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Abstract

Quantum theory exhibits exact structural universality: photons, atoms, spins, and
superconducting circuits all obey identical kinematic rules, compositional laws, and correlation
constraints. Standard formulations treat this universality as axiomatic. Symmetry principles
explain invariance within a given state space but not why the same state space applies across
physical domains. We introduce isosymmetry: an equivalence principle defined over admissible
constraint structures. Two systems are isosymmetric if they exhibit identical patterns of state
discrimination, composition, and irreversible outcome production, regardless of microphysical
implementation. We show that Hilbert space structure, tensor-product composition, and
entanglement universality arise as invariants of isosymmetric constraint classes. Isosymmetry
thus explains substrate-independence at a level prior to dynamics, complementing reconstruction
programs that derive quantum formalism from operational axioms.

General Reader Abstract

Why do completely different physical systems—Ilight waves, spinning electrons, atoms, and
electrical circuits—all follow exactly the same quantum rules? This paper addresses that puzzle.

Usually, physics textbooks simply declare that quantum mechanics works the same way for
everything. But that's not an explanation—it's just restating the mystery. We propose a deeper
answer: these systems are isosymmetric, meaning they can perform the same fundamental tasks
with the same resource costs.

Think of it like this: a calculator and a smartphone are made of completely different components,
but if they can do the same arithmetic operations with similar effort, they belong to the same
"computational class." Similarly, photons and electrons belong to the same "isosymmetric class"
because they support the same patterns of distinguishing states, combining systems, and
producing definite measurement outcomes.

The key insight is that quantum structure—the mathematical framework of Hilbert spaces,
superposition, and entanglement—isn't an arbitrary choice. It's the on/y framework that can
consistently describe systems with these operational capabilities. We show this by connecting to



rigorous "reconstruction theorems" that derive quantum mechanics from basic operational
principles.

This perspective also explains why classical physics is different: classical systems allow
unlimited precision in distinguishing states, violating the finite-capacity requirement that defines
quantum isosymmetry classes. The quantum-classical divide isn't mysterious—it reflects a
fundamental structural difference in what tasks each type of system can perform.
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1. Introduction: The Universality Problem

Quantum theory exhibits a striking and unexplained form of universality. Physical systems with
radically different microphysical substrates—photons, atomic orbitals, nuclear spins,
superconducting circuits, and vibrational modes—are all described by the same abstract
structure: complex Hilbert spaces, tensor-product composition, entanglement, and probabilistic
measurement outcomes governed by identical rules. This universality is exact, not approximate.
The compositional structure, probability calculus, and correlation behaviour do not vary with the
underlying physical realisation.

In standard formulations of quantum mechanics, this universality is treated as a kinematic
postulate. One assumes a Hilbert space representation for all systems, introduces observables as
operators, and proceeds directly to dynamics and measurement. While enormously successful
operationally, this approach leaves unanswered a foundational question: why does quantum
theory not depend on what a system is made of?

Symmetry principles are often invoked as explanations for universality in physics. Continuous
symmetries underpin conservation laws, gauge symmetries organise interactions, and spacetime
symmetries constrain dynamics. However, these principles operate within a given state space;
they do not explain why the same state-space structure applies across distinct physical domains.

Recent work in quantum foundations has increasingly emphasised relational and entanglement-
first perspectives, suggesting that spacetime locality and even kinematic structure may be
emergent rather than fundamental [1-4]. Reconstruction programs have derived quantum
formalism from operational axioms [5—8]. These developments sharpen, rather than resolve, the
universality problem: they show what the structure must be, but not why disparate physical
systems all satisfy the same axioms.

In this paper, we introduce isosymmetry: an equivalence principle defined over admissible
constraint structures. Two systems are isosymmetric if they admit the same global constraint
resolution behaviour under irreversible transitions, regardless of their microphysical
implementation. We argue that Hilbert space structure, tensor composition, and entanglement
universality arise as invariants of isosymmetric constraint classes.

We do not assume all fact-producing systems are isosymmetric. We claim: whenever two
systems realise the same admissible task class (Definition 4.0), they must share the same
kinematic and compositional structure. The observed universality of quantum mechanics reflects
the empirical fact that many disparate physical substrates realise the same constraint class.



Explanatory advance. Reconstruction programmes show that if physical systems satisfy certain
operational axioms, then the quantum formalism follows. Isosymmetry explains why disparate
substrates satisfy the same axiom family: because they realise the same admissible task class
under finite distinguishability and irreversible record formation. The universality of Hilbert space
is thereby relocated from a postulate about "what states are" to a structural fact about which
global constraint-resolution tasks are physically admissible.

2. The Limits of Symmetry-Based Explanations

Symmetry occupies a central role in modern theoretical physics. Noether's theorem links
continuous symmetries to conserved quantities, gauge symmetries organise the interactions of
the Standard Model, and spacetime symmetries constrain relativistic dynamics.

However, symmetry-based explanations operate on a pre-existing state space. A symmetry
specifies transformations that leave certain relations invariant, but it does not determine the
structure of the space on which those transformations act.

This limitation becomes apparent when addressing quantum universality. The question is not
why certain quantities are conserved, but why all quantum systems share the same kinematic and
compositional framework. Gauge symmetries presuppose quantum structure rather than explain
it. Spacetime symmetries cannot ground universality, since quantum theory applies equally in
nonrelativistic and relativistic regimes.

Renormalisation and effective field theory explain robustness under perturbation and scale
transformation, not identity across realisations. To explain why quantum mechanics is substrate-
blind, a different principle is required—one that operates at the level of what systems can do
rather than how they transform.

3. Admissibility and Constraint Classes

Physical theories distinguish implicitly between what is mathematically conceivable and what is
physically admissible. While mathematical formalisms permit a vast space of possible states and
evolutions, only a subset can be realised within a physical universe subject to finite resources,
irreversibility, and consistency constraints. This distinction is usually left implicit in quantum
mechanics, but it plays a central role in explaining universality.

3.1 Operational Definition of Admissibility
Definition 3.1 (Operational Admissibility). Fix a bounded laboratory domain D and a class of

implementable instruments Instr(D), consisting of preparations, transformations, and readout
channels that respect:



o (i) finite distinguishability: at most n states can be perfectly discriminated in a single
measurement,

e (ii) irreversible commitment: measurement outcomes are recorded in stable, non-
retractable form, and

e (111) resource boundedness: operations consume finite resources, bounded by a resource
vector R = (E, 1, M, AS) denoting energy, time, memory, and entropy export.
Admissibility is defined relative to bounded regions of this resource space; all admissible
tasks are required to have finite R for fixed accuracy targets.

A state or process is admissible if and only if it can be realised by some element of Instr(D)
without violating these constraints.

This definition grounds admissibility in operational capabilities rather than in abstract
mathematical structure. A state is physically admissible if it can be prepared, evolved, and
measured using finite physical resources with irreversible outcome registration.

3.2 Constraint Classes

From this perspective, a physical system is characterised not solely by its degrees of freedom or
Hamiltonian, but by the class of constraints it admits and the manner in which those constraints
can be resolved. These constraints include limits on distinguishability, requirements of global
consistency, and the existence of critical thresholds beyond which reversible evolution gives way
to irreversible commitment.

Definition 3.2 (Constraint Class). A constraint class C is the set of admissible global states and
transitions that a system can support under the conditions of Definition 3.1. Constraint classes
abstract away from microphysical details and retain only the structural features relevant to
admissibility and resolution.

Two systems may differ radically in their physical composition yet belong to the same constraint
class if they support identical patterns of admissible correlation, composition, and resolution.

3.3 Global Character of Admissibility

Crucially, constraint classes are defined independently of spacetime localisation. In entangled
systems, admissibility applies to the global configuration rather than to local subsystems. The
relevant constraints govern the joint state, not separable components, and resolution acts on the
system as a whole. This global character of admissibility is essential for understanding both
entanglement universality and the absence of signal-based explanations for correlated outcomes.

3.4 Reversible and Irreversible Regimes

Admissibility introduces a natural distinction between reversible and irreversible regimes. Below
certain thresholds, systems may explore admissible states reversibly, maintaining
underdetermined or oscillatory configurations. At critical thresholds, however, admissibility
constraints force resolution: a previously open set of alternatives collapses into a single



committed outcome. The existence of such thresholds is not a dynamical assumption but a
structural requirement for fact production.

4. Isosymmetry: Formal Statement and Definition

We now introduce the central concept of this paper. The universality of quantum structure across
disparate physical systems can be explained if such systems are equivalent at the level that
matters for admissibility and resolution, even when they differ microscopically.

4.1 Isosymmetry Distinguished from Symmetry

Isosymmetry is not a symmetry in the conventional sense. It does not refer to a group of
transformations acting on states, nor to invariance under continuous or discrete operations.
Instead, it is an equivalence relation defined over constraint classes. Where symmetry concerns
invariance of form under transformation, isosymmetry concerns invariance of admissible
resolution behaviour across realisations.

4.2 Formal Definition

We define isosymmetry first at the level of tasks and instruments, without presupposing a state-
space representation.

Definition 4.0 (Task Isosymmetry). Two systems 4 and B are isosymmetric if for every
admissible experiment in 4—i.e., any finite composition of preparations, transformations, and
readouts drawn from Instr A(D) with resource budget R—there exists a corresponding
experiment in B drawn from Instr B(D) with comparable budget IRl < clIRI for some fixed
constant ¢ and suitable norm on the resource vector, such that the full outcome statistics agree up
to relabelling, and vice versa.

This definition grounds isosymmetry in operational procedures rather than abstract mathematical
structures. Two systems are isosymmetric if they can perform the same tasks with the same
statistical outcomes.

Definition 4.1 (State-Space Isosymmetry; representation form). If the operational statistics of
Definition 4.0 admit convex state representations, then isosymmetry induces an operational
isomorphism @: S A — § B between their admissible state spaces (i.e., an affine bijection
preserving convex mixtures and implementable task structure)—where S denotes the operational
(convex) state space of admissible preparations induced by Instr(D)—and the following
invariants agree:

e (i) Discrimination capacity: max |{s € § : s perfectly distinguishable}| is equal for 4 and
B,



e (ii) Non-signalling correlation bounds: for every finite Bell-type scenario (m_A, m B,
k A, k B), the set of achievable conditional distributions P(a,b|x,y) under admissible
instruments with the same resource bounds (Definition 3.1) is identical up to relabelling,
and

o (ii1) Record capacity scaling: irreversible commitment requires the same resource
scaling (bits, time, entropy export). Specifically, record capacity scaling is measured by
the minimal entropy export (or equivalent memory resource) required to stabilise a
classical record with error < & (mis-record probability) over time T (record retention
time). We treat (g, T) as externally fixed operational tolerances defining what counts as a
stable record; isosymmetry is defined relative to a chosen tolerance regime.

Tolerance robustness. Although Definition 4.1(iii) introduces tolerance parameters (g, T), the
resulting isosymmetric classification is stable above a minimal record-formation threshold.
Below this threshold, no system supports fact creation and isosymmetry is undefined. Above it,
variations in (g, T) do not change the admissible task structure or its compositional rules. In this
sense, isosymmetry is robust, not finely tuned: it is defined relative to the existence of stable
records, not to arbitrary precision choices.

This correspondence need not preserve microscopic degrees of freedom, spatial embedding, or
dynamical details; it preserves only the structural invariants (i)—(iii).

Definition 4.2 (Operational Isosymmetry). Two physical systems 4 and B are operationally
isosymmetric if, for every finite discrimination, composition, and correlation task implementable
by admissible instruments on 4 with a given resource scaling (distinguishable states, committed
outcomes, exported correlations), there exists a corresponding task on B with identical scaling
behaviour, and vice versa.

Isosymmetry is therefore an equivalence relation defined over operational task structure and
resource scaling, not over microscopic constitution or dynamics.

4.3 Conditions for Isosymmetry
Isosymmetry requires equivalence in three respects:

1. Equivalence of admissible state space: The sets of physically realisable global states
must be structurally identical with respect to distinguishability and correlation.

2. Equivalence of composition: Admissible joint configurations must combine according
to the same constraint rules, yielding identical compositional structure.

3. Equivalence of resolution: At critical thresholds, admissible alternatives must collapse
into committed outcomes in the same structural manner.

These conditions together define an isosymmetric class. Membership in such a class guarantees
that systems share the same abstract quantum structure, regardless of their physical substrate.

4.4 What Isosymmetry Does Not Require



Systems need not share the same Hamiltonian, the same interaction mechanisms, or the same
spacetime description. They need not be reducible to one another, nor derivable from a common
microscopic theory. Isosymmetry is indifferent to material constitution; it is sensitive only to
admissible constraint resolution.

4.5 Why the Same Task Class?

Isosymmetry explains why systems that realise the same admissible task class share quantum
structure. It does not, by itself, explain why photons, electrons, atoms, and superconducting
circuits all realise the same class. Three non-exclusive possibilities exist:

Contingent universality. It may be a deep empirical fact about our universe that all stable fact-
producing substrates satisfy the same admissibility constraints. On this view, isosymmetry
explains structure given the fact, but not the fact itself.

Selection effects. Only task classes supporting global consistency, stable records, and
compositional closure permit complex observers and long-lived experiments. Non-isosymmetric
classes may exist in principle but be unobservable.

Constraint uniqueness. The admissibility conditions themselves may be sufficiently restrictive
that only one nontrivial task class exists. Spekkens's toy model [15] demonstrates that
operational similarity alone does not guarantee isosymmetry: the model reproduces many
quantum features but lacks entanglement and is not isosymmetric to quantum systems. This
illustrates that isosymmetric equivalence requires the full admissibility package, not merely
superficial structural resemblance. Exploring whether admissibility uniquely determines the
quantum task class is left to future work.

The present paper remains neutral between these interpretations while providing the structural
explanation common to all three.

S. Consequences of Isosymmetry

The principle of isosymmetry has immediate and far-reaching consequences. If distinct physical
systems belong to the same isosymmetric constraint class, then the abstract structure used to
describe them is not a modelling choice but a structural necessity.

5.1 Universality of Hilbert Space Structure
Hilbert space appears in quantum mechanics as a universal representational framework. States
are vectors, observables are operators, and probabilities are computed via inner products. In

standard formulations, this structure is postulated rather than derived.

Under isosymmetry, Hilbert space arises as the minimal structure capable of representing
admissible global constraint states with graded distinguishability and superposition. If two



systems admit the same constraint resolution behaviour, then their state spaces must support
identical notions of overlap, orthogonality, and combination.

Lemma 5.1 (Admissibility = convex operational structure). Under Definition 3.1, the set of
preparation procedures induces a convex state space S (mixtures correspond to randomised
preparations), and readouts induce affine functionals ("effects") e: § — [0,1]. Transformations
act as affine maps on S.

Justification. Randomisation is a physical operation available within Instr(D); irreversible
records imply well-defined outcome probabilities; resource bounds restrict to finite scenarios.
The convex structure is therefore not assumed but constructed from operational primitives.

Lemma 5.2 (Explicit Mapping from Admissibility to Reconstruction Assumptions). Let
Instr(D) satisfy Definition 3.1 and let admissible experiments be closed under sequential and
probabilistic composition. Then the operational structure induced by Instr(D) satisfies the
following properties:

(P1) Convexity of states (mixtures). For any two admissible preparations Pi, P> and any A €
[0,1], there exists an admissible preparation P_A that implements P:1 with probability A and P
with probability 1—-A. The resulting equivalence classes of preparations define a convex state
space S.

(P2) Affinity of measurement statistics. For any admissible measurement M with outcomes o,
the map s = p(o|s,M) is affine on S.

(P3) Existence of reversible transformations. Any admissible reversible operation T € Instr(D)

acts as an affine automorphism of §. The set of such transformations forms a group G acting on
S.

(P4) Finite information capacity. Finite distinguishability (Definition 3.1(i)) implies: for each
system there exists a finite N such that no admissible measurement perfectly distinguishes more
than N states. This is the operational "capacity" parameter used in reconstructions.

(P5) Composition and non-signalling. For spacelike-separated instruments A and B, admissible
joint experiments define a composite state space S AB whose marginal statistics are independent
of remote measurement choice (non-signalling). Equivalently: reduced states exist as well-
defined marginals.

(P6) Continuous reversibility (additional regularity). If, in addition, admissible reversible
operations vary continuously with control parameters and act transitively on pure states within a
connected component, then the "continuous reversibility" assumption used by Hardy and
Masanes—Miiller holds.

(P7) Local tomography (explicit assumption, when used). If, in addition, joint states are
determined by statistics of local measurements (tomographic locality), then the "local
tomography" assumption used in several reconstructions holds.



(P8) Purification (explicit assumption, only for CDP-type routes). If, in addition, every mixed
state arises as a marginal of a pure state on a larger system, then the "purification" assumption
holds (Chiribella—D'Ariano—Perinotti).

Proof- (P1)—(P3) follow from closure under probabilistic composition and the existence of
irreversible records that define stable outcome frequencies. (P4) is exactly Definition 3.1(i). (P5)
is the operational content of §3.3: admissibility is global, but local instrument choices cannot
change remote marginals. (P6)—(P8) are stated explicitly as additional regularity/representation
assumptions and are not claimed to follow from Definition 3.1 alone. m

Derivation of (P1)—(P2). Implement P_A by coupling the system to a classical randomiser that
irreversibly records a bit b with p(b=1) = A and triggers P: if b=1 else P.. By construction, for
any measurement outcome o,

p(o[P_AM) =X p(o|P1,M) + (1-A) p(0o|P2,M),

so the operational equivalence class s_A satisfies s A = As: + (1—A)s2 and measurement
functionals are affine.

Derivation of (P5) (non-signalling). If local choice y at B could change marginal statistics at A,
then B could transmit a controllable bit to A by switching y, and A could irreversibly record it.
This would contradict the operational separability implicit in admissible instrument composition
(and would empirically violate relativistic causal constraints). Hence admissible joint
experiments must satisfy p(alx,y) = p(ax) for all x, y, so reduced states exist as well-defined
marginals.

Reconstruction ingredient Where it appears Status here
PI’Obabl'hStIC mixtures / Hardy, Masanes—Muller, CDP Derived (P1-P2)
convexity (implicit)

Reversible transformations as

. all Derived (P3)
symmetries

Finite capacity / Hardy ("information capacity") Derived (P4)

distinguishability

Non-'51gnall1ng / well-defined all Derived (P5)

marginals

Continuous reversibility Hardy, Masanes—Miiller Additional (P6)
Hardy-style routes, many "y

Local tomography GPT—QM theorems Additional (P7)

Purification CDP Additional (P8)

Hardy "simplicity" Hardy Replaced by isosymmetry-

class equivalence

Remark. Hardy's "simplicity" axiom is not entailed by admissibility; it is replaced by
isosymmetry-class identification (same capacity + same task structure = same representation
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class). Purification is a stronger assumption about how mixed states arise; it remains optional and
is required only for CDP-type reconstruction routes. Continuous reversibility follows naturally in
many physical systems from controllable Hamiltonian evolution. Local tomography is a
representation assumption, not a physical postulate derived from admissibility.

Theorem 5.1 (Hilbert Space Representation). Lemma 5.2 derives (P1)—(P5) explicitly from
admissibility, and states (P6)—(P8) as optional regularity assumptions aligned with specific
reconstruction routes. Under these assumptions, reconstruction theorems imply a Hilbert-space
representation; companion work [10] selects C as the amplitude field. Specifically, any
formalism capable of faithfully encoding admissible global constraint states with:

e (i) graded distinguishability (states may be partially but not fully discriminable),

e (ii) reversible composition (joint states can be formed and factored without loss), and

e (iii) non-signalling extension (local operations on one subsystem do not alter statistics of
another)

must be equivalent to a complex Hilbert space description up to operational isomorphism.

Here 'equivalent' means: there exists a mapping of the theory's states and effects into the
projective space and POVM effects of a complex Hilbert space that preserves outcome
probabilities for all admissible experiments.

Clarification. Theorem 5.1 is not a reconstruction of quantum theory from axioms. It is a
representation theorem: it states that any formalism capable of faithfully encoding isosymmetric
admissible constraint classes must collapse to Hilbert space structure. The theorem does not
derive quantum mechanics; it shows that no alternative representation of the same constraint
class exists.

Proof sketch. The conditions (i)—(iii) correspond to the axioms from which reconstruction
theorems derive Hilbert space structure [5—8]. The deeper question is why complex Hilbert space
specifically. This is established in companion work [10] via Galois-theoretic selection: requiring
that observable predictions be invariant under automorphisms of the amplitude field, combined
with interference and isotropy requirements, uniquely selects C. Real numbers are excluded
because Aut(R/R) is trivial, precluding continuous phase. Quaternions are excluded because
Aut(H/R) = SO(3) conflicts with permutation symmetry of distinguishable configurations—joint
invariance destroys phase-sensitivity. Complex numbers, with Aut(C/R) = {identity,
conjugation}, satisfy all constraints. The resulting state space is necessarily a complex Hilbert
space. m

This does not imply that physical systems are literally vectors in an abstract space. Rather,
Hilbert space functions as a canonical encoding of admissible constraint relations. Its
universality follows from the universality of admissibility, not from the material properties of the
systems it represents.
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Remark. The derivation of Hilbert space structure from information-geometric principles,
including the emergence of the inner product from Fisher-Rao geometry and phase structure, is
developed in detail in companion work [10].

5.2 Universality of Tensor-Product Composition

The tensor product rule governs how composite quantum systems are represented. When two
systems are combined, their joint state space is not a Cartesian product but a tensor product,
allowing for states that cannot be decomposed into independent components.

From the perspective of isosymmetry, this compositional rule is unavoidable. If admissibility
applies to global configurations rather than local subsystems, then the representation of joint
systems must preserve the possibility of global constraints. The tensor product is precisely the
structure that encodes such global admissibility while retaining compatibility with local
descriptions.

The tensor product is not the unique mathematically consistent composition rule for operational
theories; GPTs admit alternatives including minimal and maximal tensor products [13].
Isosymmetry selects the quantum tensor product because alternatives either permit signalling or
fail to support stable record formation under Bell-type correlations [14].

Because isosymmetry equates systems at the level of admissible composition, any two
isosymmetric systems must combine according to the same tensor rules. The tensor product is
therefore not a peculiarity of wave mechanics or a postulate of quantum kinematics, but an
invariant of isosymmetric constraint classes.

5.3 Universality of Entanglement

Entanglement is often treated as a distinctive feature of quantum mechanics requiring special
explanation. Within the present framework, it emerges naturally.

Proposition 5.2. If a system belongs to an isosymmetric class that admits global constraint
resolution with non-signalling correlations, and if the admissible task set includes Bell-type
experiments whose observed correlations violate a Bell inequality while remaining non-
signalling, then non-factorizable (entangled) states are structurally required.

Proof- Suppose admissibility requires global consistency of fact creation: outcomes at separated
components must not contradict one another, yet local operations must not signal. A
representational framework that forbids entanglement would restrict joint states to product form,
but product states cannot violate Bell inequalities. If the admissible task set empirically includes
Bell-violating correlations (as observed in quantum systems), then any adequate representation
must include non-factorizable states. (Note: this is an empirical premise—that Bell violations
occur—not a consequence of Definition 3.1 alone.) m
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Entangled states are simply admissible global constraint states that cannot be factorised into
independent local configurations. If a system belongs to an isosymmetric class that admits global
constraint resolution, then entanglement is not optional—it is required.

This explains why entanglement appears universally across quantum systems, independent of
scale or physical implementation. Photons, atoms, spins, and superconducting circuits all support
entanglement because they belong to the same isosymmetric class. Entanglement is not a
dynamical effect added to otherwise separable systems; it is a structural feature of admissibility
itself.

Remark on probability. Isosymmetry constrains which outcome structures are admissible, not
how probability weight is assigned among them. The Born rule, which determines measurement
probabilities, is derived separately from the structure of admissible resolution [9]. Isosymmetry
explains why all quantum systems share the same framework for probability; it does not
determine the probabilities themselves.

5.4 Worked Example: Photon Polarisation and Electron Spin
Consider two paradigmatic quantum systems: photon polarisation and electron spin-1/2.
Photon polarisation:

o Substrate: Electromagnetic field mode
e Degrees of freedom: Polarisation state (horizontal, vertical, or superposition)
e Physical mechanism: Maxwell's equations, optical elements

Electron spin:

o Substrate: Fermionic matter field
o Degrees of freedom: Spin state (up, down, or superposition along any axis)
e Physical mechanism: Dirac equation, magnetic fields

These systems differ in every microscopic respect: one involves bosonic fields, the other
fermionic particles; one couples to electric fields, the other to magnetic fields; one propagates at
light speed, the other can be stationary.

Yet both belong to the same isosymmetric class because:

1. Both support exactly 2 perfectly distinguishable states (Definition 3.1(1))
Both admit continuous reversible transformations between pure states (SU(2) structure)
3. Both compose via tensor products yielding 4-dimensional joint spaces with entangled
states
4. Both exhibit identical correlation structure (same Bell inequality violations)
Both undergo irreversible resolution producing identical statistical patterns (Born rule)

hd
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The identical quantum structure is not a coincidence of similar dynamics—the dynamics are
entirely different. It is a consequence of isosymmetry: both systems satisty identical
admissibility constraints and therefore belong to the same constraint class.

5.5 Worked Example: Why Classical Phase Space Fails Isosymmetry

Classical mechanics is often thought of as the "simplest" physical theory. If isosymmetry merely
redescribed universality, one might expect classical phase-space systems to belong to the same
isosymmetric class as quantum systems. This subsection shows explicitly that they do not.

The failure is not dynamical but structural: classical phase space violates the finite
distinguishability requirement of admissibility (Definition 3.1(1)), and therefore realises a
different task class.

Setup. Consider a classical particle with phase space I' = R?", with points (q, p) representing
exact position and momentum. Preparations correspond to probability densities p(q, p) on I’;
measurements correspond to partitions of phase space into disjoint measurable regions; dynamics
are Hamiltonian flows preserving phase-space volume. This defines a perfectly well-formed
classical operational theory.

Step 1: Continuous distinguishability. For any finite region R c I, classical mechanics permits
arbitrarily fine partitions into N disjoint subregions, with N unbounded. For any N, there exists a
measurement that perfectly distinguishes which subregion the system occupies. Hence classical
phase space admits arbitrarily many perfectly distinguishable states in a single measurement—
there is no upper bound N_max.

Step 2: Violation of finite capacity. Definition 3.1(i) requires that at most n states can be
perfectly discriminated in a single measurement. Classical phase space violates this requirement
fundamentally: no finite information capacity exists, distinguishability scales without bound as
measurement resolution increases, and there is no natural cutoff enforcing a maximal set of
mutually exclusive outcomes. This is not a practical limitation but a structural property of
classical theory.

Step 3: Consequences for task structure. Because finite distinguishability fails:

e No finite-dimensional convex state space exists (the space of perfectly distinguishable
preparations is infinite-dimensional even locally)

o No finite capacity parameter can be defined (Hardy's "information capacity" is
undefined)

e No admissible global resolution threshold exists (there is no point at which
underdetermined alternatives are forced into a finite outcome set)

e No nontrivial isosymmetry class is shared with quantum systems

Step 4: Contrast with quantum systems.

14



Property Classical phase space Quantum system

Perfectly distinguishable states Unbounded Finite (< d)
Capacity parameter None Well-defined
Global resolution thresholds Absent Present
Isosymmetric with quantum systems X v

Interpretation. Classical mechanics fails isosymmetry not because it is "less rich" but because it
1s too permissive: it allows arbitrarily fine discrimination, unlimited information extraction in a
single measurement, and no intrinsic threshold for irreversible fact creation. Quantum theory sits
at a critical boundary—continuous structure (phases, superpositions) but finite distinguishability
and bounded capacity. This balance is exactly what admissibility encodes.

This example demonstrates that isosymmetry is not a restatement of universality: it excludes
classical mechanics for principled reasons and identifies finite distinguishability as the structural
hinge separating quantum from classical constraint classes.

6. Relation to Criticality

The principle of isosymmetry explains why quantum structure is universal across physical
realisations, but it does not, by itself, explain when or how irreversible outcomes occur. That role
is played by criticality. It is essential to distinguish clearly between the explanatory domains of
these two concepts.

Principle 6.0 (Threshold Invariance). Crossing a critical threshold changes which admissible
alternatives remain (resolution selects among them), but not the underlying admissible task
structure governing composition and correlation. Criticality is a selection on states within a fixed
constraint class, not a transition between constraint classes.

On this view, criticality is to isosymmetry as symmetry breaking is to symmetry: the dynamics
selects a branch, but the kinematic arena remains fixed.

6.1 What Criticality Explains

Criticality concerns the conditions under which a physical system transitions from reversible
evolution to irreversible commitment. Below critical thresholds, systems may occupy admissible
states that remain underdetermined, oscillatory, or globally constrained without producing
definite outcomes. At critical thresholds, admissibility constraints force resolution: one
alternative is selected, entropy increases, and a fact is created. This transition is structural rather
than dynamical, reflecting limits on capacity, consistency, and irreversible record formation.

6.2 Complementary Explanatory Domains
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Isosymmetry does not determine the location of critical thresholds or the dynamics leading up to
them. Instead, it classifies systems according to the structure of admissible resolution once such
thresholds are reached. Two systems may differ in scale, interaction strength, or environmental
coupling, and therefore reach criticality under different conditions, while still belonging to the
same i1sosymmetric class.

Question Answered by
Why do different systems have the same quantum structure? Isosymmetry
When does irreversible resolution occur? Criticality
What determines measurement outcomes? Resolution dynamics
Why are outcomes probabilistic? Born rule (derived separately)

Criticality answers the question of when irreversible resolution occurs, while isosymmetry
answers the question of why the same resolution structure applies across systems. The two
principles are complementary rather than competing.

6.3 Entanglement and Global Resolution

This distinction is particularly important for understanding entangled systems. In an entangled
configuration, admissibility applies to the global constraint state rather than to local subsystems.
When criticality is reached, resolution occurs at the level of the global constraint, producing
correlated outcomes without the need for signal propagation or causal influence between
spatially separated components. [sosymmetry ensures that this pattern of global resolution is
identical across physical implementations, while criticality determines when resolution is
enforced.

7. Comparison with Other Universality Notions

Universality is a familiar concept in physics, appearing in several well-established contexts. It is
important to clarify how isosymmetry differs from, and complements, existing notions.

7.1 Renormalisation Group Universality

In critical phenomena, systems with different microscopic interactions flow toward the same
fixed points and share identical scaling behaviour. However, renormalisation-group universality
concerns robustness under coarse-graining and scale transformation. It presupposes an
underlying theory and does not explain why the same abstract kinematic and compositional
structure applies to all quantum systems at all scales. [sosymmetry operates prior to dynamics
and scale, classifying systems by admissible resolution structure rather than by flow toward fixed
points.

7.2 Effective Field Theory
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Effective field theory explains why low-energy observables are largely independent of high-
energy physics. While effective theories successfully capture emergent behaviour within a given
kinematic framework, they presuppose quantum structure. They do not explain why the same
Hilbert space formalism, tensor composition, and entanglement rules apply across disparate
physical domains.

7.3 Decoherence

Decoherence-based accounts explain why certain bases become preferred under environmental
interaction and why interference terms are suppressed in practice. However, decoherence
assumes the existence of entanglement, tensor-product composition, and Hilbert space from the
outset. It therefore cannot ground their universality. [sosymmetry explains why these structures
must be present before any decoherence process can occur.

7.4 Information-Theoretic Reconstructions

Reconstruction programs derive quantum formalism from operational or informational axioms
[5-8]. These approaches successfully derive aspects of the formalism, demonstrating that
quantum structure follows from constraints such as tomographic locality, continuous
reversibility, and purification.

Isosymmetry operates at a complementary level. Reconstruction programs answer: "Given that
systems satisfy these axioms, what structure follows?" Isosymmetry answers: "Why do all fact-
producing systems satisfy axioms of this type in the first place?"

This paper establishes the substrate-independence principle (isosymmetry); the amplitude-field
selection and Hilbert-space emergence are proven constructively in [10] and used here as the
structural backbone.

The full derivation chain is (reconstruction axioms appear here not as derived results, but as
formal codifications of the admissible task structure identified by isosymmetry):

Admissibility constraints (this paper)
!

Isosymmetric constraint classes

!

Operational axioms (reconstruction programs)

|

Galois invariance + isotropy [10]

!
Complex Hilbert space (uniquely)

Specifically, companion work [10] completes the chain by proving that among the three
candidate amplitude fields permitted by Frobenius's theorem (R, C, H), only complex numbers
satisty the joint requirements of interference, Galois invariance, and isotropy. This transforms
the "why complex?" question from a brute fact into a theorem.
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Isosymmetry thus provides a physical grounding for the axioms that reconstruction programs
take as starting points, while [10] explains why those axioms force complex rather than real or
quaternionic structure.

Multiple reconstruction routes—operational [5—7], diagrammatic [16], and information-
geometric [10]—converge on the same structure despite differing formalisms. This convergence
is itself evidence for isosymmetry: the routes identify the same constraint class through different
lenses.

7.5 Structural Realism

The claim that quantum structure reflects equivalence of constraint classes rather than shared
material ontology resonates with structural realism in philosophy of physics [11]. Structural
realists hold that what persists across theory change and across physical instantiation is structure
rather than objects. Isosymmetry provides a precise criterion for structural equivalence: two
systems are structurally identical (in the relevant sense) if and only if they are isosymmetric.

8. Implications and Limits

8.1 Implications

Principled explanation for substrate-independence. The identical kinematic and
compositional structure observed across quantum systems is not an unexplained coincidence or a
matter of modelling convenience. It reflects a deeper equivalence at the level of admissible
constraint resolution.

Shift from dynamics to admissibility. Attempts to derive quantum theory purely from
underlying dynamics or specific interaction mechanisms may be misdirected. Quantum structure
is not imposed by particular forces or constituents, but by the requirements of admissible global
resolution.

Boundary conditions for quantum applicability. Systems that fail to meet admissibility
requirements—for example, systems lacking sufficient capacity for global constraint formation
or irreversible resolution—would not belong to a quantum isosymmetric class. This opens the

possibility of identifying regimes in which quantum structure breaks down, not because of new
dynamics, but because admissibility conditions are violated.

8.2 Limits
The present account has deliberate limits:

o Isosymmetry does not determine the probabilities of specific outcomes (this requires the
Born rule, derived separately).
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e Isosymmetry does not specify the dynamics by which systems approach criticality.
o Isosymmetry does not resolve the selection of particular measurement results.
o Isosymmetry does not replace existing quantum dynamics.

These questions lie outside the scope of the present paper and are addressed by complementary
principles.

8.3 Falsifiability
Isosymmetry makes the following empirically testable predictions:
Prediction. Any physical system capable of:

e (i) supporting stable, irreversible records, and
e (i) exhibiting at least two distinguishable states with continuous reversible
transformations between them

will exhibit quantum structure (Hilbert space, tensor composition, entanglement).
Isosymmetry would be falsified by either of the following:

A. Correlation falsifier (strongest). A fact-producing system satisfying Definition 3.1 that
exhibits correlations outside the quantum set (e.g., above Tsirelson bounds) in a controlled Bell
scenario, while maintaining stable classical records of outcomes.

B. Composition falsifier (cleanest). A fact-producing system with two-level controllable
subsystems whose composite does not admit tensor-product structure or entangled extensions—
i.e., only product composites are physically realisable despite both subsystems individually
satisfying admissibility.

Candidate domains for falsification:

o Exotic post-quantum GPT proposals with novel composition rules

o Indefinite causal order scenarios, if they produced superquantum correlations with stable
records

e Any verified violation of information causality with stable classical storage

o Gravitational or Planck-scale regimes where admissibility conditions might fail

Remark on superquantum theories. Generalised probabilistic theories (GPTs) such as PR-box
theories formally permit stronger-than-quantum correlations [17]. These serve as theoretical
counterexamples that illuminate the boundaries of isosymmetric classes. PR-box correlations
would trivialise communication complexity [18], collapsing the resource scaling that defines
admissibility (Definition 3.1(iii)). The quantum correlation boundary, precisely characterised by
Navascués et al. [19], may therefore reflect the limit of correlations compatible with non-trivial
fact production. Crucially, such theories are widely conjectured to be inadmissible under stable
record formation and information causality constraints [12]. The non-existence of physical PR-
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boxes would thus reflect not merely empirical accident but the deeper constraint that
admissibility imposes on correlation structure.

To date, no physical system satisfying the falsification criteria has been observed.

9. Conclusion

The universality of quantum structure across physical realisations has long been treated as a
brute fact or convenient assumption. We have argued that it admits a principled explanation.

Isosymmetry—equivalence at the level of admissible constraint resolution—provides the missing
principle. Systems that support the same patterns of finite distinguishability, reversible
composition, and irreversible commitment necessarily exhibit identical quantum structure.
Hilbert space, tensor products, and entanglement are not imposed separately on each physical
domain; they are invariants of isosymmetric constraint classes.

This paper is part of a reconstruction programme that derives quantum mechanics from
distinguishability principles:

Paper H Question Answered H Method
This paper Why is quantum structure substrate- Isosymmetry over constraint
pap independent? classes
Hilbert space paper . o Galois invariance excludes R
[10] Why complex numbers specifically? and T
|B0rn rule paper [9] HWhy P =|y|?? ”Coarse-graining geometry

Together, these results transform quantum universality from mystery to theorem: the kinematic
structure (complex Hilbert space), the compositional structure (tensor products), and the
probability rule (Born rule) all follow from the geometry of distinguishable configurations and
the requirements of consistent fact production.

This perspective relocates the source of quantum universality from material constitution to
structural admissibility. The question "why does quantum mechanics apply to photons and
electrons alike?" receives a precise answer: because photons and electrons are isosymmetric—
they belong to the same constraint class, and constraint class determines structure.

Isosymmetry thus completes a chain of explanation: reconstruction programs show that certain

axioms entail quantum formalism; isosymmetry shows why fact-producing systems satisfy those
axioms. Together, they transform quantum universality from mystery to theorem.
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Appendix A: Summary of Amplitude Field Selection

For completeness, we summarise the Galois-theoretic argument establishing that complex
numbers are the unique viable amplitude field, proven constructively in companion work [10].

Setup. Let A be a finite set of distinguishable configurations with |[A| > 3. Amplitudes are
functions y: A — F for some division algebra F over R. By Frobenius's theorem, the candidates
are F € {R, C, H}.

Constraints imposed:

1. Interference: F must support continuous phase structure
Galois invariance: Observable predictions must be invariant under Aut(F/R)

3. Isotropy: Predictions must be invariant under permutations of A (when configurations are
symmetrically distinguishable)

4. Regularity (Taylor Limit): Only continuous automorphisms are physically admissible

Regularity (Taylor Limit) — Physical Justification. The Taylor Limit requires that observable
probabilities vary smoothly under small perturbations of admissible preparations and
transformations. Physically, this reflects:

 finite experimental resolution (no infinitely precise measurements),
o the impossibility of infinitely sharp control, and

o the empirical success of perturbative modelling in physics.

Without such regularity, pathological representations (e.g., discontinuous automorphisms of C
constructed via Zorn's lemma) become formally admissible but are physically meaningless—
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they correspond to nowhere-measurable functions incompatible with any laboratory procedure.
The Taylor Limit therefore excludes mathematical artefacts rather than physical possibilities.

Results:

Field Aut(F/R) Verdict Reason

Trivial automorphism group cannot support continuous phase; only

discrete (£1) phase available

Automorphism group too large; SO(3) acting on imaginary

H  SO@B)  Excluded quaternions conflicts with S n isotropy—joint invariance destroys
phase-sensitivity

{id, Selected Two-element group supports interference while commuting with all

conj} permutations

R {id} Excluded

C

Theorem (Selection of C). Under constraints 1-4, complex numbers are the unique amplitude
field compatible with interference, Galois invariance, and isotropy. The resulting state space is

necessarily a complex Hilbert space.
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