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Abstract 

Quantum theory exhibits exact structural universality: photons, atoms, spins, and 

superconducting circuits all obey identical kinematic rules, compositional laws, and correlation 

constraints. Standard formulations treat this universality as axiomatic. Symmetry principles 

explain invariance within a given state space but not why the same state space applies across 

physical domains. We introduce isosymmetry: an equivalence principle defined over admissible 

constraint structures. Two systems are isosymmetric if they exhibit identical patterns of state 

discrimination, composition, and irreversible outcome production, regardless of microphysical 

implementation. We show that Hilbert space structure, tensor-product composition, and 

entanglement universality arise as invariants of isosymmetric constraint classes. Isosymmetry 

thus explains substrate-independence at a level prior to dynamics, complementing reconstruction 

programs that derive quantum formalism from operational axioms. 

 

General Reader Abstract 

Why do completely different physical systems—light waves, spinning electrons, atoms, and 

electrical circuits—all follow exactly the same quantum rules? This paper addresses that puzzle. 

Usually, physics textbooks simply declare that quantum mechanics works the same way for 

everything. But that's not an explanation—it's just restating the mystery. We propose a deeper 

answer: these systems are isosymmetric, meaning they can perform the same fundamental tasks 

with the same resource costs. 

Think of it like this: a calculator and a smartphone are made of completely different components, 

but if they can do the same arithmetic operations with similar effort, they belong to the same 

"computational class." Similarly, photons and electrons belong to the same "isosymmetric class" 

because they support the same patterns of distinguishing states, combining systems, and 

producing definite measurement outcomes. 

The key insight is that quantum structure—the mathematical framework of Hilbert spaces, 

superposition, and entanglement—isn't an arbitrary choice. It's the only framework that can 

consistently describe systems with these operational capabilities. We show this by connecting to 
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rigorous "reconstruction theorems" that derive quantum mechanics from basic operational 

principles. 

This perspective also explains why classical physics is different: classical systems allow 

unlimited precision in distinguishing states, violating the finite-capacity requirement that defines 

quantum isosymmetry classes. The quantum-classical divide isn't mysterious—it reflects a 

fundamental structural difference in what tasks each type of system can perform. 
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1. Introduction: The Universality Problem 

Quantum theory exhibits a striking and unexplained form of universality. Physical systems with 

radically different microphysical substrates—photons, atomic orbitals, nuclear spins, 

superconducting circuits, and vibrational modes—are all described by the same abstract 

structure: complex Hilbert spaces, tensor-product composition, entanglement, and probabilistic 

measurement outcomes governed by identical rules. This universality is exact, not approximate. 

The compositional structure, probability calculus, and correlation behaviour do not vary with the 

underlying physical realisation. 

In standard formulations of quantum mechanics, this universality is treated as a kinematic 

postulate. One assumes a Hilbert space representation for all systems, introduces observables as 

operators, and proceeds directly to dynamics and measurement. While enormously successful 

operationally, this approach leaves unanswered a foundational question: why does quantum 

theory not depend on what a system is made of? 

Symmetry principles are often invoked as explanations for universality in physics. Continuous 

symmetries underpin conservation laws, gauge symmetries organise interactions, and spacetime 

symmetries constrain dynamics. However, these principles operate within a given state space; 

they do not explain why the same state-space structure applies across distinct physical domains. 

Recent work in quantum foundations has increasingly emphasised relational and entanglement-

first perspectives, suggesting that spacetime locality and even kinematic structure may be 

emergent rather than fundamental [1–4]. Reconstruction programs have derived quantum 

formalism from operational axioms [5–8]. These developments sharpen, rather than resolve, the 

universality problem: they show what the structure must be, but not why disparate physical 

systems all satisfy the same axioms. 

In this paper, we introduce isosymmetry: an equivalence principle defined over admissible 

constraint structures. Two systems are isosymmetric if they admit the same global constraint 

resolution behaviour under irreversible transitions, regardless of their microphysical 

implementation. We argue that Hilbert space structure, tensor composition, and entanglement 

universality arise as invariants of isosymmetric constraint classes. 

We do not assume all fact-producing systems are isosymmetric. We claim: whenever two 

systems realise the same admissible task class (Definition 4.0), they must share the same 

kinematic and compositional structure. The observed universality of quantum mechanics reflects 

the empirical fact that many disparate physical substrates realise the same constraint class. 
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Explanatory advance. Reconstruction programmes show that if physical systems satisfy certain 

operational axioms, then the quantum formalism follows. Isosymmetry explains why disparate 

substrates satisfy the same axiom family: because they realise the same admissible task class 

under finite distinguishability and irreversible record formation. The universality of Hilbert space 

is thereby relocated from a postulate about "what states are" to a structural fact about which 

global constraint-resolution tasks are physically admissible. 

 

2. The Limits of Symmetry-Based Explanations 

Symmetry occupies a central role in modern theoretical physics. Noether's theorem links 

continuous symmetries to conserved quantities, gauge symmetries organise the interactions of 

the Standard Model, and spacetime symmetries constrain relativistic dynamics. 

However, symmetry-based explanations operate on a pre-existing state space. A symmetry 

specifies transformations that leave certain relations invariant, but it does not determine the 

structure of the space on which those transformations act. 

This limitation becomes apparent when addressing quantum universality. The question is not 

why certain quantities are conserved, but why all quantum systems share the same kinematic and 

compositional framework. Gauge symmetries presuppose quantum structure rather than explain 

it. Spacetime symmetries cannot ground universality, since quantum theory applies equally in 

nonrelativistic and relativistic regimes. 

Renormalisation and effective field theory explain robustness under perturbation and scale 

transformation, not identity across realisations. To explain why quantum mechanics is substrate-

blind, a different principle is required—one that operates at the level of what systems can do 

rather than how they transform. 

 

3. Admissibility and Constraint Classes 

Physical theories distinguish implicitly between what is mathematically conceivable and what is 

physically admissible. While mathematical formalisms permit a vast space of possible states and 

evolutions, only a subset can be realised within a physical universe subject to finite resources, 

irreversibility, and consistency constraints. This distinction is usually left implicit in quantum 

mechanics, but it plays a central role in explaining universality. 

3.1 Operational Definition of Admissibility 

Definition 3.1 (Operational Admissibility). Fix a bounded laboratory domain D and a class of 

implementable instruments Instr(D), consisting of preparations, transformations, and readout 

channels that respect: 
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• (i) finite distinguishability: at most n states can be perfectly discriminated in a single 

measurement, 

• (ii) irreversible commitment: measurement outcomes are recorded in stable, non-

retractable form, and 

• (iii) resource boundedness: operations consume finite resources, bounded by a resource 

vector R = (E, τ, M, ΔS) denoting energy, time, memory, and entropy export. 

Admissibility is defined relative to bounded regions of this resource space; all admissible 

tasks are required to have finite R for fixed accuracy targets. 

A state or process is admissible if and only if it can be realised by some element of Instr(D) 

without violating these constraints. 

This definition grounds admissibility in operational capabilities rather than in abstract 

mathematical structure. A state is physically admissible if it can be prepared, evolved, and 

measured using finite physical resources with irreversible outcome registration. 

3.2 Constraint Classes 

From this perspective, a physical system is characterised not solely by its degrees of freedom or 

Hamiltonian, but by the class of constraints it admits and the manner in which those constraints 

can be resolved. These constraints include limits on distinguishability, requirements of global 

consistency, and the existence of critical thresholds beyond which reversible evolution gives way 

to irreversible commitment. 

Definition 3.2 (Constraint Class). A constraint class 𝒞 is the set of admissible global states and 

transitions that a system can support under the conditions of Definition 3.1. Constraint classes 

abstract away from microphysical details and retain only the structural features relevant to 

admissibility and resolution. 

Two systems may differ radically in their physical composition yet belong to the same constraint 

class if they support identical patterns of admissible correlation, composition, and resolution. 

3.3 Global Character of Admissibility 

Crucially, constraint classes are defined independently of spacetime localisation. In entangled 

systems, admissibility applies to the global configuration rather than to local subsystems. The 

relevant constraints govern the joint state, not separable components, and resolution acts on the 

system as a whole. This global character of admissibility is essential for understanding both 

entanglement universality and the absence of signal-based explanations for correlated outcomes. 

3.4 Reversible and Irreversible Regimes 

Admissibility introduces a natural distinction between reversible and irreversible regimes. Below 

certain thresholds, systems may explore admissible states reversibly, maintaining 

underdetermined or oscillatory configurations. At critical thresholds, however, admissibility 

constraints force resolution: a previously open set of alternatives collapses into a single 
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committed outcome. The existence of such thresholds is not a dynamical assumption but a 

structural requirement for fact production. 

 

4. Isosymmetry: Formal Statement and Definition 

We now introduce the central concept of this paper. The universality of quantum structure across 

disparate physical systems can be explained if such systems are equivalent at the level that 

matters for admissibility and resolution, even when they differ microscopically. 

4.1 Isosymmetry Distinguished from Symmetry 

Isosymmetry is not a symmetry in the conventional sense. It does not refer to a group of 

transformations acting on states, nor to invariance under continuous or discrete operations. 

Instead, it is an equivalence relation defined over constraint classes. Where symmetry concerns 

invariance of form under transformation, isosymmetry concerns invariance of admissible 

resolution behaviour across realisations. 

4.2 Formal Definition 

We define isosymmetry first at the level of tasks and instruments, without presupposing a state-

space representation. 

Definition 4.0 (Task Isosymmetry). Two systems A and B are isosymmetric if for every 

admissible experiment in A—i.e., any finite composition of preparations, transformations, and 

readouts drawn from Instr_A(D) with resource budget R—there exists a corresponding 

experiment in B drawn from Instr_B(D) with comparable budget ‖R′‖ ≤ c‖R‖ for some fixed 

constant c and suitable norm on the resource vector, such that the full outcome statistics agree up 

to relabelling, and vice versa. 

This definition grounds isosymmetry in operational procedures rather than abstract mathematical 

structures. Two systems are isosymmetric if they can perform the same tasks with the same 

statistical outcomes. 

Definition 4.1 (State-Space Isosymmetry; representation form). If the operational statistics of 

Definition 4.0 admit convex state representations, then isosymmetry induces an operational 

isomorphism φ: 𝒮_A → 𝒮_B between their admissible state spaces (i.e., an affine bijection 

preserving convex mixtures and implementable task structure)—where 𝒮 denotes the operational 

(convex) state space of admissible preparations induced by Instr(D)—and the following 

invariants agree: 

• (i) Discrimination capacity: max |{s ∈ 𝒮 : s perfectly distinguishable}| is equal for A and 

B, 
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• (ii) Non-signalling correlation bounds: for every finite Bell-type scenario (m_A, m_B, 

k_A, k_B), the set of achievable conditional distributions P(a,b|x,y) under admissible 

instruments with the same resource bounds (Definition 3.1) is identical up to relabelling, 

and 

• (iii) Record capacity scaling: irreversible commitment requires the same resource 

scaling (bits, time, entropy export). Specifically, record capacity scaling is measured by 

the minimal entropy export (or equivalent memory resource) required to stabilise a 

classical record with error ≤ ε (mis-record probability) over time T (record retention 

time). We treat (ε, T) as externally fixed operational tolerances defining what counts as a 

stable record; isosymmetry is defined relative to a chosen tolerance regime. 

Tolerance robustness. Although Definition 4.1(iii) introduces tolerance parameters (ε, T), the 

resulting isosymmetric classification is stable above a minimal record-formation threshold. 

Below this threshold, no system supports fact creation and isosymmetry is undefined. Above it, 

variations in (ε, T) do not change the admissible task structure or its compositional rules. In this 

sense, isosymmetry is robust, not finely tuned: it is defined relative to the existence of stable 

records, not to arbitrary precision choices. 

This correspondence need not preserve microscopic degrees of freedom, spatial embedding, or 

dynamical details; it preserves only the structural invariants (i)–(iii). 

Definition 4.2 (Operational Isosymmetry). Two physical systems A and B are operationally 

isosymmetric if, for every finite discrimination, composition, and correlation task implementable 

by admissible instruments on A with a given resource scaling (distinguishable states, committed 

outcomes, exported correlations), there exists a corresponding task on B with identical scaling 

behaviour, and vice versa. 

Isosymmetry is therefore an equivalence relation defined over operational task structure and 

resource scaling, not over microscopic constitution or dynamics. 

4.3 Conditions for Isosymmetry 

Isosymmetry requires equivalence in three respects: 

1. Equivalence of admissible state space: The sets of physically realisable global states 

must be structurally identical with respect to distinguishability and correlation. 

2. Equivalence of composition: Admissible joint configurations must combine according 

to the same constraint rules, yielding identical compositional structure. 

3. Equivalence of resolution: At critical thresholds, admissible alternatives must collapse 

into committed outcomes in the same structural manner. 

These conditions together define an isosymmetric class. Membership in such a class guarantees 

that systems share the same abstract quantum structure, regardless of their physical substrate. 

4.4 What Isosymmetry Does Not Require 
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Systems need not share the same Hamiltonian, the same interaction mechanisms, or the same 

spacetime description. They need not be reducible to one another, nor derivable from a common 

microscopic theory. Isosymmetry is indifferent to material constitution; it is sensitive only to 

admissible constraint resolution. 

4.5 Why the Same Task Class? 

Isosymmetry explains why systems that realise the same admissible task class share quantum 

structure. It does not, by itself, explain why photons, electrons, atoms, and superconducting 

circuits all realise the same class. Three non-exclusive possibilities exist: 

Contingent universality. It may be a deep empirical fact about our universe that all stable fact-

producing substrates satisfy the same admissibility constraints. On this view, isosymmetry 

explains structure given the fact, but not the fact itself. 

Selection effects. Only task classes supporting global consistency, stable records, and 

compositional closure permit complex observers and long-lived experiments. Non-isosymmetric 

classes may exist in principle but be unobservable. 

Constraint uniqueness. The admissibility conditions themselves may be sufficiently restrictive 

that only one nontrivial task class exists. Spekkens's toy model [15] demonstrates that 

operational similarity alone does not guarantee isosymmetry: the model reproduces many 

quantum features but lacks entanglement and is not isosymmetric to quantum systems. This 

illustrates that isosymmetric equivalence requires the full admissibility package, not merely 

superficial structural resemblance. Exploring whether admissibility uniquely determines the 

quantum task class is left to future work. 

The present paper remains neutral between these interpretations while providing the structural 

explanation common to all three. 

 

5. Consequences of Isosymmetry 

The principle of isosymmetry has immediate and far-reaching consequences. If distinct physical 

systems belong to the same isosymmetric constraint class, then the abstract structure used to 

describe them is not a modelling choice but a structural necessity. 

5.1 Universality of Hilbert Space Structure 

Hilbert space appears in quantum mechanics as a universal representational framework. States 

are vectors, observables are operators, and probabilities are computed via inner products. In 

standard formulations, this structure is postulated rather than derived. 

Under isosymmetry, Hilbert space arises as the minimal structure capable of representing 

admissible global constraint states with graded distinguishability and superposition. If two 
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systems admit the same constraint resolution behaviour, then their state spaces must support 

identical notions of overlap, orthogonality, and combination. 

Lemma 5.1 (Admissibility ⇒ convex operational structure). Under Definition 3.1, the set of 

preparation procedures induces a convex state space 𝒮 (mixtures correspond to randomised 

preparations), and readouts induce affine functionals ("effects") e: 𝒮 → [0,1]. Transformations 

act as affine maps on 𝒮. 

Justification. Randomisation is a physical operation available within Instr(D); irreversible 

records imply well-defined outcome probabilities; resource bounds restrict to finite scenarios. 

The convex structure is therefore not assumed but constructed from operational primitives. 

Lemma 5.2 (Explicit Mapping from Admissibility to Reconstruction Assumptions). Let 

Instr(D) satisfy Definition 3.1 and let admissible experiments be closed under sequential and 

probabilistic composition. Then the operational structure induced by Instr(D) satisfies the 

following properties: 

(P1) Convexity of states (mixtures). For any two admissible preparations P₁, P₂ and any λ ∈ 

[0,1], there exists an admissible preparation P_λ that implements P₁ with probability λ and P₂ 

with probability 1−λ. The resulting equivalence classes of preparations define a convex state 

space 𝒮. 

(P2) Affinity of measurement statistics. For any admissible measurement M with outcomes o, 

the map s ↦ p(o|s,M) is affine on 𝒮. 

(P3) Existence of reversible transformations. Any admissible reversible operation T ∈ Instr(D) 

acts as an affine automorphism of 𝒮. The set of such transformations forms a group G acting on 

𝒮. 

(P4) Finite information capacity. Finite distinguishability (Definition 3.1(i)) implies: for each 

system there exists a finite N such that no admissible measurement perfectly distinguishes more 

than N states. This is the operational "capacity" parameter used in reconstructions. 

(P5) Composition and non-signalling. For spacelike-separated instruments A and B, admissible 

joint experiments define a composite state space 𝒮_AB whose marginal statistics are independent 

of remote measurement choice (non-signalling). Equivalently: reduced states exist as well-

defined marginals. 

(P6) Continuous reversibility (additional regularity). If, in addition, admissible reversible 

operations vary continuously with control parameters and act transitively on pure states within a 

connected component, then the "continuous reversibility" assumption used by Hardy and 

Masanes–Müller holds. 

(P7) Local tomography (explicit assumption, when used). If, in addition, joint states are 

determined by statistics of local measurements (tomographic locality), then the "local 

tomography" assumption used in several reconstructions holds. 
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(P8) Purification (explicit assumption, only for CDP-type routes). If, in addition, every mixed 

state arises as a marginal of a pure state on a larger system, then the "purification" assumption 

holds (Chiribella–D'Ariano–Perinotti). 

Proof. (P1)–(P3) follow from closure under probabilistic composition and the existence of 

irreversible records that define stable outcome frequencies. (P4) is exactly Definition 3.1(i). (P5) 

is the operational content of §3.3: admissibility is global, but local instrument choices cannot 

change remote marginals. (P6)–(P8) are stated explicitly as additional regularity/representation 

assumptions and are not claimed to follow from Definition 3.1 alone. ∎ 

Derivation of (P1)–(P2). Implement P_λ by coupling the system to a classical randomiser that 

irreversibly records a bit b with p(b=1) = λ and triggers P₁ if b=1 else P₂. By construction, for 

any measurement outcome o, 

p(o|P_λ,M) = λ p(o|P₁,M) + (1−λ) p(o|P₂,M), 

so the operational equivalence class s_λ satisfies s_λ = λs₁ + (1−λ)s₂ and measurement 

functionals are affine. 

Derivation of (P5) (non-signalling). If local choice y at B could change marginal statistics at A, 

then B could transmit a controllable bit to A by switching y, and A could irreversibly record it. 

This would contradict the operational separability implicit in admissible instrument composition 

(and would empirically violate relativistic causal constraints). Hence admissible joint 

experiments must satisfy p(a|x,y) = p(a|x) for all x, y, so reduced states exist as well-defined 

marginals. 

Reconstruction ingredient Where it appears Status here 

Probabilistic mixtures / 

convexity 

Hardy, Masanes–Müller, CDP 

(implicit) 
Derived (P1–P2) 

Reversible transformations as 

symmetries 
all Derived (P3) 

Finite capacity / 

distinguishability 
Hardy ("information capacity") Derived (P4) 

Non-signalling / well-defined 

marginals 
all Derived (P5) 

Continuous reversibility Hardy, Masanes–Müller Additional (P6) 

Local tomography 
Hardy-style routes, many 

GPT→QM theorems 
Additional (P7) 

Purification CDP Additional (P8) 

Hardy "simplicity" Hardy 
Replaced by isosymmetry-

class equivalence 

Remark. Hardy's "simplicity" axiom is not entailed by admissibility; it is replaced by 

isosymmetry-class identification (same capacity + same task structure ⇒ same representation 
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class). Purification is a stronger assumption about how mixed states arise; it remains optional and 

is required only for CDP-type reconstruction routes. Continuous reversibility follows naturally in 

many physical systems from controllable Hamiltonian evolution. Local tomography is a 

representation assumption, not a physical postulate derived from admissibility. 

Theorem 5.1 (Hilbert Space Representation). Lemma 5.2 derives (P1)–(P5) explicitly from 

admissibility, and states (P6)–(P8) as optional regularity assumptions aligned with specific 

reconstruction routes. Under these assumptions, reconstruction theorems imply a Hilbert-space 

representation; companion work [10] selects ℂ as the amplitude field. Specifically, any 

formalism capable of faithfully encoding admissible global constraint states with: 

• (i) graded distinguishability (states may be partially but not fully discriminable), 

• (ii) reversible composition (joint states can be formed and factored without loss), and 

• (iii) non-signalling extension (local operations on one subsystem do not alter statistics of 

another) 

must be equivalent to a complex Hilbert space description up to operational isomorphism. 

Here 'equivalent' means: there exists a mapping of the theory's states and effects into the 

projective space and POVM effects of a complex Hilbert space that preserves outcome 

probabilities for all admissible experiments. 

Clarification. Theorem 5.1 is not a reconstruction of quantum theory from axioms. It is a 

representation theorem: it states that any formalism capable of faithfully encoding isosymmetric 

admissible constraint classes must collapse to Hilbert space structure. The theorem does not 

derive quantum mechanics; it shows that no alternative representation of the same constraint 

class exists. 

Proof sketch. The conditions (i)–(iii) correspond to the axioms from which reconstruction 

theorems derive Hilbert space structure [5–8]. The deeper question is why complex Hilbert space 

specifically. This is established in companion work [10] via Galois-theoretic selection: requiring 

that observable predictions be invariant under automorphisms of the amplitude field, combined 

with interference and isotropy requirements, uniquely selects ℂ. Real numbers are excluded 

because Aut(ℝ/ℝ) is trivial, precluding continuous phase. Quaternions are excluded because 

Aut(ℍ/ℝ) ≅ SO(3) conflicts with permutation symmetry of distinguishable configurations—joint 

invariance destroys phase-sensitivity. Complex numbers, with Aut(ℂ/ℝ) = {identity, 

conjugation}, satisfy all constraints. The resulting state space is necessarily a complex Hilbert 

space. ∎ 

This does not imply that physical systems are literally vectors in an abstract space. Rather, 

Hilbert space functions as a canonical encoding of admissible constraint relations. Its 

universality follows from the universality of admissibility, not from the material properties of the 

systems it represents. 
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Remark. The derivation of Hilbert space structure from information-geometric principles, 

including the emergence of the inner product from Fisher-Rao geometry and phase structure, is 

developed in detail in companion work [10]. 

5.2 Universality of Tensor-Product Composition 

The tensor product rule governs how composite quantum systems are represented. When two 

systems are combined, their joint state space is not a Cartesian product but a tensor product, 

allowing for states that cannot be decomposed into independent components. 

From the perspective of isosymmetry, this compositional rule is unavoidable. If admissibility 

applies to global configurations rather than local subsystems, then the representation of joint 

systems must preserve the possibility of global constraints. The tensor product is precisely the 

structure that encodes such global admissibility while retaining compatibility with local 

descriptions. 

The tensor product is not the unique mathematically consistent composition rule for operational 

theories; GPTs admit alternatives including minimal and maximal tensor products [13]. 

Isosymmetry selects the quantum tensor product because alternatives either permit signalling or 

fail to support stable record formation under Bell-type correlations [14]. 

Because isosymmetry equates systems at the level of admissible composition, any two 

isosymmetric systems must combine according to the same tensor rules. The tensor product is 

therefore not a peculiarity of wave mechanics or a postulate of quantum kinematics, but an 

invariant of isosymmetric constraint classes. 

5.3 Universality of Entanglement 

Entanglement is often treated as a distinctive feature of quantum mechanics requiring special 

explanation. Within the present framework, it emerges naturally. 

Proposition 5.2. If a system belongs to an isosymmetric class that admits global constraint 

resolution with non-signalling correlations, and if the admissible task set includes Bell-type 

experiments whose observed correlations violate a Bell inequality while remaining non-

signalling, then non-factorizable (entangled) states are structurally required. 

Proof. Suppose admissibility requires global consistency of fact creation: outcomes at separated 

components must not contradict one another, yet local operations must not signal. A 

representational framework that forbids entanglement would restrict joint states to product form, 

but product states cannot violate Bell inequalities. If the admissible task set empirically includes 

Bell-violating correlations (as observed in quantum systems), then any adequate representation 

must include non-factorizable states. (Note: this is an empirical premise—that Bell violations 

occur—not a consequence of Definition 3.1 alone.) ∎ 
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Entangled states are simply admissible global constraint states that cannot be factorised into 

independent local configurations. If a system belongs to an isosymmetric class that admits global 

constraint resolution, then entanglement is not optional—it is required. 

This explains why entanglement appears universally across quantum systems, independent of 

scale or physical implementation. Photons, atoms, spins, and superconducting circuits all support 

entanglement because they belong to the same isosymmetric class. Entanglement is not a 

dynamical effect added to otherwise separable systems; it is a structural feature of admissibility 

itself. 

Remark on probability. Isosymmetry constrains which outcome structures are admissible, not 

how probability weight is assigned among them. The Born rule, which determines measurement 

probabilities, is derived separately from the structure of admissible resolution [9]. Isosymmetry 

explains why all quantum systems share the same framework for probability; it does not 

determine the probabilities themselves. 

5.4 Worked Example: Photon Polarisation and Electron Spin 

Consider two paradigmatic quantum systems: photon polarisation and electron spin-1/2. 

Photon polarisation: 

• Substrate: Electromagnetic field mode 

• Degrees of freedom: Polarisation state (horizontal, vertical, or superposition) 

• Physical mechanism: Maxwell's equations, optical elements 

Electron spin: 

• Substrate: Fermionic matter field 

• Degrees of freedom: Spin state (up, down, or superposition along any axis) 

• Physical mechanism: Dirac equation, magnetic fields 

These systems differ in every microscopic respect: one involves bosonic fields, the other 

fermionic particles; one couples to electric fields, the other to magnetic fields; one propagates at 

light speed, the other can be stationary. 

Yet both belong to the same isosymmetric class because: 

1. Both support exactly 2 perfectly distinguishable states (Definition 3.1(i)) 

2. Both admit continuous reversible transformations between pure states (SU(2) structure) 

3. Both compose via tensor products yielding 4-dimensional joint spaces with entangled 

states 

4. Both exhibit identical correlation structure (same Bell inequality violations) 

5. Both undergo irreversible resolution producing identical statistical patterns (Born rule) 
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The identical quantum structure is not a coincidence of similar dynamics—the dynamics are 

entirely different. It is a consequence of isosymmetry: both systems satisfy identical 

admissibility constraints and therefore belong to the same constraint class. 

5.5 Worked Example: Why Classical Phase Space Fails Isosymmetry 

Classical mechanics is often thought of as the "simplest" physical theory. If isosymmetry merely 

redescribed universality, one might expect classical phase-space systems to belong to the same 

isosymmetric class as quantum systems. This subsection shows explicitly that they do not. 

The failure is not dynamical but structural: classical phase space violates the finite 

distinguishability requirement of admissibility (Definition 3.1(i)), and therefore realises a 

different task class. 

Setup. Consider a classical particle with phase space Γ = ℝ²ⁿ, with points (q, p) representing 

exact position and momentum. Preparations correspond to probability densities ρ(q, p) on Γ; 

measurements correspond to partitions of phase space into disjoint measurable regions; dynamics 

are Hamiltonian flows preserving phase-space volume. This defines a perfectly well-formed 

classical operational theory. 

Step 1: Continuous distinguishability. For any finite region R ⊂ Γ, classical mechanics permits 

arbitrarily fine partitions into N disjoint subregions, with N unbounded. For any N, there exists a 

measurement that perfectly distinguishes which subregion the system occupies. Hence classical 

phase space admits arbitrarily many perfectly distinguishable states in a single measurement—

there is no upper bound N_max. 

Step 2: Violation of finite capacity. Definition 3.1(i) requires that at most n states can be 

perfectly discriminated in a single measurement. Classical phase space violates this requirement 

fundamentally: no finite information capacity exists, distinguishability scales without bound as 

measurement resolution increases, and there is no natural cutoff enforcing a maximal set of 

mutually exclusive outcomes. This is not a practical limitation but a structural property of 

classical theory. 

Step 3: Consequences for task structure. Because finite distinguishability fails: 

• No finite-dimensional convex state space exists (the space of perfectly distinguishable 

preparations is infinite-dimensional even locally) 

• No finite capacity parameter can be defined (Hardy's "information capacity" is 

undefined) 

• No admissible global resolution threshold exists (there is no point at which 

underdetermined alternatives are forced into a finite outcome set) 

• No nontrivial isosymmetry class is shared with quantum systems 

Step 4: Contrast with quantum systems. 
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Property Classical phase space Quantum system 

Perfectly distinguishable states Unbounded Finite (≤ d) 

Capacity parameter None Well-defined 

Global resolution thresholds Absent Present 

Isosymmetric with quantum systems ✗ ✓ 

Interpretation. Classical mechanics fails isosymmetry not because it is "less rich" but because it 

is too permissive: it allows arbitrarily fine discrimination, unlimited information extraction in a 

single measurement, and no intrinsic threshold for irreversible fact creation. Quantum theory sits 

at a critical boundary—continuous structure (phases, superpositions) but finite distinguishability 

and bounded capacity. This balance is exactly what admissibility encodes. 

This example demonstrates that isosymmetry is not a restatement of universality: it excludes 

classical mechanics for principled reasons and identifies finite distinguishability as the structural 

hinge separating quantum from classical constraint classes. 

 

6. Relation to Criticality 

The principle of isosymmetry explains why quantum structure is universal across physical 

realisations, but it does not, by itself, explain when or how irreversible outcomes occur. That role 

is played by criticality. It is essential to distinguish clearly between the explanatory domains of 

these two concepts. 

Principle 6.0 (Threshold Invariance). Crossing a critical threshold changes which admissible 

alternatives remain (resolution selects among them), but not the underlying admissible task 

structure governing composition and correlation. Criticality is a selection on states within a fixed 

constraint class, not a transition between constraint classes. 

On this view, criticality is to isosymmetry as symmetry breaking is to symmetry: the dynamics 

selects a branch, but the kinematic arena remains fixed. 

6.1 What Criticality Explains 

Criticality concerns the conditions under which a physical system transitions from reversible 

evolution to irreversible commitment. Below critical thresholds, systems may occupy admissible 

states that remain underdetermined, oscillatory, or globally constrained without producing 

definite outcomes. At critical thresholds, admissibility constraints force resolution: one 

alternative is selected, entropy increases, and a fact is created. This transition is structural rather 

than dynamical, reflecting limits on capacity, consistency, and irreversible record formation. 

6.2 Complementary Explanatory Domains 
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Isosymmetry does not determine the location of critical thresholds or the dynamics leading up to 

them. Instead, it classifies systems according to the structure of admissible resolution once such 

thresholds are reached. Two systems may differ in scale, interaction strength, or environmental 

coupling, and therefore reach criticality under different conditions, while still belonging to the 

same isosymmetric class. 

Question Answered by 

Why do different systems have the same quantum structure? Isosymmetry 

When does irreversible resolution occur? Criticality 

What determines measurement outcomes? Resolution dynamics 

Why are outcomes probabilistic? Born rule (derived separately) 

Criticality answers the question of when irreversible resolution occurs, while isosymmetry 

answers the question of why the same resolution structure applies across systems. The two 

principles are complementary rather than competing. 

6.3 Entanglement and Global Resolution 

This distinction is particularly important for understanding entangled systems. In an entangled 

configuration, admissibility applies to the global constraint state rather than to local subsystems. 

When criticality is reached, resolution occurs at the level of the global constraint, producing 

correlated outcomes without the need for signal propagation or causal influence between 

spatially separated components. Isosymmetry ensures that this pattern of global resolution is 

identical across physical implementations, while criticality determines when resolution is 

enforced. 

 

7. Comparison with Other Universality Notions 

Universality is a familiar concept in physics, appearing in several well-established contexts. It is 

important to clarify how isosymmetry differs from, and complements, existing notions. 

7.1 Renormalisation Group Universality 

In critical phenomena, systems with different microscopic interactions flow toward the same 

fixed points and share identical scaling behaviour. However, renormalisation-group universality 

concerns robustness under coarse-graining and scale transformation. It presupposes an 

underlying theory and does not explain why the same abstract kinematic and compositional 

structure applies to all quantum systems at all scales. Isosymmetry operates prior to dynamics 

and scale, classifying systems by admissible resolution structure rather than by flow toward fixed 

points. 

7.2 Effective Field Theory 
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Effective field theory explains why low-energy observables are largely independent of high-

energy physics. While effective theories successfully capture emergent behaviour within a given 

kinematic framework, they presuppose quantum structure. They do not explain why the same 

Hilbert space formalism, tensor composition, and entanglement rules apply across disparate 

physical domains. 

7.3 Decoherence 

Decoherence-based accounts explain why certain bases become preferred under environmental 

interaction and why interference terms are suppressed in practice. However, decoherence 

assumes the existence of entanglement, tensor-product composition, and Hilbert space from the 

outset. It therefore cannot ground their universality. Isosymmetry explains why these structures 

must be present before any decoherence process can occur. 

7.4 Information-Theoretic Reconstructions 

Reconstruction programs derive quantum formalism from operational or informational axioms 

[5–8]. These approaches successfully derive aspects of the formalism, demonstrating that 

quantum structure follows from constraints such as tomographic locality, continuous 

reversibility, and purification. 

Isosymmetry operates at a complementary level. Reconstruction programs answer: "Given that 

systems satisfy these axioms, what structure follows?" Isosymmetry answers: "Why do all fact-

producing systems satisfy axioms of this type in the first place?" 

This paper establishes the substrate-independence principle (isosymmetry); the amplitude-field 

selection and Hilbert-space emergence are proven constructively in [10] and used here as the 

structural backbone. 

The full derivation chain is (reconstruction axioms appear here not as derived results, but as 

formal codifications of the admissible task structure identified by isosymmetry): 

Admissibility constraints (this paper) 

           ↓ 

    Isosymmetric constraint classes 

           ↓ 

Operational axioms (reconstruction programs) 

           ↓ 

Galois invariance + isotropy [10] 

           ↓ 

    Complex Hilbert space (uniquely) 

Specifically, companion work [10] completes the chain by proving that among the three 

candidate amplitude fields permitted by Frobenius's theorem (ℝ, ℂ, ℍ), only complex numbers 

satisfy the joint requirements of interference, Galois invariance, and isotropy. This transforms 

the "why complex?" question from a brute fact into a theorem. 
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Isosymmetry thus provides a physical grounding for the axioms that reconstruction programs 

take as starting points, while [10] explains why those axioms force complex rather than real or 

quaternionic structure. 

Multiple reconstruction routes—operational [5–7], diagrammatic [16], and information-

geometric [10]—converge on the same structure despite differing formalisms. This convergence 

is itself evidence for isosymmetry: the routes identify the same constraint class through different 

lenses. 

7.5 Structural Realism 

The claim that quantum structure reflects equivalence of constraint classes rather than shared 

material ontology resonates with structural realism in philosophy of physics [11]. Structural 

realists hold that what persists across theory change and across physical instantiation is structure 

rather than objects. Isosymmetry provides a precise criterion for structural equivalence: two 

systems are structurally identical (in the relevant sense) if and only if they are isosymmetric. 

 

8. Implications and Limits 

8.1 Implications 

Principled explanation for substrate-independence. The identical kinematic and 

compositional structure observed across quantum systems is not an unexplained coincidence or a 

matter of modelling convenience. It reflects a deeper equivalence at the level of admissible 

constraint resolution. 

Shift from dynamics to admissibility. Attempts to derive quantum theory purely from 

underlying dynamics or specific interaction mechanisms may be misdirected. Quantum structure 

is not imposed by particular forces or constituents, but by the requirements of admissible global 

resolution. 

Boundary conditions for quantum applicability. Systems that fail to meet admissibility 

requirements—for example, systems lacking sufficient capacity for global constraint formation 

or irreversible resolution—would not belong to a quantum isosymmetric class. This opens the 

possibility of identifying regimes in which quantum structure breaks down, not because of new 

dynamics, but because admissibility conditions are violated. 

8.2 Limits 

The present account has deliberate limits: 

• Isosymmetry does not determine the probabilities of specific outcomes (this requires the 

Born rule, derived separately). 
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• Isosymmetry does not specify the dynamics by which systems approach criticality. 

• Isosymmetry does not resolve the selection of particular measurement results. 

• Isosymmetry does not replace existing quantum dynamics. 

These questions lie outside the scope of the present paper and are addressed by complementary 

principles. 

8.3 Falsifiability 

Isosymmetry makes the following empirically testable predictions: 

Prediction. Any physical system capable of: 

• (i) supporting stable, irreversible records, and 

• (ii) exhibiting at least two distinguishable states with continuous reversible 

transformations between them 

will exhibit quantum structure (Hilbert space, tensor composition, entanglement). 

Isosymmetry would be falsified by either of the following: 

A. Correlation falsifier (strongest). A fact-producing system satisfying Definition 3.1 that 

exhibits correlations outside the quantum set (e.g., above Tsirelson bounds) in a controlled Bell 

scenario, while maintaining stable classical records of outcomes. 

B. Composition falsifier (cleanest). A fact-producing system with two-level controllable 

subsystems whose composite does not admit tensor-product structure or entangled extensions—

i.e., only product composites are physically realisable despite both subsystems individually 

satisfying admissibility. 

Candidate domains for falsification: 

• Exotic post-quantum GPT proposals with novel composition rules 

• Indefinite causal order scenarios, if they produced superquantum correlations with stable 

records 

• Any verified violation of information causality with stable classical storage 

• Gravitational or Planck-scale regimes where admissibility conditions might fail 

Remark on superquantum theories. Generalised probabilistic theories (GPTs) such as PR-box 

theories formally permit stronger-than-quantum correlations [17]. These serve as theoretical 

counterexamples that illuminate the boundaries of isosymmetric classes. PR-box correlations 

would trivialise communication complexity [18], collapsing the resource scaling that defines 

admissibility (Definition 3.1(iii)). The quantum correlation boundary, precisely characterised by 

Navascués et al. [19], may therefore reflect the limit of correlations compatible with non-trivial 

fact production. Crucially, such theories are widely conjectured to be inadmissible under stable 

record formation and information causality constraints [12]. The non-existence of physical PR-
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boxes would thus reflect not merely empirical accident but the deeper constraint that 

admissibility imposes on correlation structure. 

To date, no physical system satisfying the falsification criteria has been observed. 

 

9. Conclusion 

The universality of quantum structure across physical realisations has long been treated as a 

brute fact or convenient assumption. We have argued that it admits a principled explanation. 

Isosymmetry—equivalence at the level of admissible constraint resolution—provides the missing 

principle. Systems that support the same patterns of finite distinguishability, reversible 

composition, and irreversible commitment necessarily exhibit identical quantum structure. 

Hilbert space, tensor products, and entanglement are not imposed separately on each physical 

domain; they are invariants of isosymmetric constraint classes. 

This paper is part of a reconstruction programme that derives quantum mechanics from 

distinguishability principles: 

Paper Question Answered Method 

This paper 
Why is quantum structure substrate-

independent? 

Isosymmetry over constraint 

classes 

Hilbert space paper 

[10] 
Why complex numbers specifically? 

Galois invariance excludes ℝ 

and ℍ 

Born rule paper [9] Why P = |ψ|²? Coarse-graining geometry 

Together, these results transform quantum universality from mystery to theorem: the kinematic 

structure (complex Hilbert space), the compositional structure (tensor products), and the 

probability rule (Born rule) all follow from the geometry of distinguishable configurations and 

the requirements of consistent fact production. 

This perspective relocates the source of quantum universality from material constitution to 

structural admissibility. The question "why does quantum mechanics apply to photons and 

electrons alike?" receives a precise answer: because photons and electrons are isosymmetric—

they belong to the same constraint class, and constraint class determines structure. 

Isosymmetry thus completes a chain of explanation: reconstruction programs show that certain 

axioms entail quantum formalism; isosymmetry shows why fact-producing systems satisfy those 

axioms. Together, they transform quantum universality from mystery to theorem. 
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Appendix A: Summary of Amplitude Field Selection  

For completeness, we summarise the Galois-theoretic argument establishing that complex 

numbers are the unique viable amplitude field, proven constructively in companion work [10]. 

Setup. Let Λ be a finite set of distinguishable configurations with |Λ| ≥ 3. Amplitudes are 

functions ψ: Λ → F for some division algebra F over ℝ. By Frobenius's theorem, the candidates 

are F ∈ {ℝ, ℂ, ℍ}. 

Constraints imposed: 

1. Interference: F must support continuous phase structure 

2. Galois invariance: Observable predictions must be invariant under Aut(F/ℝ) 

3. Isotropy: Predictions must be invariant under permutations of Λ (when configurations are 

symmetrically distinguishable) 

4. Regularity (Taylor Limit): Only continuous automorphisms are physically admissible 

Regularity (Taylor Limit) — Physical Justification. The Taylor Limit requires that observable 

probabilities vary smoothly under small perturbations of admissible preparations and 

transformations. Physically, this reflects: 

• finite experimental resolution (no infinitely precise measurements), 

• the impossibility of infinitely sharp control, and 

• the empirical success of perturbative modelling in physics. 

Without such regularity, pathological representations (e.g., discontinuous automorphisms of ℂ 

constructed via Zorn's lemma) become formally admissible but are physically meaningless—
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they correspond to nowhere-measurable functions incompatible with any laboratory procedure. 

The Taylor Limit therefore excludes mathematical artefacts rather than physical possibilities. 

Results: 

Field Aut(F/ℝ) Verdict Reason 

ℝ {id} Excluded 
Trivial automorphism group cannot support continuous phase; only 

discrete (±1) phase available 

ℍ SO(3) Excluded 

Automorphism group too large; SO(3) acting on imaginary 

quaternions conflicts with S_n isotropy—joint invariance destroys 

phase-sensitivity 

ℂ 
{id, 

conj} 
Selected 

Two-element group supports interference while commuting with all 

permutations 

Theorem (Selection of ℂ). Under constraints 1–4, complex numbers are the unique amplitude 

field compatible with interference, Galois invariance, and isotropy. The resulting state space is 

necessarily a complex Hilbert space. 
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