: Time is commitment ordering; before/after are created by facts. This 

is a stronger interpretive proposal compatible with but not strictly entailed by the 

theorem. 

Readers may accept the constraints while remaining agnostic about the constitutive claims. The 

former are results; the latter are suggestions. 

9.1 Time as Commitment Ordering 

Time is commonly modeled as a coordinate parameter. Such representations struggle to account 

for temporal directionality and irreversibility. 

Within the present framework, time is reinterpreted as an ordering relation over irreversible 

commitments: 

• Each commitment establishes a before/after distinction 

• The accumulation of such distinctions generates a partial order 

• This order is physical time 

This is a constitutive claim. More conservatively, one might say: this order is isomorphic to 

physical time, or grounds our experience of time. The no-go theorem establishes only that such 

an order requires finite distinguishability; it does not settle whether time is this order or merely 

correlates with it. 
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In plain terms: We usually think of time as a river that events float down. But perhaps it's the 

reverse: "before" and "after" are created when possibilities become facts. Time doesn't contain 

events; events generate time. 

Remark (Modal neutrality). The framework is neutral on the modal status of pre-commitment 

alternatives. Whether alternatives are "real possibilities" in a robust metaphysical sense, or 

merely formal placeholders in an admissibility structure, commitment still functions to eliminate 

them from physical accessibility. The no-go theorem applies regardless: infinite 

distinguishability prevents any transition from having the structure of elimination, whether what 

is eliminated is "real possibilities" or "admissible descriptions." 

9.2 Why Time Has a Direction 

Standard explanations of temporal asymmetry appeal to: 

1. Boundary conditions (low-entropy past) 

2. Dynamical asymmetries (CP violation) 

Both face regress: Why those boundary conditions? Why that asymmetry? 

Finite distinguishability offers a structural alternative. Temporal direction is constituted by 

irreversible commitment, not imposed on a pre-existing temporal manifold. The asymmetry 

requires no prior explanation because it is not derived from something more basic. 

To ask "why does time flow forward?" is to ask why facts exist rather than not—a question that 

lies outside physics. 

9.3 Causation as Constraint Propagation 

Causation arises naturally as the propagation of constraints induced by commitments: 

1. An outcome is committed 

2. This commitment restricts the space of admissible future states 

3. Later states are constrained by earlier commitments 

Causes are identified with prior commitments that limit future possibilities. This requires no 

metaphysical notion of "influence" or "power." Causal structure is bookkeeping over eliminated 

alternatives. 

Finite distinguishability ensures such eliminations are genuine and irreversible, grounding 

causation in physical structure. 
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9.4 Discrete Temporal Structure 

Because commitments are discrete events, time inherits a counting structure. While macroscopic 

time appears continuous, it is underwritten by sequences of finite commitments. 

Let N(t₁, t₂) denote the number of irreversible commitments between events t₁ and t₂. Physical 

duration corresponds to this count, not to an independent geometric parameter. 

This perspective supports event-based frameworks in which time is fundamentally discrete, 

emerging from commitment density rather than presupposed as a continuum. 

 

10. Excluded Physical Frameworks 

The no-go theorem isn't merely abstract philosophy—it has teeth. This section identifies which 

approaches to fundamental physics are ruled out as complete descriptions of reality, and which 

remain viable. 

10.1 What Infinite Distinguishability Would Entail 

To appreciate what the theorem excludes, consider what a universe with infinite 

distinguishability would actually be like: 

A universe with infinite distinguishability would lack: 

• Genuine facts (all states recoverable in principle) 

• Meaningful entropy increase (information never lost) 

• Final measurement outcomes (always refinable) 

• Persistent records (always reversible) 

• Temporal direction (no asymmetry in commitment) 

Such a universe could not contain observers, since observation requires irreversible recording. 

10.2 Classification of Frameworks 

The following table classifies physical frameworks by their compatibility with irreversible 

commitment: 

Framework 
Infinite 

Distinguishability? 

Admits 

IC? 
Status 

Classical mechanics 

(exact) 
Yes No 

Excluded as complete, fact-

producing description 
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Framework 
Infinite 

Distinguishability? 

Admits 

IC? 
Status 

Unitary QM (no 

collapse) 
Effectively yes No Incomplete 

QM + projection 

postulate 
No (finite outcomes) Yes Admissible 

Many-worlds (all 

branches real) 
Yes (globally) No 

Relocates commitment to 

branch-relative records 

Block universe (infinite 

precision) 
Yes No Excluded 

Block universe (finite 

info) 
No Yes Admissible 

Discrete spacetime 

models 
No Yes Admissible 

Holographic theories No (area-bounded) Yes Admissible 

Reading the table: "Excluded" means the framework cannot be a complete description of a 

universe containing facts. "Incomplete" means additional structure is needed. "Admissible" 

means the framework is compatible with irreversible commitment. Note that exclusion doesn't 

mean useless—classical mechanics remains extraordinarily powerful as an effective theory. 

10.3 Interpretation of Exclusions 

"Excluded" does not mean mathematically inconsistent or empirically falsified. It means 

incompatible with being a complete description of fact-producing reality. 

Excluded frameworks may remain extraordinarily useful as: 

• Effective theories (accurate within domains) 

• Calculational tools (mathematically tractable) 

• Limiting cases (idealized descriptions) 

But they cannot be literal descriptions of a universe containing irreversible facts. 

10.4 Constraint-Based Physics 

The exclusions identified here are not philosophical preferences. They follow from the empirical 

existence of irreversible facts. Finite distinguishability functions as an admissibility constraint, 

analogous to: 

• Energy conservation 

• Causal locality 

• Lorentz invariance 
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Such constraints identify necessary structural features of physical reality without specifying 

particular dynamics. 

 

11. Empirical Content and Constraints 

11.1 Is This Empirically Meaningful? 

One might ask whether an admissibility argument has empirical content. It does, in three senses: 

Diagnostic: The argument explains why certain physical structures exist. Discreteness scales, 

entropy bounds, and measurement finality are not contingent features but necessary conditions 

for facts. 

Constraining: Any proposed fundamental theory must respect finite distinguishability. Theories 

postulating infinite precision, exact reversibility, or unbounded information density are ruled out 

as complete descriptions. 

Empirical Constraints: The framework implies: 

1. A fundamental minimum scale for distinguishability (independent of technology) 

2. Minimum entropy production for any fact-establishing process 

3. Discreteness in any complete spacetime theory 

4. Area-scaling (not volume-scaling) of maximum information content 

These implications align with quantum uncertainty, Landauer's bound, holographic entropy 

bounds, and approaches to quantum gravity—suggesting the framework captures genuine 

physical structure. 

11.2 Relation to Existing Physics 

The finite distinguishability requirement does not conflict with established physics. Rather, it 

provides conceptual foundations for features often introduced heuristically: 

Physical Feature Standard Status Present Framework 

Quantum uncertainty Fundamental postulate Consequence of FD 

Landauer's bound Empirical/thermodynamic Requires FD 

Bekenstein bound Quantum gravity result Admissibility requirement 

Measurement finality Interpretive addition Enabled by FD 

Second Law Statistical/axiomatic Requires FD 
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12. Conclusion 

The argument of this paper can be summarized simply: facts require finitude. If the universe 

could be carved infinitely finely, nothing would ever be settled—every apparent outcome could 

be undone by looking closer. The existence of genuine facts, memories, records, and the arrow of 

time all depend on there being a limit to physical distinguishability. This isn't a discovery about 

how physics happens to work; it's a requirement for any universe that contains facts at all. 

12.1 Summary of Results 

This paper has established: 

1. No-Go Theorem: Irreversible commitment is impossible in systems with infinite 

distinguishability. 

2. Necessity Result: Finite distinguishability is required for the existence of facts, entropy 

increase, measurement outcomes, records, causation, and temporal direction. 

3. Framework Exclusions: Physical pictures relying on infinite precision, exact 

reversibility, or unbounded information density are excluded as complete descriptions of 

reality. 

4. Conceptual Foundations: Information-theoretic bounds (Bekenstein, holographic) and 

thermodynamic limits (Landauer) are revealed as admissibility requirements, not merely 

empirical regularities. 

12.2 Broader Implications 

The result has implications for: 

Quantum Foundations: Any solution to the measurement problem must provide a mechanism 

for finite-outcome commitment that cannot be refined away. 

Quantum Gravity: Discrete spacetime structures are not optional modeling choices but 

admissibility requirements. 

Philosophy of Time: Temporal direction is constituted by commitment accumulation, not 

imposed by boundary conditions. 

Computation: Physical computation is bounded by finite distinguishability, not merely by 

energy or time constraints. 

12.3 Outlook 

The framework developed here is intentionally minimal. It identifies necessary conditions 

without proposing specific dynamics. This opens a programmatic path: 
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1. Derive specific physical structures as minimal realizations of finite distinguishability 

2. Determine the relationship between distinguishability bounds and known physics (Planck 

scale, holographic bounds) 

3. Develop quantitative models of commitment-based temporal emergence 

The present result serves as a foundation: it establishes why such structures must exist, leaving 

how they are realized to further investigation. 

 

Appendix A: Formal Statement and Proof 

This appendix provides two formal treatments of the no-go theorem: a metric-space formulation 

(§A.1–A.4) and a measure-theoretic formulation using σ-algebras (§A.5–A.7). The latter is 

included for mathematical rigor and to connect with standard probability theory. 

A.1 Metric Space Formulation: Definitions 

Let (S, d) be a metric space of physical states. 

Definition A1. S has ε-distinguishability if for all s₁, s₂ ∈ S with d(s₁, s₂) > ε, there exists a 

physically realizable measurement distinguishing s₁ from s₂. 

Definition A2. S has infinite distinguishability if it has ε-distinguishability for all ε > 0. 

Definition A3. A map P: S → S exhibits irreversible commitment if: 

• ∃ s₁ ≠ s₂ : P(s₁) = P(s₂) 

• ∄ physically realizable Q : Q ∘ P = id on {s₁, s₂} 

A.2 Theorem (Metric Formulation) 

Theorem. If S has infinite distinguishability, then no map P: S → S exhibits irreversible 

commitment. 

A.3 Proof 

Let S have infinite distinguishability. Suppose P: S → S with P(s₁) = P(s₂) = s* for some s₁ ≠ s₂. 

Let ε = d(s₁, s₂)/2 > 0. By infinite distinguishability, ∃ measurement M with: 

• M(s₁) = m₁ 

• M(s₂) = m₂ 
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• m₁ ≠ m₂ 

Define the extended state space S' = S × M where M is the outcome space of M. 

Define P': S' → S' by P'(s, m) = (P(s), M(s)). 

Then: 

• P'(s₁, m₁) = (s*, m₁) 

• P'(s₂, m₂) = (s*, m₂) 

• (s*, m₁) ≠ (s*, m₂) since m₁ ≠ m₂ 

Hence P' is injective on {(s₁, m₁), (s₂, m₂)}. 

Define Q': S' → S' by Q'(s*, mᵢ) = (sᵢ, mᵢ). Then Q' ∘ P' = id. 

The map Q' is physically realizable since M is (by hypothesis) physically realizable and Q' 

merely conditions on M's outcome. 

Thus P does not exhibit irreversible commitment; the apparent information loss is recoverable 

via the finer description (S', P'). ∎ 

A.4 Corollary 

Corollary. Irreversible commitment implies finite distinguishability. 

Proof: Contrapositive of theorem. ∎ 

A.5 Measure-Theoretic Formulation: σ-Algebras 

For mathematical precision, we reformulate the result using σ-algebras, which provide the 

standard framework for probability and measurability. 

Definition A4 (Physically Decidable Events). Let S be a state space. A σ-algebra of physically 

decidable events is a σ-algebra 𝒜 ⊆ 2^S such that for each A ∈ 𝒜, there exists a physically 

realizable procedure that determines whether s ∈ A for any state s. 

Definition A5 (Distinguishability via σ-algebras). Two states s₁, s₂ are 𝒜-distinguishable if 

there exists A ∈ 𝒜 with s₁ ∈ A and s₂ ∉ A. 

Definition A6 (Refinement of σ-algebras). A σ-algebra 𝒜' refines 𝒜 (written 𝒜 ⊆ 𝒜') if every 

set in 𝒜 is also in 𝒜'. 
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Definition A7 (Infinite Distinguishability, σ-algebra version). A system has infinite 

distinguishability if for every physically decidable σ-algebra 𝒜, there exists a finer physically 

decidable σ-algebra 𝒜' ⊃ 𝒜 that separates at least one pair of states not separated by 𝒜. 

Equivalently: the supremum of physically decidable σ-algebras is the discrete σ-algebra 2^S. 

Definition A8 (Measurable Commitment). A measurable map P: (S, 𝒜) → (S, 𝒜) exhibits 𝒜-

irreversible commitment if: 

• ∃ A ∈ 𝒜 with |P⁻¹(A)| > 1 containing 𝒜-distinguishable states 

• ∄ measurable Q: (S, 𝒜) → (S, 𝒜) with Q ∘ P|_{P⁻¹(A)} = id 

A.6 Theorem (σ-Algebra Formulation) 

Theorem. If a system has infinite distinguishability (Definition A7), then no measurable map 

exhibits 𝒜-irreversible commitment for any physically decidable 𝒜. 

A.7 Proof 

Suppose P: (S, 𝒜) → (S, 𝒜) appears to exhibit irreversible commitment: P(s₁) = P(s₂) = s* for 

𝒜-distinguishable s₁, s₂. 

By infinite distinguishability, there exists a finer σ-algebra 𝒜' ⊃ 𝒜 and a set B ∈ 𝒜' with s₁ ∈ B 

and s₂ ∉ B. 

Extend P to P': (S, 𝒜') → (S, 𝒜') by preserving the indicator of B: 

P'(s) = (P(s), 1_B(s)) 

where we adjoin the Boolean value 1_B(s) to the output. 

Then P'(s₁) ≠ P'(s₂) since 1_B(s₁) = 1 ≠ 0 = 1_B(s₂). 

The inverse Q' defined by Q'(s*, b) = sᵢ where 1_B(sᵢ) = b is 𝒜'-measurable. 

By induction over refinements, any σ-algebra 𝒜 admits an extension under which apparent 

commitment becomes recoverable. 

Conclusion: Irreversible commitment requires a terminal σ-algebra—one that cannot be further 

refined by physically decidable procedures. This is precisely finite distinguishability. ∎ 

Remark (Codomain extension). The construction formally extends the codomain from S to S × 

{0,1}. This is legitimate because we are asking whether any physically accessible description 

renders the process invertible. If the finer σ-algebra 𝒜' includes the indicator 1_B, and 1_B is 

physically decidable (which it is, by the definition of 𝒜'), then the extended output (P(s), 1_B(s)) 
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is physically accessible. The "output space" of a physical process includes all accessible 

information about the post-process state, not merely a pre-designated mathematical codomain. 

The construction makes explicit the information that infinite distinguishability guarantees is 

available. 

A.8 Connection to Information Theory 

The σ-algebra formulation connects directly to information theory: 

• A σ-algebra 𝒜 on S induces a partition 𝒫_𝒜 (the atoms of 𝒜) 

• H(X|𝒫_𝒜) measures uncertainty about X given 𝒜-resolution 

• Infinite distinguishability: for all 𝒜, ∃ 𝒜' with H(X|𝒫_𝒜') < H(X|𝒫_𝒜) 

• Finite distinguishability: ∃ terminal 𝒜* with no proper refinement 

The entropic formulation of §4 and the σ-algebra formulation are thus formally equivalent. 

 

Appendix B: Classical Illustration—Bat and Ball 

To illustrate how irreversible commitment operates even in classical contexts, consider a bat 

striking a ball. 

B.1 Standard Causal Narrative 

Conventionally: the bat swings, contacts the ball, transfers momentum, and the ball departs along 

a trajectory. The bat "causes" the ball's motion. Time orders these events passively. 

B.2 Pre-Impact: Admissible Histories 

Prior to contact, the system does not occupy a unique microstate. Microscopic variations exist in: 

• Bat angle and speed 

• Contact point geometry 

• Ball position and spin 

• Material deformation profiles 

These variations define a space of admissible interaction histories, not a single predetermined 

trajectory. 

Before impact, "which point on the bat will strike which point on the ball" has no factual 

answer—only a range of admissible possibilities. 
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B.3 Impact as Commitment 

The moment of contact constitutes irreversible commitment: 

• Momentum is redistributed 

• Microscopic deformations occur 

• Sound and heat are generated 

• Information about alternative geometries is lost 

• Entropy increases 

One interaction history becomes factual; alternatives are eliminated. 

B.4 Retrospective Fixation 

Only after commitment can a definite causal story be told: 

"A specific point on the bat struck a specific point on the ball with a particular force profile, 

producing this trajectory." 

These details were not pre-existing facts revealed by impact. They are fixed by the committed 

outcome. The event selects which prior configuration was actualized. 

B.5 No Backward Causation 

This account involves no backward-propagating signals. The bat does not receive information 

from the future. Rather, the temporal ordering itself is generated by commitment. 

Asking "does cause precede effect?" presupposes a temporal structure that commitment creates. 

B.6 Classical Intuition Explained 

At macroscopic scales, commitment occurs rapidly with large entropy production. Alternative 

histories are eliminated almost instantaneously, creating the appearance of continuous 

deterministic causation. 

Classical cause–effect reasoning emerges as effective bookkeeping over dense commitment 

sequences. It is not fundamental but derivative—a coarse-grained description of underlying 

commitment dynamics. 
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Appendix C: Glossary of Key Terms 

Admissibility: The condition of being physically realizable using finite resources; distinct from 

mathematical possibility. 

Commitment: The irreversible transition from multiple admissible possibilities to a single 

factual outcome. 

Distinguishability: The capacity to reliably differentiate states using finite physical procedures. 

Finite Distinguishability (FD): The condition that bounded regions contain only finitely many 

distinguishable states. 

Infinite Distinguishability: The condition that arbitrarily fine distinctions remain physically 

accessible. 

Irreversible Commitment (IC): A process producing outcomes from which prior alternatives 

cannot be recovered by any physically realizable operation. 

Physical Realizability: Implementability using finite energy, time, spatial extent, and without 

presupposing inaccessible information. 

 

Appendix D: Operational Lift, Admissibility Tightening, 

and Empirical Contours 

 

D.1 Motivation and Scope 

This appendix strengthens two aspects of the main text that are likely to attract the greatest 

scrutiny from skeptical readers: 

(1) The construction in §3.3 (Step 3), where apparent irreversibility is resolved by lifting the 

description to include finer-grained accessible degrees of freedom. 

(2) The connection between finite distinguishability and concrete physical bounds (e.g., Planck-

scale or holographic limits), which in the main text is intentionally gestural in order to preserve 

generality. 

 

The purpose of this appendix is not to modify the core no-go theorem, but to make explicit why 

the lifted description is operationally forced rather than mathematically optional, and to clarify 
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the empirical contours implied by finite distinguishability without over-claiming specific 

numerical scales. 

D.2 The Operational Lift Principle 

In §3.3 the proof appeals to an extended or “lifted” description of the process output in order to 

track distinctions that remain physically accessible under infinite distinguishability. This step 

may appear, at first glance, to introduce auxiliary structure by hand. The present subsection 

makes explicit that no such addition is being made. 

Definition (Operational Transcript). 

For any physically realizable process P acting on an initial state s within a bounded region, 

define the operational transcript O(P, s) as the totality of degrees of freedom within the 

admissible domain that are physically accessible after the process has occurred. This includes, 

but is not limited to: 

• pointer variables of measuring devices, 

• emitted radiation or fields remaining within the domain, 

• thermodynamic changes (heat, work, dissipation), 

• any other degrees of freedom that can, in principle, be interrogated by admissible procedures. 

The operational transcript is not a mathematical construct but a physical one: it is simply 

“everything that is left available to be known” after the process completes. 

Operational Lift Principle (OLP). 

The physically relevant output of a process is not an arbitrarily chosen coarse-grained variable, 

but the full operational transcript O(P, s). Any claim of information loss or irreversible 

commitment must therefore be evaluated with respect to this transcript. 

D.3 Reframing Step 3 of §3.3 

With the Operational Lift Principle in place, Step 3 of §3.3 can be reformulated without 

introducing an explicit product space S × Φ. 

Let P be a process such that, at a coarse description level, P(s₁) = P(s₂) for distinct input states s₁ 

≠ s₂. 

Define the operationally lifted map: 

P̃ : S → Ω,  P̃(s) := O(P, s), 

where Ω is the space of possible operational transcripts. 
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If s₁ and s₂ are physically distinguishable under infinite distinguishability, then by definition 

there exists an admissible procedure capable of distinguishing them. If the operational transcripts 

were identical, O(P, s₁) = O(P, s₂), then no admissible post-process procedure could distinguish 

whether s₁ or s₂ occurred. In that case, the distinction between s₁ and s₂ would have been 

eliminated from the admissible domain. 

But elimination of a physically accessible distinction is precisely irreversible commitment. 

Therefore, under the hypothesis that no irreversible commitment occurs at this refined level, it 

must be the case that: 

O(P, s₁) ≠ O(P, s₂). 

This establishes injectivity of the operationally lifted map P̃ on distinguishable inputs, without 

appeal to hidden registers or artificial extensions. 

D.4 Lemma: No Erased-but-Accessible Distinctions 

Lemma. 

If a distinction between two states is physically accessible prior to a process and no irreversible 

commitment occurs during that process, then the distinction must remain recoverable from the 

operational transcript. 

Proof. 

Suppose a distinction is physically accessible but not recoverable from the operational transcript. 

Then, by definition, no admissible post-process procedure can retrieve it. The distinction has 

therefore been eliminated from the admissible domain, which constitutes irreversible 

commitment. Contradiction. ∎ 

This lemma makes explicit the dichotomy at the heart of the argument: either distinctions persist 

in accessible transcripts, or commitment has occurred. 

D.5 Environment and Nonlocal Correlations 

A common response invokes environmental or nonlocal correlations as repositories of “lost” 

information. The Operational Lift Principle clarifies that such correlations only matter insofar as 

they are physically accessible within the admissible domain. 

If environmental degrees of freedom encoding the distinction are accessible, then the operational 

transcript differs and reversibility is restored. If they are not accessible, then the distinction is 

operationally destroyed and finite distinguishability holds in the relevant domain. 

Thus, appeals to environment or global unitarity do not evade the theorem; they merely relocate 

which domain exhibits finite distinguishability. 

D.6 Empirical Contours Without Scale Fixing 
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The no-go theorem is structural rather than dynamical. It does not determine the numerical value 

of the minimum distinguishability scale. However, it does imply empirical contours that any 

fundamental theory must respect. 

These include: 

• A finite upper bound on the number of stably distinguishable states in any bounded region. 

• A maximum mutual information that a region can retain about its past. 

• A non-zero minimum entropy production associated with establishing a new irreversible record. 

• A fundamental coarse-graining scale that cannot be surpassed by improved technology. 

Existing physics already contains candidate realizations of these contours, including Bekenstein-

type entropy bounds, holographic area scaling, and Landauer’s principle. The present result 

explains why some bound of this general kind must exist, independent of its precise numerical 

value. 

D.7 Relation to Planck and Holographic Scales 

The theorem does not derive the Planck length, Planck area, or holographic entropy bounds. 

Instead, it provides a conceptual explanation for why any successful quantum-gravitational 

theory is expected to implement a finite information bound per bounded region. 

Determining whether the realized bound coincides with Planck-scale discreteness, holographic 

area laws, or another regulator is a separate empirical and theoretical task. The admissibility 

result constrains the space of viable theories but does not fix their detailed implementation. 

D.8 Falsifiability Criterion 

The framework developed in this paper would be falsified if one could demonstrate a physically 

realizable process that simultaneously: 

(1) Produces stable, reproducible records (irreversible commitment), and 

(2) Permits unbounded refinement of physically distinguishable states within the same bounded 

admissible domain. 

No such process is currently known. 
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