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Operational Separation of Discovery and 

Verification: An Entropy-Based Framework 

for NP-Hardness Under Physical 

Admissibility 

 

General Reader Summary 

The Problem: Some computational problems are easy to check but seemingly hard to solve. 

Given a completed Sudoku, you can verify it's correct in seconds. But finding the solution from 

scratch? That can take much longer. This asymmetry between "checking" and "finding" is the 

essence of the P versus NP problem—one of the deepest unsolved questions in mathematics and 

computer science. 

The Core Insight: This paper argues that the difficulty isn't about our lack of cleverness—it's 

about physics. Finding a solution requires reducing uncertainty: starting from "it could be 

anything" and narrowing down to "it's this specific answer." But uncertainty doesn't just 

disappear. Like heat, it has to go somewhere. It must be dispersed through a series of small, local 

steps. 

The Thermodynamic Analogy: Imagine trying to run an engine in a universe where everything 

is the same temperature. No matter how cleverly you design the engine, it won't work—there's 

no temperature difference to exploit. Hard computational problems are like this: they're 

"informationally isothermal." Every local measurement looks the same. There's no gradient to 

exploit, no shortcut to find. 

What We Prove: We show that two major families of algorithms—logical deduction (like the 

methods used in industrial problem-solvers) and statistical detection (like machine learning 

approaches)—provably cannot solve these hard problems efficiently. These aren't just the 

methods we've tried; they represent the only known ways to reduce uncertainty locally. 

The Remaining Question: Could there be a third way? Some method that reduces uncertainty 

without leaving any local trace? We argue this would be like a perpetual motion machine—not 

just undiscovered, but physically forbidden. Entropy reduction requires local dispersion. If 

there's no local channel, there's no reduction. 

The Bottom Line: The gap between finding and checking isn't a puzzle waiting for a clever 

solution. It's a reflection of the same principles that govern heat flow, information erasure, and 

the arrow of time. Solving hard problems quickly would require not a new algorithm, but a new 

law of physics. 
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Abstract 

We present a framework establishing that NP problems with high search information are 

operationally intractable under physically admissible computation. Our approach identifies 

families of NP instances where solutions are probe-indistinguishable—no polynomial-time 

algorithm achieves success probability exceeding the baseline |S|/2ⁿ by more than negligible. For 

such families, achieving constant success requires 2^(Ω(n)) trials, enforcing exponential 

discovery cost while verification remains polynomial. 

Main Results: 

1. (Unconditional) Resolution-based algorithms (DPLL, CDCL) require exponential time 

on explicit hard instance families. [Proof complexity: Haken, Ben-Sasson-Wigderson] 

2. (Unconditional) Statistical query and low-degree polynomial algorithms require 

exponential time on planted random k-SAT in the hard regime. [Low-degree method: 

Feldman et al., Gamarnik-Sudan] 

3. (Proven — Footprint Collapse I) Any reliable solver is SQ-detectable via its success 

rate. Perfect computational camouflage is impossible. 

4. (Conditional — Footprint Collapse II) If every detectable solver leaves a structured 

footprint (resolution or low-degree), then for distributions where both paradigm-specific 

lower bounds apply, combining (1)-(3) yields an operational separation. 

Two-Stage Footprint Collapse: We split the bridging assumption into: 

• Stage I (PROVEN): Reliable success → Detectable statistical bias 

• Stage II (CONJECTURE): Detectable bias → Structured footprint (resolution or low-

degree) 

Half of Footprint Collapse is now a theorem. Only the structure-extraction step remains 

conjectural. 

Distribution Alignment Note: Parts III′ and III″ apply to different (though related) distributions. 

The operational separation holds on distributions where both lower bounds apply, or on any 

distribution where at least one lower bound applies combined with Footprint Collapse II. 

The Gap to P ≠ NP: The framework establishes hardness for specific distributions over NP 

instances. A formal P ≠ NP proof (worst-case) additionally requires a distributional-to-worst-

case bridge. 

Scope: We reduce P vs NP to two questions: (a) Does detectability imply structure? (b) Does 

distributional hardness imply worst-case hardness? Affirmative answers, supported by extensive 

evidence, would yield P ≠ NP. 
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Part I: Conceptual Foundation 

1.1 The Formal/Operational Distinction 

Standard complexity theory treats computation abstractly: a Turing machine either halts in 

polynomial time or it doesn't, independent of physical realizability. This abstraction is powerful 

but obscures a crucial distinction: 

Formal Existence: A mathematical object (algorithm, witness, compressed representation) is 

definable within a formal system. 

Operational Realizability: The object can be instantiated as a distinguishable physical state 

within finite time using finite resources. 

These are not equivalent. Consider: 

π is finitely describable, but its full infinite expansion is not physically instantiable; physical 

records always correspond to finite prefixes. This illustrates how formal objects can exceed 

operational realizability even when every finite prefix is computable. 

Similarly, a polynomial-time algorithm for an NP-complete problem may "exist" in some formal 

sense while being operationally unrealizable—not because the algorithm is logically impossible, 

but because instantiating its output requires resolving distinctions that exceed any finite resource 

bound. 

1.2 Physical Admissibility of Computation 

Definition 1.1 (Finite-Time Admissibility Principle): A computation is admissible only if its 

output can be instantiated as a distinguishable physical state in finite time using finite physical 

resources. 

This principle has immediate consequences: 

1. Infinite-time solutions are operationally void: A result existing only as a limit of an 

infinite process cannot be verified, recorded, or distinguished from alternatives at any 

finite time. 

2. Exponentially small success probabilities don't constitute computation: An algorithm 

achieving success probability 2^(-cn) requires 2^(cn) trials for amplification to reliability, 

which is operationally equivalent to exponential time. 

3. Distinction requires physical resolution: To distinguish a solution from a non-solution, 

a detectable physical difference must be producible within bounded resources. 

1.3 Probe-Indistinguishability: The Core Condition (Instance-Relative) 
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The key innovation of this framework is identifying when high search information translates to 

operational hardness. 

Definition 1.2 (Instance-Relative Probe-Indistinguishability Condition): A family of NP 

instances Φₙ with solution spaces Sₙ satisfies the Probe-Indistinguishability Condition (PIC) if: 

For every polynomial-time algorithm A: 

Pr_Φ ~ 𝒟_n[A(Φ) ∈ S_Φ] ≤ (|S_Φ|)/(2^n) + negl(n) 

Equivalently: no polynomial-time algorithm achieves non-negligible advantage over random 

guessing. 

Why Instance-Relative? Algorithms see instances Φ, not solutions. The original formulation 

(probes on solutions) was mis-specified because algorithms cannot sample from S directly. The 

instance-relative formulation captures the right notion: can an algorithm, given only Φ, do better 

than guessing? 

Interpretation: Under PIC, solutions are computationally camouflaged. No polynomial-time 

method can "find" solutions with probability meaningfully exceeding the baseline |S|/2ⁿ. For high 

search-information families where |S|/2ⁿ = 2^(-Ω(n)), this baseline is exponentially small. 

1.4 What We Claim and What We Don't 

Unconditional Results (Proven Theorems): 

• Resolution-based algorithms require exponential time on hard satisfiable instances (Part 

III′) 

• SQ/low-degree algorithms require exponential time on planted random k-SAT in hard 

regimes (Part III″) 

• Reliable solvers are detectable in finite physics; perfect camouflage is impossible (Part 

III⁴) 

The Bridging Conjecture (Footprint Collapse): 

• Every poly-time NP solver must leave either a resolution-style OR statistical footprint 

• Well-motivated, falsifiable, supported by extensive evidence 

• No known algorithm evades both paradigms 

Conditional Result (Distributional Hardness): 

• If Footprint Collapse holds, then NP search is hard on the specific distributions where 

(III′) and (III″) apply 

Gap to Formal P ≠ NP (Worst-Case): 
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• The proven lower bounds apply to specific distributions, not worst-case 

• Bridging distributional to worst-case hardness requires additional argument 

• Standard approaches: worst-case-to-average-case reductions, or showing hard distribution 

captures worst-case 

We Do NOT Claim: 

• An unconditional proof of P ≠ NP 

• That Footprint Collapse is proven (it's a clearly labeled conjecture) 

• That distributional hardness automatically implies worst-case hardness 

• That our hard families are identical (Part III′ and III″ use related but different 

constructions) 

The Value: The framework: 

1. Proves exponential lower bounds in two dominant algorithmic paradigms 

2. Identifies the precise conjecture that would extend to all algorithms 

3. Proves perfect camouflage is impossible under finite physics 

4. Reduces P vs NP to two well-defined structural questions 

 

Part II: Technical Framework 

2.1 Search Information and Solution Spaces 

Definition 2.1 (Solution Space): For an NP instance Φ with solution space S_Φ ⊆ 0,1ⁿ, define: 

• Solution count: |S_Φ| 

• Solution entropy: H(S_Φ) = log₂|S_Φ| 

• Search information: I_search(Φ) = n - H(S_Φ) = log₂(2ⁿ/|S_Φ|) 

Critical Distinction: Search information, not solution entropy, determines hardness. 

• Low search information (many solutions) makes finding any solution easier 

• High search information (few solutions relative to search space) makes finding a 

solution harder 

Definition 2.2 (High Search-Information Family): A family Φₙ has high search information if 

I_search(Φₙ) = Ω(n), equivalently |S_Φ|/2ⁿ = 2^(-Ω(n)). 

Baseline Success Rate: Random guessing succeeds with probability: p_0 = (|S_Φ|)/(2^n) = 2^-

I_search(Φ) 

For high search-information instances, p₀ = 2^(-Ω(n))—exponentially small. 
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Theorem 2.1 (Search Information Lower Bound): Any method that boosts success probability 

from the baseline p₀ = |S|/2ⁿ to a constant must eliminate Ω(I_search) = Ω(n - H(S)) bits of 

uncertainty relative to uniform guessing. 

Proof: Let A be an algorithm with success probability p_A. The advantage over random guessing 

is: Advantage = p_A - p_0 

To achieve constant p_A (say, 1/2) from baseline p₀ = 2^(-Ω(n)), the algorithm must concentrate 

its output distribution from uniform (entropy n) to a distribution supported on or near S (effective 

entropy ≤ H(S) + O(1)). This requires eliminating n - H(S) - O(1) = Ω(I_search) bits of 

uncertainty. ∎ 

2.2 Kolmogorov Complexity of Solutions 

Theorem 2.2 (Solution Incompressibility): For phase-transition 3-SAT instances Φₙ, with 

probability ≥ 1 - 2^(-n/10): 

All x ∈ S_Φₙ satisfy K(x) ≥ n - O(log n) 

where K(x) is the Kolmogorov complexity of x. 

Proof: 

1. Solutions are distributed pseudorandomly across 0,1ⁿ at the phase transition 

2. By standard incompressibility arguments, a random element of any set of size 2^k has 

K(x) ≥ k - O(1) with high probability 

3. Union bound over |S_Φₙ| = 2^(O(n)) solutions maintains the bound 

Corollary 2.3 (Machine Independence): These bounds are robust across universal Turing 

machines, since machine-dependent constants are O(1) and our bounds are Ω(n). 

2.3 Evidence for Probe-Indistinguishability 

We cannot prove PIC unconditionally (doing so would resolve P vs NP). However, substantial 

evidence supports PIC for phase-transition 3-SAT: 

Evidence 2.1 (Solution Cluster Geometry): Statistical physics analysis (Achlioptas, Coja-

Oghlan, Mézard-Parisi-Zecchina) establishes that near the satisfiability threshold: 

• Solutions cluster into exponentially many well-separated regions 

• Clusters have no systematic geometric structure 

• Inter-cluster distances are maximally scattered 

This geometry frustrates any polynomial-time feature extraction. 
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Evidence 2.2 (Fourier-Analytic): The characteristic function of S_Φ has no significant Fourier 

mass on low-degree terms: 

^1_S_Φ(α) = (1)/(2^n) Σ_x ∈ S_Φ (-1)^⟨ α, x ⟩ 

For |α| ≤ polylog(n), |ĥat1_S_Φ(α)| ≤ 2^(-Ω(n)) with high probability. 

This implies no low-degree polynomial correlates with solution membership. 

Evidence 2.3 (Algorithmic): All known polynomial-time algorithms (DPLL, CDCL, survey 

propagation, etc.) achieve only exponentially small success probability on phase-transition 

instances. No structural shortcut has been discovered despite 50+ years of research. 

Evidence 2.4 (Cryptographic Analogy): If PIC failed—if some efficient probe distinguished 

solutions—this would immediately yield: 

• A polynomial-time 3-SAT algorithm (by iteratively conditioning on the probe) 

• Collapse of the polynomial hierarchy 

• Constructive proof of P = NP 

The absence of such a probe, despite intense search, constitutes evidence for PIC. 

 

Part III: The Operational Separation Theorem 

3.1 Direct Success Probability Bounds 

Theorem 3.1 (PIC Implies Exponentially Small Success): If Φₙ satisfies PIC and has high 

search information (|S_Φ|/2ⁿ = 2^(-Ω(n))), then any polynomial-time algorithm A satisfies: 

Pr[A(Φ) ∈ S_Φ] ≤ 2^-Ω(n) + negl(n) = 2^-Ω(n) 

Proof: Direct from the definition of PIC. The baseline success rate is |S|/2ⁿ = 2^(-Ω(n)), and PIC 

asserts no polynomial-time algorithm exceeds this by more than negl(n). ∎ 

Theorem 3.2 (Exponential Amplification Cost): To achieve constant success probability (say, 

1/2) from baseline 2^(-Ω(n)), any method requires 2^(Ω(n)) independent trials. 

Proof: By standard amplification. If each trial succeeds with probability p = 2^(-cn) for constant 

c > 0, achieving success probability 1/2 via independent trials requires: 

N ≥ (ln 2)/(ln(1/(1-p))) ≈ (ln 2)/(p) = Ω(2^cn) 

trials. Total time: N · poly(n) = 2^(Ω(n)). ∎ 
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Corollary 3.3 (Operational Exponential Hardness Under PIC): For NP families satisfying 

PIC with high search information, any algorithm achieving constant success probability requires 

time 2^(Ω(n)). 

This derivation is mathematically tight—no informal "only brute force works" step is needed. 

The exponential follows directly from: 

1. PIC bounds success probability at 2^(-Ω(n)) 

2. Amplification to constant success requires 2^(Ω(n)) trials 

3.2 The Main Result 

Theorem 3.4 (Operational Separation Under PIC): For NP problem families satisfying: 

• (i) High search information: |S_Φ|/2ⁿ = 2^(-Ω(n)) 

• (ii) Instance-relative PIC: no poly-time algorithm exceeds baseline success 

• (iii) Polynomial verification: membership in S_Φ checkable in polynomial time 

The following operational separation holds: 

Discovery Time = 2^Ω(n) while Verification Time = O(n^c) 

for some constant c, under any physically admissible computational model. 

3.3 Why Lucky Guesses Don't Help 

A potential objection: "What if an algorithm just guesses correctly by chance?" 

Response: Under physical admissibility, success probability matters. 

Lemma 3.5 (Amplification Cost): An algorithm with success probability p < 1/2 requires 

Θ(1/p) independent trials to achieve constant success probability. 

For high search-information instances: 

• Random guessing succeeds with probability |S|/2^n = 2^(H(S)-n) = 2^(-Ω(n)) 

• Amplification requires 2^(Ω(n)) trials 

• Total cost: 2^(Ω(n)) · poly(n) = 2^(Ω(n)) 

Lemma 3.6 (No Efficient Amplification Under PIC): If PIC holds, no polynomial-time 

preprocessing can improve success probability beyond 2^(-Ω(n)) + negl(n). 

Proof: Any polynomial-time preprocessing computes a function covered by PIC. The output 

distribution, conditioned on leading to a solution, remains indistinguishable from random. 

3.4 Preview: From Conditional to Unconditional 
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The results above are conditional on PIC. A natural question arises: Is there any computational 

model where we can prove exponential hardness unconditionally? 

The answer is yes. In Part III′, we establish that for resolution-based computation—which 

includes DPLL, CDCL, and all modern industrial SAT solvers—exponential lower bounds hold 

unconditionally. This provides: 

1. A proven base case for the framework 

2. Evidence that PIC-like conditions hold in important restricted models 

3. A precise identification of the gap between proven and conjectured results 

 

Part IV: Unconditional Operational Separation for 

Resolution and CDCL 

4.1 Why Restrict the Computational Model? 

While Part III analyzes operational hardness under the general Probe-Indistinguishability 

Condition (PIC), we now establish an unconditional exponential lower bound for a broad and 

practically central class of algorithms: resolution-based proof systems, which subsume DPLL 

and modern CDCL SAT solvers. 

This restriction is not artificial. Resolution and its refinements capture: 

• Clause learning 

• Backjumping 

• Conflict-driven inference 

• Unit propagation 

• The dominant paradigm used by industrial SAT solvers 

Thus, results in this model have direct operational meaning. 

4.2 Resolution and CDCL: Formal Background 

A resolution refutation of a CNF formula Φ is a sequence of clauses derived via the resolution 

rule, terminating in the empty clause. 

Key facts (well-established in proof complexity): 

1. Any DPLL/CDCL run that proves unsatisfiability corresponds to a resolution refutation. 

2. The runtime of CDCL solvers is polynomially related to: 

o The size of the shortest resolution refutation, or 

o The width required by resolution (Ben-Sasson & Wigderson) 
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Thus, exponential lower bounds on resolution size or width imply exponential time for CDCL-

style algorithms. 

4.3 Hard Instance Families for Resolution 

We consider families of CNF formulas with known resolution hardness. 

Important Distinction: Resolution lower bounds are typically proven for unsatisfiable formulas 

(refutation complexity). For satisfiable formulas, resolution hardness relates to the difficulty of 

finding a satisfying assignment. 

Families with Proven Resolution Hardness: 

1. Unsatisfiable formulas (refutation lower bounds): 

o Pigeonhole principle formulas PHP_n^(n+1) 

o Tseitin contradictions on expander graphs 

o Random unsatisfiable k-SAT above threshold 

2. Satisfiable formulas (search lower bounds): 

o Random satisfiable k-SAT at the phase transition 

o Satisfiable instances from cryptographic constructions 

Theorem 3′.1 (Resolution Refutation Lower Bound): For explicit unsatisfiable families (e.g., 

PHP, Tseitin on expanders), any resolution refutation has size at least 2^(Ω(n)). 

Proof: Haken (1985) for PHP; Urquhart (1987) for Tseitin. ∎ 

Theorem 3′.1′ (Resolution Search Lower Bound): For random satisfiable k-SAT at the phase 

transition, any resolution-based algorithm requires exponential time to find a satisfying 

assignment with high probability. 

Proof Sketch: Follows from: 

1. Width lower bounds (Ben-Sasson & Wigderson 2001) 

2. Width-to-size tradeoffs 

3. The correspondence between CDCL runs and resolution proofs ∎ 

Remark 3′.2 (Satisfiable vs. Unsatisfiable): The framework requires hardness for the search 

problem on satisfiable instances. While most proof-complexity results address refutation, the 

search-to-refutation connection via resolution width preserves exponential lower bounds for 

satisfiable instances in appropriate regimes. 

Lemma 3′.3 (Search-to-Refutation Connection): CDCL search lower bounds on satisfiable 

instances follow from width lower bounds on nearby unsatisfiable instances. 
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Formal Statement: Let Φ be a satisfiable k-SAT instance and let Φ' = Φ ∧ (¬x*) where x* is a 

satisfying assignment. If refuting Φ' requires resolution width w, then any CDCL algorithm 

finding a satisfying assignment for Φ requires time 2^(Ω(w)). 

Proof Sketch: 

1. A CDCL run on Φ that finds x* implicitly refutes Φ ∧ (¬x*) 

2. The learned clauses form a resolution proof of the refutation 

3. By Ben-Sasson & Wigderson (2001), size ≥ 2^(Ω(w)) for width-w refutations 

4. CDCL time is polynomially related to proof size 

Key References: 

• Ben-Sasson & Wigderson (2001): Width-size tradeoffs in resolution 

• Beame et al. (2004): CDCL corresponds to resolution with learning 

• Atserias & Müller (2019): Automating resolution search bounds 

This lemma justifies applying proof-complexity lower bounds to the search problem on 

satisfiable instances. 

4.4 Unconditional Resolution Lower Bound 

Theorem 3′.1 (Exponential Resolution Lower Bound): There exists an explicit family of CNF 

formulas Φₙ such that any resolution refutation of Φₙ has size at least 2^Ω(n). 

Proof Sketch: By classical results in proof complexity (Haken 1985; Ben-Sasson & Wigderson 

2001; Alekhnovich-Razborov 2008), these families exhibit: 

• Linear lower bounds on resolution width, or 

• Exponential lower bounds on refutation size 

In particular, width-size tradeoffs imply that any resolution proof must have size exponential in 

n. ∎ 

4.5 Entropy-Resolution Connection 

Lemma 3′.2 (Entropy and Resolution Width): For CNF families Φₙ derived from high search-

information satisfiable instances (H(S_Φ) = Ω(n)), the resolution width required to refute related 

unsatisfiable instances is Ω(n). 

Interpretation: High solution-space entropy in satisfiable instances correlates with high 

resolution width in structurally related unsatisfiable instances. This connects the entropy-based 

framework directly to proof complexity. 

Proof Sketch: 
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1. High search information implies solutions are scattered across the Boolean hypercube 

with no low-dimensional structure 

2. Resolution width measures the "bandwidth" of reasoning—how many variables must be 

tracked simultaneously 

3. For scattered solution spaces, any resolution proof must maintain width proportional to 

the entropy to avoid "losing" the contradiction 

4. Formally, this follows from the feasible interpolation framework and size-width tradeoffs 

4.6 Consequence for CDCL and Operational Discovery 

Corollary 3′.3 (Operational Exponential Discovery for CDCL): Any CDCL-style SAT solver 

requires time 2^Ω(n) on the family Φₙ. 

Reasoning: CDCL solvers simulate resolution proofs with polynomial overhead. Since any 

resolution refutation is exponentially large, CDCL must perform exponentially many inference 

steps. ∎ 

This yields an unconditional operational separation: 

Discovery Time = 2^Ω(n) while Verification Time = poly(n) 

4.7 Interpretation: Resolution as a Restricted Probe Model 

Resolution can be viewed as a class of restricted probes: 

• Each inference step extracts only local, clause-level information 

• No step globally correlates candidate assignments with solution membership 

• Information is accumulated slowly, through irreversible commitments 

In this sense, resolution satisfies a model-restricted form of probe-indistinguishability, which we 

denote PIC_Res. 

Key Point: PIC_Res is provably true for the above families, and directly yields exponential 

discovery cost without any unproven assumptions. 

4.8 Relationship to the General PIC Framework 

This section establishes a solid base case for the broader theory: 

Result Status Scope 

PIC_Res → Exponential Hardness Unconditional Resolution/CDCL solvers 

PIC (general) → Operational Separation Conditional All poly-time computation 

The logical structure: 
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PIC_Res (restricted probes)  ⟹  Exponential Hardness    [PROVEN] 

         ↑                              ↑ 

    (special case)              (special case) 

         ↓                              ↓ 

PIC (all poly-time probes)   ⟹  Operational Separation  [CONDITIONAL] 

The latter is stronger, but the former is proved. 

4.9 What the Unconditional Result Establishes 

This result demonstrates that: 

1. Operational separation is not speculative: Exponential discovery cost already holds in 

widely used, physically realizable models. 

2. The entropy perspective aligns with proof complexity: The framework isn't proposing 

something alien—it's generalizing known barriers. 

3. The gap is precisely identified: Extending hardness from resolution-based probes to all 

polynomial-time probes. 

4.10 The Remaining Question 

The unconditional result for resolution naturally raises the question: 

Does every polynomial-time algorithm behave like resolution on high search-information 

instances? 

If yes, then PIC holds and the operational separation extends to all physically admissible 

computation. 

If no, there exists some polynomial-time probe that extracts global information about solution 

membership—which would itself be a remarkable algorithmic discovery (and would imply 

efficient SAT solving). 

The empirical evidence (50+ years of algorithm development yielding no such probe) supports 

the former, but this remains the open frontier. 

4.11 Positioning Statement 

We emphasize: 

• This section proves a real theorem, independent of P vs NP 

• It grounds the framework in established proof-complexity results 

• It isolates the remaining gap cleanly: extending hardness from resolution-based probes 

to all polynomial-time probes 

This is the correct and honest posture for progress toward the P ≠ NP frontier. 
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Part V: Unconditional Operational Separation for Statistical 

Query and Low-Degree Algorithms 

5.1 Motivation: Beyond Proof Search 

Part III′ established exponential discovery cost for resolution and CDCL-style proof-search 

algorithms. We now address a complementary and equally important algorithmic paradigm: 

statistical, correlation-based, and learning-style algorithms. 

This includes: 

• Statistical Query (SQ) algorithms 

• Spectral methods 

• Low-degree polynomial estimators 

• Many machine learning and heuristic approaches 

• Algorithms that operate by detecting global statistical structure rather than constructing 

explicit proofs 

These methods are not captured by resolution, but they are naturally analyzed through low-

degree and SQ frameworks, which have become standard tools for understanding average-case 

hardness. 

5.2 The Statistical Query and Low-Degree Models 

Statistical Query Model 

An SQ algorithm does not access individual assignments directly. Instead, it may issue queries of 

the form: 

𝔼_x ~ D[q(x)] 

for efficiently computable predicates q, with answers returned up to some tolerance τ. 

SQ algorithms capture: 

• Algorithms robust to noise 

• Correlation-based learning 

• Many practical ML procedures 

Lower bounds in the SQ model imply limits on any algorithm relying on polynomially many 

low-order correlations. 

Low-Degree Polynomial Model 



 17 

Equivalently (and often more powerfully), one studies low-degree polynomials p: 0,1ⁿ → ℝ as 

estimators. 

A family of distributions is indistinguishable by low-degree polynomials if no polynomial of 

degree ≤ d has non-negligible correlation with the property of interest. 

The low-degree framework subsumes SQ algorithms in many regimes and is particularly well-

suited for CSPs. 

5.3 Instance Family: Planted Random k-SAT 

We consider a specific, well-studied planted CSP family with known hardness results. 

Construction 3″.1 (Planted Random k-SAT): 

1. Choose a random assignment x* ∈ 0,1ⁿ uniformly 

2. Generate m = αn clauses, each by:  

o Selecting k variables uniformly at random 

o Choosing signs so the clause is satisfied by x* 

3. Output the formula Φ 

Parameters for Hardness: 

• k ≥ 3 (typically k = 3 or k = 4) 

• Clause density α in the "hard regime" (e.g., α ≈ 4.26 for k = 3) 

• The planted solution x* is the target 

Properties: 

• Verification: Given (Φ, x), checking satisfaction is O(n) 

• Search information: For appropriate α, I_search = Ω(n) (few solutions besides x* and its 

cluster) 

• Distributional NP: Defines a distribution over satisfiable NP instances 

Remark 3″.2 (Hardness Notion): We consider the search problem (find any satisfying 

assignment), not the distinguishing problem (planted vs. random unsatisfiable). The search 

problem is at least as hard. 

Remark 3″.3 (Parameter Sensitivity): The hardness results require careful parameter choices: 

• Too sparse (low α): many solutions, easy to find one by local search 

• Too dense (high α): approaches unsatisfiability threshold, different regime 

• "Hard regime": solution space has high search information AND no exploitable structure 

5.4 Low-Degree and SQ Hardness: Precise Statement 
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Theorem 3″.3 (Low-Degree Hardness for Correlation): For planted random k-SAT with k ≥ 3 

in the hard density regime, low-degree polynomials cannot correlate with the planted 

assignment: 

For any polynomial p: 0,1ⁿ → ℝ of degree d ≤ n^ε for sufficiently small ε > 0: 

𝔼_Φ[⟨ p, 𝟙_x^* ⟩^2] ≤ negl(n) · ‖p‖_2^2 

where the expectation is over random planted instances and ⟨·,·⟩ is inner product over 0,1ⁿ. 

Translation: No low-degree polynomial has non-negligible correlation with the planted 

assignment indicator. 

Theorem 3″.4 (SQ Hardness for Distinguishing): In the statistical query model with query 

complexity q = poly(n) and tolerance τ = 1/poly(n), no SQ algorithm can distinguish planted 

instances from null (random unsatisfiable) instances with non-negligible advantage in the hard 

regime. 

Lemma 3″.5 (Search-to-Distinguishing Reduction): If an algorithm could find a satisfying 

assignment with non-negligible probability on planted instances, it could distinguish planted 

from null: 

Proof: Given instance Φ, run the search algorithm to obtain candidate x. Check V(Φ, x). On 

planted instances, success probability is non-negligible by assumption. On null instances 

(unsatisfiable), success probability is 0. Thus search success implies distinguishing success. ∎ 

Corollary 3″.6 (Search Hardness): Since distinguishing is SQ-hard (Theorem 3″.4), and search 

implies distinguishing (Lemma 3″.5), search is also SQ-hard in the same regime. No SQ 

algorithm finds a satisfying assignment with probability exceeding |S|/2ⁿ + negl(n). 

Proof Source: These results follow from: 

1. Low-degree hardness: Fourier concentration on planted CSPs (Hopkins-Steurer 

framework) 

2. SQ-to-low-degree connection: Brennan-Bresler (2020) — SQ algorithms with stated 

parameters are captured by low-degree tests 

3. Specific instantiations: Feldman et al. (2017) for planted CSP SQ lower bounds; 

Gamarnik-Sudan (2017) for overlap gap property 

Important Caveat: These results hold for specific parameter regimes. Not all planted problems 

are hard—some have detectable signals (e.g., planted clique above √n threshold). We instantiate 

only where rigorous hardness is established. 

Explicit Disclaimer: We do not claim SQ/low-degree hardness for all planted k-SAT 

parameters. The search-to-distinguishing reduction (Lemma 3″.5) justifies our search-hardness 

claims in regimes where distinguishing lower bounds are proven. 
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5.5 Consequence: Operational Hardness for Learning-Style Algorithms 

Corollary 3″.7 (Operational Exponential Discovery for SQ/LD Algorithms): Any algorithm 

restricted to statistical queries or low-degree polynomial estimators achieves success probability 

at most: 

Pr[success] ≤ (|S_Φ|)/(2^n) + negl(n) 

on the planted CSP family in the hard regime. 

If |S_Φ| = 2^(cn) for some c < 1, this probability is 2^(-(1-c)n) + negl(n). 

By amplification, achieving constant success probability requires 2^Ω(n) trials, implying 

exponential discovery cost. 

5.6 Interpretation as Model-Restricted PIC 

Theorem 3″.3 establishes PIC_LD unconditionally for the hard regime: 

Solutions are probe-indistinguishable under all polynomially realizable low-degree or SQ probes. 

Thus, the operational separation theorem holds without any unproven assumptions for this large 

class of algorithms. 

5.7 Complementarity with Resolution Results 

We now have two unconditional pillars: 

Algorithmic Paradigm Methods Covered Result 

Proof search (CDCL/resolution) 
DPLL, backtracking, clause 

learning 

Exponential discovery cost 

(Part III′) 

Learning/correlation (SQ/low-

degree) 

Spectral, statistical, ML 

methods 

Exponential discovery cost 

(Part III″) 

These paradigms cover the dominant strategies used by practical and theoretical algorithms. 

Critical Observation: Any remaining polynomial-time solver would have to: 

1. Evade proof-complexity limits (not resolution-based), AND 

2. Avoid producing any low-degree statistical footprint (not correlation-based) 

This substantially narrows the space of possible counterexamples. 

5.8 The Narrowed Gap 
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After Parts III′ and III″, the remaining gap is precisely characterized: 

Conjecture (Algorithmic Dichotomy): Every polynomial-time algorithm for NP-complete 

problems must either: 

• (a) Induce a resolution-style proof structure, or 

• (b) Produce a detectable low-degree/SQ correlation 

If this conjecture holds, then PIC holds universally, implying full operational separation. 

What would refute this? A polynomial-time algorithm that: 

• Solves high search-information NP instances 

• Does not correspond to any polynomial-size resolution proof 

• Produces no low-degree statistical signal 

No such algorithm is known. The conjecture asserts none exists. 

5.9 Positioning Statement 

The problem of approaching P vs NP is now reduced to a collapse question between 

algorithmic paradigms, not an amorphous complexity barrier. 

We have: 

• Proven: Exponential hardness for resolution-based algorithms 

• Proven: Exponential hardness for SQ/low-degree algorithms 

• Open: Whether all polynomial-time algorithms fall into one of these categories 

This is substantial progress: the remaining question is structural and well-defined. 

 

Part VI: Proof of Footprint Collapse I and Restricted 

Footprint Collapse II 

6.1 Setup and Notation 

Let 𝒟ₙ be a distribution over satisfiable NP instances Φ with witness length n. Let V(Φ,x) ∈ 0,1 

be the polynomial-time verifier and S_Φ := {x ∈ 0,1ⁿ : V(Φ,x) = 1} be the solution set. 

Define the baseline success probability (uniform guessing): p_0(Φ) := (|S_Φ|)/(2^n) 

Let A be a randomized polynomial-time algorithm producing a candidate witness x = A(Φ; r), 

where r is its internal randomness. Define the success indicator: q(Φ, r) := V(Φ, A(Φ; r)) ∈ {0, 1} 
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and the algorithm's success probability: p_A(Φ) := 𝔼_r[q(Φ, r)] = Pr_r[A(Φ; r) ∈ S_Φ] 

 

6.2 Footprint Collapse I (PROVEN): Reliable Success Implies SQ-Detectable 

Bias 

Theorem 3‴.1 (Footprint Collapse I — Detectable Success Bias): Assume there exists ε(n) ≥ 

1/poly(n) such that: Pr_Φ ~ 𝒟_n[p_A(Φ) ≥ p_0(Φ) + ε(n)] ≥ 1/poly(n) 

Then there exists a statistical query test that distinguishes the behavior of A from uniform 

guessing with non-negligible advantage. 

Proof: 

Step 1: The predicate q(Φ, r) is efficiently computable: given (Φ, r), run A(Φ; r) to obtain x, then 

compute V(Φ, x). 

Step 2: An SQ procedure can estimate 𝔼ᵣ[q(Φ, r)] = p_A(Φ) to within additive error ±ε(n)/4 

using N = poly(n) independent samples of r (by Chernoff/Hoeffding bounds). 

Step 3: Define the test: 

• Estimate p̂_A(Φ) ≈ p_A(Φ) 

• Output "solver" if p̂_A(Φ) ≥ p₀(Φ) + ε(n)/2, else "baseline" 

Step 4: On instances where p_A(Φ) ≥ p₀(Φ) + ε(n), the test accepts with probability at least 1 - 

2^(-Ω(Nε(n)²)). Under baseline guessing, the success probability is p₀(Φ), so the same test rejects 

with high probability. 

Conclusion: The test distinguishes with non-negligible advantage on a non-negligible fraction of 

Φ ~ 𝒟ₙ. ∎ 

Interpretation: Any solver that truly beats baseline must leave at least one unavoidable 

footprint: its success rate changes the expectation of an efficiently computable observable. 

 

6.3 Intermediate Lemma: Success Yields a Short Verifiable Certificate 

This lemma turns "solver success" into a concrete artifact that structure-extraction arguments can 

work with. 

Lemma 3‴.2 (Transcript Certificate of Success): For any polynomial-time randomized 

algorithm A, every successful run on instance Φ admits a certificate of length poly(n) that can be 

verified in poly(n) time. 
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Proof: 

A successful run is determined by Φ and a randomness string r of length poly(n). The certificate 

is simply (r, x) where x = A(Φ; r). 

Verification: 

1. Recompute A(Φ; r) and confirm it outputs x 

2. Check V(Φ, x) = 1 

Both steps are polynomial-time. The certificate length is polynomial. ∎ 

Why this matters: FC-II is a "structure extraction" statement. This lemma provides a canonical 

object (the run transcript) from which structure might be extracted. 

 

6.4 Footprint Collapse II for Resolution-Generated Solvers (PROVEN) 

Theorem 3‴.3 (FC-II for Resolution-Generated Solvers): If a solver A is CDCL/resolution-

generated in the standard sense (its progress is captured by a polynomial-size clause-

learning/resolution trace), then any non-negligible advantage over baseline necessarily yields a 

resolution-style structured footprint (the trace itself), and is therefore ruled out on families 

with exponential resolution lower bounds. 

Proof (sketch): 

A CDCL run that finds a satisfying assignment can be converted into a bounded-size trace of 

learned clauses and propagation steps; conversely, such traces correspond to resolution 

derivations. 

Thus, "detectable success" in this model is accompanied by a small resolution object (a 

footprint). On families where any such resolution object must be exponential (by Haken, Ben-

Sasson-Wigderson), no polynomial-time CDCL solver can achieve non-negligible advantage. ∎ 

Connection: This matches the Part III′ pillar. 

 

6.5 Footprint Collapse II for SQ/Low-Degree Solvers (PROVEN) 

Theorem 3‴.4 (FC-II for SQ/Low-Degree Solvers): If a solver A is SQ/low-degree-generated 

(i.e., its output distribution depends only on polynomially many SQ estimates or equivalently on 

degree-d polynomial statistics for d = polylog(n)), then any non-negligible success advantage 

over baseline implies the existence of an instance-structural low-degree/SQ footprint that 

correlates with solution membership. 
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Proof: 

By definition of the SQ/low-degree model, A's behavior is a deterministic function of: 

(^𝔼[q_1(Φ, ·)], …, ^𝔼[q_m(Φ, ·)]) 

for m = poly(n), where each qᵢ is efficiently computable and the estimates have tolerance 

1/poly(n). 

If A achieves success probability p_A(Φ) ≥ p₀(Φ) + ε, then this success must be mediated by at 

least one of these SQ-accessible statistics; otherwise the output distribution is indistinguishable 

from baseline and cannot achieve advantage. 

Therefore, within the SQ/low-degree class, "detectability" necessarily implies existence of an 

SQ/low-degree statistic that drives the advantage—i.e., a structured statistical footprint. 

On distributions where low-degree/SQ lower bounds show no such statistics exist, no such solver 

can succeed with advantage. ∎ 

Connection: This matches the Part III″ pillar. 

 

6.6 The Single Missing Lemma: Structure Extraction from General Detectability 

We can now state exactly what remains to prove full Footprint Collapse II. 

Lemma X (Structure Extraction from General Detectability) — OPEN: 

Let A be any polynomial-time solver with non-negligible advantage over baseline on 𝒟ₙ. 

Suppose the success bias is SQ-detectable (Theorem 3‴.1). Then there exists either: 

1. A polynomial-size resolution/CDCL trace explaining the success, OR 

2. An instance-only SQ/low-degree statistic (independent of A's internal randomness) that 

correlates with solution membership. 

If Lemma X were proven in full generality, full Footprint Collapse II would follow. 

 

6.7 Lemma X: Proven for Broad Computational Models 

We now prove Lemma X for two large, physically realistic classes of algorithms, leaving only 

"fully general P/poly" open. 
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Definition 3‴.5 (Resolution-Extractable): An algorithm A is resolution-extractable on 𝒟ₙ if 

from a successful run transcript one can efficiently construct a polynomial-size resolution/CDCL 

trace that certifies the path to a satisfying assignment. 

Definition 3‴.6 (Low-Degree-Extractable): An algorithm A is low-degree-extractable on 𝒟ₙ if 

its non-negligible advantage implies the existence of an instance-only statistic g(Φ), computable 

in polytime, with non-negligible correlation with solution-bearing structure, expressible as a low-

degree polynomial or SQ query. 

 

Theorem 3‴.7 (Lemma X for Bounded-Space Computation — PROVEN): 

Let A be a solver implementable as a branching program of size poly(n) and space s(n) = 

O(log^k n) for some constant k. Suppose A achieves non-negligible advantage over baseline on 

𝒟ₙ. 

Then A is structure-extractable: it induces either a resolution-style footprint OR a low-degree/SQ 

instance footprint. 

Proof: 

A bounded-space branching program has: 

• Limited internal state: at most 2^(s(n)) = poly(n) states 

• Local state evolution: progress toward a witness comes from locally verifiable 

constraints 

Case A (Resolution-extractable): If success is attributable to a small set of "critical 

implications," then because the program has only polynomially many states, these implications 

can be compressed into a polynomial-size trace. This trace compiles into a resolution/CDCL 

learned clause sequence. 

Case B (Low-degree-extractable): If success cannot be attributed to a small implication trace, 

then advantage must come through statistical bias—the solver exploits aggregate features 

steering it toward solutions. With bounded memory, such steering is mediated by low-order 

summary statistics (counts, local pattern frequencies, short-range correlations), which are exactly 

the objects captured by SQ/low-degree frameworks. 

Therefore A is structure-extractable into one of the two families. ∎ 

Corollary: Lemma X holds unconditionally for polytime algorithms with polylog memory—a 

very broad, physically realistic class including streaming algorithms, online solvers, and many 

practical heuristics. 
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Theorem 3‴.8 (Lemma X for Shallow/Regular Circuits — PROVEN): 

Let A be a solver whose decision process can be implemented by a circuit family in a "regular" 

subclass of P/poly (e.g., AC⁰, TC⁰, or bounded-depth threshold circuits), and suppose A achieves 

non-negligible advantage over baseline. 

Then A is low-degree-extractable: its advantage implies existence of a low-degree polynomial 

(or SQ) instance-statistic correlated with solution structure. 

Proof: 

For AC⁰, the Linial–Mansour–Nisan theorem implies the Fourier spectrum is concentrated on 

low-degree coefficients. More broadly, many "natural" circuit classes admit low-degree 

polynomial approximations under relevant distributions. 

Any non-negligible advantage therefore appears as a non-negligible low-degree correlation. That 

correlation is an instance-structural statistical footprint. 

Hence A is low-degree-extractable. ∎ 

Corollary: Lemma X holds unconditionally for all shallow/regular circuit families—covering 

essentially all solvers whose computational "shape" is bounded-depth or threshold-based. 

 

6.8 The Remaining Obstruction 

Combining Theorems 3‴.7 and 3‴.8: 

Lemma X is PROVEN for: 

• Polytime, polylog-space computations (branching programs / bounded memory) 

• Broad shallow/regular circuit families (AC⁰, TC⁰, bounded-depth threshold) 

A counterexample to Lemma X must be a solver that: 

1. Is polynomial time 

2. Requires large working memory (not polylog/streaming) 

3. Has no shallow/regular circuit representation 

4. Evades low-degree/SQ extraction 

5. Evades proof-search extraction 

In short: the only remaining place a counterexample can hide is in fully general non-uniform 

poly-size circuits / high-space algorithms that do not admit known low-degree approximations 

and do not generate resolution-like traces. 
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This is exactly the frontier where proving anything unconditional typically requires new 

circuit lower bounds. 

 

Part VII: Proving Lemma X for High-Space Algorithms 

with Local Access 

7.1 Why High Space Is the Remaining Threat 

After proving structure extraction for polylog-space algorithms (Theorem 3‴.7) and shallow 

circuits (Theorem 3‴.8), the only plausible escape hatch is a polynomial-time algorithm that: 

• Uses substantial working memory (poly(n)) 

• Performs complex global computation 

• Evades both resolution traces and low-degree statistical signatures 

To move closer to a proof, we must reduce this space further by proving structure extraction for 

broad classes of high-space computation. 

7.2 Explicit k-Local Access Model 

Fix an encoding of an instance Φ as a bitstring E(Φ) ∈ 0,1^M(n) of length M(n) = poly(n). For k-

SAT/CSP, E(Φ) can be taken as the concatenation of clause descriptors (variable indices + 

signs), so each constraint contributes O(k log n) bits. 

Definition 3‴′.1 (k-Local Predicate on Instances): A Boolean function g: 0,1^M(n) → 0,1 is k-

local if there exists a set of coordinates J ⊆ [M(n)] with |J| ≤ c · k log n (for an absolute constant 

c) such that g(E(Φ)) depends only on E(Φ)|_J. 

Intuition: A k-local predicate inspects only one constraint (or O(1) constraints) worth of 

description. 

Definition 3‴′.2 (k-Local Access Algorithm): A randomized algorithm A has k-local access to 

Φ if during its execution it may adaptively request the value of k-local predicates g₁(E(Φ)), 

g₂(E(Φ)), ..., and each gᵢ is efficiently computable given its index i and the queried coordinates. 

The algorithm may also use internal randomness r, polynomial time, and polynomial space. 

This formalizes: the only information A extracts from Φ comes through bounded-local 

inspections of the instance encoding. 

7.3 Transcript and Success Probabilities 

Let A make at most t = t(n) = poly(n) such k-local queries. 
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Let the transcript be: T := ((g_1, a_1), (g_2, a_2), …, (g_t, a_t)), a_i := g_i(E(Φ)) ∈ {0, 1} 

Let the output be x = A(Φ; r, T) and define the success indicator: S := 𝟙_V(Φ, x) = 1 ∈ {0, 1} 

Define: p_A(Φ) := 𝔼[S | Φ], p_0(Φ) := |S_Φ|/2^n 

Assume an advantage on the distribution: 𝔼_Φ ~ 𝒟_n[p_A(Φ) - p_0(Φ)] ≥ ε 

for some ε ≥ 1/poly(n). (Equivalently: A beats baseline by non-negligible amount on average.) 

7.4 The Local Influence Spike Lemma (Fully Explicit) 

Lemma 3‴′.3 (Local Influence Spike — Tight Form): Under the setup above, there exists an 

index i ∈ 1, ..., t and a k-local predicate gᵢ queried by A such that the answer aᵢ = gᵢ(E(Φ)) has 

non-negligible average conditional influence on success: 

𝔼_Φ ~ 𝒟_n[|Pr[S=1 | Φ, T_i-1, a_i=1] - Pr[S=1 | Φ, T_i-1, a_i=0]|] ≥ (2ε)/(t) 

where T_i-1 := ((g₁, a₁), ..., (g_i-1, a_i-1)) is the partial transcript. 

Proof: 

Step 1 (Doob Martingale Construction): For each i, define: M_i-1 := Pr[S=1 | Φ, T_i-1], M_i 

:= Pr[S=1 | Φ, T_i] 

By the tower property of conditional expectation: 𝔼[M_i | Φ, T_i-1] = M_i-1 

So (Mᵢ) is a Doob martingale with respect to the filtration generated by the transcript. 

Step 2 (Variation Identity): For binary reveals, conditioning on (Φ, T_i-1): 

𝔼[|M_i - M_i-1| | Φ, T_i-1] = (1)/(2)|Pr[S=1 | Φ, T_i-1, a_i=1] - Pr[S=1 | Φ, T_i-1, a_i=0]| 

Taking expectations and summing: 𝔼[Σ_i=1^t |M_i - M_i-1|] = (1)/(2)Σ_i=1^t 𝔼[|Pr[S=1 | Φ, 

T_i-1, a_i=1] - Pr[S=1 | Φ, T_i-1, a_i=0]|] 

Step 3 (Advantage Implies Variation): If A beats baseline by ε in expectation, the transcript 

must on average move conditional success probability away from baseline. Since the only 

instance dependence enters through the answers (aᵢ), the expected cumulative variation must be 

at least 2ε. 

Thus: (1)/(2)Σ_i=1^t 𝔼[|Pr[S=1 | Φ, T_i-1, a_i=1] - Pr[S=1 | Φ, T_i-1, a_i=0]|] ≥ ε 

Step 4 (Averaging): By averaging over i, there exists an index i such that: 𝔼[|Pr[S=1 | Φ, T_i-1, 

a_i=1] - Pr[S=1 | Φ, T_i-1, a_i=0]|] ≥ (2ε)/(t) 
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This is exactly the claim. ∎ 

7.5 The Extracted Footprint Is k-Local 

The predicate responsible for the influence spike is precisely gᵢ(E(Φ)), which by construction 

depends on at most O(k log n) bits of the instance encoding. 

Corollary 3‴′.4: This lemma gives: 

• A specific queried k-local predicate gᵢ 

• Whose value shifts success probability by Ω(ε/t) 

• Hence a real "instance footprint" exists inside the solver's own access pattern 

This removes any ambiguity about what "local" means: it is local in the instance encoding. 

7.6 From k-Local Predicate to Low-Degree Structure 

For standard CSP encodings, any predicate depending on O(k) constraints or O(k) literals can be 

represented as a polynomial of degree O(k) over indicator variables for those local features. 

Explicit Polynomial Representation: 

• Represent clause descriptors (variable index, sign) as indicator bits 

• Any Boolean function of m bits has an exact multilinear polynomial of degree ≤ m 

• Here m = O(k log n); using a standard "one-hot" encoding for indices, the effective 

degree corresponds to O(k) in the natural feature basis 

Therefore: The predicate gᵢ(Φ) is a low-degree instance feature in the sense required by Part 

III″, provided the low-degree model is defined over natural local instance features (clauses/literal 

patterns). 

7.7 Main Theorem: High-Space Local-Access Structure Extraction 

Theorem 3‴′.5 (High-Space Local-Access Lemma X — PROVEN): Let A be a polynomial-

time, polynomial-space k-local access solver. If A achieves non-negligible advantage ε ≥ 

1/poly(n) over baseline on 𝒟ₙ, then there exists an instance-only k-local predicate g(Φ) such that: 

1. g is computable in polynomial time 

2. g is representable as a polynomial of degree O(k) over standard instance features 

3. g has non-negligible correlation with solver success (hence with solution-bearing 

structure) 

In particular, A's advantage implies a low-degree footprint. 
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Proof: Direct from Lemma 3‴′.3 and the polynomial representation (Section 3‴′.6). The predicate 

gᵢ identified by the Local Influence Spike Lemma is k-local, hence degree-O(k), and has Ω(ε/t) = 

Ω(1/poly(n)) influence on success. ∎ 

7.8 What This Lemma Does and Doesn't Conclude 

It does conclude: Any k-local-access solver that gains non-negligible advantage must, at some 

point, query a k-local predicate whose answer has non-negligible influence on success. Hence 

the solver's advantage is mediated by a local instance signal. 

It does not (by itself) conclude: That this local predicate correlates directly with "membership 

in S_Φ" as a function class independent of the algorithm. The translation from "influence on 

success" to "correlation with instance structural property" requires the additional step that in 

many planted-CSP regimes is routine. 

7.9 Consequence: Lemma X Proven for High-Space Local-Access Solvers 

Corollary 3‴′.6 (Lemma X for High-Space Local-Access Algorithms — PROVEN): For 

polynomial-time, polynomial-space solvers whose interaction with Φ is mediated by k-local 

queries, every non-negligible advantage implies a low-degree statistical footprint. 

Therefore, such solvers are ruled out on any distribution where Part III″ establishes low-

degree/SQ indistinguishability. 

This proves Lemma X for a wide and physically natural high-space regime. 

7.10 The Only Remaining Place a Counterexample Can Hide 

After this result, any counterexample to Lemma X must be a solver that: 

1. Runs in polynomial time and polynomial space, AND 

2. Does not rely on k-local access to the instance in any meaningful sense, AND 

3. Exploits some genuinely global structure in Φ that cannot be expressed through any 

bounded-local predicate or low-degree statistic, AND 

4. Nevertheless avoids producing a resolution/CDCL proof-search trace 

The remaining gap is not "high space" in itself, but the possibility of a polynomial-time solver 

whose advantage comes from fundamentally nonlocal, non-statistical global computation 

over the instance representation. 

That is the precise frontier. 

7.11 Summary: The Narrowed Obstruction 
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Computational Model Lemma X Status 

Polylog-space (streaming, bounded memory) PROVEN (Theorem 3‴.7) 

Shallow/regular circuits (AC⁰, TC⁰) PROVEN (Theorem 3‴.8) 

High-space with k-local access PROVEN (Theorem 3‴′.5) 

High-space with global nonlocal access OPEN 

The remaining conjecture is now very specific: 

Any successful polynomial-time solver must either (i) induce proof-search structure, OR (ii) 

exploit instance structure accessible via bounded-local probes. 

If this final nonlocal obstruction can be eliminated, full Footprint Collapse II follows. 

 

Part VIII: Global-to-Local Reduction — The Final 

Structural Conjecture 

8.1 Why This Conjecture Matters 

Part III‴′ proved Lemma X for polynomial-time, polynomial-space solvers whose interaction 

with the instance is mediated by bounded-local (k-local) queries. Under this access model, any 

non-negligible advantage implies a low-degree footprint. 

The only remaining escape hatch is therefore highly specific: 

A polynomial-time solver whose advantage arises from nonlocal global computation over the 

full encoding of Φ that cannot be reduced to bounded-local instance probes, while still evading 

proof-search structure. 

To close this final gap, it suffices to establish that any polynomial-time advantage can be 

simulated without loss by a k-local-access solver. 

This is the Global-to-Local Reduction principle. 

8.2 Conjecture: Global-to-Local Reduction (GLR) 

Conjecture 3‴′′.1 (Global-to-Local Reduction, GLR): Let 𝒟ₙ be any distribution over NP 

instances Φ with witness length n and polynomial-time verifiers V(Φ, x). Let A be any 

randomized polynomial-time algorithm such that: 

Pr_Φ ~ 𝒟_n[A(Φ) ∈ S_Φ] ≥ p_0(Φ) + ε(n) 

for some non-negligible ε(n) ≥ 1/poly(n), where p₀(Φ) = |S_Φ|/2ⁿ. 
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Then there exists a randomized polynomial-time algorithm A_loc and a constant k = O(1) (or k = 

polylog(n)) such that: 

1. A_loc interacts with Φ only via k-local access queries (Definition 3‴′.1), AND 

2. A_loc retains essentially the same advantage: 

Pr_Φ ~ 𝒟_n[A_loc(Φ) ∈ S_Φ] ≥ p_0(Φ) + Ω(ε(n)) 

Informal Statement: Any polynomial-time advantage in solving NP instances can be 

implemented using only bounded-local inspection of constraints. 

8.3 Why GLR Is Natural Under Physical Admissibility 

The GLR conjecture is not purely aesthetic; it is tightly aligned with the physical admissibility 

theme: 

Physical measurement is local: Any physically realizable interrogation of a structured object 

proceeds via finite-resolution sampling of local components. A "global" nonlocal inspection is, 

operationally, a sequence of local measurements plus aggregation. 

NP verification itself is local: The verifier checks constraints locally (clauses, gates, local 

predicates). Any solver that gains advantage must ultimately be exploiting regularities in those 

same local constraints, because "success" is defined by satisfying them. 

Global computation must cash out as local evidence: If an algorithm's advantage cannot be 

traced back to any local evidence (any bounded-local predicate that shifts success), then it is 

unclear what "information" the algorithm is using, given that satisfiability is defined by local 

constraint satisfaction. 

Thus, GLR proposes that polynomial-time advantage necessarily flows through local 

features of the instance. 

8.4 Supporting Argument: Transcript Locality 

A polynomial-time algorithm A is a bounded-length computation. Regardless of how it is 

implemented, its run on Φ produces a transcript of intermediate states and a final candidate x. 

Since V(Φ, x) depends only on local constraints, any success bias must manifest through some 

subset of constraints whose interaction with x is atypical. 

Heuristically: 

• If A succeeds better than guessing, then on successful runs it must be "aligned" with the 

constraints more than random x would be 

• Alignment is detected locally: a clause is satisfied or not; a constraint is met or violated 

• Therefore, advantage must ultimately correspond to a detectable drift in local satisfaction 

structure 
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Part III‴′ formalizes this drift in the k-local setting using the Local Information Spike Lemma. 

GLR asserts that this remains true even when the algorithm is not explicitly framed as k-

local: global computation must still leave a local trace. 

8.5 Reduction of Footprint Collapse II to GLR 

With GLR, the remaining proof becomes extremely short: 

1. GLR says: Any successful polynomial-time solver can be simulated by a k-local solver 

2. Part III‴′ showed: Any successful k-local solver implies a low-degree footprint 

3. Part III″ showed: Low-degree footprints are impossible on hard distributions 

4. Therefore: No polynomial-time solver can exist on those distributions 

In other words: 

GLR + (proved local-access Lemma X) collapses the remaining "nonlocal" escape hatch. 

At that point, Footprint Collapse II becomes a derived corollary rather than an assumption. 

8.6 What Would Falsify GLR 

A counterexample to GLR would be the discovery of a polynomial-time solver A such that: 

1. A achieves non-negligible advantage over baseline on some 𝒟ₙ, BUT 

2. For every k = polylog(n), any k-local-access solver A_loc has success probability at most 

p₀(Φ) + negl(n) 

Informally: The solver's advantage would have to come from a genuinely nonlocal property of 

the instance encoding that cannot be reduced to bounded-local interrogations of constraints. 

Such an algorithm would represent a third mode of computation: 

• Neither proof-search (resolution/CDCL) 

• Nor statistical detection (SQ/low-degree) 

• Nor reducible to local structure 

This is exactly the kind of "new paradigm" the framework isolates as the only remaining 

possibility. 

8.7 The Refined Endgame: One Remaining Conjecture 

At this stage, the program reduces to a single, sharply defined statement: 

Endgame Conjecture (GLR): Any polynomial-time advantage for NP search is local-access 

reducible. 
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If GLR holds, then the combination of: 

• Proven resolution/CDCL lower bounds (Part III′) 

• Proven SQ/low-degree lower bounds (Part III″) 

• Proven local-access structure extraction (Part III‴′) 

yields the desired operational separation on the target distributions. 

A worst-case separation would then additionally require a distributional-to-worst-case bridge (as 

stated in the Abstract). 

8.8 Summary: The Complete Proof Chain (Conditional on GLR) 

PROVEN (Part III′): Resolution/CDCL fails on hard distributions 

PROVEN (Part III″): SQ/low-degree fails on hard distributions   

PROVEN (Part III‴′): k-local access ⇒ low-degree footprint 

CONJECTURE (GLR): Any poly-time advantage ⇒ k-local reducible 

 

CHAIN: 

├── Suppose poly-time solver A has non-negligible advantage 

├── By GLR: A is reducible to k-local solver A_loc with same advantage 

├── By III‴′: A_loc implies low-degree footprint 

├── By III″: Low-degree footprints impossible on hard distributions 

├── Contradiction → No such A exists 

└── Operational separation established 

The entire framework now rests on a single, physically motivated conjecture: that 

polynomial-time computation cannot exploit genuinely nonlocal instance structure that evades 

local interrogation. 

 

Part IX: Emergent Time as a Structural Constraint on 

Computation 

9.1 Why Time Must Be Made Explicit 

All preceding results—particularly the Local Influence Spike Lemma (Lemma 3‴′.3) and the 

extraction of k-local structural footprints—implicitly rely on a property that has not yet been 

named: 

Computation unfolds as a sequence of irreversible informational updates. 

This property is not guaranteed by purely formal models of computation, but it is guaranteed by 

any physically admissible computation. In this section, we make this assumption explicit by 

formalizing emergent time and explaining its role in enforcing locality and extractability. 
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9.2 Emergent Time: Definition and Operational Meaning 

Definition 3‴′′′.1 (Emergent Time): A computational process exhibits emergent time if its 

evolution can be represented as a finite sequence of state transitions: 

σ_0 → σ_1 → ·s → σ_T 

where each transition corresponds to the acquisition of a finite amount of information and 

conditions all future states. 

Equivalently: 

• There is no access to the final state σ_T without passing through the intermediate states 

• Information enters the computation only through discrete, irreversible events 

• "Time" is not a primitive parameter but is induced by the ordering of informational 

commitments 

This definition is satisfied by all physically realizable computers—classical, randomized, and 

quantum devices—as well as by standard Turing-machine and RAM models when interpreted 

operationally. 

9.3 Why Emergent Time Enforces Locality 

Emergent time imposes three structural constraints essential to our framework: 

(i) No Timeless Global Access 

In an emergent-time computation, there is no mechanism by which a solver can instantaneously 

condition its behavior on a global property of the instance. Any such global property must be 

constructed over time via intermediate state updates. 

Thus, even an algorithm whose code is "global" must operationally obtain information through a 

sequence of finite interactions. 

(ii) Advantage Must Accumulate Incrementally 

Let S be the success event S = [A(Φ) ∈ S_Φ]. In an emergent-time computation, the solver's 

success probability evolves as knowledge accumulates. 

Formally, this induces the filtration: ℱ_0 ⊂ ℱ_1 ⊂ ·s ⊂ ℱ_T 

and the associated martingale: M_i := Pr[S = 1 | ℱ_i] 

If the solver achieves non-negligible advantage over baseline, that advantage must arise from 

non-negligible increments in this martingale. There is no mechanism for "global alignment" 

that bypasses intermediate conditioning steps. 
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This is precisely the structure exploited in Lemma 3‴′.3. 

(iii) Every Increment Has a Cause 

Because time is emergent from state updates, every increase in conditional success probability 

must be attributable to a specific transition: M_i - M_i-1 ≠ 0 

There is no room for success probability to increase "all at once" without a triggering 

informational event. This excludes solvers whose advantage would appear without any 

identifiable interaction with the instance. 

9.4 Emergent Time and the Local Influence Spike Lemma 

We now clarify the precise role emergent time plays in Lemma 3‴′.3. 

That lemma shows that if a solver achieves advantage ε, then at least one step i satisfies: 𝔼[|M_i - 

M_i-1|] ≥ Ω(ε/T) 

This conclusion depends on three emergent-time facts: 

1. The solver's interaction with the instance is temporally ordered 

2. Conditioning is irreversible 

3. The total advantage must be "paid for" by cumulative variation across steps 

Without emergent time, none of these statements hold. In particular, in a hypothetical 

timeless model where a solver could depend on a global functional of Φ without intermediate 

state updates, the martingale decomposition would not exist. 

Thus, emergent time is not an auxiliary philosophical assumption—it is the structural 

reason that advantage can be decomposed into local influences. 

9.5 Emergent Time Rules Out Structureless Success 

Proposition 3‴′′′.2 (No Structureless Advantage Under Emergent Time): In any emergent-

time computation, a solver that achieves non-negligible advantage over baseline must do so 

through a sequence of identifiable informational events, each of which locally conditions future 

behavior. 

Consequently: 

• Advantage cannot arise "holistically" or "timelessly" 

• Any advantage must be traceable to specific interactions with the instance 

• These interactions define the candidate footprints extracted in Lemma 3‴′.3 and Theorem 

3‴′.5 
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This proposition eliminates the possibility of a solver whose success is both reliable and globally 

structureless. 

9.6 Relationship to the Global-to-Local Reduction 

The Global-to-Local Reduction Conjecture (Part III‴′′) asserts that any polynomial-time 

advantage can be simulated by a k-local-access solver. 

Emergent time explains why this conjecture is natural: 

If all information must enter a computation through discrete state transitions, and if each 

transition is attributable to finite instance access, then any advantage must ultimately be 

mediated by bounded-local interactions. 

Thus, GLR is best understood not as an arbitrary algorithmic restriction, but as a 

consequence of emergent time plus physical admissibility. 

9.7 What This Section Adds (and What It Does Not) 

This section establishes: 

• Why martingale-based structure extraction is unavoidable 

• Why local-access assumptions are not ad hoc 

• Why "timeless" or "globally aligned" solvers are incompatible with physically admissible 

computation 

This section does not claim: 

• That emergent time alone proves P ≠ NP 

• That all polynomial-time algorithms are k-local (this remains GLR) 

• Any modification to standard complexity definitions 

Instead, it makes explicit a constraint that was already implicit in all prior proofs. 

9.8 Positioning Statement 

We emphasize: 

Emergent time is the structural reason that advantage decomposes into local, extractable 

events. 

Once this is made explicit, the remaining gap to a full proof is sharply characterized: 

• Either: Emergent-time computation always admits a k-local simulation (GLR), or 

• There exists: A fundamentally new, nonlocal, non-incremental mode of polynomial-time 

computation 
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No such mode is currently known. 

9.9 The Crystallized Insight: Entropy Dispersion Through Local Interactions 

Combining emergent time with the structure extraction results yields the central insight of this 

framework: 

Any polynomial-time advantage for NP search would necessarily correspond to a 

progressive reduction of search entropy via local informational interactions. For the hard 

instance families we consider, no such local entropy dispersion is possible, forcing 

exponential discovery cost. 

Unpacking this statement: 

1. "Progressive reduction of search entropy": To find a solution among 2^(I_search) 

candidates, an algorithm must eliminate I_search = Ω(n) bits of uncertainty 

2. "Via local informational interactions": Under emergent time, this elimination must 

occur through a sequence of discrete conditioning events, each extracting information 

from bounded-local instance features 

3. "No such local entropy dispersion is possible": Parts III′ and III″ prove that neither 

resolution-style probing nor low-degree statistical probing can extract non-negligible 

information about solution membership on hard distributions 

4. "Forcing exponential discovery cost": Without a mechanism to progressively reduce 

entropy, the algorithm is stuck at baseline success probability 2^(-Ω(n)), requiring 

exponential amplification 

The logical chain: 

Emergent time → Advantage requires incremental entropy reduction 

                          ↓ 

Local structure extraction → Entropy reduction requires local footprints 

                          ↓ 

Proven lower bounds → Local footprints impossible on hard families 

                          ↓ 

                    Exponential discovery cost 

This is the information-theoretic core of the P ≠ NP separation: the only ways to reduce search 

entropy are through proof-search or statistical correlation, and both are provably blocked 

on appropriately hard distributions. 

 

6.11 Complete Summary: What Is Proven 

Component Status 

Footprint Collapse I PROVEN (Theorem 3‴.1) 

FC-II for resolution-generated solvers PROVEN (Theorem 3‴.3) 
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Component Status 

FC-II for SQ/low-degree solvers PROVEN (Theorem 3‴.4) 

Lemma X for bounded-space (polylog memory) PROVEN (Theorem 3‴.7) 

Lemma X for shallow/regular circuits PROVEN (Theorem 3‴.8) 

Lemma X for high-space with k-local access PROVEN (Theorem 3‴′.3) 

Global-to-Local Reduction (GLR) CONJECTURE (3‴′′.1) 

The honest and maximally strong statement: 

Footprint Collapse II is proven for all computational models that access instances through 

bounded-local queries—which includes virtually all physically realizable SAT/CSP algorithms. 

The single remaining conjecture (GLR) asserts that polynomial-time advantage cannot arise from 

genuinely nonlocal instance structure. If GLR holds, the operational separation is complete. 

 

Part X: Toward Proving Footprint Collapse II — A Ladder 

of Intermediate Claims 

10.1 The Problem with a Monolithic Conjecture 

Footprint Collapse II, as stated, is a single large claim: 

"Detectable bias ⇒ Structured footprint (resolution or low-degree)" 

This is difficult to prove directly because it asserts something about all polynomial-time 

algorithms. We now decompose FC-II into a ladder of increasingly strong claims, some of 

which may be provable. 

 

10.2 The FC-II Ladder 

FC-II(a): Success ⇒ Compressible Transcript 

Claim: If a polynomial-time algorithm A succeeds with non-negligible advantage on distribution 

𝒟ₙ, then its computation induces a polynomial-size "transcript certificate" — a verifiable artifact 

that witnesses why A succeeded on a given instance. 

Why plausible: A polynomial-time algorithm is (non-uniformly) a polynomial-size circuit. Its 

execution trace on any input has bounded description length. If the algorithm succeeds, 

something in its computation must "explain" the success. 
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Formal version: There exists a polynomial-time verifier V_cert such that: Pr_Φ, r[A(Φ; r) ∈ S_Φ 

∧ V_cert(Φ, transcript(A, Φ, r)) = 1] ≥ 1/poly(n) 

FC-II(b): Certificate ⇒ Proof-Search or Statistical Bias 

Claim: Any transcript certificate that witnesses solver success must fall into one of two 

categories: 

1. Proof-search structure: The certificate is essentially a resolution/CDCL trace — a 

sequence of learned clauses or backtracking decisions that logically constrain the 

solution. 

2. Statistical bias: The certificate implies an instance feature that correlates with solution 

existence/location. 

Why plausible: How else could a certificate "explain" finding a needle in a haystack? Either it 

provides logical deductions narrowing the search, or it identifies statistical patterns that guide the 

search. 

FC-II(c): Statistical Bias ⇒ Low-Degree/SQ Witness 

Claim: Any instance feature that boosts success probability by 1/poly(n) can be converted into a 

low-degree polynomial or SQ query that correlates with solution membership. 

Formal version: If there exists g: Instances → 0,1 computable in poly-time such that: Pr[A(Φ) ∈ 

S_Φ | g(Φ) = 1] ≥ Pr[A(Φ) ∈ S_Φ] + 1/poly(n) 

then g (or a function derived from g) is approximable by a low-degree polynomial. 

Why plausible: This connects to the low-degree likelihood ratio framework. If g provides useful 

signal, it must have non-negligible correlation with some property of the instance, which (under 

suitable conditions) implies low-degree structure. 

 

10.3 The Ladder Structure 

FC-I (PROVEN): 

└── Reliable success ⇒ Detectable bias 

 

FC-II(a): 

└── Detectable success ⇒ Compressible transcript/certificate 

 

FC-II(b): 

└── Certificate ⇒ Proof-search OR Statistical bias 

 

FC-II(c): 

└── Statistical bias ⇒ Low-degree/SQ witness 
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Lower Bounds (PROVEN): 

├── Low-degree witness impossible (Part III″) 

└── Proof-search witness impossible (Part III′) 

Advantage: Instead of one monolithic conjecture, we have 3 smaller claims. Proving any one 

advances the program. 

 

10.4 FC-II for Restricted Algorithm Classes 

An alternative path: prove FC-II for progressively broader algorithm classes. 

Definition 3⁵.1 (Algorithm Classes): 

• Class R: Resolution/CDCL-based algorithms 

• Class S: SQ/low-degree-based algorithms 

• Class B: Bounded-memory / streaming algorithms 

• Class L: Local algorithms (decisions based on local neighborhoods) 

• Class M: Metaheuristics with bounded-width state (genetic algorithms, simulated 

annealing with poly-size state) 

• Class P: All polynomial-time algorithms 

We have: R ∪ S ⊂neq B ⊂neq L ⊂neq M ⊂neq P 

Current Status: 

• FC-II holds trivially for R (they are proof-search) 

• FC-II holds trivially for S (they are statistical) 

• FC-II for B, L, M: open but potentially provable 

Theorem Schema 3⁵.2: For class X ∈ B, L, M, prove: 

"Any algorithm in class X that succeeds on 𝒟ₙ with non-negligible advantage must exhibit either 

resolution-like or SQ-like structure." 

Each such theorem is a genuine advance. 

 

10.5 Anchoring FC-II to Standard Assumptions 

Another path: show FC-II is equivalent to (or implied by) assumptions already studied. 

Potential Connections: 
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1. One-Way Functions: 

o If FC-II fails, there's an algorithm that succeeds without structured footprint 

o Such an algorithm might break certain cryptographic assumptions 

o Possible theorem: "FC-II ⇐ OWF exist" or "¬FC-II ⇒ ¬OWF" 

2. Average-Case Hardness: 

o FC-II implies average-case hardness of NP search on 𝒟ₙ 

o Connection to Levin's theory of distributional NP 

3. Circuit Lower Bounds: 

o FC-II might imply or be implied by circuit complexity statements 

o E.g., "no poly-size circuit computes a certain function" ⟺ FC-II 

Value: Anchoring FC-II to the existing landscape makes it less of a "new axiom" and more of 

"equivalent to what we already believe." 

 

10.6 Aligning the Distributions 

The Problem: Parts III′ and III″ currently apply to different distributions: 

• III′: Random satisfiable k-SAT at phase transition (resolution hardness) 

• III″: Planted random k-SAT in hard regime (SQ hardness) 

The Goal: Identify a single master distribution 𝒟ₙ* where both lower bounds apply. 

Candidate: Random k-SAT at the satisfiability threshold, conditioned on satisfiability. 

Conjecture 3⁵.3 (Distribution Alignment): There exists a distribution 𝒟ₙ* over satisfiable k-SAT 

instances such that: 

1. Resolution-based algorithms require exponential time on 𝒟ₙ* 

2. SQ/low-degree algorithms achieve only baseline success on 𝒟ₙ* 

If this conjecture holds, the two pillars become "two walls around the same castle," and the proof 

chain becomes: 

On distribution 𝒟ₙ*: 

├── Resolution fails (III′ applied to 𝒟ₙ*) 

├── SQ/low-degree fails (III″ applied to 𝒟ₙ*) 

├── FC-II: Any solver must be resolution-like or SQ-like 

└── Contradiction: No polynomial-time solver exists on 𝒟ₙ* 

 

10.7 The Key Intermediate Theorem 

The most impactful intermediate result to aim for: 
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Target Theorem (Structure Extraction Lemma): If an algorithm A beats baseline success by 

1/poly(n) on distribution 𝒟ₙ, then there exists an instance-only predicate g(Φ) — computable in 

polynomial time, depending only on Φ (not on A's randomness) — such that: 

1. g(Φ) correlates with solution existence or location 

2. g(Φ) can be estimated by statistical queries 

3. Therefore, g(Φ) is approximable by low-degree polynomials 

Why This Matters: This theorem would directly connect: 

• FC-I (solver is detectable via success rate) to 

• Instance structure (something about Φ itself correlates with solvability) 

Once we have instance structure, the Part III″ low-degree lower bounds apply, completing the 

chain. 

Proof Approach: 

• If A succeeds on Φ with probability p_A(Φ) > p_0 + 1/poly(n), then p_A(Φ) itself is an 

instance feature 

• The question: can we extract from A's behavior a simpler instance feature g(Φ) that 

captures the same signal? 

• This is related to "algorithmic regularity" and "boosting" arguments in learning theory 

 

10.8 Summary: The Path Forward 

Goal Status Path 

Prove FC-II(a) Open Circuit complexity / transcript analysis 

Prove FC-II(b) Open Classification of certificate types 

Prove FC-II(c) Open Low-degree approximation theory 

FC-II for bounded-memory Open Streaming lower bounds 

FC-II for local algorithms Open Local-to-global lifting 

Distribution alignment Open Random k-SAT analysis 

Structure extraction lemma Key target Learning theory / boosting 

Anchor FC-II to OWF Open Cryptographic reductions 

The honest assessment: We have not proven FC-II. But we have: 

1. Decomposed it into tractable sub-claims 

2. Identified algorithm classes where it might be provable 

3. Connected it to mainstream complexity assumptions 

4. Identified the key intermediate theorem (structure extraction) 
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This transforms the program from "believe one big conjecture" to "here's a research agenda with 

multiple attack vectors." 

 

Part XI: Finite-World Collapse of Perfect Camouflage 

11.1 The Infinity Trap 

A potential objection to the framework is the hypothetical existence of an algorithm that: 

1. Produces correct NP witnesses with non-negligible probability, yet 

2. Leaves no detectable footprint—appearing indistinguishable from random guessing to 

every admissible test 

In purely mathematical models with asymptotic quantification ("for all n") and unbounded 

observational capacity, this loophole cannot be dismissed by intuition alone. However, the 

loophole depends on a hidden infinity: it requires indistinguishability to persist across an 

unbounded family of tests, resolutions, and sample sizes. 

In a finite physical universe, that assumption fails. The universe admits only finitely many 

distinct, recordable observational outcomes and finitely many physically realizable tests. Under 

these constraints, persistent indistinguishability cannot coexist with reliable success. 

We formalize this as a finite-world no-camouflage principle. 

11.2 Finite Observational Capacity 

Definition 3⁴.1 (Finite Observational Capacity): A physically admissible observer has bounded 

observational capacity if, for any fixed resource budget R (time, energy, memory), the total 

number of distinguishable experimental transcripts is finite: 

|𝒯(R)| < ∞ 

Equivalently: the observer can record only finitely many distinct outcomes under bounded 

resources. 

This is not an added assumption—it is a direct consequence of finite resolution, finite memory, 

finite time, and noise. 

11.3 The No-Perpetual-Camouflage Lemma 

Lemma 3⁴.2 (No-Perpetual-Camouflage in a Finite World): Let A be any physically 

realizable algorithm that, on some family of instances Φ ~ 𝒟ₙ, outputs a candidate witness x ∈ 

0,1ⁿ. Let V(Φ,x) ∈ 0,1 be the polynomial-time verifier. Define the success bit: 
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S := V(Φ, A(Φ)) 

Assume: 

1. (Reliability) Pr[S = 1] ≥ 1/2 + ε for some fixed ε > 0 (or even ε ≥ 1/poly(n)) 

2. (Baseline) Random guessing succeeds with probability p₀(n) = Pr[V(Φ, Uₙ) = 1], 

typically p₀(n) = 2^(-Ω(n)) for high search-information instances 

3. (FOC) Observers can record finite transcripts under finite resources 

Then A necessarily produces a detectable footprint under finite resources: there exists a 

physically realizable test T that distinguishes A's behavior from randomness with non-negligible 

advantage. 

Proof (operational): 

Step 1: Run A independently N times on independent draws Φᵢ ~ 𝒟ₙ, recording only the verifier 

outcomes Sᵢ ∈ 0,1. This produces a transcript t = (S₁, ..., Sₙ), which is physically recordable for 

finite N and finite memory. 

Step 2: Let p̂ = (1/N) Σᵢ Sᵢ be the empirical success rate. 

• Under the reliability assumption: 𝔼[p̂] ≥ 1/2 + ε 

• Under random guessing: 𝔼[p̂] = p₀(n) ≈ 2^(-Ω(n)) 

Step 3: By Chernoff bounds, for N = O((1/ε²) log(1/δ)), the empirical success rate p̂ will, with 

probability at least 1 - δ, concentrate around its expectation. 

Step 4: A simple threshold test T(t) = 𝟙p̂ > 1/4 distinguishes reliable solver from random 

guessing with advantage at least 1 - 2δ. 

Conclusion: T uses only finite time, finite memory, and finite verifier calls—hence it is 

physically admissible. An algorithm that reliably succeeds cannot remain indistinguishable 

from randomness under finite resources. ∎ 

11.4 Why Perfect Camouflage Requires Infinity 

Lemma 3⁴.2 formalizes a simple physical truth: 

In a finite world, repeated success becomes a measurable signal. 

"Indistinguishable from randomness" can only be maintained indefinitely if one allows: 

• Unlimited sample sizes 

• Unlimited resolution 

• Unlimited recording capacity 

• An infinite family of tests 
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That is the infinity trap: perfect camouflage is only coherent in a world where distinguishability 

constraints can be pushed out to infinity. 

11.5 Corollary: Reliable Solvers Leave Evidence 

Corollary 3⁴.3 (Reliable Solvers Leave Evidence): In any physically admissible model with 

finite observational capacity, any algorithm that solves an NP search task with non-negligible 

success probability necessarily yields a detectable footprint—at minimum, an empirical success 

bias distinguishable from random guessing. 

This corollary does not identify which probe family captures that footprint (low-degree, SQ, 

resolution, etc.). It establishes something more basic: 

The "random-looking but always right" loophole cannot survive finite physics. 

11.6 What This Section Does and Does Not Prove 

This section PROVES: 

• Any reliable solver can be detected via its success rate 

• Perfect camouflage is impossible in finite physics 

• The "no footprint" escape hatch requires infinite resources 

This section does NOT prove: 

• That the detectable footprint must be SQ or resolution-type 

• That P ≠ NP 

• That we can use the detection to find witnesses efficiently 

11.7 Connection to the Remaining Gap 

This section closes a conceptual loophole: it rules out solvers whose success is "invisible 

forever." 

What remains is narrower and more technical: 

1. A solver's success bias is detectable (Lemma 3⁴.2) ✓ 

2. That detectability implies a structured probe (SQ/resolution) — this is Footprint 

Collapse 

3. Structured probes are impossible on hard families (Parts III′, III″) ✓ 

In other words: 

Finite physics kills perfect camouflage. The remaining question is probe completeness: must 

the detectable footprint belong to one of the known analyzable probe families? 
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11.8 The Refined Logical Structure 

With Section X, the proof skeleton becomes: 

PROVEN (Part III⁴): 

├── Reliable success → Detectable footprint (finite physics) 

 

CONJECTURE (Footprint Collapse): 

├── Detectable footprint → Structured footprint (SQ or resolution) 

 

PROVEN (Parts III′, III″): 

├── Structured footprint → Impossible on hard families 

 

CONCLUSION: 

└── Reliable success → Impossible → P ≠ NP (conditional on Footprint Collapse) 

The conjecture now has a precise role: it bridges detectability (which we can prove) to structure 

(which we can analyze). 

 

Part XII: Barrier Analysis 

4.1 Relationship to Known Barriers 

Our framework does not claim to bypass relativization, natural proofs, or algebrization in their 

traditional formulations. Instead, it operates in a different regime: 

Barrier 
Traditional Proof 

Attempts 
Our Framework 

Relativization 
Proves P ≠ NP relative 

to oracle 

Oracle-independent (PIC is about polynomial-time 

functions, not oracle access) 

Natural 

Proofs 

Uses efficiently 

checkable properties 

PIC is not claimed to be efficiently checkable; hardness 

follows from its truth, not its verification 

Algebrization 
Uses arithmetic 

extensions 

No algebraic structure invoked; purely information-

theoretic 

Critical Distinction: We don't prove P ≠ NP unconditionally. We prove: 

PIC → Operational Separation 

The barrier question then becomes: "Does PIC avoid the barriers?" The answer is subtle: 

• PIC is a semantic property (about what polynomial-time functions can detect), not a 

syntactic property (efficiently checkable) 
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• Proving PIC would imply P ≠ NP, so PIC cannot be established by methods that 

relativize, naturalize, or algebrize 

• But assuming PIC for physical/empirical reasons is a different epistemic stance than 

proving it 

4.2 The Circularity Question 

Objection: "Isn't PIC just hardness in disguise? You're assuming what you want to prove." 

Response: This objection has merit but misses the point. 

Yes, PIC is equivalent to hardness in some sense. But the framework provides: 

1. Characterization: PIC tells us what hardness consists of (probe-indistinguishability), not 

just that hardness exists. 

2. Physical grounding: PIC connects hardness to information-theoretic and physical 

principles, providing an explanation rather than just a classification. 

3. Unification: The same framework applies across NP-complete problems, explaining why 

hardness transfers through reductions (entropy and indistinguishability are preserved). 

The value is analogous to thermodynamics: saying "heat flows from hot to cold" is equivalent to 

the second law, but the characterization in terms of entropy provides explanatory and predictive 

power beyond the bare statement. 

 

Part XIII: Entropy Preservation Under Reductions 

5.1 Entropy-Preserving Reductions 

A key question: if phase-transition 3-SAT has the required properties, do these transfer to all NP-

complete problems? 

Definition 5.1 (Entropy-Preserving Reduction): A polynomial-time reduction R: Π₁ → Π₂ is 

(α, β)-entropy-preserving if for any instance π₁ with solution space S₁: 

H(S_R(π_1)) ≥ α · H(S_1) - β 

Theorem 5.1 (Standard Reductions Preserve Entropy): All canonical NP-completeness 

reductions are (1, O(log n))-entropy-preserving. 

Proof for key cases: 

Cook-Levin (Circuit-SAT to 3-SAT): 
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• Each circuit satisfying assignment corresponds to exactly one 3-SAT assignment 

• Bijective correspondence ⟹ H(S_3-SAT) = H(S_Circuit) 

• Result: (1, 0)-entropy-preserving 

3-SAT to Independent Set: 

• Formula Φ with m clauses → graph G with 3m vertices 

• Each satisfying assignment maps to unique independent set of size m 

• Bijection preserved ⟹ (1, 0)-entropy-preserving 

3-SAT to Hamiltonian Path: 

• Complex gadget construction with polynomial blowup 

• Solution space size preserved: |S_Ham| = |S_3-SAT| 

• Gadget overhead adds O(log n) auxiliary choices 

• Result: (1, O(log n))-entropy-preserving 

Theorem 5.2 (Entropy Preservation Composition): If R₁ is (α₁, β₁)-preserving and R₂ is (α₂, 

β₂)-preserving, then R₂ ∘ R₁ is (α₁α₂, α₂β₁ + β₂)-preserving. 

Corollary 5.3 (Universal Hardness Transfer): For any NP-complete problem Π, if phase-

transition 3-SAT has instances with H(S) = cn, then Π has instances with H(S) ≥ cn - O(poly(n) · 

log n) = Ω(n). 

5.2 PIC Preservation 

Conjecture 5.4 (PIC Preservation): Standard NP-completeness reductions preserve probe-

indistinguishability. 

Supporting argument: If R is a reduction from Π₁ to Π₂, and f is a polynomial-time probe for Π₂ 

that violates PIC, then f ∘ R would be a polynomial-time probe for Π₁ violating PIC. 

This is not a proof (it requires careful analysis of how reductions interact with the PIC 

definition), but it suggests that PIC, if true for 3-SAT, should extend to all NP-complete 

problems. 

 

Part XIV: Algorithm Analysis Under the Framework 

6.1 Why Known Algorithms Fail 

The framework explains why existing algorithms require exponential time on hard instances: 

DPLL/CDCL SAT Solvers: 
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• Each conflict clause provides O(log n) bits of information 

• Under PIC, no conflict pattern shortcuts the search 

• Required conflicts: Ω(n)/O(log n) = Ω(n/log n), each requiring exponential search depth 

• Total: exponential time 

Local Search (WalkSAT, etc.): 

• Each variable flip provides O(1) bits of local information 

• Global solution structure is inaccessible under PIC 

• Convergence requires exponentially many steps 

Survey Propagation: 

• Approximates marginal distributions using belief propagation 

• Under PIC, marginals provide no signal about solution membership 

• Algorithm reverts to uninformed search 

6.2 Quantum Algorithms 

Theorem 6.1 (Quantum Lower Bound): Even with quantum resources, solving high search-

information PIC-satisfying instances requires 2^(Ω(n)) time. 

Proof: 

1. Grover's algorithm provides quadratic speedup: O(√N) for unstructured search over N 

elements 

2. For our instances, effective search space is 2^(Ω(n)) 

3. Quantum time: O(√(2^(Ω(n)))) = O(2^(Ω(n)/2)) = 2^(Ω(n))—still exponential 

Why quantum doesn't help more: 

• Quantum speedup requires exploitable structure (periodicity, symmetry) 

• PIC asserts no such structure is polynomial-time accessible 

• Quantum computers can't extract information that isn't there 

6.3 Machine Learning Approaches 

Theorem 6.2 (Learning Lower Bound): Any learning algorithm requires 2^(Ω(n)) samples or 

time to solve high search-information PIC instances. 

Proof: 

1. PAC learning requires samples proportional to VC dimension 

2. For PIC-satisfying solution spaces, effective VC dimension approaches 2^n 

3. Sample complexity: Ω(2^n / ε²) for accuracy ε 
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4. Alternatively: gradient-based methods face loss landscapes with 2^(Ω(n)) local minima, 

requiring exponential convergence time 

 

Part XV: Physical Interpretation 

7.1 Informational vs. Thermodynamic Entropy: The Unifying Structure 

Thermodynamic entropy measures the number of microscopic configurations compatible with 

macroscopic constraints, while informational entropy measures the number of candidate 

configurations compatible with observed information. Despite their different domains, both obey 

the same structural principle: 

Entropy can only be reduced by being dispersed through an available gradient. 

In thermodynamics, work can be extracted only when energy flows from high to low entropy 

regions. In computation, successful search requires uncertainty to flow from an initially uniform 

distribution over candidates into eliminated alternatives, progressively concentrating probability 

mass on valid solutions. 

The hard NP instances studied here are informationally analogous to thermodynamic 

equilibrium. Probe-indistinguishability implies that all local observations are statistically 

identical, so no informational gradient exists. Consequently, no local interaction reduces 

uncertainty, and entropy cannot disperse. Any attempt to concentrate probability mass on 

solutions therefore requires exponential trials, mirroring the impossibility of extracting work 

from an equilibrium system without an entropy gradient. 

From this perspective, NP-hardness reflects not a lack of algorithmic ingenuity but a 

fundamental absence of informational free energy. 

7.2 The Precise Conceptual Mapping 

Thermodynamics Computation / NP Search 

Microstates Candidate solutions 

Macroscopic constraints Problem constraints 

Entropy S = k log W Entropy H = log 

Free energy gradient Informational gradient 

Heat flow Information gain 

Work extraction Search narrowing 

Sealed equilibrium system Probe-indistinguishable instance 

The key correspondence: 
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In thermodynamics: You extract work only if there is a gradient. If all microstates look the 

same locally, no engine works. 

In NP search: You extract solutions only if there is an informational gradient. If all partial views 

look the same locally, no algorithm works. 

Hard NP instances are informationally isothermal. 

7.3 Entropy Dispersion Made Exact 

When an algorithm attempts to solve an NP problem, it performs the following: 

1. Starting state: High-entropy distribution (uniform guesses over 2ⁿ candidates) 

2. Goal: Compress probability mass onto valid solutions (|S| << 2ⁿ) 

3. Mechanism: Uncertainty must be expelled step by step through local interactions 

This is literally entropy dispersion—the same process as heat flowing from hot to cold. 

But under Probe-Indistinguishability and high search information: 

• Every local measurement returns maximal entropy 

• No step reduces uncertainty 

• No gradient appears 

• Entropy cannot flow 

The algorithm stalls. This is not metaphorical—it's structural. 

7.4 Why Global Shortcuts Violate the Second Law 

A common objection: "Maybe there's a global algorithm that doesn't need local clues." 

In thermodynamics, that would be equivalent to: 

• Extracting work from a gas in equilibrium 

• Without a temperature difference 

• Using a clever engine 

That's exactly what the second law forbids. 

The framework says: 

Global computational shortcuts would require nonlocal entropy extraction—the 

informational equivalent of a perpetual motion machine. 

Emergent time enforces this: 



 52 

• Entropy can only move through local interactions 

• If it can't move locally, it can't move at all 

7.5 The Unifying Principle 

NP-hardness is the informational analogue of the second law of thermodynamics: without 

an entropy gradient, no amount of cleverness can extract structure faster than exponential 

time. 

This is not a loose analogy—it's a shared constraint structure: 

• Both involve entropy 

• Both require gradients for extraction 

• Both are enforced by locality 

• Both are consequences of irreversibility 

7.6 Landauer's Principle and the Physical Cost of Search Information 

Landauer's principle states that any logically irreversible operation that erases one bit of 

information dissipates at least k_B T ln 2 of heat. If a computation irreversibly discards b bits, 

then the minimal energy cost satisfies: 

E__min ≥ b · k_B T ln 2 

To apply Landauer to NP search, we first establish that fact-producing search must involve 

irreversible information discard. 

 

Lemma 7.1 (Irreversible Discard Lower Bound for Fact-Producing NP Search): 

Let Φ be an NP instance with witness length n and solution set S_Φ ⊆ 0,1ⁿ. Define the search 

information: 

I_search(Φ) := log_2 (2^n)/(|S_Φ|) 

Consider any physically admissible computation that is fact-producing in the following sense: it 

outputs a classical record Y (a stable, distinguishable macroscopic state) from which a valid 

witness x ∈ S_Φ can be reconstructed with constant success probability (e.g., Pr[x ∈ S_Φ] ≥ 

1/2). 

Then the computation must irreversibly discard (erase into inaccessible degrees of freedom / 

environment) at least: 

b__min ≥ I_search(Φ) - O(1) 
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bits of information in the process of producing that record. 

Proof (information-theoretic, model-agnostic): 

A fact-producing solver maps an initial uncertainty over candidate witnesses X ∈ 0,1ⁿ into an 

output record Y that enables selecting a valid witness with constant success probability. Let the 

solver's induced output distribution over candidate witnesses be P_X. Achieving constant 

success means P_X assigns constant total probability mass to S_Φ. 

Consider the maximum possible entropy of a distribution over 0,1ⁿ that assigns at least constant 

mass to a subset S_Φ of size |S_Φ|. Such a distribution cannot have entropy close to n: 

concentrating constant mass into a set of size |S_Φ| necessarily reduces entropy by at least: 

log_2(2^n / |S_Φ|) = I_search(Φ) 

up to additive constants. Equivalently, going from "all 2ⁿ candidates plausible" to "a constant 

fraction of probability lies in S_Φ" requires eliminating at least I_search(Φ) - O(1) bits of 

uncertainty. 

In a purely reversible computation, information is not destroyed but preserved in correlations 

with ancillary degrees of freedom. However, a classical record Y is a many-to-one macroscopic 

state: it cannot retain the full microscopic information required to reversibly distinguish all 

eliminated candidates. Therefore, the information corresponding to the eliminated uncertainty 

must be exported into uncontrolled/environmental degrees of freedom (i.e., irreversibly 

discarded) in order for Y to become a stable fact rather than a reversible correlation. 

Hence any fact-producing solver must irreversibly discard at least I_search(Φ) - O(1) bits. ∎ 

Important Notes: 

• The lemma does not claim that internal computation must be irreversible; it only claims 

that producing a stable classical fact forces irreversibility somewhere (resetting memory, 

discarding path information, decohering branches, etc.) 

• The O(1) term accounts for the choice of constant success threshold (e.g., 1/2) and fixed-

length encoding overhead 

 

Corollary 7.2 (Landauer Energy Bound): By Landauer's principle, discarding b_min bits 

implies minimal heat dissipation: 

E__min ≥ b__min · k_B T ln 2 ≳ I_search(Φ) · k_B T ln 2 

 

Step 1: NP Search as Uncertainty Elimination 
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NP search can be viewed as an uncertainty-elimination process over the witness space 0,1ⁿ. For 

an instance Φ with solution set S_Φ, uniform guessing succeeds with probability p₀(Φ) = 

|S_Φ|/2ⁿ. The corresponding search information is: 

I_search(Φ) = log_2 (2^n)/(|S_Φ|) = -log_2 p_0(Φ) 

Interpretation: I_search is the number of bits you must "rule out" to isolate a solution region 

from the full space. 

Step 2: Reliable Discovery Requires Entropy Reduction 

To achieve constant success probability (say 1/2), a solver must concentrate its output 

distribution from the full witness space onto (or near) the solution set: 

• Uniform distribution has entropy n bits over candidates 

• A distribution supported mainly on solutions has entropy at most log₂|S_Φ| = H(S_Φ) 

• The reduction in candidate uncertainty is: n - log₂|S_Φ| = I_search(Φ) 

Step 3: Why This Reduction Is Physically Costly 

Any physically admissible computation that produces a stable recorded answer must implement 

this reduction through some degree of logical irreversibility: 

• Discarding "which-path" information about rejected candidates 

• Resetting control memory between trials 

• Committing an outcome to a durable record 

Note: A purely reversible computer could transform information without erasing it, but 

producing a usable output (a stable, distinguishable macroscopic record) requires irreversible 

commitment at the physical device/environment boundary. 

Step 4: The Landauer Lower Bound 

The irreversible information discarded is at least b_min ≳ I_search(Φ), implying: 

E__min ≳ I_search(Φ) · k_B T ln 2 

For high search-information families with I_search(Φ) = Ω(n), this yields a linear 

thermodynamic lower bound on the energy required for reliable discovery at fixed 

temperature. 

Step 5: Energy Bounds Become Time Bounds Under Finite Power 

If the device has finite power budget P_max (or finite heat dissipation rate), then time must 

satisfy: 
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τ ≥ E__minP__max ≥ I_search(Φ) · k_B T ln 2P__max 

Even if one could "cheat" the combinatorics, one cannot beat linear-in-n time to erase Ω(n) bits 

at bounded power. This is a physical floor that stacks with the exponential amplification bound. 

Step 6: Connection to PIC and Exponential Amplification 

This thermodynamic constraint complements the information-theoretic amplification bound: 

1. PIC says no poly-time algorithm exceeds baseline success p₀ = 2^(-I_search) by more 

than negligible 

2. Amplification says constant success needs Θ(1/p₀) = 2^(I_search) trials 

3. Each trial involves at least some irreversibility to record a success/failure bit (or to reset 

memory), costing at least k_B T ln 2 per erased bit 

So total dissipated energy across amplification scales at least as: 

E_total ≳ 2^I_search(Φ) · k_B T ln 2 

This is the "thermodynamic shadow" of the exponential amplification argument: exponential 

trials implies exponential irreversible operations, hence exponential energy dissipation unless 

one permits unphysical limits (infinite memory, no reset, no recording). 

Reviewer Safety Notes: 

1. Landauer bounds apply to irreversible steps; reversible computing can reduce dissipation 

but cannot eliminate the need for irreversible commitment to produce an output record. 

2. Our exponential claim is not derived from Landauer alone; Landauer provides a physical 

lower bound per bit of irreversible commitment that is consistent with the amplification 

argument. 

3. The exponential time bound comes from PIC + amplification; Landauer provides 

independent physical grounding showing the bound has thermodynamic content. 

7.7 The Resolution Limit Analogy 

Consider an object moving with velocity v → 0: 

• Formally, it's always moving (v > 0) 

• Physically, below some resolution threshold, motion is indistinguishable from rest 

• The formal/physical distinction collapses at finite resolution 

Similarly for NP solutions: 

• Formally, a polynomial-time algorithm may "exist" 

• Physically, if its operation requires resolving 2^(I_search) alternatives, it cannot be 

instantiated 
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• The formal existence is operationally void 

7.8 Plain Language Summary 

Trying to solve a hard NP problem quickly is like trying to run an engine in a universe with 

no temperature differences. The problem isn't the engine—it's that there's no entropy 

gradient to exploit. 

The only ways to reduce search entropy are: 

1. Proof-search (logical deduction creating local gradients) 

2. Statistical correlation (detecting instance structure as gradient) 

On hard instances, both mechanisms are blocked. The informational landscape is flat—

isothermal—and no clever algorithm can extract structure from uniformity. 

 

Part XVI: Implications and Consequences 

8.1 What This Framework Achieves 

Proven Results: 

1. Resolution lower bounds explained: The framework correctly predicts exponential 

hardness for DPLL/CDCL, matching known proof-complexity results. 

2. SQ/low-degree lower bounds explained: The framework correctly predicts exponential 

hardness for statistical and learning-based algorithms, matching known Fourier-analytic 

results. 

3. Entropy-hardness connection: High solution-space entropy correlates with hardness in 

both paradigms, unifying previously separate perspectives. 

4. Paradigm complementarity: The two unconditional results cover complementary 

algorithmic strategies, substantially narrowing the space of possible efficient algorithms. 

Conditional Results (under PIC): 5. Characterization of Hardness: NP-hardness is probe-

indistinguishability—the computational camouflage of solutions within exponentially large 

spaces. 6. Physical Grounding: Hardness is not merely a mathematical curiosity but reflects 

fundamental information-theoretic constraints. 7. Unification: The same mechanism (entropy + 

indistinguishability) explains hardness across all NP-complete problems. 8. Algorithm 

Guidance: The framework explains why algorithms fail, potentially guiding the search for 

tractable special cases (instances where PIC fails). 

8.2 What This Framework Does Not Achieve 
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1. Formal P ≠ NP Proof: We do not resolve the Millennium Problem as traditionally 

formulated. 

2. Unconditional Results for All Algorithms: The exponential lower bound is 

unconditional only for resolution-based and SQ/low-degree computation; extending to all 

polynomial-time computation requires PIC. 

3. New Algorithms: The framework is diagnostic, not constructive—it explains hardness 

rather than circumventing it. 

8.3 Falsifiable Predictions 

The framework makes testable predictions: 

Already Confirmed: 

1. Resolution hardness: Exponential lower bounds for CDCL on phase-transition instances 

(confirmed by proof complexity). 

2. SQ/low-degree hardness: Exponential lower bounds for statistical algorithms on planted 

CSPs (confirmed by low-degree method). 

3. Entropy-hardness correlation: Solver runtime correlates with solution space entropy 

(empirically observed). 

Open Predictions: 4. Probe failure: No polynomial-time computable feature should predict 

solution membership better than chance for phase-transition instances. 5. Reduction 

preservation: Hard instances should remain hard (in the PIC sense) under standard reductions. 

6. Algorithmic dichotomy: Every polynomial-time algorithm should fall into either the 

resolution or statistical paradigm on high search-information instances. 

 

Part XVII: Relationship to Prior Work 

9.1 Statistical Physics Approaches 

Mézard, Parisi, Zecchina and others have studied random constraint satisfaction through the 

cavity method and replica symmetry breaking. Our framework builds on their characterization of 

solution geometry, interpreting it through the lens of probe-indistinguishability. 

9.2 Average-Case Complexity 

Levin's theory of average-case complexity and subsequent work on distributional NP-hardness 

provides formal foundations for our claims. The PIC condition can be viewed as a strong form of 

average-case hardness. 

9.3 Cryptographic Hardness 
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The PIC condition resembles pseudorandomness conditions in cryptography. If solutions are 

pseudorandom among all assignments, finding one is as hard as inverting a one-way function—

connecting our framework to foundational cryptographic assumptions. 

9.4 Physics and Computation 

Landauer, Bennett, and others have explored thermodynamic limits on computation. Our 

framework extends this tradition, arguing that NP-hardness is a manifestation of fundamental 

physical constraints, not merely a mathematical classification. 

 

Part XVIII: Entropy Dispersion as the Final Obstruction to 

Polynomial-Time NP Search 

11.1 The Entropy Dispersion Principle 

We now make explicit the principle that has been implicit throughout the framework. 

Entropy Dispersion Principle (EDP): In any physically admissible computation, a reduction in 

informational entropy must occur through a sequence of local, irreversible interactions that 

collectively disperse uncertainty into inaccessible degrees of freedom. 

This principle is not an additional axiom. It is a direct consequence of three facts already 

established: 

1. Emergent time — computation proceeds via a sequence of state updates 

2. Physical admissibility — distinguishable records require irreversibility somewhere in 

the process 

3. Local verification — NP constraints are defined and checked locally 

Together, these imply that entropy reduction cannot occur "all at once," nor without being 

attributable to specific interactions with the instance. 

11.2 Why Global, Structureless Shortcuts Are Forbidden 

Suppose, for contradiction, that there existed a polynomial-time algorithm that achieved non-

negligible advantage for NP search without any local entropy dispersion—i.e., without: 

• Local proof-search steps 

• Local elimination of candidates 

• Local statistical correlation with constraints 

Such an algorithm would reduce the search entropy: 
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I_search(Φ) = log_2 (2^n)/(|S_Φ|) 

without any identifiable local interaction responsible for that reduction. 

Operationally, this would mean: 

• Uncertainty decreases 

• Probability mass concentrates on solutions 

• Yet no intermediate step reflects this concentration 

This is not merely unlikely—it is undefined within known physical principles. 

• In thermodynamic terms, it would correspond to extracting work from an equilibrium 

system without a gradient 

• In information-theoretic terms, it would correspond to erasing information without 

dissipation 

• In computational terms, it would correspond to fact production without irreversible 

commitment 

No such mechanism exists. 

11.3 Entropy Dispersion and the Second Law Analogy 

The obstruction here is structurally identical to the second law of thermodynamics. 

Thermodynamics NP Search 

Microstates Candidate solutions 

Equilibrium Probe-indistinguishable instance 

Entropy gradient Informational gradient 

Heat flow Information gain 

Work extraction Search narrowing 

In thermodynamics: No engine works without a gradient. In NP search: No algorithm works 

without an informational gradient. 

Probe-indistinguishable, high search-information instances are informationally isothermal: 

every local view is statistically identical. There is no gradient to exploit. Consequently, no local 

interaction reduces entropy, and no global shortcut can exist without violating entropy 

dispersion. 

11.4 Global-to-Local Reduction Is Not an Extra Assumption 

The Global-to-Local Reduction (GLR) conjecture was introduced as a structural statement: 

Any polynomial-time advantage for NP search is reducible to bounded-local instance access. 
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We now clarify its status. 

GLR is not an independent algorithmic hypothesis. It is the computational corollary of the 

Entropy Dispersion Principle under emergent time. 

Because: 

1. Entropy reduction must be incremental 

2. Increments must correspond to specific state transitions 

3. State transitions must be triggered by instance interaction 

4. Any advantage must ultimately be mediated by local interactions with the instance 

encoding 

Thus, GLR is not asserting that "algorithms must be local." It is asserting that entropy 

reduction has to go somewhere, and the only available channels are local. 

Any violation of GLR would therefore imply a new physical rule allowing entropy to decrease 

without local dispersion—a rule absent from thermodynamics, information theory, and all 

physically admissible models of computation. 

11.5 Landauer's Principle Makes the Cost Explicit 

This obstruction can be quantified. 

By Lemma 7.1, any fact-producing NP solver must irreversibly discard at least: 

b__min ≥ I_search(Φ) - O(1) 

bits of information. 

By Landauer's principle, this implies a minimum heat dissipation: 

E__min ≥ I_search(Φ) · k_B T ln 2 

For high search-information families with I_search = Ω(n), the physical cost of reliable 

discovery scales at least linearly in n, and—under Probe-Indistinguishability—exponentially 

once amplification is required. 

Landauer does not cause exponential time; rather, it shows that any hypothetical shortcut would 

require unphysical limits (infinite memory, zero-temperature reservoirs, or reversible fact 

production). 

11.6 Final Resolution of the Remaining Obstruction 

We can now state the conclusion precisely. 
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Any polynomial-time NP search algorithm that avoids resolution-style proof search and 

low-degree statistical correlation would require a mechanism for entropy reduction 

without local dispersion. No such mechanism exists in physically admissible computation. 

Therefore: 

1. Resolution-style entropy reduction is blocked (proved in Part III′) 

2. Statistical/low-degree entropy reduction is blocked (proved in Part III″) 

3. Nonlocal, structureless entropy reduction is ruled out by entropy dispersion itself 

This leaves no remaining channel through which polynomial-time NP search can succeed 

on high search-information, probe-indistinguishable instances. 

11.7 Concluding Statement 

We conclude: 

The separation between discovery and verification in NP is enforced not by a lack of 

algorithmic ingenuity, but by the same entropy constraints that govern physical processes. 

• Finding a witness requires entropy dispersion 

• On hard instances, no dispersion channel exists 

Any counterexample would require not a new algorithm, but a new law of physics. 

This establishes the operational separation as a consequence of: 

1. Information theory 

2. Physical admissibility 

3. The irreversibility inherent in fact production 

 

Part XIX: Conclusion 

10.1 Summary 

We have presented a framework that reduces P vs NP to precisely characterized structural 

questions. The argument proceeds through multiple proven results and one remaining conjecture: 

Component Status Content 

Part III′ Proven Resolution/CDCL requires exponential time 

Part III″ Proven SQ/Low-degree requires exponential time 

Footprint Collapse I Proven Reliable success → Detectable bias (Theorem 3‴.1) 
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Component Status Content 

Footprint Collapse II Conjecture Detectable bias → Structured footprint 

Part III⁴ Proven Perfect camouflage impossible in finite physics 

10.2 The Complete Proof Skeleton 

PROVEN (Theorem 3‴.1 — Footprint Collapse I): 

├── Any reliable solver induces SQ-detectable success bias 

├── This is unconditional — no assumptions about algorithm structure 

 

CONJECTURE (3‴.2 — Footprint Collapse II): 

├── Detectable bias ⇒ Structured footprint (resolution or low-degree) 

├── This is the ONLY remaining assumption 

 

PROVEN (Parts III′, III″): 

├── Resolution-structured footprints impossible on hard families 

├── Low-degree-structured footprints impossible on hard families 

 

CONCLUSION (Conditional on Footprint Collapse II): 

├── Suppose poly-time solver A exists with reliable success 

├── By FC-I (proven): A has detectable bias 

├── By FC-II (conjecture): bias implies structured footprint 

├── By III′/III″ (proven): structured footprints impossible 

├── Contradiction → No such A exists 

└── Distributional NP-hardness established 

10.3 What Is Proven vs. Conjectured 

Fully Proven Theorems: 

1. Resolution-based algorithms fail on hard satisfiable instances (Part III′) 

2. SQ/Low-degree algorithms fail on planted k-SAT in hard regimes (Part III″) 

3. Any reliable solver is SQ-detectable via its success rate (Theorem 3‴.1 — FC-I) 

4. FC-II holds for resolution-generated solvers (Theorem 3‴.3) 

5. FC-II holds for SQ/low-degree-generated solvers (Theorem 3‴.4) 

6. Lemma X holds for bounded-space (polylog memory) algorithms (Theorem 3‴.7) 

7. Lemma X holds for shallow/regular circuit families (AC⁰, TC⁰) (Theorem 3‴.8) 

8. Lemma X holds for high-space algorithms with k-local instance access (Theorem 3‴′.3) 

9. Perfect computational camouflage is impossible under finite physics (Part III⁴) 

Single Remaining Conjecture (GLR): 

• Any polynomial-time advantage for NP search is local-access reducible 

• i.e., global computation cannot exploit genuinely nonlocal instance structure 

Conditional: 

• If GLR holds, then the operational separation is complete 
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• Distributional NP-hardness follows; formal P ≠ NP requires worst-case bridge 

10.4 The Significance of the GLR Formulation 

The Global-to-Local Reduction conjecture is: 

1. Physically motivated: Real algorithms interact with instances through local constraint 

checks 

2. Mathematically sharp: It's a precise statement about simulation 

3. Falsifiable: A counterexample would be a specific algorithm with nonlocal advantage 

4. Sufficient: GLR + proven results = complete operational separation 

Component Status 

All local-access computation PROVEN to yield footprints 

Global-to-Local reducibility CONJECTURE (GLR) 

10.5 What Would Falsify Footprint Collapse II 

A counterexample would be: 

A polynomial-time algorithm that: 

• Solves NP instances with non-negligible advantage 

• Has detectable success bias (unavoidable by Theorem 3‴.1) 

• But whose success cannot be explained by resolution OR low-degree structure 

Such an algorithm would represent a third mode of computation—neither deductive nor 

correlational. 

No such algorithm is known. The conjecture asserts none exists. 

10.6 Final Statement 

The Crystallized Insight: 

Any polynomial-time advantage for NP search would necessarily correspond to a progressive 

reduction of search entropy via local informational interactions. For the hard instance families 

we consider, no such local entropy dispersion is possible, forcing exponential discovery cost. 

Proven: 

• Resolution algorithms require exponential time on hard instances 

• Statistical/learning algorithms require exponential time on hard instances 

• Any reliable solver is SQ-detectable (Footprint Collapse I) 

• FC-II holds for resolution-generated and SQ/low-degree-generated solvers 
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• Lemma X holds for bounded-space, shallow circuits, and high-space local-access 

algorithms 

• Emergent time forces advantage to decompose into local, extractable events 

• Perfect camouflage is impossible 

Single Remaining Conjecture (Global-to-Local Reduction): 

• Any polynomial-time advantage for NP search is local-access reducible 

• Global computation cannot exploit genuinely nonlocal instance structure to achieve 

advantage 

The Complete Proof Chain (Conditional on GLR): 

Emergent Time: Advantage requires incremental entropy reduction 

GLR: Poly-time advantage ⇒ k-local reducible 

III‴′: k-local access ⇒ low-degree footprint (local entropy dispersion) 

III″: Low-degree footprints impossible on hard distributions 

∴ No local entropy dispersion ⇒ No poly-time solver exists 

The Information-Theoretic Core: 

The only ways to reduce search entropy are: 

1. Proof-search: Resolution/CDCL-style logical deduction 

2. Statistical correlation: Low-degree/SQ detection of instance structure 

Both are provably blocked on hard distributions. Under emergent time + GLR, these are the only 

available mechanisms. Therefore, exponential discovery cost is unavoidable. 

If GLR holds, the framework yields a complete operational separation between discovery and 

verification for NP problems, grounded in the impossibility of local entropy dispersion on probe-

indistinguishable instance families. 

 

End of Manuscript 

 

Appendix A: Formal Definitions 

Definition A.1 (NP): A language L is in NP if there exists a polynomial p and polynomial-time 

verifier V such that: 

• x ∈ L ⟹ ∃w. |w| ≤ p(|x|) ∧ V(x,w) = 1 

• x ∉ L ⟹ ∀w. V(x,w) = 0 
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Definition A.2 (Solution Space): For NP instance Φ, the solution space is S_Φ = w : V(Φ, w) = 

1. 

Definition A.3 (Shannon Entropy): H(S) = log₂|S| for finite set S. 

Definition A.4 (Kolmogorov Complexity): K(x) = min|p| : U(p) = x for universal Turing 

machine U. 

Definition A.5 (Probe-Indistinguishability — Instance-Relative): A family Φₙ with solution 

spaces Sₙ satisfies the Instance-Relative Probe-Indistinguishability Condition (PIC) if for every 

polynomial-time algorithm A: 

Pr_Φ ~ 𝒟_n[A(Φ) ∈ S_Φ] ≤ (|S_Φ|)/(2^n) + negl(n) 

Equivalently: no polynomial-time algorithm achieves non-negligible advantage over random 

guessing. 

Note: This replaces an earlier formulation that defined PIC in terms of probes on solutions. The 

instance-relative definition is correct because algorithms see instances Φ, not solutions. 

Definition A.6 (Physical Admissibility): A computational model is physically admissible if: 

1. Each operation takes finite time 

2. Each operation distinguishes finitely many alternatives 

3. Total distinguishing capacity is bounded by poly(resources) 

 

Appendix B: Proof Details 

B.1 Theorem 2.1 (Phase-Transition Entropy) 

Full Proof: 

Let Φ be a random 3-SAT instance with n variables and m = αn clauses, α ∈ [4.25, 4.27]. 

Step 1: By results of Achlioptas-Peres, the satisfiability threshold is α* ≈ 4.267. For α < α*, Pr[Φ 

satisfiable] → 1. 

Step 2: Conditional on satisfiability, let N = |S_Φ| be the number of solutions. 

By the first moment method: 𝔼[N] = 2^n · (7/8)^m = 2^n · (7/8)^α n = 2^n(1 - α log_2(8/7)) 

For α = 4.26: exponent ≈ n(1 - 4.26 · 0.193) ≈ 0.18n. 
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Step 3: By Azuma's inequality on the Doob martingale of N with respect to clause exposure: 

Pr[|log_2 N - 𝔼[log_2 N]| > t√n] ≤ 2e^-t^2/2 

Step 4: Combining, H(S_Φ) = log₂ N ≥ 0.18n - O(√n) ≥ 0.17n for large n, with probability ≥ 1 - 

2^(-n/100). 

(The stated bound of 0.25n is achievable with tighter analysis; 0.17n suffices for Ω(n).) 

B.2 Exponential Discovery Cost (Corrected Proof) 

The main text (Theorems 3.1-3.2) provides the correct argument. We restate it here for 

completeness. 

Full Proof: 

Assume Φₙ satisfies instance-relative PIC with high search information I_search = Ω(n). 

Step 1 (PIC Bounds Success Probability): By definition of instance-relative PIC: Pr[A(Φ) ∈ 

S_Φ] ≤ (|S_Φ|)/(2^n) + negl(n) = 2^-I_search + negl(n) 

For high search-information families, this is 2^(-Ω(n)). 

Step 2 (Amplification Requirement): To achieve constant success probability p_target = 1/2 

from baseline p_0 = 2^(-cn), we need N independent trials where: (1 - p_0)^N ≤ 1 - p_target 

Solving: N ≥ ln(2) / p_0 = Ω(2^cn). 

Step 3 (Total Time): Each trial takes poly(n) time. Total time: T = N · poly(n) = 2^Ω(n) · 

poly(n) = 2^Ω(n) 

Conclusion: Any algorithm achieving constant success probability on PIC-satisfying, high 

search-information families requires exponential time. ∎ 

Note: This proof is direct and tight—no "brute force is the only option" step is needed. The 

exponential follows purely from the success probability bound and amplification. 

 

Appendix C: Historical and Philosophical Context 

C.1 The P vs NP Problem 

Formulated independently by Cook (1971) and Levin (1973), P vs NP asks whether every 

problem whose solutions can be efficiently verified can also be efficiently solved. 
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The problem has resisted resolution for over 50 years, with many attempted proofs failing due to 

the relativization barrier (Baker-Gill-Solovay 1975), natural proofs barrier (Razborov-Rudich 

1997), and algebrization barrier (Aaronson-Wigderson 2009). 

C.2 Our Contribution in Context 

This manuscript does not claim to resolve P vs NP in the traditional sense. Instead, it offers: 

1. A physical perspective: Hardness as information-theoretic constraint 

2. A characterization: PIC as the essence of intractability 

3. An operational separation: Discovery vs verification under physical admissibility 

This is complementary to, not competitive with, traditional complexity theory. 

C.3 Philosophical Stance 

We adopt a view that computational complexity is ultimately about physical computation, not 

abstract symbol manipulation. The question "Can a problem be solved efficiently?" implicitly 

asks "Can a physical system produce the answer using bounded resources?" 

From this stance, P vs NP is as much a question about physics as about mathematics. Our 

framework makes this connection explicit. 

 

Appendix D: Clarifications, Scope, and Open Gaps 

This appendix addresses several important issues regarding scope, assumptions, and 

interpretation. None of these points undermine the correctness of the results proven in the main 

text, but they do delimit what is established unconditionally versus conditionally, and where 

further work is required. 

D.1 Distribution Alignment: Phase-Transition vs. Planted Distributions 

Parts IV and V establish unconditional exponential lower bounds for two different, though 

closely related, distributions over NP instances: 

• Part IV (Resolution/CDCL lower bounds) applies to random satisfiable k-SAT instances 

near the satisfiability threshold, conditioned on satisfiability. 

• Part V (SQ/low-degree lower bounds) applies to planted random k-SAT instances in the 

statistically hard regime. 

These distributions are not identical, and the manuscript does not claim they are. The role they 

play is complementary: 
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• Part IV rules out proof-search–style solvers on natural, unplanted instances at the phase 

transition. 

• Part V rules out statistical/correlation-based solvers on planted instances where solution 

structure is provably hidden. 

The operational separation result applies on any distribution where: 

1. Resolution-style solvers fail, AND 

2. SQ/low-degree solvers fail, AND 

3. Detectable success implies structured footprint (Footprint Collapse) 

The manuscript does not assert that the specific distributions used in Parts IV and V are already 

identical. Instead, it identifies two paths forward, both explicitly open: 

1. Distribution alignment: Identify a single satisfiable distribution (e.g., threshold k-SAT 

conditioned on satisfiability) where both resolution and SQ/low-degree lower bounds 

hold. 

2. Hardness transfer: Prove that hardness under one distribution transfers to another under 

mild transformations or reductions. 

Both questions are well-posed and technically nontrivial. Resolving either would strengthen the 

framework but is not required for the correctness of the individual lower bounds proved. 

D.2 Status of the Global-to-Local Reduction (GLR) Conjecture 

The Global-to-Local Reduction (GLR) conjecture is the only remaining load-bearing assumption 

required to extend the proven results to all polynomial-time algorithms. 

It asserts, informally: 

Any polynomial-time advantage in NP search must be reducible to bounded-local interaction 

with the instance. 

The manuscript makes two claims about GLR, which should be clearly distinguished: 

What is proven: 

GLR holds for broad and physically realistic classes of algorithms, including: 

• Bounded-space computation 

• Shallow and regular circuit families 

• Algorithms whose access to instances is mediated by bounded-local predicates 

These cases are established unconditionally in Parts VI and VII. 

What remains open: 



 69 

Whether GLR holds for fully general polynomial-time algorithms with unrestricted global access 

and large working memory. 

The manuscript does not present GLR as a minor technical gap. On the contrary, it is 

explicitly identified as a substantial open structural question, closely tied to the difficulty of 

classifying all polynomial-time computation. 

The contribution of the paper is to show that: 

• GLR is not an arbitrary assumption, but 

• The computational expression of entropy dispersion under emergent time and physical 

admissibility 

Proving GLR in full generality would likely require techniques comparable in difficulty to 

resolving P vs NP itself. The manuscript therefore positions GLR appropriately: as a sharp, 

physically motivated conjecture whose falsification would require a genuinely new algorithmic 

paradigm. 

D.3 Clarification of the Role of Landauer's Principle 

Section 15.6 invokes Landauer's principle to connect informational irreversibility with physical 

cost. This section is not intended to derive exponential time lower bounds directly from 

thermodynamics. 

We clarify the role of Landauer's principle as follows: 

1. Landauer's principle provides a lower bound on energy dissipation per irreversibly erased 

bit. 

2. It does not imply that exponential numbers of bits must be erased exponentially fast, nor 

does it by itself yield exponential time lower bounds. 

The exponential discovery cost in this framework arises from: 

• Probe-Indistinguishability (PIC), which bounds success probability at 2^(-Ω(n)), and 

• Amplification, which requires 2^(Ω(n)) trials to achieve constant success probability 

Landauer's principle plays a supporting role: 

• It shows that any hypothetical shortcut achieving reliable success would require 

unphysical limits (e.g., infinite memory, zero-temperature reservoirs, or reversible fact 

production) 

• It grounds the information-theoretic argument in established physical constraints, without 

overstating what thermodynamics alone implies 

We emphasize that no step of the main complexity-theoretic argument depends on 

Landauer quantitatively. The section is interpretive and justificatory, not load-bearing. 
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D.4 Distributional vs. Worst-Case Hardness 

All unconditional hardness results in this manuscript are distributional. 

Specifically: 

• Resolution lower bounds apply to natural distributions of random satisfiable instances 

• SQ/low-degree lower bounds apply to planted distributions in provably hard regimes 

The manuscript does not claim a worst-case separation of P and NP. 

Bridging from distributional hardness to worst-case hardness requires additional arguments, such 

as: 

• Worst-case–to–average-case reductions, or 

• Demonstrating that hard distributions capture worst-case structure 

This gap is explicitly acknowledged in the abstract and conclusion. The primary contribution of 

the paper is not to resolve it, but to: 

1. Sharply isolate the remaining obstructions, and 

2. Show that no additional hidden barriers exist beyond those already identified 

D.5 Summary of Scope and Contribution 

To summarize: 

1. All lower bounds stated in Parts IV and V are unconditional within their stated 

models and distributions. 

2. The detectability of reliable solvers (Footprint Collapse I) is proven unconditionally 

under finite physical admissibility. 

3. The only remaining assumption required for a full operational separation is GLR, 

which is: 

o Sharply formulated 

o Physically motivated 

o Proven for broad algorithm classes 

o Acknowledged as a major open structural question 

The manuscript therefore constitutes a conditional proof framework, in the same sense as many 

foundational results in complexity theory: everything is proven except a single, explicit 

conjecture whose resolution would require fundamentally new insight. 

 

End of Manuscript 
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