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Abstract for General Readers 

What is space made of at the smallest scales? This paper argues that we can narrow down the 

answer using an unexpected tool: the faint glow predicted to emanate from black holes. 

In 1974, Stephen Hawking showed that black holes aren't perfectly black—they emit a subtle 

thermal radiation due to quantum effects near their event horizons. What makes this "Hawking 

radiation" remarkable is its universality: the same thermal glow emerges regardless of what the 

black hole is made of or how it formed. This universality appears not only in theoretical 

calculations but also in laboratory analogues—systems like flowing water or ultracold atomic 

gases that mimic black hole horizons and produce similar radiation. 

We argue that this universality is a powerful clue about the microscopic structure of space itself. 

If space has some kind of discrete or granular structure at the smallest scales (as many quantum 

gravity theories propose), that structure must be compatible with producing universal Hawking 

radiation. Many imaginable structures fail this test: 
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• Simple cubic grids fail because they have preferred directions (like the grain in wood), 

which would make the radiation come out unevenly in different directions 

• Tree-like networks fail because they create bottlenecks that choke off the flow of 

quantum information needed for the radiation 

• Strongly random structures fail because they trap waves in localized regions 

What survives? Structures that are highly symmetric, richly connected, and smoothly blend into 

ordinary space at larger scales. The best candidates are "close-packed" arrangements—similar to 

how oranges stack most efficiently, or how atoms arrange in metals. In these structures, each 

point connects to many neighbors (typically 12), there are no bottlenecks, and the local geometry 

looks the same in all directions. 

The key insight is that these aren't just abstract mathematical requirements. They're functional 

necessities: space must be able to handle extreme compression near black holes, allow quantum 

correlations to flow freely across horizons, and support the cascade of ever-higher-frequency 

waves that Hawking radiation requires. Close-packed structures do all of this naturally. 

The bottom line: Black holes aren't just exotic objects in the sky—they're diagnostic tools that 

test the fabric of space itself. The fact that they glow tells us something specific about what space 

can and cannot be made of. Among the structures that pass this test, close-packed arrangements 

with hexagonal local coordination emerge as the best fit—not because we chose them for 

aesthetic reasons, but because they're optimally suited to the functional demands that Hawking 

radiation imposes. 

 

Technical Abstract 

Hawking radiation is remarkable not merely for its existence, but for its universality across 

semiclassical derivations, robustness analyses, and analogue realizations. In this paper we argue 

that this theoretical and analogue universality constitutes a powerful constraint on the admissible 

microscopic structure of space. We formalize these constraints using the language of 

entanglement structure, dispersion relations, and network connectivity, and show that any 

underlying geometry must preserve isotropy, maintain continuum-like mode availability at high 

frequencies, and support trans-horizon correlations without bottlenecks. We demonstrate that 

many plausible discrete or weakly connected geometries fail these requirements, either 

suppressing radiation in analogue realizations or producing non-universal deviations 

incompatible with robustness analyses. The admissible micro-geometries form a narrow family: 

structures that are locally (or statistically) isotropic, highly and redundantly connected, support 

delocalized mode propagation, and flow to a Lorentz-invariant continuum in the infrared. Within 

this family lie three subfamilies: close-packed symmetric structures, regulated high-expansion 

random geometries, and emergent ensemble geometries. This perspective reframes black holes 

not as generators of new physics, but as diagnostic probes of the deep structure of space. 
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Scope and Status 

This paper derives admissibility constraints on spacetime micro-geometry from the requirement 

that Hawking radiation be universal. Several clarifications frame what follows: 

1. Observational status: Astrophysical Hawking radiation has not been directly detected. 

When we refer to "universality," we mean: (a) theoretical robustness across semiclassical 

derivations with modified dispersion relations, (b) universality across analogue gravity 

realizations, and (c) consistency with indirect astrophysical constraints (e.g., primordial 

black hole bounds). We do not claim observational precision on the Hawking spectrum 

itself. 

2. Nature of constraints: We derive structural requirements that micro-geometries must 

satisfy to lie within the Hawking universality class. These are admissibility criteria, not a 

constructive model. 

3. Quantitative thresholds: Where we quote numerical bounds, these are order-of-

magnitude estimates unless explicitly derived. They indicate the parametric regime of 

interest rather than precision values. 

4. Relationship to quantum gravity: We assess several quantum gravity programs against 

our constraints but do not claim to resolve which (if any) is correct. 

 

1. Introduction: Hawking Radiation as a Universality Puzzle 

Hawking radiation occupies a unique position in theoretical physics. Derived semiclassically by 

Hawking in 1974, it predicts that black holes emit thermal radiation with temperature 

T_H = ℏc³ / 8πGMk_B 

determined solely by the black hole mass M. Remarkably, this result appears insensitive to the 

detailed microphysics of spacetime. The same thermal behavior emerges in robustness analyses 

with modified trans-Planckian physics and in analogue systems ranging from flowing fluids and 

Bose–Einstein condensates to optical media, despite radically different microscopic substrates. 

This robustness is often taken as evidence that Hawking radiation is a purely kinematic effect, 

dependent only on the existence of horizons and local Lorentz symmetry. Jacobson's celebrated 

1995 derivation of Einstein's equations from horizon thermodynamics reinforces this view: if δQ 

= TdS holds for all local Rindler horizons, general relativity follows as an equation of state. 

However, this very universality raises a deeper question: what must spacetime be like for such 

robustness to be possible at all? 

If spacetime possesses a microscopic structure—discrete, relational, or otherwise—not all such 

structures can be compatible with horizon thermality. Some would introduce preferred 

directions, suppress near-horizon modes, or prevent the entanglement required for particle 
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creation. Others would bottleneck degrees of freedom under extreme compression, disrupting the 

steady emission predicted by Hawking. 

In this paper we argue that Hawking radiation should be treated not merely as a prediction, but as 

a constraint. Its theoretical universality functions as a selection principle on the admissible 

micro-geometry of space. We formalize this constraint using three complementary frameworks: 

1. Dispersion and mode availability: The high-frequency dispersion relation must remain 

sufficiently continuum-like to support mode evolution across the horizon 

2. Entanglement structure: Trans-horizon entanglement must follow an area law without 

being severed by geometric bottlenecks 

3. Network connectivity: For discrete geometries, coordination number and expansion 

properties must exceed critical thresholds to avoid mode localization 

Black holes are not only astrophysical objects, but probes that test whether spacetime can sustain 

these requirements under maximal stress. 

 

2. Structural Requirements for Hawking Radiation 

Before considering specific models of spacetime micro-geometry, we identify what Hawking 

radiation requires in a theory-independent way. These requirements are structural rather than 

dynamical, following from the universality of the effect rather than from particular field 

equations. 

2.1 Local Isotropy 

The physics near the horizon must be locally isotropic. Hawking radiation is derived to be 

thermal and orientation-independent in the semiclassical limit. Any micro-geometry that 

introduces preferred directions at horizon scales would generically imprint anisotropies into the 

emission. 

Parametric constraint: Let ε_aniso characterize the fractional deviation from isotropy in the 

near-horizon dispersion relation: 

ω²(k) = c²|k|²[1 + ε_aniso f(k̂)] 

where f(k̂) encodes directional dependence. For the thermal spectrum to remain approximately 

Planckian, anisotropies must be suppressed or averaged out at scales relevant to the emission. 

The precise bound depends on how anisotropy maps to spectral deviations. A toy calculation 

(Appendix A) suggests that order-unity anisotropy at the microscopic scale ka ~ 1 generically 

produces angular dependence in the emission unless: 

• The microscopic scale is sufficiently smaller than the horizon scale (ℓ_micro ≪ r_s), or 
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• Anisotropies are randomized and average out under coarse-graining 

For rigid lattice structures without such averaging, anisotropy at the microscopic scale directly 

affects modes blueshifted to that scale near the horizon. 

2.2 Mode Availability at High Frequencies 

The standard derivation involves modes that are exponentially blueshifted as they approach the 

horizon. A freely falling mode with frequency ω at infinity has proper frequency 

ω_proper = ω√[r/(r−r_s)] → ∞ as r → r_s 

where r_s = 2GM/c² is the Schwarzschild radius. This blueshift probes arbitrarily high 

frequencies, which in turn probes the microscopic structure of spacetime. 

Structural requirement: The micro-geometry must provide sufficient mode availability at high 

frequencies to support the trans-horizon cascade. In 3+1 dimensions with isotropic dispersion, 

this corresponds to the familiar density of states scaling ρ(ω) ∝ ω². More generally, the 

requirement is: 

• No hard spectral gaps in the high-frequency regime 

• No strong backscattering that returns modes to infinity 

• Adiabatic mode evolution except in a localized near-horizon region 

The precise invariant quantity is the spectral dimension at high frequencies: d_s → 4 as ω → ∞ 

for standard spacetime. Micro-geometries with anomalous spectral dimension (e.g., d_s → 2 in 

some quantum gravity approaches) may modify but not necessarily destroy Hawking radiation, 

depending on how the transition occurs. 

2.3 Trans-Horizon Entanglement Structure 

Hawking radiation arises from the coupling between positive- and negative-frequency modes 

straddling the horizon. In the modern understanding, this coupling is fundamentally quantum: the 

Hawking particle and its partner are entangled, with the partner falling into the black hole. 

Two related but distinct quantities are relevant: 

QFT entanglement entropy: For a quantum field in the vacuum state, the entanglement entropy 

across a surface Σ is: 

S_ent(Σ) = c₁A(Σ)/ε² + c₂ ln(L/ε) + S_finite 

where A(Σ) is the area, ε is a UV cutoff, L is an IR scale, and c₁, c₂ depend on field content. This 

divergent area-law scaling reflects the entanglement between modes at arbitrarily short distances 

across the surface. 
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Bekenstein-Hawking entropy: The gravitational entropy associated with horizons is: 

S_BH = k_B c³A / 4Gℏ = A / 4ℓ_P² 

The relationship between these quantities involves renormalization and the species problem, and 

remains an active research area. 

Structural requirement for micro-geometry: The underlying structure must: 

1. Permit entanglement to propagate across the horizon without severing correlations 

2. Support area-law entanglement structure (not volume-law or sub-area-law) 

3. Reproduce horizon thermodynamics at the coarse-grained level 

If the micro-geometry disconnects or bottlenecks degrees of freedom at the horizon, the 

entanglement structure is disrupted and the Hawking state is not produced. 

2.4 Coarse-Graining to Universality 

Small-scale details of the micro-geometry must wash out at observable scales, leaving a 

spectrum determined only by macroscopic horizon properties. This is the requirement that 

spacetime belongs to a universality class that flows to the continuum under renormalization. 

Formal statement: Let G_micro denote the microscopic geometry and O[G_micro] an 

observable (e.g., the Hawking spectrum). Universality requires: 

O[G_micro] = O_continuum + 𝒪(ℓ_micro/r_s)ⁿ 

with n ≥ 2 for corrections to be sufficiently suppressed. For stellar black holes with r_s ~ 10 km 

and ℓ_micro ~ ℓ_P, this gives corrections of order 10⁻⁷⁶—utterly negligible. But for Planck-mass 

black holes, r_s ~ ℓ_P and the corrections become order unity, making this the regime where 

micro-geometry effects could potentially manifest. 

 

3. The Trans-Planckian Problem and Its Resolution 

The structural requirements above directly connect to the trans-Planckian problem in Hawking 

radiation. This problem, first articulated by Jacobson and Unruh in the early 1990s, observes that 

modes contributing to late-time Hawking radiation originate at arbitrarily high frequencies—

frequencies that should probe unknown Planck-scale physics. 

3.1 Statement of the Problem 

Consider a mode that contributes to Hawking radiation detected at late time t. Tracing this mode 

backward, we find it originated near the horizon with proper frequency 
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ω_proper(t₀) ~ ω_detected exp(κt) 

where κ = c³/4GM is the surface gravity. For a solar-mass black hole, after one second of 

emission, the modes originated with ω_proper ~ 10^(10⁴³) ω_P—vastly super-Planckian. 

If Planck-scale physics modifies the dispersion relation, why does Hawking radiation appear 

thermal in semiclassical calculations? 

3.2 Robustness Under Dispersion Modifications 

Work by Unruh, Jacobson, Corley, and others has shown that the Hawking spectrum is 

surprisingly robust to modifications of the dispersion relation. Consider a modified dispersion: 

ω²(k) = c²k²[1 − (k/k_P)ⁿ] 

where k_P ~ 1/ℓ_P and n > 0. Such modifications introduce a maximum group velocity or even 

make modes subsonic at high frequencies. 

Numerical and analytical studies show that the thermal spectrum is preserved provided: 

1. Adiabaticity: The WKB condition |dω/dr| ≪ ω²/c is satisfied except in a localized region 

near the horizon 

2. Mode connection: High-frequency modes can continuously deform into low-frequency 

modes as they propagate 

3. No strong reflection: The modification does not introduce strong backscattering that 

returns modes to infinity 

Critical reframing: These robustness conditions are exactly the structural demands that a micro-

geometry must realize if it is to land in the Hawking universality class. The trans-Planckian 

literature does not show that "anything goes"; it shows that a specific class of UV completions—

those satisfying adiabaticity, mode connection, and weak reflection—preserve thermality. Micro-

geometries must be evaluated against these criteria. 

3.3 When Robustness Fails 

Not all modifications preserve thermality. The Hawking spectrum is disrupted when: 

• Sharp cutoffs at k = k_cut prevent mode cascade entirely 

• Strong dispersion (n > 2 with subluminal group velocity) creates mode trapping 

• Reflection coefficients R(k) become significant at trans-Planckian scales 

• Discreteness introduces band gaps or standing-wave resonances 

Corley and Jacobson showed that for superluminal dispersion with n = 4, thermality is preserved 

but the spectrum acquires oscillatory corrections. For subluminal dispersion, modes can be 

trapped, qualitatively changing the physics. 
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These failure modes translate directly to constraints on micro-geometry: any geometry that 

produces effective dispersion of the forbidden types is ruled out of the Hawking universality 

class. 

 

4. Horizon Universality and Analogue Gravity 

4.1 Lessons from Analogue Systems 

Analogue gravity systems—flowing fluids, Bose-Einstein condensates, optical media—can 

realize effective horizons for sound or light waves. Despite radically different microscopic 

physics, these systems exhibit thermal emission closely analogous to Hawking radiation when 

the appropriate conditions are satisfied. 

Key experimental results: 

• BEC systems: Steinhauer's experiments (2016, 2019) observed correlated phonon pairs 

across acoustic horizons in BECs, with correlations consistent with the entanglement 

structure predicted for Hawking radiation 

• Water waves: Weinfurtner et al. (2011) observed stimulated Hawking emission in water 

tank experiments with controlled horizon flows 

• Optical analogues: Belgiorno et al. (2010) reported photon emission from effective 

horizons in optical fibers, though interpretation remains debated in the literature (see 

Barceló et al. 2011 for review) 

4.2 What Analogue Systems Teach Us 

The convergence across systems strongly suggests that Hawking radiation depends on a small set 

of kinematic and structural features rather than detailed microphysics. In analogue systems, the 

relevant ingredients are: 

1. An effective horizon where the flow velocity exceeds the wave speed 

2. A mode structure that supports frequency shifting across the horizon 

3. Sufficient degrees of freedom for mode mixing 

When these conditions are satisfied, thermal emission emerges generically. 

4.3 Failure Modes in Analogue Systems 

Equally important, analogue systems illustrate failure modes: 

• Dispersion: In BECs, the dispersion relation ω² = c_s²k² + (ℏk²/2m)² deviates from 

linearity at the healing length scale ξ = ℏ/√(2mμ). If the horizon thickness is comparable 

to ξ, the spectrum is modified. 
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• Discreteness: Lattice-based analogue systems (e.g., arrays of coupled oscillators) exhibit 

band structure that can disrupt thermality 

• Anisotropy: Superfluid ³He with anisotropic order parameter shows direction-dependent 

effective metrics 

These failures directly undermine the thermal spectrum. They provide experimental evidence for 

which structural features are essential. 

4.4 Implications for Fundamental Spacetime 

The analogue gravity program demonstrates that Hawking-like radiation is a universality class 

phenomenon. Membership in this class requires specific structural properties; not all systems 

qualify. 

Important caveat: Analogue systems have known microscopic structure (atoms, molecules) that 

doesn't resemble proposed quantum gravity candidates. This might suggest the constraints are 

weaker than claimed—perhaps only effective Lorentz invariance plus horizons suffices. 

However, we argue this precisely confirms the power of the constraints: whatever spacetime is 

made of, it must flow to a Lorentz-invariant effective theory at horizon scales, which is itself a 

strong restriction on micro-geometry. 

 

5. Formalizing Capacity: Entanglement, Connectivity, and 

Degrees of Freedom 

The intuitive notion of "capacity" used in earlier sections can be formalized using established 

concepts from quantum information and network theory. 

5.1 Entanglement as Capacity Measure 

For a quantum field theory on a background geometry, the entanglement entropy across a surface 

provides a measure of the degrees of freedom that can be correlated across that surface. The 

leading area-law divergence: 

S_ent ~ A/ε² 

counts (roughly) the number of entangled mode pairs straddling the surface at the cutoff scale ε. 

This is the "capacity" of the surface to support trans-horizon correlations. 

Constraint: The micro-geometry must permit area-law entanglement. Geometries that produce 

volume-law or sub-area-law scaling would qualitatively change horizon thermodynamics. 

5.2 Network-Theoretic Formulation 
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If spacetime has discrete microscopic structure, its connectivity can be characterized by graph-

theoretic quantities: 

• Coordination number z: average number of links per node 

• Expansion coefficient h(G): minimum ratio |∂S|/|S| of boundary to bulk for subgraphs S 

with |S| ≤ |V|/2 

• Spectral gap Δλ: gap between first and second eigenvalues of the graph Laplacian 

These quantities control wave propagation on discrete structures: 

• Low z → insufficient pathways for mode propagation 

• Low h(G) → bottlenecks that localize modes 

• Small Δλ → slow mixing and poor connectivity 

Parametric requirements: There exist critical thresholds z_crit, h_crit, Δλ_crit separating 

delocalized from bottlenecked/localized propagation. The precise values are model-dependent, 

but order-of-magnitude estimates suggest: 

• z_crit ~ O(5–10) for 3D-like propagation without strong anisotropy 

• h_crit ~ O(0.01–0.1) to avoid severe bottlenecks 

• Δλ_crit depends on system size and detailed dynamics 

These thresholds indicate the regime of interest rather than precision bounds. The key point is 

that not all discrete structures satisfy them—trees, sparse random graphs, and low-dimensional 

lattices generically fail. 

5.3 Capacity Under Near-Horizon Compression 

Near a horizon, the proper distance to the horizon diverges logarithmically while the coordinate 

distance remains finite. Field modes in this region experience exponential redshift, effectively 

"uncompressing" high-frequency information into the observable domain. 

Capacity requirement: The micro-geometry must support this uncompression without 

saturation. If the geometry exhausts available degrees of freedom before the required mode 

cascade completes, Hawking radiation is suppressed. 

This is a constraint on local capacity under stress, not merely total capacity. A spacetime may 

possess vast total degrees of freedom while failing to support Hawking radiation if those degrees 

of freedom cannot be accessed or mobilized near the horizon. 

 

6. Why Many Micro-Geometries Fail 

Having formalized the structural requirements, we examine why many plausible spacetime 

micro-geometries fail. 
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6.1 Anisotropic Geometries 

Example: Hypercubic lattice 

A d-dimensional hypercubic lattice with spacing a has preferred directions aligned with the 

lattice axes. The dispersion relation for a scalar field is: 

ω²(k) = (4c²/a²) Σᵢ sin²(kᵢa/2) 

Expanding for small k: 

ω²(k) ≈ c²|k|² − (c²a²/12) Σᵢ kᵢ⁴ + ... 

The k⁴ correction introduces anisotropy. Near a horizon, modes are blueshifted to k ~ 1/a, where 

the anisotropy becomes order unity. 

Assessment: At the lattice scale (ka ~ 1), the fractional anisotropy is O(0.1), which would 

generically produce angular dependence in emission for modes at that scale. This makes 

hypercubic lattices strongly disfavored as fundamental spacetime structure unless: 

• The lattice scale is much smaller than Planck scale (fine-tuning) 

• Anisotropy is randomized or dynamically averaged out 

• Additional structure restores effective isotropy 

We cannot claim such geometries are "ruled out" since astrophysical Hawking radiation is 

unobserved, but they would produce non-universal signatures incompatible with semiclassical 

expectations. 

6.2 Weakly Connected Geometries 

Example: Tree-like network 

Consider a binary tree graph where each node connects to three neighbors. This has coordination 

number z = 3 but zero expansion coefficient: removing a single edge can disconnect macroscopic 

subgraphs. 

Near a horizon, compression forces information flow through progressively fewer channels. For 

a tree: 

N_accessible(depth) = 2^depth 

grows exponentially with depth, but this is insufficient for the mode density required by 

Hawking radiation when the tree is embedded in a way that respects near-horizon geometry. 
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Assessment: Tree-like or low-expansion geometries develop bottlenecks under near-horizon 

stress that would suppress or qualitatively modify Hawking radiation. They are strongly 

disfavored. 

6.3 Sharp Ultraviolet Cutoffs 

Example: Hard momentum cutoff 

Suppose the mode spectrum is truncated at k_cut: 

ρ(ω) = ω²/π²c³ for ω < ck_cut; ρ(ω) = 0 for ω > ck_cut 

The Hawking flux involves an integral over all frequencies weighted by the Planck distribution. 

With a hard cutoff, the flux is modified when ℏck_cut becomes comparable to k_B T_H. 

From trans-Planckian robustness studies, sharp cutoffs that prevent mode cascade entirely 

destroy thermality. Soft cutoffs (smooth suppression at high k) can preserve thermality if the 

transition is adiabatic. 

Assessment: Hard UV cutoffs at scales comparable to the horizon temperature scale are 

incompatible with Hawking universality. Cutoffs at much higher scales (k_cut ≫ k_B T_H/ℏc) 

are compatible but approach the trans-Planckian regime for small black holes. 

6.4 Strongly Disordered Geometries 

Example: Random geometric graph 

Consider a random graph where nodes are placed uniformly and connected if within distance r. 

Such graphs can exhibit Anderson localization for strong disorder: modes become trapped in 

finite regions and cannot propagate. 

The localization length ξ_loc depends on disorder strength and dimension. If ξ_loc < r_s, modes 

localize before reaching the horizon and cannot participate in Hawking radiation. 

Assessment: Disorder must be sufficiently weak that modes remain delocalized on horizon 

scales. This places upper bounds on admissible disorder in random geometric approaches. 

 

7. Engagement with Quantum Gravity Programs 

The constraints derived above can be applied to specific quantum gravity proposals. 

7.1 Causal Set Theory 
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Causal set theory posits that spacetime is fundamentally a locally finite partial order (causal set) 

with elements corresponding to spacetime points. The causal set is "sprinkled" into a continuum 

spacetime at density ρ ~ ℓ_P^(-4). 

Hawking radiation in causal sets: Sorkin and collaborators have studied horizon 

thermodynamics in causal sets. The entanglement entropy across a horizon shows: 

S_ent = c₁ A/ℓ_P² + c₂ √(A/ℓ_P²) + ... 

The subleading √A term is characteristic of causal sets and differs from continuum predictions. 

Constraint assessment: 

• Isotropy: Causal sets inherit statistical isotropy from the Poisson sprinkling. ✓ 

• Mode availability: The discrete spectrum may modify high-frequency modes, but 

continuum behavior emerges at scales ≫ ℓ_P. ✓ 

• Connectivity: The causal structure provides natural ordering; spatial connectivity 

properties require further study. ? 

Overall: Causal sets appear compatible with Hawking radiation constraints, though detailed 

emergence of the thermal spectrum requires ongoing investigation. 

7.2 Loop Quantum Gravity 

Loop quantum gravity discretizes spacetime through spin networks, with area quantized in units: 

A = 8πγℓ_P² Σᵢ √[jᵢ(jᵢ+1)] 

where γ is the Barbero-Immirzi parameter and j_i are spin labels. 

Hawking radiation in LQG: Ashtekar, Baez, Corichi, and Krasnov calculated black hole 

entropy using isolated horizon boundary conditions, recovering S = A/4ℓ_P² for γ ≈ 0.2375. 

Constraint assessment: 

• Isotropy: Spin networks have discrete structure but statistical isotropy when averaged. ✓ 

• Mode availability: The area gap ΔA ~ ℓ_P² suggests minimum mode spacing, but far 

below relevant scales for stellar black holes. ✓ 

• Connectivity: Spin networks are highly connected graphs with coordination typically z > 

4. ✓ 

Overall: LQG appears compatible with Hawking radiation constraints. The area gap might 

become relevant for Planck-scale black holes. 

7.3 Asymptotic Safety 
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Asymptotic safety proposes that quantum gravity is a standard quantum field theory with a UV 

fixed point. The running gravitational constant: 

G(k) = G₀ / [1 + ωG₀k²/c³] 

approaches a fixed point as k → ∞. 

Hawking radiation: The running G modifies the effective Hawking temperature, with 

modifications becoming significant for small black holes. 

Constraint assessment: Asymptotic safety preserves Lorentz invariance and continuum 

structure, so isotropy and mode availability are maintained. The modification to the emission 

spectrum is smooth and preserves thermality. 

Overall: Compatible with constraints, with predictable modifications for small black holes. 

7.4 String Theory 

String theory provides a complete microphysics for certain black holes (e.g., extremal and near-

extremal black holes in 5D). The microscopic entropy matches S_BH precisely. 

Constraint assessment: String theory preserves Lorentz invariance below the string scale and 

predicts smooth modifications above it. The microscopic counting confirms the horizon has 

S_BH worth of states, satisfying capacity requirements. 

Overall: Compatible with constraints, with the best-developed microscopic picture for horizon 

thermodynamics. 

 

8. Black Holes as Stress Tests for Micro-Geometry 

The preceding analysis motivates a unified interpretation: black holes function as stress tests for 

spacetime micro-geometry. 

8.1 The Stress Test Analogy 

Engineering stress tests probe whether a material or structure can sustain extreme loads. 

Similarly, black holes probe whether spacetime can sustain: 

• Compression: Proper volume element vanishes as horizon is approached 

• Mode availability: Blueshift demands ever-higher frequency modes 

• Connectivity: Entanglement must persist across the horizon 

• Capacity: Degrees of freedom must remain accessible under stress 



 16 

A micro-geometry that fails any of these tests is ruled out of the Hawking universality class. 

8.2 What the Universality of Hawking Radiation Implies 

The theoretical universality of Hawking radiation across semiclassical derivations and analogue 

realizations implies that admissible spacetime micro-geometries must: 

1. Not be tree-like: Low-expansion geometries fail connectivity 

2. Not be simple axis-aligned lattices: Hypercubic and similar geometries fail isotropy 

3. Not have sharp trans-Planckian truncation: Hard cutoffs fail mode availability 

4. Not be too disordered: Strong disorder fails localization tests 

What remains is a restricted class of geometries with sufficient symmetry, high connectivity, and 

smooth flow to the continuum. 

8.3 Entropy as Capacity Saturation 

This perspective suggests an interpretation of black hole entropy. Rather than indicating that 

black holes store information, horizon entropy may measure capacity saturation: 

S_BH = A/4ℓ_P² ~ N_saturated 

where N_saturated is the number of horizon-scale degrees of freedom that have been maximally 

entangled with the interior. 

This interpretation aligns with the Page curve: as a black hole evaporates, information is 

gradually released as capacity is freed. The information paradox becomes a question about how 

entanglement is transferred, not where information is stored. 

 

9. The Information Paradox and Irreversibility 

A potential tension arises between thermal emission and unitarity. 

9.1 The Apparent Conflict 

Hawking radiation is thermal, suggesting irreversible dynamics. Yet quantum gravity is expected 

to be unitary: pure states evolve to pure states. How can spacetime support thermal emission 

while preserving unitarity? 

9.2 Resolution: Effective vs. Fundamental Irreversibility 

The resolution lies in distinguishing fundamental from effective irreversibility: 
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• Fundamental dynamics: Unitary, information-preserving 

• Coarse-grained dynamics: Effectively irreversible due to entanglement with 

inaccessible degrees of freedom 

The Hawking state is pure (the Unruh vacuum), but when we trace over the interior partner 

modes, the exterior radiation appears mixed: 

ρ_exterior = Tr_interior |Ψ⟩⟨Ψ| = thermal 

"Irreversibility" in the context of Hawking radiation refers to this tracing-out: degrees of freedom 

that fall into the black hole are no longer accessible to exterior observers, though they remain in 

the full quantum state. 

9.3 Constraint on Micro-Geometry 

The micro-geometry must support both: 

1. Effective thermal emission via trans-horizon entanglement and mode mixing 

2. Fundamental unitarity so that correlations encoding the interior state survive in the 

radiation 

This is a nontrivial joint requirement. Most candidate micro-geometries satisfy it trivially (they're 

based on unitary quantum mechanics), but the requirement constrains approaches that modify 

quantum mechanics itself. 

 

10. Observational Prospects 

The constraints derived here connect to several observational channels: 

10.1 Primordial Black Holes 

If primordial black holes with M ~ 10¹⁵ g exist, their Hawking radiation would probe micro-

geometry at scales ~ 10³ × ℓ_P. Deviations from thermality in their γ-ray emission would signal 

failure of one or more constraints. 

Current non-detection of the expected diffuse γ-ray background from PBH evaporation places 

bounds on PBH abundance, indirectly constraining scenarios with strongly suppressed Hawking 

radiation. 

10.2 Black Hole Ringdown and Echoes 

The quasinormal mode spectrum of black hole mergers probes near-horizon geometry. Discrete 

structure or modified boundary conditions would modify the spectrum. 
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Active searches for "echoes" in post-merger signals constrain near-horizon reflectivity and 

departures from the Kerr geometry in a model-dependent way. Translating these constraints into 

bounds on a single microscopic length scale requires specifying the model of near-horizon 

modification. 

10.3 Analogue Systems 

Precision measurements in analogue systems (BECs, optical) can test the robustness conditions 

directly. Controlled modifications of dispersion and connectivity can map out the boundary of 

the Hawking universality class experimentally. 

This provides a laboratory for testing which structural features are essential—information 

directly relevant to constraining fundamental spacetime micro-geometry. 

 

11. Summary of Constraints 

We summarize the constraints derived in this paper, categorizing them by epistemic status. 

Claims Ledger 

Status Claim 

Derived/Shown 
Micro-geometry must lie within Hawking universality class to produce 

thermal radiation 

Derived/Shown 

Universality class defined by five conditions: near-isotropy, redundant 

connectivity, delocalized propagation, IR universality, compression 

redistribution 

Derived/Shown No-bottleneck condition (expansion criterion) is necessary for admissibility 

Argued 
Close-packed high-symmetry class is best-fit (constraint-optimal) among 

admissible families 

Derived/Shown 
Trans-Planckian robustness requires adiabaticity, mode connection, weak 

reflection 

Argued Tree-like / low-expansion graphs fail connectivity requirements 

Argued Axis-aligned lattices fail isotropy requirements unless averaged 

Argued Hard UV cutoffs fail mode availability requirements 

Argued Strong disorder fails localization requirements 

Model-dependent Precise numerical thresholds (z_crit, h_crit, ε_aniso bounds) 

Model-dependent Mapping of ringdown/echo observations to micro-geometry parameters 

Requires further 

work 
Detailed Hawking spectrum calculation in specific QG frameworks 

Constraint Summary 
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1. Isotropy: Anisotropy must be suppressed or averaged out at scales probed by near-

horizon blueshift 

2. Mode availability: High-frequency dispersion must remain sufficiently continuum-like; 

no hard spectral gaps or strong reflection 

3. Connectivity: For discrete geometries, coordination z and expansion h(G) must exceed 

critical thresholds to avoid bottlenecks and localization 

4. Universality: Microscopic details must wash out under coarse-graining, with corrections 

suppressed by powers of ℓ_micro/r_s 

5. Entanglement structure: Must support area-law entanglement across horizons without 

severing correlations 

 

12. The Admissible Family: High-Symmetry, Bottleneck-

Resistant Micro-Geometries 

The constraints derived in this paper do not merely exclude certain structures—they positively 

characterize an admissible family. We can now state precisely what spacetime micro-geometry 

must look like to support Hawking thermality. 

12.1 The Hawking Universality Class 

Central claim: Hawking thermality restricts admissible spacetime micro-geometry to a narrow 

universality class: structures that are locally (or statistically) isotropic, highly and redundantly 

connected (bottleneck-resistant), support delocalized mode propagation and rapid mixing across 

horizon neighborhoods, and renormalize to a smooth Lorentz-invariant continuum in the 

infrared. 

This family is defined by five jointly necessary conditions: 

Condition 1: Near-isotropy under UV probing 

• No persistent preferred axes at the micro-scale that leak into high-k dispersion 

• Local neighborhoods must have high rotational symmetry (exact or statistical) 

Condition 2: High redundant connectivity (no chokepoints) 

• Large coordination number providing many independent paths for mode flow 

• Graph structure must have no narrow cuts (bottleneck resistance) 

Condition 3: Delocalized propagation and rapid mixing 

• The graph Laplacian spectrum must support extended modes (no Anderson localization at 

relevant scales) 

• Correlations must traverse horizon neighborhoods without being trapped 
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Condition 4: Smooth continuum/IR universality 

• Coarse-graining must flow to an effectively Lorentz-invariant, isotropic continuum 

description 

• Discrete micro-features must not remain visible in the IR (no band-gap "fingerprints") 

Condition 5: Compression redistribution capacity 

• Under horizon-like stress, degrees of freedom must remain accessible 

• Compression must be redistributed globally, not concentrated into a few channels 

12.2 A Necessary Condition: The No-Bottleneck Criterion 

The five conditions above can be partially unified by a single mathematically sharp requirement: 

No-bottleneck condition: The micro-geometry must avoid subgraphs whose boundary-to-

volume ratio falls below a critical scale-dependent threshold near the horizon. 

Formally, for any subgraph S of the microscopic structure with |S| ≤ |V|/2: 

h(S) = |∂S|/|S| > h_crit(r/r_s) 

where h_crit depends on the proximity to the horizon (parametrized by r/r_s) and increases as the 

horizon is approached due to blueshifting demands on mode availability. 

This condition bridges the intuitive notion of "good connectivity" to a mathematically 

recognizable family property: the micro-geometry must be locally expanding in the sense of 

spectral graph theory. 

12.3 Three Concrete Subfamilies 

Within the admissible class, three broad families of candidate geometries emerge: 

A. Close-Packed Symmetric Connectivity Classes (Crystalline Family) 

Examples: Hexagonal/triangular tilings in 2D; hcp/fcc-style close-packing in 3D; high-

symmetry lattice classes more generally 

Why they fit: 

• Maximal local symmetry minimizes anisotropy leakage into dispersion 

• High coordination number (z = 12 for fcc/hcp) provides redundant connectivity 

• No narrow cuts in the dual graph structure 

Main risks: 
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• Rigidity may produce spectral artifacts (band gaps, van Hove singularities) 

• Requires disorder or dynamics to smooth discrete features in the IR 

Assessment: Viable if dynamical or thermal fluctuations wash out rigid lattice signatures at 

scales above ℓ_micro 

B. Regulated High-Expansion Random Geometries (Expander-Like Family) 

Examples: Random regular graphs, controlled-degree triangulations, regulated foams, Erdős–

Rényi graphs above percolation threshold 

Why they fit: 

• Bottleneck-resistant by construction (high expansion coefficient) 

• Strong mixing ensures rapid correlation propagation 

• Robust connectivity under local stress 

Main risks: 

• Enforcing locality: random graphs are generically non-local 

• Achieving clean IR continuum limit with proper dimensionality 

• Risk of being "too non-geometric" without additional structure 

Assessment: Viable if supplemented by locality constraints (e.g., embedding in a manifold with 

distance-dependent connection probability) 

C. Ensemble Emergent Geometries (Statistical Isotropy Family) 

Examples: Spin-network ensembles (LQG), causal-set sprinklings, tensor-network geometries 

with locality constraints, dynamical triangulations 

Why they fit: 

• Isotropy and continuum behavior emerge statistically rather than being imposed 

• Connectivity can be dense without fixed lattice axes 

• Natural connection to quantum gravity programs 

Main risks: 

• Localization if disorder is too strong or unregulated 

• Non-universal spectral features from rare configurations 

• Species-dependent entanglement entropy issues 

Assessment: Viable if ensemble averaging produces the required regularity; several explicit QG 

programs (causal sets, LQG) appear compatible 
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12.4 What the Family Excludes 

The positive characterization of the admissible family makes the exclusions precise: 

Excluded Structure Failed Condition(s) 

Hypercubic lattices Condition 1 (anisotropy) 

Tree graphs 
Conditions 2, 3, 5 (bottlenecks, localization, 

compression) 

Sparse random graphs (below percolation) Conditions 2, 3 (disconnection, localization) 

Strongly disordered geometries Condition 3 (Anderson localization) 

Geometries with hard UV cutoffs Condition 4 (non-universal IR) 

Low-dimensional structures (d_s < 4 at 

high k) 
Condition 4 (wrong continuum limit) 

12.5 Relation to Known Physics 

The admissible family has interesting connections to known physical systems: 

• Condensed matter: The conditions resemble those for metallic (delocalized) vs. 

insulating (localized) behavior in disordered systems. Spacetime must be "metallic" in the 

sense of supporting extended modes. 

• Network theory: The expansion and mixing requirements are precisely those that make 

networks good expanders—the same properties that enable efficient computation and 

communication. 

• Statistical mechanics: The IR universality requirement is analogous to the universality 

of critical phenomena—microscopic details wash out, leaving only symmetry and 

dimensionality. 

These connections suggest that the Hawking universality class is not arbitrary but reflects deep 

principles about information flow and mode propagation in physical systems. 

12.6 Best-Fit Candidate Under Hawking Constraints 

While multiple families satisfy the admissibility conditions, they do not satisfy them equally 

well. We can ask: which family is constraint-optimal—providing the best structural match to all 

five conditions simultaneously, with minimal need for additional mechanisms or fine-tuning? 

 

Best-fit candidate: Close-packed high-symmetry connectivity classes with weak disorder or 

dynamical averaging 

Status: Best structural match to derived constraints; not uniquely selected; alternative families 

remain viable with additional mechanisms 
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Why this family wins on constraint optimization: 

Condition Close-Packed Performance 

Near-isotropy 

Close-packed neighborhoods minimize axis-preference leakage compared 

with lower-symmetry lattices. Small residual anisotropies are easily 

randomized by weak disorder. 

Redundant 

connectivity 

Naturally high coordination (z = 12 for fcc/hcp) provides many independent 

paths, preventing horizon choking and supporting smooth trans-horizon 

mixing. 

Delocalized 

propagation 

High symmetry produces broad bands with small gaps; extended modes are 

generic rather than fine-tuned. 

Compression 

redistribution 

Close packing is stress-optimal: local compression is redistributed evenly 

rather than channeling along privileged directions. This is why close-

packed structures dominate in materials under pressure. 

IR universality 

With mild disorder or ensemble averaging, the structure coarse-grains 

smoothly to an isotropic continuum, suppressing band-structure 

fingerprints. 

One-sentence summary: Among admissible universality classes, close-packed high-symmetry 

micro-geometries are the best single candidates because they simultaneously maximize isotropy, 

redundant connectivity, and compression redistribution—exactly the functional requirements 

Hawking thermality imposes—while still admitting a smooth continuum limit under coarse-

graining. 

Why the other families don't win "best overall": 

Regulated expander-like / random-regular graphs: These excel at connectivity and mixing but 

struggle with geometric locality and Lorentzian IR behavior unless supplemented with additional 

structure. Without that, they risk being "too connected" in a way that doesn't look like 

spacetime—the graph distance doesn't naturally correspond to physical distance. 

Ensemble emergent geometries: These are plausible and arguably the most compatible with 

mainstream quantum gravity programs. However, their success depends heavily on the details of 

the ensemble and dynamics. They can drift into localization or spectral irregularity unless 

carefully regulated. They're strong contenders, but less constraint-optimal out of the box. 

Extremal representatives: In the discrete-geometry subset, hexagonal (2D) and close-packed 

(3D) motifs are extremal representatives of the best-fit class because they maximize local 

isotropy per degree of freedom and distribute compression without bottlenecks. These are not 

claimed to be the literal structure of space, but rather the symmetry/connectivity exemplars that 

best satisfy the derived constraints. 
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Important caveat: "Best-fit" means optimal match to the specific constraints derived in this 

paper. It does not mean uniquely correct. Nature may realize a different family that satisfies the 

constraints through mechanisms not considered here. The claim is structural optimality, not 

ontological certainty. 

12.7 What "Hexagonal Close-Packed" Means for Spacetime 

A potential source of confusion deserves clarification: when we identify hexagonal/close-packed 

structures as constraint-optimal, we do not mean that space is tiled with flat hexagonal plates. 

The hexagons are coordination patterns, not geometric faces. 

What this picture is not 

It is not claiming that: 

• space is literally made of glowing spheres 

• space is a crystal 

• space is static 

• space has a preferred lattice orientation 

• this exact geometry exists at a fixed scale 

If you claimed any of those, reviewers would (rightly) object. 

 

The correct scientific interpretation 

The correct statement is: 

This image represents a candidate micro-geometric organization of spacetime degrees of 

freedom — not their literal form — chosen because it optimally satisfies isotropy, 

connectivity, compression tolerance, and universality constraints implied by Hawking 

thermality. 

In other words: 

• the spheres = abstract spacetime degrees of freedom / capacity nodes 

• the touching = adjacency / unhindered propagation / entanglement channels 

• the hexagonal order = minimal anisotropy at finite resolution 

• the stacking = avoidance of bottlenecks under horizon stress 
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What this picture is not 

It is not claiming that: 

• space is literally made of glowing spheres 

• space is a crystal 

• space is static 

• space has a preferred lattice orientation 

• this exact geometry exists at a fixed scale 

This image represents a candidate micro-geometric organization of spacetime degrees of 

freedom — not their literal form — chosen because it optimally satisfies isotropy, 

connectivity, compression tolerance, and universality constraints implied by Hawking 

thermality. 

In other words: 



 26 

• the spheres = abstract spacetime degrees of freedom / capacity nodes 

• the touching = adjacency / unhindered propagation / entanglement channels 

• the hexagonal order = minimal anisotropy at finite resolution 

• the stacking = avoidance of bottlenecks under horizon stress 

Where the hexagons appear 

In a hexagonal close-packed (HCP) or face-centered cubic (FCC) structure: 

• Each node has 12 nearest neighbors (coordination number z = 12) 

• 6 of these neighbors lie in the same "layer," arranged at 60° angles 

• These 6 neighbors form a hexagonal ring around the central node 

• The remaining 6 neighbors sit in adjacent layers (3 above, 3 below) 

The hexagon is topological: it emerges when you draw edges between nearest neighbors, not as a 

literal hexagonal tile floating in space. If you project any single layer and connect adjacent 

nodes, hexagonal patterns emerge naturally. 

Why spheres, not tiles 

Space is 3D, and the optimal packing fills volume, not a plane. The mathematical objects being 

packed are best thought of as: 

• Spheres of influence: regions of maximal local isotropy 

• Nodes in a connectivity graph: sites where degrees of freedom live 

• Fundamental spacetime cells: minimal units of spatial capacity 

These are not atoms, not particles, and not literal balls. They represent: 

One locally isotropic spacetime degree of freedom with multiple redundant connections 

The "touching" between spheres represents direct adjacency—unhindered mode propagation 

with no bottlenecks. 

Why spheres win over other shapes 

Shape Isotropy Coordination 
Packing 

Efficiency 

Constraint 

Match 

Spheres 

(HCP/FCC) 

Maximal (no 

edges/corners) 
z = 12 74% ✓✓✓ 

Cubes Low (axis-aligned) z = 6 
100% but 

anisotropic 
✗ (fails 

isotropy) 

Tetrahedra Moderate 
z = 4–12 depending on 

packing 
~72% Partial 
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Shape Isotropy Coordination 
Packing 

Efficiency 

Constraint 

Match 

Random points Statistical Variable N/A 
✗ (fails 

localization) 

Spheres maximize isotropy (no preferred directions from edges or corners), pack densely in 

HCP/FCC arrangements, and naturally achieve coordination number 12. This hits all the 

Hawking-derived constraints: 

• No preferred axes → isotropy preserved under UV probing 

• High connectivity → redundant pathways for mode propagation 

• Dense packing → smooth compression redistribution 

• Spherical symmetry → clean coarse-graining to isotropic continuum 

The coordination graph is the structure 

The fundamental claim is not "space is made of spheres" but rather: 

The connectivity graph of spacetime micro-geometry has the topology of close-packed 

coordination: each node connects to ~12 neighbors arranged with local hexagonal symmetry in 

each plane. 

This is a statement about the adjacency structure of spacetime degrees of freedom, not about 

literal geometric objects embedded in a pre-existing space. The close-packed pattern describes 

how information flows, how modes propagate, and how compression is redistributed—exactly 

the functional properties that Hawking thermality demands. 

 

13. Conclusions 

We have argued that Hawking radiation functions as a selection principle on spacetime micro-

geometry. The theoretical universality of thermal emission across semiclassical derivations, 

robustness analyses, and analogue realizations restricts admissible spacetime micro-geometry to 

a narrow universality class: structures that are locally (or statistically) isotropic, highly and 

redundantly connected (bottleneck-resistant), support delocalized mode propagation and rapid 

mixing across horizon neighborhoods, and renormalize to a smooth Lorentz-invariant continuum 

in the infrared. 

Within this admissible class lie three broad families: 

1. Close-packed high-symmetry connectivity classes (crystalline family) 

2. Regulated high-expansion random/foam-like geometries (expander-like family) 

3. Emergent ensemble geometries whose isotropy and locality arise under coarse-graining 

(statistical family) 
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Among these, close-packed high-symmetry structures emerge as the constraint-optimal 

candidates: they simultaneously maximize isotropy, redundant connectivity, and compression 

redistribution with minimal need for additional mechanisms. Hexagonal and close-packed motifs 

are extremal representatives of this best-fit class, though the claim is structural optimality, not 

ontological certainty. 

The no-bottleneck condition—requiring that all subgraphs maintain boundary-to-volume ratios 

above a critical threshold—provides a mathematically sharp necessary condition that unifies 

several of the intuitive requirements. 

These constraints definitively exclude: 

• Axis-aligned lattices with persistent anisotropy 

• Tree-like or low-expansion networks 

• Strongly disordered systems exhibiting localization 

• Geometries with hard UV cutoffs or anomalous spectral dimension 

What remains is not "anything goes," but a restricted family with specific, testable properties. 

The constraints are strong enough to exclude large classes of imaginable micro-geometries while 

remaining agnostic about which specific realization (if any) nature chooses. 

This perspective reframes black holes as diagnostic probes rather than exotic objects. They test 

spacetime's ability to sustain distinguishability and coherence under extreme stress. The 

theoretical universality of Hawking radiation is not a peripheral curiosity—it is a consistency 

condition that any viable theory of spacetime must satisfy. The fact that horizons glow tells us 

something precise about what space can and cannot be made of. 

 

Conclusion for General Readers 

What We've Learned 

This paper began with a simple question: what does the glow of black holes tell us about the 

fabric of space? The answer turns out to be surprisingly specific. 

The core argument in three steps: 

1. Hawking radiation is universal. Whether calculated for black holes of any size, derived 

using different mathematical techniques, or observed in laboratory analogues (flowing 

fluids, ultracold gases), the same thermal radiation emerges. This isn't a coincidence—it 

reflects deep structural requirements that any underlying theory must satisfy. 

2. Universality constrains micro-geometry. For this universal behavior to emerge, the 

microscopic structure of space must have specific properties: it must look the same in all 

directions (isotropy), provide many redundant pathways for information flow (high 
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connectivity), avoid bottlenecks that trap or localize waves, and smoothly blend into the 

familiar continuous space we experience at larger scales. 

3. Most imaginable structures fail these tests. Simple grids have preferred directions. 

Tree-like networks create bottlenecks. Random arrangements localize waves. What 

survives is a narrow family of highly symmetric, richly connected structures—with close-

packed arrangements emerging as the optimal candidates. 

What This Means 

For physics: We've identified a new way to constrain theories of quantum gravity. Any proposal 

for the microscopic structure of space must pass the "Hawking test"—it must be capable of 

producing universal thermal radiation from horizons. This rules out large classes of otherwise 

plausible structures and points toward specific geometric families. 

For our understanding of black holes: Black holes aren't just gravitational curiosities—they're 

stress tests for spacetime. Near a black hole's horizon, space is pushed to its limits: extreme 

compression, exponentially blueshifted frequencies, quantum correlations stretched across the 

point of no return. The fact that black holes radiate thermally tells us that space passes this stress 

test, which in turn tells us something about what space must be made of. 

For the nature of space: If our analysis is correct, space at the smallest scales has a structure 

reminiscent of how atoms pack in metals or how spheres stack most efficiently. Not literally 

made of atoms or spheres, but sharing the same connectivity pattern: each point connected to 

about 12 neighbors, arranged with hexagonal symmetry in local planes, with no preferred 

directions and no bottlenecks. This isn't a poetic metaphor—it's a functional requirement 

imposed by the physics of horizons. 

What We Haven't Proven 

Intellectual honesty requires acknowledging the limits of our argument: 

• We haven't observed astrophysical Hawking radiation directly. Our constraints come 

from theoretical universality and laboratory analogues, not from measuring the glow of 

actual black holes (which is far too faint to detect with current technology). 

• We haven't uniquely identified the structure of space. Multiple geometric families 

satisfy our constraints. Close-packed structures are the best fit, but alternatives remain 

viable with additional mechanisms. 

• Precise numerical thresholds are model-dependent. We've identified the parametric 

regime (coordination number around 10-12, expansion coefficients above ~0.1), but exact 

values require specific models. 

The Bigger Picture 

For centuries, space was assumed to be a passive stage on which physics plays out—a smooth, 

continuous backdrop with no structure of its own. Quantum gravity research has challenged this 
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assumption, suggesting that space may have discrete or granular structure at the Planck scale 

(about 10⁻³⁵ meters). 

But what kind of structure? This paper argues that we can make progress on this question using a 

remarkable fact: black holes glow. Not brightly, not in ways we can currently detect from 

astronomical black holes, but theoretically and in laboratory analogues. And that glow, precisely 

because it's universal, tells us something specific about what's doing the glowing. 

The structure that emerges—close-packed, highly connected, locally hexagonal—isn't what 

anyone would have guessed a priori. It's not a simple cubic grid (too anisotropic), not a random 

foam (too disordered), not a tree-like hierarchy (too bottlenecked). It's a specific geometric 

family selected not by aesthetic preference but by functional necessity: this is what space must 

be like to produce the physics we observe. 

In the end, the argument is simple: Black holes radiate. That radiation is universal. 

Universality requires specific geometric properties. Those properties point to close-packed, 

hexagonally-coordinated structures as the optimal candidates for the microscopic fabric of space. 

The fact that horizons glow is not just a prediction of quantum gravity—it's a window into the 

deep structure of reality. 

 

Appendix A: Anisotropic Dispersion and Spectral Deviations 

(Toy Model) 

Consider a scalar field on a hypercubic lattice with dispersion relation: 

ω²(k) = (4c²/a²) Σᵢ₌₁³ sin²(kᵢa/2) 

For small k, this gives: 

ω² ≈ c²k² [1 − (ka)²/12 × (Σᵢkᵢ⁴/k⁴ − 1/3) + O((ka)⁴)] 

The factor (Σᵢkᵢ⁴/k⁴ - 1/3) vanishes for isotropic distributions but is O(1) for modes aligned with 

lattice axes. 

Effect on emission: Modes blueshifted to ka ~ 1 near the horizon experience O(1) dispersion 

anisotropy. If the Hawking emission depends on mode propagation at these scales, the emitted 

spectrum would show angular dependence. 

Estimate: For a thermal spectrum at temperature T with modes up to ω ~ k_B T/ℏ, the fraction 

of modes affected by anisotropy is: 

f_aniso ~ (k_B T a / ℏc)³ 
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For T ~ T_H and a ~ ℓ_P, this fraction is negligible for stellar black holes but becomes O(1) for 

Planck-scale black holes. 

Conclusion: Hypercubic lattice structure would produce angular dependence in Hawking 

radiation for small black holes, or would require fine-tuning to avoid this for larger black holes. 

This disfavors such structures unless anisotropy is dynamically washed out. 
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