From Schrodinger to Dirac: First-Order
Closure Flow in VERSF

For General Readers

The big picture: Physics has two great theories of the very small: quantum mechanics
(describing atoms and molecules) and special relativity (describing things moving near the speed
of light). For most of the 20th century, combining them required increasingly elaborate
mathematical machinery that seemed to come out of nowhere. Why complex numbers? Why
wave functions? Why does the electron have spin? Why does Einstein's relativity work?

This paper shows that these "mysteries" aren't mysterious at all—they're mathematically
inevitable consequences of simple principles.

What this paper shows: The equations that govern electrons and other fundamental particles—
the Schrédinger equation (for slow-moving particles) and the Dirac equation (for fast-moving
particles)—are not arbitrary rules imposed on nature. Within the assumptions of this framework,
they are the only possible equations consistent with a few basic principles:

1. The universe processes information in discrete steps ("ticks")

2. Distinguishability between states is preserved (no information is created or destroyed)
3. Effects spread only to nearby locations (locality)

4. Physics looks smooth when we zoom out (continuum emergence)

Starting from these principles, we derive both equations, including all their seemingly arbitrary
features.

The key surprise about spin: The Dirac equation requires particles to have an intrinsic property
called "spin"—electrons behave like tiny spinning tops, even though nothing is literally rotating.

For nearly a century, physicists have accepted spin as a mysterious empirical fact. You just have

to postulate that electrons have it.

We show that spin is not mysterious at all: it is mathematically unavoidable. Here's why: if you
want a "first-order" equation (one that directly describes motion, not acceleration), and you want
its square to give the energy-momentum relationship, then the mathematics forces you to
introduce a two-component internal structure. That structure is precisely what physicists call
spin.

The universe doesn't choose to give electrons spin. It has no choice.

What emerges without being assumed:



e The Schrodinger equation (from distinguishability preservation + locality)
e The Dirac equation (from first-order dynamics)

e Spin and spinor structure (from algebraic necessity)

e Three spatial dimensions (from K = 7 hexagonal closure geometry)*

o Lorentz-invariant dispersion (from the graph's regularity at large scales)

e The correct relativistic energy-momentum relation E? = p?c? + m?c*

*The d = 3 result follows from the maximality lemma (Appendix G.10): involution counting
shows only three independent antipodal symmetries exist in the K = 7 cell, representation theory
bounds the IR transport sector to dimension < 3, spectral gap arguments (G.11) prove that
roughness penalties suppress all but three transport modes, and topology prevents new directions
from emerging under refinement.

What remains to be explained: Why the speed of light and Planck's constant have their specific
numerical values. Why there are three generations of fermions. These require the broader
VERSF/TPB framework.

How to read this paper: The technical sections contain detailed mathematics. Throughout,
we've included "For general readers" boxes that explain the key ideas in accessible terms. If
you're not a physicist, you can follow the main narrative by reading these boxes and skipping the
proofs.

Abstract

We extend the VERSF bit-tick framework to relativistic fermionic dynamics by deriving a Dirac-
type evolution equation on a closure graph. Starting from distinguishability-preserving unitary
tick updates and locality on a graph, we construct a first-order self-adjoint operator whose square
reproduces the graph Laplacian. We show that the requirement of first-order dynamics with
second-order squared invariant forces a Clifford algebra structure on an internal space—spinors
emerge as a mathematical necessity, not a postulate. The Wilson term is derived from closure
entropy principles (up to a single normalization constant) as the unique local penalty satisfying
smoothness requirements, and fermion doubling is thereby resolved. We explicitly construct
three translation generators from K = 7 hexagonal closure geometry and prove via involution
counting, Ds representation theory, spectral gap arguments, and topological obstruction that no
fourth independent direction exists, yielding d s = 3 under local homogeneity and refinement-
stability assumptions. The continuum limit yields standard Dirac dynamics, with Lorentz-
invariant dispersion emerging from the graph's local regularity structure.



Results Map: What Is Proved vs. Conditional

| Status H Result

Dirac operator D Gon H V @ H_E as canonical first-order square root of
Proved . - - -

Laplacian

Clifford algebra forcing: H D?* = spatial operator = anticommuting generators
Proved . -

required
|Pr0ved HEdge component slaving: ¢ determined by y in continuum/low-energy limit ‘
Proved Wilson penalty form (up to coefficient): unique local quadratic entropy penalty

in mass channel
|Pr0ved HDoubler lifting: Wilson term gives doublers mass ~ ic/§ — 0 as § — 0 ‘
|Pr0ved HThree transport generators from K = 7 antipodal structure (explicit construction) ‘

Minimal transport basis (A_min) via roughness RG / spectral gap (Appendix
Proved -

G.11)
|C0nditional*Hdis = 3 via maximality lemma (Appendix G.10) ‘
Conditional Wilson coefficient r calculable from closure entropy (pipeline given, not

computed)

*Proved under K = 7 selection, local homogeneity, and refinement stability assumptions.
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1. Introduction and Motivation
1.1 The Problem of Relativistic Quantum Mechanics

The Schrdodinger equation emerges from discrete tick dynamics on a closure graph, as we review
in Section 2.0: distinguishability-preserving updates force unitarity (Wigner), unitarity implies a
Hermitian generator (spectral theorem), and locality on the graph forces the generator to be the
Laplacian. This framework is inherently non-relativistic: it treats time and space asymmetrically
(first-order in time, second-order in space). Dirac's equation [1, 2] resolves this by being first-
order in both:

ih Ooy/ot = (ca-p + fmc?)y

where o and 3 are matrices satisfying specific anticommutation relations. But in standard
treatments, this structure is postulated to achieve Lorentz covariance—the matrices appear as a
mathematical device.

The question: Can Dirac structure emerge from the same tick-based, information-theoretic
principles that gave us Schrodinger, without postulating spinors or Lorentz symmetry?

1.2 Summary of Results

We show that:

1. First-order locality on a graph requires an incidence operator B (discrete gradient)
The graph Dirac operator D_G = [[0, Bf], [B, 0]] is a canonical (and, up to unitary
equivalence and orientation choice, essentially unique) first-order self-adjoint operator
whose square gives the Laplacian

3. Clifford structure is forced: requiring H? to be a spatial operator times identity in
internal space necessitates anticommuting generators

4. Spinor dimension emerges from the graph's effective dimensionality

5. The Wilson term is reinterpreted as closure-stiffness regularization

6. Lorentz symmetry emerges from local regularity of the closure graph

The Dirac equation is thus not a separate postulate but a consistency requirement for first-order
distinguishability-preserving dynamics.

Scope and status. The results here are structural: given distinguishability-preserving unitary tick
updates and locality on a closure graph, first-order dynamics whose square reproduces the
Laplacian forces a Clifford algebra on an internal space, implying spinors as a mathematical
necessity. The emergence of Lorentz-covariant Dirac dynamics in the continuum limit is
conditional on local regularity and isotropy of the coarse-grained graph. The effective dimension
d =3 is proved under K = 7 selection, local homogeneity, and refinement-stability assumptions
(Appendices H). Fixing the scale parameters ¢ and & from first principles is deferred to the
broader VERSF/TPB program.



1.3 Relation to Prior Work

Discrete Dirac operators have been studied extensively in lattice QCD [3], spectral graph theory
[4], and non-commutative geometry [5]. Our contribution is to embed these structures in the
VERSF framework where:

e The graph is not an approximation to spacetime but the fundamental configuration space
e Spinor structure emerges from algebraic constraints, not spacetime geometry
e The continuum limit is a coarse-graining, not a removal of regularization

In this sense, the present work supplies the fermionic first-order dynamics layer, complementing
the confinement paper's entropic coarse-graining mechanism and the hexagonal geometry paper's
closure-selection results. The K = 7 selection—the claim that closure stability uniquely selects
the hexagon+hub primitive—is established independently in the hexagonal geometry companion
paper; here we take it as given and derive its consequences for spatial dimensionality.

2. Mathematical Foundations
2.0 Review: From Ticks to Schrodinger

Before extending to Dirac dynamics, we summarize the derivation of the Schrédinger equation
from discrete tick dynamics.

The logical chain:

1. Discrete ticks: The universe evolves through discrete updates y_{n+1} = T(y_n)
Distinguishability preservation: The tick operator preserves |[(y|p)—if two states are
distinguishable before a tick, they remain equally distinguishable after (no information is
created or destroyed)

3. Wigner's theorem: Any transformation preserving transition probabilities is unitary or
antiunitary

4. Excluding antiunitary: If T is antiunitary, then T? is unitary (antiunitary x antiunitary =
unitary). This means alternating ticks would flip between antiunitary and unitary
character. But coarse-graining many ticks should yield smooth evolution—the
composition of N ticks should behave like a single effective tick raised to the Nth power.
Antiunitary evolution cannot satisfy this: (antiunitary)"N alternates character depending
on whether N is odd or even, preventing a smooth continuum limit. Therefore T must be
unitary.

5. Hermitian generator: Any unitary U near the identity can be written U = exp(—iK) for
Hermitian K (spectral theorem)

6. Continuum limit: Coarse-graining many ticks gives U_t = exp(—iHt/%), yielding the
Schrodinger equation:
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ih dy/ot = Hy

7. Locality: If configuration space is a graph G = (V, E) and dynamics couple only adjacent
vertices, the Hamiltonian takes the form H = aL + V where L is the graph Laplacian

8. Continuum limit of Laplacian: On a regular lattice, L/a> — —V?2, giving the standard
kinetic term

Result: The Schrodinger equation H = —(42/2m)V? + V emerges from distinguishability
preservation + locality on a graph.

The question now: Can we do better? The Schrodinger equation is second-order in space. What
if we demand first-order dynamics throughout?

2.1 The Closure Graph

Let G = (V, E) be an undirected graph representing the closure network:

eV =set of vertices (closure configurations)
o E =set of edges (allowed single-tick transitions)

We choose an arbitrary orientation for each edge, designating one endpoint as "head" and the
other as "tail." Physical observables will be independent of this choice.

Hilbert spaces:

e Vertex space: H V=0(V)={y: V> C|Z v |y(V)]? <o}
e Edgespace: H E={*E)={p:E— C|Z e|p(e)) <o}

For general readers: Imagine a city map where dots represent intersections (vertices) and lines
represent roads (edges). In quantum mechanics, we need to assign numbers to describe the state
of a particle.

The vertex space is like having a thermometer at every intersection—each location has a number
(actually a complex number, which has both a size and a phase, like a clock hand pointing in
some direction). This is the familiar wave function: "the particle has some amplitude to be at this
location."

The edge space is different and less familiar. It's like measuring traffic flow on each road—not
where things are, but how things move between locations. Each road has a number describing the
flow along it.

Why do we need both? The Schrodinger equation only needs vertex values (where the particle
might be). But the Dirac equation, which we're building toward, fundamentally involves
motion—it's first-order in space, meaning it directly tracks how the wave function changes from
point to point. The edge space is the natural home for this "change" information.

11



A wave function y assigns a complex amplitude to each configuration; an edge function ¢
assigns a complex amplitude to each transition between configurations.

2.2 The Incidence Operator (Discrete Gradient)

Definition: The incidence operator B: H V — H_E is defined by:
(By)(e) = y(head(e)) — y(tail(e))
This is the discrete analogue of the gradient: it measures how y changes along each edge.

For general readers: The incidence operator B asks a simple question: "How much does the
wave function change as we move along this connection?"

Think of walking along a mountain trail (an edge in our graph). The incidence operator measures
the elevation difference: endpoint elevation minus starting elevation. If you're going uphill, B is
positive; downhill, negative; flat, zero.

In calculus, the gradient Vi tells you the slope at every point. But we don't have continuous
space—we have discrete points connected by edges. So instead of asking "what's the slope at this
point?" we ask "what's the total change along this edge?" That's exactly what B computes.

Properties:

e Bis abounded linear operator
e [By|?=Z e |y(head(e)) — y(tail(e))* (total variation along edges)

2.3 The Adjoint Operator (Discrete Divergence)

Proposition 1: The adjoint Bf: H E — H_V is given by:
(BTo)(v) =X {e: head(e)=v} o(e) — X _{e: tail(e)=v} o(e)
Proof: We verify (By, 0){H E}! = (y, Bfo){H V}:

By, 9) =% e (By)(e)* 9(e) = X_e [y(head(e))* — y(tail(e))] p(e) =2 v y(v) [E_{e: head(e)=v}
¢(e) —X_{e: tail(e)=v} @(e)] = (v, Bfp) m

Physical interpretation: B+ is the discrete divergence—it measures net "flow" into each vertex.
For general readers: If B measures "differences along edges," what does BT (its adjoint)

measure? It answers the reverse question: "Given flow values on all edges, what's the net flow
into each point?"
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Think of water flowing through pipes at an intersection. Some pipes bring water in; others carry
it away. The divergence at that intersection is the total inflow minus total outflow. If more water
enters than leaves, the divergence is positive (water is accumulating). If more leaves than enters,
it's negative (water is depleting).

B+ does exactly this for our graph. For each vertex, it sums up all the edge values pointing in,
then subtracts all the edge values pointing out.

2.4 The Graph Laplacian (Review)

Definition: The graph Laplacian on verticesis L=BfB:H V—>H V.

For general readers: The Laplacian L combines both operations: first compute how the wave
function changes along edges (B), then compute the net "inflow of change" at each point (B+).

The result measures something intuitive: how different is the value at a point from the average of
its neighbors? If y is smooth (nearly constant), the Laplacian is small. If y has a sharp peak (one
point much higher than neighbors), the Laplacian is large.

This is why the Laplacian appears in the Schrodinger equation: it measures "curvature" of the
wave function, which determines kinetic energy. A wave function that oscillates rapidly (many
peaks and valleys) has high Laplacian values and therefore high kinetic energy. A wave function
that varies slowly has low kinetic energy. This matches our intuition that fast-moving particles
have rapidly oscillating wave functions.

Proposition 2: Explicitly:

L)) =dV)y(v) —Z_{u~v} y(u)

where d(v) is the degree of v and u ~ v means u is adjacent to v.

Proof:

(BTBy)(v) =X {e: head(e)=v} (By)(e) — X {e: tail(e)=v} (By)(e) =X {e: head(e)=v} [w(V) —
y(tail(e))] — X_{e: tail(e)=v} [y(head(e)) — y(v)] = d(vV)y(v) = Z_{u~v} y(u) m

This is the same Laplacian that appears in the Schrédinger derivation.

2.5 The Edge Laplacian

Definition: The edge Laplacianis L E=BBf: H E - H _E.

This measures "roughness" of edge functions and will appear in the squared Dirac operator.
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3. The Graph Dirac Operator
3.1 Motivation: Square Root of the Laplacian

The Schrodinger Hamiltonian contains the Laplacian L, which is second-order (involves
differences of differences). For relativistic dynamics, we want a first-order operator D such that
D? o« L.

The problem: L is positive semi-definite, so it has a square root VL. But VL is typically non-
local—it couples distant vertices. We want a local square root.

The solution: Work on the extended space H V €@ H_E and construct a first-order operator that
squares to give L on each component.

3.2 Definition of the Graph Dirac Operator

Definition: The graph Dirac operator D G:H V@O H E—H V@ H Eis:
D G=[0Bf][BO0]

In block matrix notation, acting on vectors (y, ) EH V@ H E:

D_G (v, ¢) = (Bfe, By)

3.3 Self-Adjointness

Proposition 3: D_G is self-adjoint: D Gt =D _G.

Proof:

D_Gf=[0Bff]=[0Bf]=D_G[Bff0][BO]

since (Bf)T=B. m

Significance: Self-adjointness is required for D_G to generate unitary evolution and have real
eigenvalues.

3.4 The Squared Dirac Operator

Theorem 1: The square of D_G is block-diagonal:

D G*=[BfB0]=[LO][0BB{][0L E]
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where L = BB is the vertex Laplacian and L_E = BB is the edge Laplacian.
Proof: Direct block matrix multiplication:

D G>=[0Bf
Il

[0Bf]=[0-0+BiB0-Bf+B+0]=[BfB0][B0O][BO][B-0+0B
BBt +0-0 ]

]
0 BB}
The off-diagonal blocks vanish; the diagonal blocks give the vertex and edge Laplacians. m

Significance: On the vertex sector, D G*= L. Thus D_G is a "square root" of the Laplacian in
the sense that its square reproduces the kinetic operator from Schrodinger dynamics.

3.5 Interpretation

For general readers: To understand what the Dirac operator does, let's use an analogy.

Imagine you're mapping elevation across a landscape. The Laplacian measures curvature: is this
point a hilltop (curving down in all directions), a valley (curving up), or a saddle? To compute
curvature, you need to look at how elevation changes and then how that change itself changes—
that's why it's "second order."

But there's another way to think about landscapes: instead of curvature, measure slope. The slope
at a point tells you which direction is downhill and how steep it is. Slope is "first order"—you
only need to compare a point to its immediate neighbors.

Here's the key insight: if you apply the slope operation twice (slope of the slope), you get
curvature. Mathematically: (first-order)? = second-order.

The Dirac operator DG is exactly this kind of "square root." It's a first-order operator—it only
compares adjacent points—but when you apply it twice, you get the Laplacian (curvature).

Concretely, DG does two things:

o It maps vertex functions to edge functions (via B): "what's the slope along each
connection?"

o It maps edge functions to vertex functions (via BY): "what's the net slope arriving at each
point?"

Why does this matter for physics? The Schrodinger equation uses the Laplacian and is therefore
second-order in space: it describes how a particle accelerates. The Dirac equation uses this
"square root" and is first-order: it describes how a particle moves, directly. This turns out to be
essential for describing particles that move near the speed of light, where the distinction between
position and velocity becomes relativistically entangled.
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3.6 Physical Meaning of Edge Functions

The Dirac operator acts on H V @ H_E, meaning the wave function has both vertex and edge
components. What do the edge components represent physically?

Three interpretations:

1. Flux degrees of freedom: In lattice gauge theory, edge variables represent gauge field
configurations—the "flux" threading each link. The Dirac operator couples matter
(vertices) to gauge fields (edges). In VERSF, edge components may represent the
information flux between configurations.

2. Connection variables: In differential geometry, connections tell you how to parallel-
transport vectors between nearby points. Edge functions play an analogous role: they
encode how the wave function "connects" across transitions.

3. Velocity/momentum components: The Schrodinger wave function describes "where the
particle might be." The Dirac wave function, being first-order, also encodes "how the
particle is moving." Edge components carry this directional information.

For general readers: In ordinary quantum mechanics, you only ask "where is the particle?" The
wave function y(x) answers this. But in relativistic quantum mechanics, position and momentum
become entangled—you can't cleanly separate "where" from "how fast." The Dirac equation
handles this by having the wave function live on both points (vertices) and connections (edges).
The edge part tracks the "flow" or "current" aspect of the particle, while the vertex part tracks the
"location" aspect.

VERSEF interpretation: Edge components represent the transition amplitudes between adjacent
closure configurations. A particle isn't just "at configuration x"—it's also "in the process of
transitioning from x to y." First-order dynamics requires tracking both.

Continuum fate: In the continuum limit, edge components don't remain independent degrees of
freedom. For solutions satisfying the equations of motion, ¢ =~ —(A/mc)BBay to leading order—
the edge components become "slaved" to the spatial derivatives of the vertex wave function. The
4-component Dirac spinor in the continuum encodes both "position" and "momentum" aspects,
but in a way determined by the equations of motion rather than as independent variables. (See
Appendix D for the explicit calculation.)

4. The Necessity of Clifford Structure

This section contains the key conceptual result: spinor structure is forced by algebraic
requirements, not postulated.
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4.1 The Physical Requirement

We want a Hamiltonian H_D that is:

1. First-order in the graph structure (involves D G, not D G?)

. Generates unitary evolution (H_D is self-adjoint)
3. Has relativistic dispersion: H_D? should give the Klein-Gordon operator (Laplacian
plus mass term)

Requirement 3 means:
H D?=c*#*D_G?* + m*c*l = ¢?4#’L + m*c’l (on vertex sector)
This is the relativistic energy-momentum relation E? = p?c? + m?c* in operator form.

4.2 The Algebraic Constraint

Suppose we try the ansatz:
HD=ci(D G&® A) +mcX(I ¥ B)
where A and B are operators on some auxiliary "internal" space, and & denotes tensor product.
Requirement: H D*=c?*(D G* Q) + m*c*(1 ® 1)
Expanding H D*
H D*=c?(D_G* Q@ A?) + m*c* (I Q B?) +chmc*(D_ G Q AB+D G Q BA)
For this to equal ¢*4/*(D_G* @ 1) + m*c*(I @ I), we need:
1. A?=1 (identity on internal space)
2. B2=1
3. AB + BA =0 (anticommutation)

For general readers: Let's unpack why these strange conditions appear.

We want to build a Hamiltonian H_D from two pieces: one involving motion (D_G) and one
involving mass. When we square H D, we get three terms:

e Motion? (what we want: proportional to the Laplacian)

e Mass? (what we want: the rest mass energy)
e Motion x Mass + Mass x Motion (the "cross terms")
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The cross terms are the problem. They mix motion and mass in a way that shouldn't appear in the
energy formula E? = p?c? + m?c*. There's no "p times m" term in Einstein's equation.

The only way to kill the cross terms is to make A and B anticommute: AB =—BA. Then AB +
BA =0, and the cross terms vanish.

But there's a catch: no ordinary numbers can anticommute. If A and B are just numbers, then AB
= BA always. This is where matrices come in. Matrices can anticommute. For example, if A and
B are 2x2 matrices chosen cleverly, we can have AB = —BA.

This is the moment where the internal structure of particles enters—not because we wanted it,

but because we have no other mathematical choice. To make the cross terms vanish, we need
matrices. Matrices act on vectors. Those vectors are spinors. Spin emerges.

4.3 The Clifford Algebra CI(2)

Definition: A Clifford algebra Cl(n) is generated by elements v, ..., Yx satisfying:

i iy = viys + vyyi = 284

Proposition 4: The conditions A>=B?=1and {A, B} = 0 define representations of CI(2).
Proof: Set yi = A, y> = 1B (or similar). Then {yi, y2} =0 and y>=1. This is CI(2). m

4.4 Minimal Representation

Proposition 5: The minimal faithful representation of CI(2) is 2-dimensional (2x2 matrices).
Explicit realization: Take A = o1 (Pauli-X) and B = o3 (Pauli-Z):
A=[01]B=[10][10][0-1]

Verify: A2=B?>=1,AB+BA=0.V

Significance: The internal space must be at least 2-dimensional. This is not a choice—it's forced
by the algebraic requirement that H D? have the correct form.

4.5 The Emergence of Spinors

Key insight: The 2-dimensional internal space is what we call "spin-1/2." Spinors are not
postulated—they emerge as the minimal structure required for first-order dynamics with second-
order squared invariant.
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For general readers: This is one of the most remarkable results in the paper, so let's unpack it
carefully.

In 1928, Paul Dirac was trying to write a relativistic version of quantum mechanics. He needed
an equation that was first-order in both time and space (for technical reasons related to
relativity). But he ran into a problem: the obvious first-order equation didn't work. The equation's
square didn't give the right energy-momentum relationship.

Dirac's solution was strange: he introduced a particle with internal structure—not just a position,
but also an intrinsic two-valuedness. An electron isn't just "here"; it's "here, pointing up" or
"here, pointing down." This internal property is called spin, and particles with this structure are
called spinors.

For decades, spin seemed like an arbitrary feature of nature—just one of those things electrons
happen to have. Why should a point particle have an "orientation"? It seemed as mysterious as a
billiard ball that somehow knows which way is up.

What we've just shown is that spin is not arbitrary at all. We asked a purely mathematical
question: "If we want a first-order operator whose square gives the Laplacian, what must we
do?" The answer, inescapably, is: we must introduce a 2-component internal structure satisfying
specific algebraic relations (the Clifford algebra).

In other words:
o We didn't assume electrons have spin
e We didn't assume spinors exist

e We derived that any first-order dynamics must involve spinor structure

The electron has spin because the universe has no choice. First-order dynamics requires spin.
This transforms spin from a mysterious empirical fact into a mathematical inevitability.

VERSF interpretation: In VERSF terms, the forced internal degrees of freedom correspond to a

minimal two-way orientation channel for first-order closure flow; "spin" is the observable
imprint of this algebraic orientation structure.

4.6 Higher-Dimensional Clifford Algebras

For a d-dimensional regular graph (one that looks locally like R*d), we need Cl(d+1) to
accommodate both spatial directions and mass:

Effective dimension d Clifford algebra Spinor dimension

1 CI(2) 2
2 CI(3) 2
3 CI(4) 4
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For d = 3 (our universe): The Clifford algebra CI(4) has minimal representation dimension 4.
This explains why Dirac spinors have 4 components, not 2.

Explicit construction for d = 3: We need four anticommuting matrices. The standard choice
uses 4x4 gamma matrices:

V=[10]y=[0c"][0-I][-c'0]

where o' are the 2x2 Pauli matrices. These satisfy {y*w, y*v} =2n"{uv} where n is the
Minkowski metric.

5. The Dirac Hamiltonian on the Closure Network

5.1 Full Hamiltonian

Combining the graph Dirac operator with the internal Clifford structure:
Definition: The closure-network Dirac Hamiltonian is:
HD=ci(D G® a)+mc*(I K B)

where o and § are Hermitian matrices satisfying o> = > =1 and {a, B} = 0 (the Clifford
constraint from Section 4). Here we adopt standard notation: a denotes the "kinetic" Clifford
generator (coupled to D_G) and B the "mass" generator.

Notation convention: Throughout this paper, a and f refer to the abstract Clifford generators on
the graph. In the continuum limit (Section 7), these become identified with standard Dirac matrix
combinations: o — y%y' (spatial Dirac matrices) and B — v°. The graph generators a, § should not
be confused with individual y-matrices; rather, they are the natural objects on a graph that
become the familiar Dirac matrices upon taking the continuum limit.

For the minimal 2-component case, we can take o = 61 and § = os:

H D=ci(D G ® o1) + mc*(I ® o3)

Continuum identification: On a d-dimensional regular lattice where D G decomposes into
directional components D_G = %; D_G"{(1)}, the matrix a decomposes as a — y%y' and we
recover the standard Dirac Hamiltonian form. This identification is made explicit in Section 7.

The full Hilbert spaceis H=(H_V @ H_E) @ C”s where s is the spinor dimension (2 or 4).

Important distinction: The vertex—edge extension (H_V @ H_E) is geometric, arising from the
incidence structure of the graph. This is distinct from spinor degrees of freedom (C”s), which are
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forced by the Clifford constraint on internal space. These two "doublings" have different origins
and should not be conflated.

5.2 Verification of H_D?

Theorem 2:
H D*=c(D_G* @ I) + mc'(I @ I

Proof:

H D*=[cA(D_G Q o) + meX(I Q) P)I* = c**(D_G* Q) o) + m’c*(I Q) p?) + chme*(D_G & aff +
%_g Q Bo) = c*(D_G* @ I) + mc*(I @ I) + chme*(D_G & {a, B}) = c(D_G* ® 1) + me(

since a? = > =1 and {a, B} = 0 by the Clifford constraint. m

5.3 The Dirac Equation on the Graph

Time evolution is governed by:
iho¥Y/ot=H DY
where ¥: V U E — C”s is a spinor-valued function on the graph.
This is:
o First-order in time (standard quantum mechanics)

o First-order in graph structure (via D_QG)
e Unitary (since H_D is self-adjoint)

5.4 On the Origin of ¢

In the Schrodinger framework (Section 2.0), # emerged as the conversion factor between tick-
phase and continuous time. What about ¢?

VERSEF interpretation: The parameter ¢ represents the maximum rate of information
propagation across the closure graph. Specifically:

¢ = (graph distance per tick) x (ticks per unit time)
In a regular graph with spacing a and tick duration t:

c=alt
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This is not derived here but is fixed by the graph's causal structure. A full treatment requires the
TPB (Ticks-Per-Bit) framework, which determines both 7 and ¢ from information-theoretic
principles.

Honest acknowledgment: In this paper, ¢ enters as a parameter. Its value is determined by the
closure graph structure but is not computed from first principles here.

6. The Fermion Doubling Problem
6.1 The Problem

When discretizing the Dirac equation on a lattice, spurious solutions appear—"doublers" that
don't exist in the continuum theory. For a d-dimensional lattice, there are 2"°d species instead of
1.

Origin: The discrete derivative sin(ka)/a has zeros at both k = 0 and k = n/a. Each zero
corresponds to a fermion species.

Standard lattice QFT solution: Add a Wilson term that gives doublers large mass, decoupling
them at low energies.

6.2 Does VERSF Have Doubling?

Yes, if the closure graph has periodic structure. The graph Dirac operator D G inherits the same
issue: its spectrum has multiple low-energy points.

6.3 The Wilson Term as Closure Stiffness

Key result: The operator form of the Wilson term is derived from closure-entropy smoothness
principles as the unique local quadratic penalty in the mass channel; the dimensionless
coefficient r is calculable in principle once the closure entropy unit is fixed (Appendix F), and is
deferred to the TPB/BCB calibration program. On dimensional grounds and closure stability
normalization, we expect r = O(1). (See Appendix E for the full form derivation.)

Physical motivation: High-frequency modes on the closure graph correspond to configurations
that change rapidly between adjacent vertices. Such configurations violate closure smoothness—
they represent "jagged" information patterns that carry entropic cost.

Entropy derivation: Define closure roughness R[] =X e ||'Y(head(e)) — P(tail(e))||*. This is
the discrete analogue of [|[V¥[2. Requiring that the effective action penalize roughness, and
demanding the penalty be local, quadratic, and act in the mass channel to lift doublers, uniquely
determines:
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Definition: The closure-stiffness Wilson term is:
HW=@a2)hc&(D_G*Q P)
where:

o ris the dimensionless Wilson parameter (calculable from closure entropy; see Appendix

F)

o & is the closure stiffness scale (dimension of length)

e [ is the mass-coupling matrix from the Clifford algebra
Units and scaling: The graph operators B and D_G are defined combinatorially and are
dimensionless as maps on £%(V) and (*(E). Physical length enters only when we interpret a
locally regular graph as having characteristic spacing &. In that case we define the physical first-
order operator:

D G*phys} =(1/) D G

which has dimensions of inverse length and satisfies (D_G”{phys})*> ~ &2 L on slowly varying
modes. The Wilson term is therefore naturally written as:

H_W = (1/2) he & (D_G"{phys})* @ P) = (1/2) hc (1/8) (D_G* & P)
making explicit that it gives doublers an energy scale ~ %c/E.
This matches the standard Wilson scaling: the Wilson term contributes energy ~ rac/§ to high-

momentum modes, giving doublers an effective mass ~ %c/& that diverges as § — 0. (In lattice
QCD notation with spacing a and units # = ¢ = 1, this is the familiar r/a behavior.)

6.4 Effect on Spectrum
The full Hamiltonian becomes:
H=HD+H W=ci(D GQ a) + mc(I Q B) + (r/2)hc-{(D_G* ® P)

For modes near k = 0: H_ W ~ 0 (physical fermion, unchanged) For modes near k =n/&: H W ~
rhe/E (large effective mass)

The doublers acquire mass ~ Ac/E and decouple at energies E << Ac/&.
6.5 Continuum Limit

As the effective spacing § — 0 (fine-graining the closure graph):

e Physical fermion mass: m (unchanged)

23



e Doubler mass: ~ Ac/§ — o

The doublers decouple, leaving a single fermion species. This is identical to standard Wilson
fermion behavior, but interpreted as a physical stiffness effect rather than a regularization
artifact.

For general readers: Here's a puzzle that plagued physicists working on discrete approaches to
particle physics.

Imagine trying to simulate an electron on a computer. You can't represent continuous space—
computers are finite—so you put the electron on a grid, like a chessboard. You write the discrete
version of the Dirac equation and start simulating.

But something strange happens: instead of one electron, you get sixteen. (In 3D space, it's 2° =8
from spatial directions, times 2 from the time direction.) These "extra" electrons aren't physically
real—they're artifacts of the discretization. But they stubbornly refuse to go away; they're called
"doublers."

This was a serious problem. If you're trying to predict what happens when particles collide,
having 15 fake particles for every real one ruins your calculations.

The standard solution (introduced by physicist Kenneth Wilson) is to add a special term to the
equation that makes the fake particles very heavy. Heavy particles are hard to create and don't
affect low-energy physics. As you make your grid finer and finer, the fake particles become
infinitely heavy and disappear entirely.

In our framework, this solution has a natural interpretation. The "Wilson term" isn't an arbitrary
fix—it represents a physical stiffness cost. Configurations that oscillate wildly from one grid
point to the next (which is what the doubler modes do) violate the smoothness of the underlying
closure structure. They're entropically expensive. The Wilson term captures this physical cost.
So the doublers don't disappear because we artificially made them heavy—they're genuinely

suppressed because jagged information patterns cost entropy. The physics solves the problem
that seemed like a technical nuisance.

7. Continuum Limit and Emergence of Standard Dirac
Equation

7.1 Setup: Regular Lattice

Consider a d-dimensional cubic lattice with spacing a. Vertices are points x = a-n for integer
vectors n. Edges connect nearest neighbors.

24



7.2 Incidence Operator on the Lattice

For a 1D lattice:
(By)(e_{n,n+1}) = y(n+1) = y(n)
This is the forward difference operator.

7.3 Graph Dirac Operator on the Lattice

The graph Dirac operator acts on (vertex functions, edge functions). On a d-dimensional lattice
with edges in each direction:

D G=Z%Z[0Bit][Bi0]
where B; is the incidence operator in direction i.

7.4 Continuum Limit

Proposition 6: Asa — 0:

Bi/a — 0/0xi

in the sense that for smooth :

(Biy)(x)/a = [y(x + aé) — y(x)]/a — OyY/0Ox;i

Physical Dirac operator: Define D_G”phys := D_G/a. Then:

D_G”phys — % (block structure) x 0/0x;
7.5 The Emergent Dirac Equation

Recall from Section 5.1 that the Hamiltonian is:
HD=ci(D G&® a)+mc*(I K B)

With D_G”phys = D_G/a, this becomes:

H D=ch(D_G"phys @ o)+ mc* (I ® B) (using physical units)
Continuum identification: In 3+1 dimensions, we identify:

e o — V%' & (spatial Dirac matrices)
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e [ — v° (timelike Dirac matrix)
The evolution equation 2 0¥/ot=H D ¥ then becomes:
1h 0W/ot = (ch y%' 0i + mc? y°) ¥
Multiplying by y° and using standard conventions:
1h y° O¥/ot = (ch y°y' 6; + mc?) ¥
(y"wo p—mc/h)¥Y=0

This is the standard Dirac equation.

8. Emergence of Lorentz Symmetry

8.1 The Problem

The Dirac equation is celebrated for its Lorentz covariance. But we derived it from a graph that
has no built-in notion of Lorentz transformations. How does Lorentz symmetry emerge?

8.2 Local Regularity and Emergent Symmetry

Key insight: Lorentz symmetry is not a property of the closure graph itself but emerges in the
continuum limit when the graph is locally regular.

Definition: A closure graph is locally d-regular if every vertex has the same local neighborhood
structure, isomorphic to a d-dimensional lattice.

Proposition 7: On a locally d-regular graph, the continuum limit of D_G? is the d-dimensional
Laplacian V? which is rotationally invariant.

8.3 From Rotation to Lorentz

Rotational invariance of V? in space, combined with the specific form of the Dirac Hamiltonian,
implies Lorentz-invariant dispersion. Full Lorentz covariance requires additional structure.

Theorem 3: The continuum Dirac equation derived from a locally regular closure graph has
Lorentz-invariant dispersion. Under additional assumptions of local isotropy and emergent

Minkowski structure, it is fully Lorentz covariant.

Proof sketch:
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The continuum Hamiltonian H D = ca-p + fmc? has the property that H D?* = ¢?p? + m?*c*

This mass-shell condition is Lorentz invariant

3. For full covariance, we additionally require that the graph's local structure be isotropic
(no preferred direction) and that the continuum limit yields a Minkowski metric structure

4. Given these conditions, the spinor transformation law ¥ — S(A)Y under Lorentz
transformation A is determined by requiring H D to transform correctly

5. Such S(A) exists and forms the spin-1/2 representation of the Lorentz group m

N —

Conditions for full Lorentz covariance:

e Local regularity (same neighborhood structure at each vertex)
e Local isotropy (no preferred spatial direction in the graph)
o Emergent Minkowski structure (time direction distinguished from spatial directions)

Status: Lorentz-invariant dispersion is derived. Full Lorentz covariance is conditional on the
above assumptions about the closure graph's structure.

Clarification: The present result establishes Lorentz-invariant dispersion in the continuum limit;
full Lorentz covariance requires an additional assumption that the coarse-grained tick direction
defines a consistent timelike structure and that the IR metric takes Minkowski form. We treat this
as a consistency condition on the emergent continuum rather than a derived theorem in this

paper.

For general readers: This result addresses one of the most profound questions in physics: where
does Einstein's special relativity come from?

In 1905, Einstein showed that the laws of physics look the same to all observers moving at
constant speed relative to each other. This symmetry—called Lorentz symmetry—has a specific
mathematical form. It mixes space and time in precise ways, and it implies that there's a
maximum speed (the speed of light) that nothing can exceed.

For over a century, physicists have treated Lorentz symmetry as a foundational axiom. You
simply assume that spacetime has this symmetry, and then you build physics on top of it.

What we've shown here is different. We started with a discrete graph—a network of points and
connections—that has no built-in notion of Lorentz symmetry. The graph doesn't know about
special relativity. It doesn't have a "speed of light" or "time dilation" or any of Einstein's insights.

And yet, when we zoom out and look at the large-scale behavior, Lorentz-invariant dispersion
appears. The equations that emerge have the same relativistic energy-momentum relationship
Einstein discovered. The speed of light emerges as a natural parameter (the rate at which
information propagates across the graph). Under additional assumptions of local isotropy and
emergent Minkowski structure, the full Lorentz-covariant form is recovered.

This is what physicists mean by "emergent symmetry." The fundamental structure (the graph)
doesn't have the symmetry. But the effective description at large scales (the Dirac equation) does.
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It's like how a fluid appears smooth and continuous even though it's made of discrete
molecules—smoothness emerges from discreteness.

The philosophical implication is striking: special relativity might not be a fundamental feature of
the universe. It might be an emergent property of a deeper discrete structure.

8.4 Why 3 Dimensions?

A deep question: why does the closure graph have local structure that gives 3 spatial
dimensions?

VERSF answer: The K = 7 hexagonal closure structure determines d = 3. A K =7 closure cell
has 6 perimeter vertices arranged hexagonally plus a hub. These 6 vertices partition uniquely into
3 antipodal pairs: (1,4), (2,5), (3,6). Each antipodal pair defines a distinguished closure
direction—a pair of opposite boundary constraints along which first-order flow can be
consistently defined.

Key result (conditional): If the three antipodal pairs induce three independent coarse-grained
translation channels on the closure graph (in the sense of spectral decomposition of the
Laplacian), and no fourth independent channel exists, then the spectral dimension is d s =3 and
the continuum limit yields 3D dynamics.

d = #(antipodal pairs) = 3

This is not "because we live in 3D"—it is because the minimal stable closure unit (K =7
hexagon) has exactly three independent opposition channels.

Connection to spinors: Once d = 3, the forced-Clifford argument (Section 4) requires Cl(d+1) =
Cl(4), whose minimal complex representation has dimension 4. Thus four-component Dirac
spinors emerge automatically, with three spatial gamma directions matching the three antipodal
axes.

The "+1" (fourth Clifford generator): The additional dimension in CI(4) is not an assumed
time dimension. In standard physics, one postulates 3+1 spacetime dimensions, then builds
Clifford algebras accordingly. Here the logic is reversed:

1. The K =7 closure geometry provides exactly three spatial translation channels (the
antipodal pairs)

2. First-order Dirac dynamics requires Cl(d+1) = Cl(4) for the kinetic + mass terms

3. The "+1" arises from the directed tick parameter—the update ordering of the discrete
dynamics

4. Under coarse-graining, this directed parameter becomes continuous time

Thus the fourth Clifford generator corresponds to the flow direction of the update semigroup, not
an assumed spacetime dimension. Time emerges from dynamics, not the reverse. This is the
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"emergent time" picture: the Dirac structure encodes d spatial + 1 dynamical direction, but the
dynamical direction is the tick flow, not a pre-assumed temporal coordinate.

The logical chain: K = 7 = 3 antipodal axes = d = 3 = CI(4) required = 4-component spinors

Anisotropic or inhomogeneous closure phases, if they exist, correspond to distinct physical
regimes and are not interpreted here as emergent spatial directions within the same phase.

(See Appendix G for the rigorous formulation, Appendix G’ for the explicit construction of
transport generators, and Section G.10 for the full proof of the maximality lemma.)

9. Physical Interpretation in VERSF
9.1 Fermions as First-Order Information Flow

In VERSEF, the distinction between bosons and fermions corresponds to:

e Bosons: Second-order dynamics (Schrodinger/Klein-Gordon)
e Fermions: First-order dynamics (Dirac)

The Dirac equation describes information that propagates via immediate neighbor coupling,
without the "acceleration" structure of second-order equations.

9.2 Spinor Structure as Closure Orientation

The 2-component (or 4-component) spinor structure represents the orientation of information
flow at each vertex. A spin-up state and spin-down state correspond to different orientations of
the closure pattern.

Analogy: On a directed graph, you can move "with" or "against" the edge direction. Spinor
components track this directionality.

9.3 Antiparticles and the Dirac Sea

The Dirac equation's negative-energy solutions are reinterpreted in VERSF as:

e Closure modes propagating "backward" through the graph
o Equivalently, antiparticles are information flows with reversed closure orientation

The Dirac sea picture—where the vacuum has all negative-energy states filled—corresponds to
the graph's baseline closure configuration.
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9.4 Mass as Coupling Between Orientations

The mass term mc?*(I @ P) in the Hamiltonian couples the two spinor orientations. Massless
fermions (m = 0) would have independent "left" and "right" propagation. Mass creates mixing
between them.

VERSF interpretation: Mass represents the energy cost of maintaining coherent closure across
both orientations. A massless fermion can have closure in one orientation alone; a massive
fermion requires coordinated closure in both.

10. Comparison with Standard Approaches
10.1 Standard Continuum Dirac Theory

| Aspect | Standard [ VERSF |
|Spinors HPostulated HDerived (algebraic necessity; graph-independent)‘
|Spin0r dimension HPostulated (4 in 3+1D) HDetermined by d s: dim =2"{[(d+1)/2]} ‘
|Lorentz symmetryHPostulated HEmergent from local regularity ‘
|y matrices HDeﬁne Clifford algebra HForced by H? requirement ‘
|Spacetime HFundamental, continuousHEmergent from closure graph ‘
|Mass HParameter HClosure-coupling energy ‘

Note: The spinor derivation applies to any graph with first-order dynamics—this is a general
mathematical result, not specific to VERSF closure graphs. The 4-component spinors of standard
physics arise specifically because the K = 7 closure geometry gives d_s = 3, requiring Cl(4). In a
universe with different closure geometry (hence different d_s), spinor dimension would differ
accordingly. VERSF's contribution is providing a physical interpretation (closure orientation)
and embedding this in a broader information-theoretic framework.

10.2 Lattice QCD

Aspect Lattice QCD VERSF
Discrete structure Regularization (artificial) Fundamental
Continuum limit Remove regulator Coarse-graining
Wilson term Ad hoc regulator Physical stiffness
Fermion doubling Technical problem Entropic suppression

Lorentz symmetry Broken, restored in limit Emergent
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10.3 Non-Commutative Geometry

Connes' approach [5] also derives Dirac operators from algebraic structures. The key differences:
o Connes uses spectral triples on a fixed manifold

e VERSF derives the manifold structure itself from the graph
o Both agree that Clifford structure is algebraically necessary

11. Predictions and Tests
11.1 The Central Prediction: Spinor Universality

The main theoretical prediction of this paper is structural:

Theorem (Spinor Universality): Any first-order dynamics on any graph whose square
reproduces a second-order spatial operator must involve Clifford algebra structure—i.e., spinors.

This is not specific to VERSF. It applies to:
e Any discrete spacetime approach (causal sets, spin foams, etc.)
e Any computational model with first-order local updates
e Any attempt to "take the square root" of a Laplacian-like operator
Implication: If nature uses first-order dynamics at a fundamental level, spinors are inevitable.

The existence of spin-1/2 particles (electrons, quarks, neutrinos) is not a contingent fact but a
mathematical necessity.

11.2 Generic Discrete-Spacetime Predictions

The following predictions are shared with most discrete approaches to spacetime and are not
unique to VERSF:

1. Lorentz violation at small scales: If spacetime has finite resolution &, Lorentz symmetry
should break at energies E ~ Ac/g
2. Modified dispersion relations: E? = p*c? + m?c* should acquire corrections of order (p&)?

These are generic to discrete spacetime theories. The specific form of corrections in VERSF is:
11.3 Concrete Falsifiable Signature

For finite closure stiffness scale &, the dispersion relation acquires a leading correction:
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E*(p) = p*c* + m*c* + x(p&)* - (hc/E)* + O((pS))

where « is an O(1) coefficient determined by the graph geometry. This produces an energy-
dependent effective speed:

c_eff(p) = ¢ [1 = x(pc)*/2 + O((pS)")]

Observable consequence: High-energy fermions—cosmic-ray electrons, atmospheric neutrinos,
or charged leptons from astrophysical sources—would exhibit energy-dependent propagation
speeds. (Analogous bounds exist for photons, though the Dirac equation applies specifically to
fermions.) Existing astrophysical limits on Lorentz-violating dispersion place strong constraints
on any nonzero & unless k is symmetry-suppressed.

Falsifiability: If Lorentz-violating dispersion is observed with a form inconsistent with (p&)?
corrections, this framework would be falsified.

11.4 Specific VERSF Predictions

1. Dimension is derived (conditionally): The effective dimension d_s = 3 (and hence 4-
component spinors) follows from K = 7 closure geometry under closure-stability axioms
(Section 8.4, Appendices H)

2. Wilson parameter calculable: The stiffness parameter r is determined by closure
entropy per roughness quantum, not freely adjustable (Appendix F provides the
calculation pipeline)

3. Fermion generations: The three generations of fermions may correspond to different
closure embedding modes (this requires the full Standard Model derivation and remains
open)

12. Discussion

12.1 What Has Been Achieved

We have shown that the Dirac equation emerges from:

Discrete tick dynamics (same foundation as Schrodinger)

First-order locality (incidence operators, not Laplacians)

Algebraic consistency (H? must be second-order spatial operator)

K =7 closure geometry (determines d_s = 3, conditional on closure-stability axioms)
Closure entropy principles (derive Wilson term and parameter r)

nhwh =

The key results are:
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Spinor structure is forced, not assumed

The graph Dirac operator D_G is a canonical first-order square root of L
Lorentz-invariant dispersion emerges; full Lorentz covariance is conditional on local
isotropy

Wilson regularization form is derived from entropy (coefficient calculable in principle)
Three translation generators are explicitly constructed from K = 7 antipodal structure
(Appendix G")

Maximality (no fourth direction) is proved under homogeneity and refinement-stability
assumptions (Appendices G.10, G.11)

Edge components are explicitly slaved to vertex components in the continuum

12.2 What Remains Open

[98)

The value of c: The speed of light is a parameter in this paper, not derived. Fixing c
requires the TPB framework.

Fermion masses: Why m e, m_p, m_t have their specific values

Generations: Why three generations of fermions exist

Addressed in this paper:

Why d = 3: Maximality lemma proved under K = 7 selection, homogeneity, and
refinement-stability assumptions (Appendices G.10, G.11)

Minimal transport basis (A_min): Derived from roughness RG / spectral gap
(Appendix G.11)

Wilson parameter r: Calculable from closure entropy principles (Appendix F provides
the pipeline)

Wilson term form: Derived from entropy (coefficient r calculable via Appendix F
pipeline)

Edge component fate: Explicit slaving calculation (Section 3.6, Appendix D)

12.3 Relation to Other VERSF Papers

Paper Contribution
This paper Tlcli—> un1tgry — Laplacian (Schrddinger); first-order — Dirac; K=7 —
d s=3 (conditional)
Confinement .
paper QCD dynamics from closure graphs

TPB/BCB papers Fixes scale parameters #, ¢ from information-theoretic principles

12.4 Outlook

In the VERSF framework, decoherence marks the transition from reversible, distinguishability-
preserving tick dynamics to irreversible bit commitment. From this perspective, qubits—systems
engineered to suppress decoherence over many update cycles—may provide a conceptual
window into pre-commitment dynamics. While the present work does not fix a fundamental tick
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timescale or predict deviations from standard quantum mechanics at accessible energies, the
framework suggests a reinterpretation of certain quantum-control phenomena (e.g., weak
measurement back-action or timing-sensitive operations) as conditioning of discrete updates
rather than continuous monitoring. Developing quantitative, falsifiable predictions in this
direction is left for future work.

13. Conclusion

The Dirac equation is not a separate postulate added to quantum mechanics but emerges
inevitably from the same principles that give the Schrédinger equation:

o Distinguishability-preserving tick dynamics — unitary evolution

e Locality on a graph — local operators

e First-order dynamics — incidence operators (not Laplacian)

e Consistency of H> — Clifford algebra / spinors

e K =7 closure geometry + roughness RG — d_s =3 (Appendices G.10, G.11)

e Closure entropy — Wilson term form (derived up to coefficient; coefficient calculable in
principle)

The spinor structure that seemed mysterious—why do electrons have an intrinsic "spin" with
these specific properties?—is revealed as algebraically necessary. Any first-order dynamics
whose square gives the kinetic operator must have this structure.

The number of spatial dimensions, long taken as an empirical input, follows from closure
geometry: the K = 7 hexagonal closure cell has exactly three antipodal axes, from which we
explicitly construct three translation generators (Appendix G’). The minimal transport basis
(A_min) is derived from roughness RG via spectral gap arguments (G.11), and the maximality
lemma—that no fourth independent direction exists—is proved via involution counting, Ds
representation theory, and topological obstruction (G.10). The d = 3 result is proved under K =7
selection, local homogeneity, and refinement-stability assumptions.

Relativistic quantum mechanics is thus unified with non-relativistic quantum mechanics as
different manifestations of the same underlying principle: distinguishability-preserving
information flow on a closure graph.
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Appendix A: Clifford Algebra Representations

A.1 Definition

The Clifford algebra Cl(p,q) is generated by elements 1, ..., v» (n = p + q) satisfying;
i i} =2y 1

where 1 = diag(+1, ..., +1, -1, ..., —1) with p positive and q negative entries.

A.2 Dimension of Minimal Representation

Algebra  Minimal rep dimension

CI(1) 1 (real) or 2 (complex)
Cl(2) 2
CI(3) 2
Cl(4)=CI(1,3) 4
CL(5) 4
Cl(6) 8
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A.3 Physical Interpretation

e Cl(2): 2-component spinors (Weyl fermions in 2D)
e CI(3): 2-component spinors (non-relativistic spin-1/2)
e CI(1,3): 4-component spinors (Dirac fermions in 3+1D)

Appendix B: Detailed Continuum Limit
B.1 1D Lattice

Graph: Vertices at x = na, edges connecting n to n+1.
Incidence operator: (By)(n,n+1) = y(n+1) — y(n)
Graph Dirac operator (on H V @ H_E):

D_G (v, ¢) = (Bte, By)

where (BT)(n) = ¢(n,n+1) — ¢(n—1,n).

Physical Dirac operator: Define D_G"phys := D _G/a. In the continuum limit (a — 0 with x =
na fixed):

(By)/a — oy/ox (BTe)/a — 0¢/0x

Edge components in the continuum: For slowly-varying fields satisfying the equations of
motion, the edge component ¢ is algebraically determined by the vertex component .
Specifically, ¢ =~ —(h/mc)BBay to leading order (see Appendix D for the full derivation). Edge

components don't represent independent degrees of freedom in the continuum limit.

Result: D G”phys — 61 0/0x in an appropriate basis, where 61 plays the role of a in 1D.
B.2 3D Lattice

Graph: Vertices at x = a(ni, n2, ns), edges in +x, +y, £z directions.
Incidence operators: By, B_y, B_z for each direction.
Graph Dirac operator:

D G=2i[[0, Bit], [Bi, 0]]
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with appropriate tensor structure in internal space.

Physical Dirac operator: Define D G”phys := D G/a, which has dimensions of 1/length. In the
continuum limit:

D G”phys — 0 & (sum over spatial directions)

Full Hamiltonian: Following the main text convention:

H D=ci(D G"phys ® a) + mc*(I Q P)

Continuum identification: In 3+1 dimensions, we identify:

e o — Y% & (the spatial Dirac matrices contracted with direction vectors)
e B — v° (the timelike Dirac matrix)

This gives:
H D — chy%! 0; + mc? y°

which is the standard Dirac Hamiltonian in the Dirac representation. m

Appendix C: Wilson Term Details

C.1 The Doubling Problem

On a 1D lattice with spacing a, the naive Dirac operator D G*phys = D G/a has eigenvalues:
E(k) = + \[(c# sin(ka)/a)? + m>c*]

This has zeros at k = 0 and k = n/a. The second zero is the "doubler."

C.2 Wilson Term Effect

Adding H W = (1/2) ch a (D_G”phys)* @ B) modifies eigenvalues to:

E(k) = + V[(ch sin(ka)/a)? + (mc? + rch(1—cos(ka))/a)?]

Atk = 0: E =£mc? (physical fermion, unchanged) At k = n/a: E = £(m + 2r/a)c? (doubler, heavy)

As a — 0, the doubler mass diverges and decouples. m
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Appendix D: Explicit Slaving of Edge Components

This appendix provides the detailed calculation showing that edge components are algebraically
determined by vertex components in the continuum/low-energy limit.

D.1 Setup: Dirac Flowon H V@ H E

Let the state be:

Y=(y,p),whereyEH VQ C,0eH EQR Cs

with graph Dirac operator:

D_G =[[0, Bf], [B, 0]]

Using the Clifford pair o,  with a? = >=1and {a, B} = 0, the Dirac Hamiltonian is:
HD=ci(D GQ a)+mc(IQ P)

In block form, the evolution equation i2 0 tW¥ =H D ¥ becomes:

ih 0_t (v, @) = [[me*B, chBTal, [chBa, me*B]] (v, 9)

This gives coupled equations:

(ENiad ty=mc*py+chBtao (E2)iho to=mc*po+chBay

D.2 Low-Energy / Continuum Scaling

On a locally regular graph with spacing &, the incidence operator scales like:
B ~ &V, or equivalently (1/§)B — 0

In the nonrelativistic/low-momentum regime p << mc:

lch Dl ~ c|p| << mc?

This is the regime where the "small component" is slaved to the "large component."
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D.3 Solve ¢ Explicitly in the Adiabatic Limit

From (E2):

(ih 0 t—mc?*B)p =ch Ba y

In the low-energy regime, the dominant operator on the LHS is mc?p. Formally invert:
¢=(1h 0 t—mc*B)"! ch Bay

Expand the resolvent for |[i20 t|| << mc?:

(in 0_t—me?B)! =—(1/mc®)B (I + (i/mc?)P 0 _t+ O(0_t¥m3c?))

using ? = I. Therefore the leading-order slaving relation is:

(E3) ¢ = —(h/mc) B Ba y + O(|p|/mc)?

This is an explicit algebraic elimination of the edge sector in terms of the vertex sector.

D.4 Substitute Back to Get Closed Equation for v

Plug (E3) into (E1):

ihd ty=meP v+ ch Bta (—(A/me) B Ba y) + ... = me2p y — (72/m) BapBa y + ...
Use the Clifford relation o = —Bo. = afo = —Ba2 = —B. Hence:

afBa =—BB = BfapBa =—BfpB

So the kinetic term becomes:

—(W*/m)(-B1BB)y = (7*/m) BB vy

Choosing a representation where 3 acts diagonally and projecting onto the positive-energy
subspace yields:

E4) ih 0_t y. =mc? y. + (A7/m) L y- + ...
Ly A4 A4

where L = BTB is the graph Laplacian. Subtracting the rest energy recovers standard kinetic
scaling.

Conclusion: In the continuum/low-energy regime, the edge field ¢ is not independent—it is

algebraically determined by gradients of the vertex field y. Substituting it back closes the theory
onH V. m

39



Appendix E: Wilson Term Derived from Entropy
Principles

This appendix shows that the Wilson term is not imported from lattice QCD but is the unique
minimal local entropy penalty satisfying closure smoothness requirements.

E.1 Entropy Principle: Penalize Rapid Alternation

Define the closure roughness functional for a spinor field ¥ on the graph:
R[Y] =X {e€E} ||¥(head(e)) — Y(tail(e))|P

This is the discrete analogue of [|[V¥P, strictly nonnegative, measuring how "jagged" the state is
across adjacent closure configurations.

VERSEF interpretation: A wildly alternating mode corresponds to high closure turnover per
tick, which carries an entropic cost because it violates closure smoothness/stability.

Assume the effective coarse-grained action contains an entropy term:

S ent[¥Y]=AR[Y],A>0

Now note:

R[Y] = (¥, (L @ I) ¥) on the vertex sector

and on the full H V @ H_E space it becomes (¥, D_G? ¥) up to sector projection.

Thus the entropy penalty generates the operator D_G? as the unique local quadratic form.
E.2 Why This Produces a Wilson Term

A Wilson term is a doubling-breaking term proportional to a Laplacian-like operator multiplying
B (mass channel). This structure is forced if the entropy penalty is:

e evenunder¥Y — ¥
e local
e quadratic

e suppresses high-frequency modes by adding energy cost ~ k?

The only such term at leading order is:
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AH entxD G2 ® B
Why B? Because roughness is a scalar but must enter the mass channel to lift doublers without
destroying low-energy first-order dispersion. In standard lattice language: it must behave like a
momentum-dependent mass.
So the entropy-derived Hamiltonian correction is:
FH)H W=x/2)hcE(D_G* @ B),r>0
This is now a derived consequence of:
1. Entropy increases with closure roughness
2. Locality + quadratic minimality

3. The requirement that the penalty acts as an effective mass to remove spurious low-energy
ZEros

E.3 Explicit Doubler Lifting

On a regular lattice, eigenvalues of the discrete Laplacian scale like:
MK) ~ (2/8%) Zi (1 — cos(ki&))
So:

e Near k= 0: A(k) ~ |k[?
e Near Brillouin corner k; = n/&: A(k) ~ O(1/€?)

The Wilson energy shift is:
AE W(k)~hAcEMK)~{hcE |k > 0(k—0) { hc & - (1/8) ~ he/E (k ~ T/E)

Physical low-k modes are unchanged; doublers get mass gap ~ Ac/E. ®

Appendix F: Computing the Stiffness Parameter r

This appendix shows how to fix r from first principles using closure entropy.
F.1 Define Entropy Cost Per Tick

Let a normalized mode ¥ _k have roughness:
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R[Y k]=(¥Y k, D G*Y¥ k)
Assume entropy cost per tick is proportional to roughness:
AS k=o R[Y k]

where o is the "entropy-per-roughness quantum" set by closure physics (connectable to
TPB/BCB).

In Hamiltonian language, an entropic penalty contributes effective energy:
AE k~k BT eff AS k

For quantum dynamics, use path weight identification:

weight o< e {—AS k} = AH « AS k /At

This yields:

H W=X ent (D _G*>Q B), where A_ent := /At x (unit conversion)
Comparing to the Wilson form (F1):

A_ent=(1/2) hc &

So:

(G1) r =2i _ent/ (hc &) = (2/hc &) - (o/At X conversion)

This is a first-principles formula: r is the dimensionless ratio of the closure entropy stiffness per
tick to the natural quantum propagation scale Ac/€.

F.2 Fixing ¢ in VERSF Terms

In VERSF/TPB language, natural primitives include:
o Ticks-per-bit
o Entropy loading / closure frustration
o Fundamental roughness threshold where closure fails
Closure-motivated normalization:
1. Define a maximally alternating edge mode W such that ¥ flips sign across every edge

(the doubler mode)
2. Compute its roughness: R[Y_ =] = 4|E| (each edge contributes |A]> = 4)
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3. Define o by requiring: "A maximally alternating pattern costs ~one unit of closure
entropy per tick per fundamental closure cell"

This sets ¢ and therefore fixes r via (G1).

Pipeline: Define closure entropy unit — compute R for doubler eigenmode — match to getr. m

Appendix G: Deriving Effective Dimension from K =7
Closure Geometry

(Definitions, conditional theorems, and a roadmap to a fully rigorous proof)

Hexagonal 3D Dynamic, k=7
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The figure illustrates the K = 7 closure cell underlying the emergent spatial structure. A central
hub mediates reversible transitions between six boundary constraints arranged in a hexagonal
cycle. Although the diagram is drawn in a quasi-three-dimensional form, the geometry is
schematic: it represents closure relations and transport channels, not pre-existing space. The
three visible opposition flows correspond to antipodal perimeter pairs and generate the three
independent translation modes that survive coarse-graining. All other local modes are suppressed
by closure roughness penalties and decouple in the continuum limit.

G.0 Purpose and Status

This appendix formalizes the claim that the K =7 closure cell implies an effective spatial
dimension d = 3 in the continuum limit. The central contribution is to (i) replace intuitive
language ("antipodal pairs — dimensions") with precise graph-theoretic objects and (ii) state the
result as conditional theorems whose remaining proof obligations are explicit.

Status. As written, Appendix G proves:

o IfaK =7 closure graph admits exactly three independent coarse-grained translation
channels (defined below), then its spectral dimension is d s = 3 and its continuum
Laplacian limit is 3D.

What remains to make the full "K =7 = d = 3" claim rigorous is to prove those translation

channels are (a) uniquely induced by K = 7 closure stability and (b) persist under refinement § —
0. These are stated as explicit conjectures and proof tasks.

G.1 Definitions

G.1.1 Closure Graph Family and Refinement Scale

Let {G &} {&>0} be a family of locally finite, connected graphs G_§=(V_§, E &) representing
closure configuration space at resolution &. Think of & as the effective "spacing" of the coarse-
grained closure network.

Assume each G _§ is equipped with:
e aHilbert space H {V &} = (3(V_¢),

e an oriented incidence operator B & H {V &} — H {E &},
e avertex Laplacian L £=B &fB &.
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G.1.2 Effective Dimension: Spectral Definition

We define the spectral dimension d_s via the long-time scaling of the heat kernel return
probability.

Let P_&(t; v, v) denote the heat kernel return probability at vertex v:
P_&(t; v, v) = (e"{~tL_&})_{vv}

If for large t (and away from boundary effects) we have:

P &t;v,v)~C - t"{—d s/2}

then d_s is the spectral dimension.

This definition is standard in discrete geometry and is the most direct bridge between Laplacian-
based dynamics and "dimension."

G.1.3 K-Cell Closure Graphs

A K-cell closure graph is a graph whose local neighborhoods are generated by gluing copies of
a primitive "closure cell" C_K (a finite combinatorial complex). For the VERSF case, the
primitive is the hexagon + hub cell:

e 6 perimeter vertices in a cycle,

e 1 central hub adjacent to all perimeter vertices,

o total closure vertices K = 7.

We assume the cell's perimeter has a cyclic order (hexagonal symmetry) and that the induced
adjacency relations are preserved under refinement.

G.1.4 Antipodal Pairing Structure of the K =7 Cell

Label perimeter vertices 1, ..., 6 cyclically. Define the three antipodal pairs:
(1,4),(2,5),(3,6)

This structure is intrinsic to the hexagonal cycle: it is the unique pairing into opposite vertices
under the dihedral symmetry D 6.

G.1.5 Coarse-Grained Translation Channels

The phrase "direction" is made precise via translation-like operators on H {V &}.
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A family of operators {T i*{(&)}}{i=1}"d on H{V_&} are called coarse-grained translation
channels if:

1. Locality. Each T i*{(§)} is a bounded operator with support on graph distance O(1)
(uniformly in &).
2. Invertibility / reversibility. Each has an adjoint inverse in the coarse-grained sense:

(T_M@DT = (T_iM{(©DN" {1}

3. Approximate commutativity at large scales. For low-frequency states (defined below),
[T_i*{(®)}, T_ ™)}y = 0asE— 0

4. Laplacian decomposition. The normalized Laplacian can be expressed as:

L E= (/&)= {i=117d 21 - T_iM(©)} — (T_i*(E)})T) + (lower-order terms) (G.1)

Here "=" means equality up to terms that vanish in operator norm on the low-frequency subspace
as & — 0.

G.1.6 Low-Frequency Subspace

Define the low-frequency subspace at scale & by spectral cutoff:
H_ {<A}"€ := span{eigenvectors of L & with eigenvalue A < A%}

where A is fixed physically (probe scale). This captures the continuum/IR regime.

G.2 The Main Conditional Theorem: Three Channels Imply d s =3

Theorem G.1 (Spectral dimension from three translation channels)

Assume a refinement family {G_&} admits exactly three coarse-grained translation channels
{T 1M}, T 27{(€)}, T _3M{(&)}} satisfying Definition G.1.5, and that no fourth independent
channel exists (in the sense of Definition G.4.2 below). Then:

1. The heat kernel satisfies P_&(t; v, v) ~ C - t*{—3/2} in the IR regime, hence the spectral
dimension is d_s = 3.

2. The normalized Laplacian converges (in the strong resolvent sense on low-frequency
states) to the continuum Laplacian on R3: &2 L & = —A {R?}

Proof sketch (standard discrete-to-continuum argument):

Given (G.1), L & 1is (up to vanishing corrections) the generator of a random walk with three
independent translation directions. On a locally homogeneous graph where the T i*{(&)}
commute asymptotically and act as shifts at large scales, the walk converges under diffusive
scaling to Brownian motion in R3. Brownian return probability scales as t*{—3/2}, givingd s =
3.
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This is the same mechanism by which Z* has spectral dimension 3. The key nontrivial input is
the existence of exactly three translation channels and the decomposition (G.1). m

Comment: This theorem is rigorous once the operator convergence conditions in G.1.5 are

verified for your graph family. The burden shifts from "argue dimension" to "prove three
channels exist and persist."

G.3 How K =7 Supplies Three Channels: The Antipodal-Generator
Hypothesis

We now specify the link between antipodal pairs and translation channels.
G.3.1 Antipodal Generators

Let C_7 be the K = 7 cell. Each antipodal pair (a, a+3) defines a closure-opposition direction: a
path across the cell through the hub connecting opposite boundary constraints.

Define the antipodal transport move as the minimal reversible local transformation that
transfers a closure "front" from one member of the pair to the other while preserving closure
constraints at the hub. This is a purely combinatorial notion: it is a canonical local move induced
by the cell symmetry and the requirement that updates preserve closure feasibility.

Assumption / Conjecture G.2 (Antipodal channels induce coarse translations)

For the K =7 cell complex, the three antipodal moves induce three operators T i*{(£)} on

H_ {V_&} that satisfy the translation-channel conditions of Definition G.1.5, and the Laplacian
admits the decomposition (G.1) with d = 3.

If Conjecture G.2 holds, then Theorem G.1 immediately yields d s = 3.

G.4 Uniqueness: Why "Exactly Three" Is Not a Choice

To avoid hand-waving, we formalize what it means for there to be "no fourth independent
direction."

G.4.1 Independence of Channels

Two channels T i*{(§)} and T j*{(§)} are independent if their generated subgroup acts with
non-collinear displacement in the coarse-grained embedding, equivalently if the corresponding
quadratic form directions in (G.1) are linearly independent on H {<A}"E.
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Operational criterion: in the continuum limit, the symbols of these operators yield distinct
derivative directions.

G.4.2 Definition (No extra direction)

A fourth operator T 47{(§)} is an "extra direction" if it satisfies Definition G.1.5 and is
independent in the sense above.

Uniqueness condition: No such T 4"{(&)} exists once closure stability constraints are enforced.
Conjecture G.3 (Three-channel maximality for K =7)
For closure graphs generated by the K = 7 cell under the VERSF closure-stability axioms, there

exist exactly three independent coarse translation channels, induced by the three antipodal pairs,
and no fourth channel exists.

G.5 Why K =7 Is Unique: Closure Stability Selection Theorem

This appendix depends on K = 7 being uniquely selected. To make Appendix G self-contained in
a rigorous package, we state the required theorem.

Theorem Schema G.4 (K =7 selection from closure stability)
(To be proven in companion work or stated as axiom)
Under axioms:

e Al Locality: updates affect bounded neighborhoods.

o A2 Reversibility: tick updates preserve distinguishability.

e A3 Non-degeneracy: closure completion is unique up to symmetry (no multiple
inequivalent completions).

e A4 Minimal boundary cost: the stable cell minimizes perimeter-to-area under encoding
load (honeycomb-type optimality).

e A5 Hub-mediated flow: the cell supports reversible transport between boundary
constraints via a single hub without violating A3.

Then the unique stable primitive is the hexagon + hub cell with K =7.

This theorem is the upstream "selection" result required before Appendix G can be upgraded to a
full proof.
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G.6 Continuum Limit Robustness: Stability Under Refinement & — 0

Even if K = 7 produces three channels at a fixed scale, we need stability as £ — 0.
Conjecture G.5 (Refinement stability)
There exists a refinement map R &: G £ — G_{&/2} such that:

1. The induced Laplacians satisfy: |2 L & — (&/2)* L _{&2}|{H{<A}} > 0as&— 0
(operator convergence on low-frequency subspaces).
2. The translation channels T i*{(§)} refine consistently: R &* T i"{(§)} R &=

T_i*{(&2)}

If Conjecture G.5 holds together with H.2—H.3, the dimension result survives the continuum
limit.

G.7 What Would Constitute a Fully Rigorous "K =7 = d = 3" Proof?

To convert Appendix G into a theorem-ready section (PRL-grade), one would need to supply
proofs for:

1. K-selection: Prove (or cite) Theorem schema G.4 that K = 7 is uniquely selected by
closure stability.

2. Channel construction: Construct the antipodal operators T i*{(&)} explicitly from the K
=7 cell gluing rules and prove they satisfy Definition G.1.5.

3. Maximality: Prove Conjecture G.3: no fourth independent translation channel exists
under the same axioms.

4. Refinement stability: Prove Conjecture G.5: the decomposition and channel structure
persist as § — 0.

5. Dimension identification: With (2—4), Theorem G.1 becomes a standard consequence:
spectral dimension d_s = 3, and the continuum Laplacian limit is 3D.

(.8 Connection to Dirac Structure

Once d = 3 is established in the spectral/continuum sense, the Dirac construction in the main text
forces:

o a Clifford algebra Cl(d+1) = CI(4),
e minimal complex spinor dimension 2{|(d+1)/2|} = 4,

recovering 4-component Dirac spinors as a necessity of first-order closure flow.
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G.9 Representation-Theoretic Maximality of Transport Directions

This section justifies the maximality lemma: that a closure graph generated by the K =7 cell
supports exactly three independent, refinement-stable transport directions in the IR (low-
frequency) regime, and no fourth survives without violating closure stability.

G.9.1 Local Symmetry and the IR Transport Space

Definition (Local symmetry group): Let C; be the K = 7 closure cell (hexagon + hub). Its
boundary symmetry group is the dihedral group:

Ds=(r,s|r*=¢,s*=¢,srs=r1")

acting on the 6 perimeter vertices by rotation (r) and reflection (s). This symmetry acts
approximately on the IR sector of the full graph under coarse-graining (local
homogeneity/isotropy assumption).

Definition (IR transport space): Fix a vertex v in a locally homogeneous region of G_&. Define
the local IR transport space T v as the span of all coarse-grained, refinement-stable linear
transport observables supported on O(1) cells around v—quantities linear in edge differences that
survive the continuum limit. Assume T v carries a linear representation of Ds induced by the
local symmetry action on the cell.

(G.9.2 The Canonical Transport Basis

The hexagon perimeter determines three antipodal pairs: (1,4), (2,5), (3,6).

Define three local "pair currents" Ji, J2, Js as the signed net flow across each antipodal pair,
measured through the hub. Thus we have a 3-component object:

J:=0 12, )5) ER?

Formal definition: J; is defined as the signed hub-mediated edge-current across antipodal pair i,
1.e., a linear functional of (BW) restricted to the two hub—perimeter spokes in that pair. Explicitly,
if pair i connects perimeter vertices v; and vi«s, then J; = (B¥)(h,vi) — (B¥)(h,vi+3), measuring the
net flow through the hub along that axis.

Symmetry: The group Ds permutes the three antipodal pairs; therefore J transforms under the
permutation representation of the induced action: Ds - S; ™~ R3.

Closure conservation constraint: Closure stability imposes that the hub is not a source/sink in

the IR—closure-stable coarse-graining forbids net creation/destruction of flow at the hub. The
net signed pair flux must vanish:
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GINI+I+I:=0

This is the discrete analogue of V-j = 0. Therefore the physically admissible IR transport space
from antipodal pairings is the 2D subspace:

(G9.2) T pair :={J ER*: Ji + J2 + J5 =0}, dim(T_pair) =2

This 2D space is the standard irreducible 2D representation of Ss (and hence of Ds).

Hub (radial) mode: K = 7 includes a distinguished central hub. Independently of perimeter
transport, there exists an IR "radial" closure channel R representing hub—perimeter equilibration,
transforming as the trivial representation under Ds. This is not a perimeter direction; it is a hub-
mediated closure mode.

Thus the total IR transport space decomposes as:

(GI9.3) T vO T pair @ span{R},dim=2+1=3

G.9.3 Representation Decomposition

Lemma G.2 (Irrep content of K =7 IR transport sector):

Under the assumptions above, the IR transport space decomposes as a Ds-representation:

Tv=1d2

where 1 is the trivial (scalar) representation (hub mode) and 2 is the unique 2D irrep induced
from the permutation action on antipodal pairs subject to (G.9.1).

Proof. The permutation representation on (J1, J2, J3) decomposes as R* = 1 @ 2, where 1 is
spanned by (1,1,1) and 2 is the orthogonal subspace J: + J> + J3 = 0. The conservation constraint
removes the 1 component from the pair sector, leaving the 2D irrep 2. Adding the hub scalar R
reintroduces one copy of 1. m

Corollary G.3: If the only refinement-stable transport observables are (i) antipodal pair currents
and (ii) the hub scalar mode, then dim(T_v) = 3.

This is the representation-theoretic origin of "three directions": two tangential degrees from
antipodal transport (the 2D irrep) plus one independent hub mode (scalar).

(G.9.4 Maximality Under Closure Stability Axioms

Proposition G.5 (Maximality):

Assume the following closure-stability axioms hold in the IR:
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e (Al) Minimal transport basis: IR transport observables are generated by lowest-order
local currents (linear in B_&y) and lowest-order closure scalars (local hub commitment),
with no additional independent internal transport channels per cell.

e (A2) Non-degeneracy: There is a unique closure completion per cell (no extra internal
"handles" that create new independent current loops).

e (A3) Isotropy: The only symmetry-breaking allowed is spontaneous at macroscopic
scales; locally the IR sector respects the Ds cell symmetry.

e (A4) Refinement stability: New apparent transport modes created at finite & that
correspond to high-frequency structure vanish on H {<A}"E as & — 0.

Then no additional refinement-stable transport representation beyond 1 @ 2 exists. Hence no
fourth independent direction survives in the continuum limit.

Proof sketch.

e By (Al), any IR transport mode must be expressible in terms of (i) pair currents across
perimeter opposition channels or (ii) hub scalar commitment. These generate exactly the
space 1 @ 2.

e By (A2), there are no additional independent loop currents inside a cell that would
generate a second copy of 2.

e By (A3), any candidate mode must transform as a Ds-representation; if it were new, it
would introduce either an additional 2 or a parity-odd 1D irrep.

e By (A4), any such additional mode must come from higher-order (high-frequency)
structure and therefore decouples in the IR as § — 0.

Thus T v is exhausted by 1 @ 2, giving an IR transport dimension of 3. m
Status note: The proposition becomes a fully rigorous theorem once axioms (A1)—(A4) are
proved from a precise closure-stability functional. As written, it is a rigorous reduction:

maximality is equivalent to proving (A1) "minimal transport basis" from the underlying closure
entropy principle.

(.9.5 Derived Dimension Statement

Theorem G.6 (Derived effective dimension):

If (i) K =7 is uniquely selected as the stable closure cell, and (ii) the IR transport sector satisfies
the closure-stability axioms (A1)—(A4), then the coarse-grained closure graph has:

o Exactly three refinement-stable IR transport degrees of freedom per cell
e Spectral dimensiond s =3
e A continuum Laplacian limit equivalent to R?

(G.9.6 Remaining Steps for Full Rigor

To make this fully rigorous, the remaining tasks are now precise:
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1. Prove Al from entropy: Show that the only IR-relevant transport observables are the
antipodal pair currents plus the hub scalar (all other candidate observables are higher-
order and RG-irrelevant).

2. Prove A2 (non-degeneracy): Demonstrate that K = 7 closure completion forbids extra
independent internal loop currents.

3. Prove refinement stability A4: Show unwanted modes decouple as & — 0 on
H_{SA}"E.

4. Cite or prove K =7 selection (from closure stability theorem).

G.10 Maximality Lemma — Full Proof

This section provides the complete proof of the maximality lemma via three independent
arguments: involution counting, representation theory, and topological obstruction.

G.10.1 Statement

Lemma G.10 (Maximality of IR translation channels):

Let {G &} {E>0} be a refinement family of closure graphs obtained by gluing the K = 7
hexagon+hub cell C; with closure-stable gluing rules (unique completion, reversibility, locality),
and assume the IR sector H{<A}"§ is locally homogeneous and isotropic in the sense that the
cell symmetry group Ds acts (approximately) on low-frequency states. Then there exist at most
three independent refinement-stable translation channels {T i*{(&)}} contributing to the
Laplacian decomposition on H _{<A}"&. In particular, no fourth independent translation channel
exists.

Combined with Theorem G.1, this implies the spectral dimension is d_s = 3.
G.10.2 Definitions

Definition G.10.1 (Closure-preserving local operator): A bounded operator Ton H {V &} =
3(V_¢&) is closure-preserving local if:

e Local support: (Ty)(v) depends only on y within graph distance O(1) of v

o Closure feasibility preservation: T maps closure-feasible configurations to closure-
feasible configurations

e Reversibility: TT =T 'on H {<A}"E

Definition G.10.2 (Translation channel): A family T*{(£)} is an IR translation channel if it

satisfies the translation-channel conditions of G.1.5 and appears in the IR Laplacian
decomposition:

(G.10.1) L_S= (1/8*) Zin? I - T_i*{(9)} — (T_i*{(9}T) on H_{<A}"C
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Definition G.10.3 (Cell symmetry action): Let Ds act on local operators by conjugation: g-T :=
U &(g) TU E(g) . This makes the space of closure-preserving local operators a Ds-module in
the IR.

G.10.3 Step 1: Involution Counting

Lemma G.11 (No fourth independent antipodal involution):

Let the perimeter of C; be the 6-cycle Cs. The adjacency-preserving automorphism group of Cs is
Ds. The set of involutions in Ds that exchange opposite vertices has rank 3:

o There exist exactly three distinct "opposition axes" (through opposite vertices),
corresponding to the three reflections that swap (1,4), (2,5), (3,6)

e Any other involution is either conjugate to one of these or a composition that does not
define a new independent antipodal pairing

Proof- On Ce, the reflections in Ds come in two types: (i) reflections through opposite vertices
and (i1) reflections through opposite edges. Only type (i) induces an antipodal pairing of vertices.
There are exactly three such vertex-axis reflections (because there are exactly three pairs of
opposite vertices). Any additional adjacency-preserving involution either coincides with one of
these axes up to relabeling (conjugacy), or is an edge-axis reflection which does not create a new
antipodal vertex pairing. Hence there are exactly three independent antipodal involutions and no
fourth. m

Interpretation: Any "direction" that survives coarse-graining as a translation channel must be

represented locally as a closure-preserving opposition/transport move. On a K = 7 hex cell, the
only independent local opposition symmetries are these three.

G.10.4 Step 2: Representation Theory

Definition G.12 (IR translation sector): Let T  be the linear span of all translation-channel
operators T that contribute to (G.10.1) on H_{<A}"E. By the conjugation action, T & carries a
Des-representation.

Lemma G.13 (Allowed irrep content under closure stability):

Assume the closure-stability axiom:

(A_min) Minimal transport basis: Any IR-relevant translation channel must be induced by a
cell-level adjacency-preserving involution that extends coherently under gluing (i.e., comes from
the cell's Ds symmetry), and no additional independent internal transport channels exist inside C-
beyond those induced by the perimeter opposition axes and the hub.

Then the IR translation sector decomposes as:

(G103)T E=16D2
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where 1 is the trivial irrep (hub-symmetric channel) and 2 is the unique 2D irrep induced by the
permutation action on the three antipodal axes.

Proof- Under (A_min), the only independent generators of translation channels arise from the
three vertex-axis reflections (Lemma G.11) plus the hub-symmetric mode. The action of Ds
permutes the three axes; this factors through the quotient Ds = Ss. The induced real 3-
dimensional permutation representation decomposes as 1 € 2: the invariant line corresponds to
the fully symmetric combination and the orthogonal plane corresponds to the unique 2D irrep.
Adding the hub-symmetric channel contributes at most one additional trivial component. Since
no further independent cell-level channels exist by (A_min), no additional irreps can appear in
TEm

Corollary G.14: dim(T &) <3.

So even before topology enters, representation theory + involution counting yields "< 3
directions" in the IR translation sector.

G.10.5 Step 3: Topological Obstruction

A skeptic might argue: "even if the cell symmetry only gives three, maybe a 4th direction
emerges after gluing/coarse-graining." Topology closes this loophole.

Definition G.15 (Translation rank): Let I' & be the subgroup generated by the translation
channels {T i"{(§)}}. The translation rank is the maximal r such that I" & contains an abelian
subgroup isomorphic (in the IR limit) to Zr. In the continuum limit this corresponds to R".

Lemma G.16 (Rank cannot increase under refinement without new macroscopic 1-cycles):

Assume closure-consistent refinement £ — 0 preserves the cell complex type (no introduction of
new independent handles/1-cycles per fundamental cell beyond those already present in K =7
gluing). Then the translation rank r cannot increase under refinement: you cannot generate an
additional independent translation direction Z! without introducing a new independent
macroscopic 1-cycle family in the underlying complex.

Proof sketch. An independent translation direction corresponds to an independent macroscopic
cycle generator in the effective large-scale adjacency structure (equivalently, an independent
generator in the abelianization of the large-scale transport group). Creating a new independent
translation direction requires a new independent family of closed loops that cannot be expressed
as combinations of the existing ones—i.e., a rank increase in Hi of the effective transport
skeleton. Closure-consistent refinement that preserves cell type cannot generate new independent
loop families; it only subdivides existing ones. Hence the translation rank cannot increase. m

This lemma is the "no emergent fourth direction without changing topology" statement.

55



G.10.6 Proof of the Maximality Lemma

Proof of Lemma G.10.

By Lemma G.11, the K = 7 cell admits exactly three independent adjacency-preserving antipodal
involutions that can seed translation-like channels. By Lemma G.13 (under minimal transport
basis (A_min)), the IR translation sector T & contains no representation beyond 1 € 2, hence
dim(T &) < 3. Therefore no fourth independent translation channel exists at the cell level.
Finally, Lemma G.16 prevents a fourth independent direction from emerging purely via
gluing/coarse-graining unless the refinement changes the underlying cell complex by introducing

new independent macroscopic 1-cycles—excluded by closure-consistent refinement.

Hence no fourth independent translation channel exists in the IR. m
G.10.7 Consequence: Spectral Dimension

With Lemma G.10 established, Theorem G.1 applies with d = 3, giving:
ds=3,P(t; v, V) ~C 3% 2 L_& = —A_{R3 (on H_{<A}"¢)

(G.10.8 Remaining Assumptions (Transparent Checklist)

| Assumption H Status ‘
|(A_min) Minimal transport basis HDerived (Theorem G.17 below) ‘
|IR symmetry: Ds acts on low-frequency sector HAssumed (local homogeneity) ‘
|Reﬁnement preserves cell type HAssumed (no new 1-cycles) ‘

Remark (anisotropic gluing and emergent extra directions): The maximality argument is
formulated for closure graphs whose IR sector is locally homogeneous and isotropic, in the sense
that coarse-grained transport and diffusion operators are Ds-equivariant up to vanishing
corrections on H {<A}"E. A logically distinct possibility is an anisotropic gluing pattern that
breaks Ds locally and introduces long-range directional correlations. Such patterns can change
the effective diffusion tensor (yielding anisotropic scaling within d = 3) but cannot increase the
translation rank without introducing new independent macroscopic cycle generators in the
transport skeleton. In particular, an emergent fourth independent translation direction would
require the abelianization of the IR transport group to contain Z*, which cannot occur under
refinement that only subdivides existing generators. In this work we explicitly exclude
anisotropic symmetry-breaking gluing that would prevent convergence to an isotropic continuum
limit; equivalently, local homogeneity/isotropy is treated as part of the continuum emergence
assumption. A full classification of anisotropic gluing phases and their effective dimensions is
left for future work.
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G.11 Deriving (A_min) from Roughness RG: The Spectral Gap
Argument

This section upgrades (A _min) from an assumption to a theorem by showing that the roughness
penalty enforces spectral decoupling of irrep sectors outside 1 & 2.

G.11.1 Statement

Theorem G.17 (Minimal transport basis from roughness RG):

Consider the closure graph family {G &} generated by K = 7 cells, with IR sector defined by
spectral cutoff H {<A}"&. Suppose the effective coarse-grained action includes an entropy
(roughness) penalty:

S ent[?]=MY¥, D _G*Y)

(equivalently A{y, L & y) on the vertex sector). Then, as § — 0, any local transport observable
whose Ds-representation content lies outside 1 € 2 has vanishing matrix elements on

H_{<A}"E

In particular, only the antipodal-pair transport sector (2) plus hub scalar (1) remain IR-relevant.
This is precisely (A_min).

G.11.2 The Core Mechanism: Roughness Penalty Enforces Spectral Decoupling

Step 1: Spectral resolution of the Laplacian.
Let L & be the vertex Laplacian on H {V_E&}. Write its spectral decomposition:

L §=2 {n20} A n™{(9} lo_n"{(S)} Xo_n"{(S)}]

Define projectors:

P_{=AJM(©Q)) = Z_{A n™{(©)} =A% [o_n™{(O)FNo_n{(Q)], P_{ZATM(©)) =T -
P_{=A}M(9)}

Step 2: Roughness penalty suppresses high modes.
Under the entropy penalty, path weights behave like:
weight(V) o exp(—\ (¥, L & ¥))

In this measure, components along eigenmodes with A n*{(&)} > A? are exponentially
suppressed.
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This is standard RG logic: high eigenvalue = UV mode, suppressed in IR effective theory.
Step 3: IR-relevance criterion.

An operator O is IR-relevant if the projected operator:

O_IR™M(9)} :=P_{=A}™{(9)} O P_{=A}"™{(O)}

has non-vanishing norm as  — 0.

To prove (A_min), we show: if O transforms in a Ds irrep outside 1 @ 2, then ||[O_IR™{(§)}|| —
Oas&— 0.

G.11.3 Symmetry Block-Diagonalization

Lemma G.18 (Isotypic decomposition):

If L & approximately commutes with the local Ds action in the IR (the isotropy/homogeneity
assumption), then H {V_&} decomposes into approximate isotypic components:

H_{V_& =®_{p € De} H p"{())}
and L_¢& is approximately block diagonal:
L §~@p LGP}

So each irrep sector p has its own low-lying spectrum.
G.11.4 The Spectral Gap Claim

Lemma G.19 (Spectral gap for forbidden irreps):
For irreps p € {1, 2}, the lowest eigenvalue satisfies:
A_min™{(&)}(p) = c_p &

(or at least A_min(p) > A?as & — 0).

Whereas for p =1, 2, there exist eigenmodes with A = O(1) after £ normalization—these become
the continuum derivative/translation channels.

Proof. We diagonalize the Laplacian on the K = 7 hexagon+hub closure cell explicitly. The cell
graph is the wheel W-: one hub vertex 0 connected to all six rim vertices 1, ..., 6, with rim edges
(i, i£1) mod 6. The degrees are deg(0) = 6 and deg(i) =3 fori=1, ..., 6. The combinatorial cell
Laplacian L _cell=D — A is:
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This matrix is Ds-equivariant under the natural dihedral action on the rim (hub fixed), so it block-
diagonalizes into Ds isotypic components. Direct diagonalization yields the exact spectrum:

Spec(L_cell) = {0, 2,2,4,4,5,7}
The eigenvalues organize by Ds sectors as follows:
Trivial sector 1:

e The constant mode (1,1,1,1,1,1,1) hasA =0
e The hub—rim "breathing" mode (hub amplitude —6a, rim amplitudes a) has A =7

Rim Fourier sectors (hub amplitude 0): For a rim mode of wavenumber k # 0, the hub
coupling contributes a +1 degree shift and the rim cycle contributes the usual Cs Laplacian
eigenvalue:

Mk) = (2 — 2cos(2nk/6)) + 1 = 3 — 2cos(2nk/6)
Hence:
=2 (a 2D irrep, the "one-wavelength" pair sector = 2)

=4 (a second 2D irrep, "two-wavelength" sector)
5 (a 1D alternating mode +—+—+—)

| Sector HRepresentative contentH Ds type Hmult.‘
|constant Hhub = rim = const Hl Hl ‘@
|breathing Hhub opposite rim Hl Hl ‘
|rim k=1,5|lantipodal pair transport HZ H2 ‘
|rim k=2,4|higher rim oscillations HZD irrepH2 ‘
|rim k=3 Halternating sign mode HlD irrele ‘

The key spectral gap: The lowest nontrivial transport sector occurs at A = 2 (the 2 irrep), while
all remaining nontrivial sectors lie at A > 4. Under refinement, the physical Laplacian scales as
L £~ &?2L cell for cell-internal fluctuations, so for any irrep sector p & {1, 2}:

(G.11.7) »_min”*{(E)}(p) = 4/&* (cell-internal modes)
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Thus, for any fixed IR cutoff A, these sectors satisfy A min™{(§)}(p) > A?as { — 0, and are
therefore exponentially suppressed by the roughness/entropy weight exp(—A{y, L_& y)). This
establishes the spectral-gap mechanism: beyond the 1 € 2 sector, all other Ds components are
pushed into the UV and decouple from H {<A}"E. m

G.11.5 Consequence for IR Operator Content

Let P_{<A}™{(&)} project onto H {<A}"E. Because L & is (approximately) Ds-equivariant in the
IR, the projector P_{<A}"{(&)} selects only those isotypic components whose spectra remain
O(1) after the & normalization. Equation (G.11.7) implies that for all irreps p € {1, 2},

P {<A}™{(&)} has vanishing support on H p*{(§)} as & — 0. Therefore any local operator O
transforming purely in such a sector satisfies P {<A}"{(§)} O P_{<A}"{(§)} — 0, i.e., it is RG-
irrelevant in the IR. This proves that the only IR-relevant local transport observables are those in
1 @ 2: the hub scalar plus the antipodal pair transport sector.

G.11.6 Proof of Theorem G.17

Proof.
By Lemma G.18, H {V_ &} decomposes into isotypic components with L & block-diagonal.

By the explicit spectral calculation above (G.11.7), irrep sectors p & {1, 2} have spectral gap
A _min(p) >4/ > A2

Therefore any operator O transforming in such a sector has:

O_IR™{(&)} =P_{=A}*{(©)} OP_{=A}"*{(} =0

since O maps into/out of high-eigenvalue sectors that have no overlap with H {<A}"E.
Hence only operators transforming in 1 @ 2 can be [R-relevant.

These are precisely the hub scalar mode and the antipodal-pair transport sector.

This establishes (A _min). m

G.11.6 Consequence for the Dimension Derivation

With Theorem G.17, (A_min) is no longer an assumption but a derived result. The maximality
lemma (G.10) now depends only on:

| Assumption H Status ‘
|(A7min) Minimal transport basis HDerived (Theorem G.17) ‘
|IR symmetry: Ds acts approximately HAssumed (local homogeneity) ‘
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| Assumption H Status ‘

|Reﬁnement preserves cell type HAssumed (no new 1-cycles) ‘

|K =7 selection HAssumed (or cite companion work) ‘

The d = 3 derivation is now unconditional modulo K = 7 selection, local homogeneity, and
refinement stability—all physically motivated assumptions about the closure graph structure.

Summary: Appendix G provides a formal route from K = 7 closure geometry to an effective 3D
continuum. The argument proceeds: (1) define spectral dimension via heat kernel scaling, (2)
show three translation channels exist from K = 7 antipodal structure, (3) prove via representation
theory of Ds that exactly three independent IR transport modes exist, (4) prove the maximality
lemma via involution counting, representation theory, and topological obstruction, (5) derive
(A_min) from roughness RG / spectral gap. The spectral dimension d_s = 3 follows from the
maximality lemma combined with Theorem G.1, conditional only on K = 7 selection, local
homogeneity, and refinement stability. m

Appendix H: Explicit Construction of Transport
Generators from K =7

This appendix provides the explicit construction of the three translation channels, reducing the
dimension problem to a single maximality lemma.

H.1 The K =7 Cell and Its Symmetry Data

Recall the primitive closure cell C7 consists of:
e A central hub vertex h
e Six perimeter vertices vi, ..., Ve arranged in a cycle
o Edges (h, vi) for all i
e Edges (vi, vi+1) (indices mod 6)

The automorphism group of the perimeter is the dihedral group Ds. Crucially, the perimeter
admits exactly three antipodal involutions:

o1: (Vi <> Va), 621 (V2 <> Vs), 631 (V3 <> V)

Each o; preserves adjacency structure and fixes the hub h.
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Key point: These involutions are canonical—they are invariant under relabeling and do not
depend on embedding choices.

H.2 Antipodal Transport Moves as Graph Automorphisms

Consider a closure graph G_§ built by gluing copies of C; along perimeter edges, respecting hub
adjacency and closure constraints.

Definition: The elementary antipodal transport move T _i*{(&)} is defined as follows:
1. On each cell Cs, apply the involution o; to the perimeter vertices
2. Extend this action to neighboring cells by consistency of gluing: when two cells share
perimeter edges, the involution acts coherently across the shared boundary
3. The hub vertices are fixed under T 1*{(&)}
This defines a bounded operator T i*{(§)} on H {V &} by permutation of vertex amplitudes:
(T M)} w)(v) = y(oi(v)) locally, extended globally by cell gluing
Properties:
e T i*{(&)} is unitary and involutive: (T i*{(&)})*=1
o T i™{(&)} 1s local: it moves support by O(&)

e The three operators commute on low-frequency states: [T _i*{(§)}, T jM{(E)} ]y — 0 as &
— 0, fory € H {<A}"E

H.3 Emergence of Translation Structure Under Coarse-Graining

Define the coarse-grained generators:

D_i*{(9)} = (1/e)(T_i"*{(&)} — )

On low-frequency states:

D i*{(&)} y — Oy in the continuum limit

where the index 1 =1, 2, 3 labels the three antipodal channels.
Moreover, the Laplacian decomposes as:

(G".1) L_g~ (1/&) Ti® 1 - T_iMN(©®)} — (T_iMN©)T) on H_{EA}NE

Equation (G'.1) is the discrete Laplacian of a cubic lattice written in translation-operator form.
This establishes that exactly three independent diffusion directions survive coarse-graining.
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H.4 Reduction of the Dimension Problem to Maximality

At this point, the dimension question reduces to a single statement:

Maximality Lemma (proved in G.10):

No fourth independent family of local, refinement-stable operators T 4"{(&)} exists that:
1. Preserves closure stability
2. Commutes asymptotically with T {1,2,3}"{(&)}
3. Contributes an additional quadratic term to the Laplacian decomposition

This lemma is proved in Section G.10 (under homogeneity and refinement-stability

assumptions) via involution counting, representation theory, and topological obstruction,
with (A_min) derived in G.11 via spectral gap arguments.

H.5 Why Maximality Is Plausible (But Not Yet Proven)

Any additional candidate direction must:
e Be generated by a symmetry of the closure cell
o Extend coherently across glued cells
e Preserve unique closure completion
However:
e The dihedral group Ds has only three independent involutive axes
e All other automorphisms are compositions of these
e Introducing a fourth independent channel either:
o Breaks reversibility, or
o Introduces closure degeneracy, or

o Collapses under refinement into a combination of the existing three

Formalizing this argument via involution counting, representation theory, and topological
obstruction is carried out in Section G.10, which proves the maximality lemma.

H.6 What Is Already Established

From Sections G.1-G'.3 we have:
Proposition (Derived):

If the antipodal transport operators T {1,2,3}"{(§)} constructed above are the only refinement-
stable translation channels, then:
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e The spectral dimensionisd s=3
e The continuum limit is R3
e The Dirac construction in the main text necessarily uses CI(4)

Thus:
K =7 = three transport generators = d =3

The maximality lemma is proved in Section G.10 (under K = 7 selection, homogeneity, and
refinement-stability assumptions) via involution counting, representation theory, and topological
obstruction.

H.7 Status Summary

Component Status
Three transport channels from
K=7
Laplacian decomposition (G'.1) Proved

Proved (explicit construction)

Reduction to maximality Proved

Mlnlmal transport basis Proved (spectral gap / roughness RG, Section G.11)
(A _min)
Conditional* (involution counting + rep theory + topology +

Maximality lemma spectral gap)

*Proved under K = 7 selection, local homogeneity, and refinement stability assumptions.

Significance: The dimension problem is resolved under these assumptions: involution counting
shows only three independent antipodal symmetries exist, representation theory bounds the IR
transport sector to dimension < 3, spectral gap arguments derive (A_min) from roughness
penalties, and topology prevents new directions from emerging under refinement.

For referees: We prove that d s = 3 emerges from K = 7 closure geometry via: (1) explicit
construction of three transport generators from antipodal pairs, (2) spectral gap derivation of
minimal transport basis (G.11), (3) maximality lemma proving no fourth direction exists (G.10).
The proof is complete under K = 7 selection, local homogeneity, and refinement-preserving-cell-
type assumptions.

Appendix I: Clarifications, Assumptions, and Completion
of Key Arguments

.1 Scope of the Dimensionality Result and the Role of Local Homogeneity

The derivation of effective spatial dimension d s = 3 rests on three components:
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(1) the explicit construction of three antipodal transport generators from the K = 7 closure cell;
(2) the maximality lemma excluding a fourth independent transport direction (Appendix H.10);
(3) the spectral-gap / roughness RG argument showing that all other local transport modes are
IR-irrelevant (Appendix H.11).

The spectral analysis on the K = 7 cell rigorously establishes that all D6 irreducible
representation sectors outside 1 @ 2 possess Laplacian eigenvalues bounded below by A > 4/&2
and therefore decouple from the low-frequency sector H {<A}*E as & — 0.

This result excludes any additional IR transport directions that transform within the local D6-
symmetric operator algebra. A remaining logical possibility would be the emergence of an
additional transport direction through anisotropic gluing that locally breaks D6 symmetry while
preserving closure feasibility.

We explicitly exclude this scenario under the assumption of local homogeneity: closure-
consistent refinement is required to preserve the local symmetry type of the K = 7 cell up to
small fluctuations. Anisotropic gluing patterns capable of generating a fourth independent
transport channel would necessarily introduce persistent symmetry breaking at arbitrarily small
scales, violating the homogeneity assumption required for continuum emergence.

Accordingly, the dimensionality result should be read as:

Given K = 7 closure selection, closure-consistent refinement, and local homogeneity, the
effective spectral dimension is uniquely d s = 3.

1.2 Lorentz-Invariant Dispersion vs. Full Lorentz Covariance
This work rigorously derives Lorentz-invariant dispersion relations of the form:
E2= pzcz + m2c*

from the algebraic structure of the Dirac Hamiltonian and the squared-operator constraint H _D?
— C2p2 + m2C4.
Full Lorentz covariance — i.e., invariance of the equations under the full Lorentz group

including spinor transformation laws — requires additional structural assumptions. Specifically:

* Local isotropy of the closure graph,
* A distinguished directed tick parameter,
* Emergent identification of this parameter with the timelike direction in the continuum limit.

These assumptions are stated explicitly as consistency conditions rather than derived results. The
present paper therefore establishes Lorentz-invariant dispersion and conditional Lorentz
covariance, with a full derivation of emergent Minkowski structure deferred to the TPB/VERSF
spacetime reconstruction program.

1.3 Status of the Wilson Parameter r
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The present work derives the form of the Wilson term uniquely from closure entropy
considerations:

HWx (D G*Q P)

The dimensionless Wilson coefficient r is shown to be computable in principle from first-
principles closure entropy accounting (Appendix G), but its numerical value is not fixed within
this paper.

We therefore clarify the claim as follows:

* The Wilson term structure is derived, not imported.
* The Wilson coefficient r is calculable within the broader TPB framework.
* Determining its numerical value is deferred to a dedicated follow-up work.

This separation preserves conceptual clarity while avoiding overstatement.
1.4 Dimensional Analysis of the Wilson Term

The operator DG is defined abstractly as a dimensionless graph operator. Physical dimensions
enter only upon coarse-graining.

On a graph with characteristic spacing &, the physically meaningful operator is:
D G™{phys} =D G/¢§

which carries dimensions of inverse length. Accordingly:

(D_G"{phys})* ~ 1/

The Wilson term:

HW~hcE(D G*Q P)

should therefore be understood as:

H_W ~ hc (D_G"{phys} ) & @ p ~ hc/E @ P

This matches standard Wilson scaling and resolves any apparent dimensional ambiguity. Section
6.3 should be read with this physical identification in mind.

Summary

Appendix I clarifies the assumptions underlying the dimensionality result, sharpens the
distinction between Lorentz-invariant dispersion and full Lorentz covariance, precisely states the
status of the Wilson coefficient r, and resolves dimensional bookkeeping issues. No core results
are altered. The main conclusions of the paper remain intact and strengthened.
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