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Abstract

We develop a minimal admissibility framework for physically grounded mathematics. Beginning
with a pre-physical process ontology (the tick layer), we introduce two universal operational
constraints—finite distinguishability (FD) and irreversible commitment (IC)—that define the
admissibility layer governing physical law. From these constraints alone, we derive exclusion
theorems establishing necessary conditions on physically realizable theories: no unbounded
information density, unavoidable thermodynamic costs for information erasure, and bounds on
operationally accessible soft excitations. We demonstrate that the fundamental equations of
physics—the Schrodinger equation, Heisenberg uncertainty principle, Maxwell's equations,
Einstein field equations, and the second law of thermodynamics—are each consistent with this
admissibility structure, with some structural features (unitarity, entropy monotonicity) enforced
by admissibility alone and others (specific field equations) requiring additional symmetry inputs.
Finally, we show that the tick layer provides a minimal process substrate for meta-computation,
illustrating how "outside-theory" reasoning in the sense of Godel can be operationally
instantiated.

What distinguishes this work: Unlike prior operational reconstructions that aim to derive
quantum theory from informational axioms, we isolate a pre-physical process substrate (tick
layer) and a resource-relative admissibility layer (FD/IC over 0), yielding a constraint-complete
"building code" that cleanly separates necessity constraints from dynamical selection.

Clarification on scope: By "theory of everything" in this work, we mean a complete
specification of necessary admissibility constraints that any physical theory must satisfy—not a
unique dynamical law that determines all physical phenomena. The result is a completeness
theorem for constraints, not a completeness theorem for dynamics. The framework provides
constraint-completeness at the level of necessary conditions while remaining agnostic about
dynamical completeness.

Assumptions Ledger

Before proceeding, we explicitly list the minimal assumptions employed beyond the two core
constraints (FD and IC):

1. Physical Church-Turing Thesis — Used in Theorem 4.1. Every physically realizable
input-output procedure is Turing-simulable to the same operational accuracy. If violated
by future physics, FD would require revision.

2. Operational State Space Axioms — Used in unitarity derivation. States form a convex
set with continuous reversible transformations and pure states (standard operational
quantum axioms; cf. Hardy 2001, Chiribella et al. 2011). These yield Hilbert space
representation.

3. Operational Distinguishability Measure — Used throughout. The measure D is: (i)
operationally definable via optimal discrimination error, (ii) contractive under physical



channels (data-processing inequality), and (iii) metrizes operational distinguishability.
Examples: trace distance, Helstrom optimal error probability.

4. Continuity and Composition — Used for Stone's theorem. Time evolution forms a
continuous one-parameter group: Ts o Ti = Tgx.

5. Basic Thermodynamic Consistency — Used for Landauer's principle. Systems can
exchange heat with thermal reservoirs at well-defined temperatures.

These assumptions are standard in operational approaches to physics. We flag them explicitly so
that "you assumed things!" becomes "yes, and here they are."

For the General Reader: What This Paper Is About

Imagine you wanted to write down all the rules that any possible universe must follow—not the
specific rules of our universe (like "gravity pulls things down" or "light travels at 299,792
km/s"), but the deeper rules that constrain what kinds of rules are even possible.

This paper argues that there are exactly two such meta-rules:

1. You can't distinguish infinitely many things with finite effort. No matter how clever
you are, if you only have limited time, energy, and equipment, you can only tell apart a
finite number of different states.

2. Some changes can't be undone. There exist physical processes that lose information
permanently—you can't always rewind the tape.

From just these two constraints, we show that many features of physics we usually take as
separate assumptions—Ilike quantum mechanics' wave equation, the uncertainty principle, and
the law that entropy always increases—actually follow as logical consequences.

The paper doesn't claim to explain everything about physics (why is the speed of light what it is?

why do electrons have the mass they do?). But it does claim to identify the universal constraints
that any physically possible law must satisfy.

Part I: Architectural Foundations

Chapter 1: The Tick Layer (Pre-Physical Process Ontology)

1.1 Motivation and Definition

The key idea in plain language: Before we can talk about space, time, energy, or any physical
laws, we need something even more basic—the simple fact that things happen. The "tick layer"



is our name for this most primitive level: a sequence of elementary changes, like the individual
frames of a movie before we've decided what the movie is about.

To avoid category errors regarding fundamentality, it is essential to distinguish between a pre-
physical substrate of change and the admissibility layer at which physical constraints properly
reside. This distinction strengthens, rather than weakens, the constraint-based nature of the
framework developed here.

The tick layer represents the most primitive level of description: discrete events of change. At
this level there is no spacetime, no fields, no symmetry, and no notion of physical law. A tick is
defined only as a minimal update event—an atomic transition—sufficient to induce a partial
ordering among events.

Definition 1.1 (Tick): A tick is an elementary event of change, representing the minimal unit of
transition from one configuration to another. Ticks carry no intrinsic duration, spatial extent, or
energy—these concepts emerge only at higher levels of description.

For the general reader: Think of a tick as the most basic possible "something happened"—not
what happened, not how long it took, not where it occurred, just the bare fact of change. It's like
asking "what's the simplest thing a computer could do?" The answer is: flip a single bit from 0 to
1 (or vice versa). A tick is even more basic than that—it's just "a change occurred," period.

The tick layer provides a process ontology—the raw substrate of change—not the laws
governing aggregates of events. It answers the question "what is the most primitive thing that
happens?" without yet addressing "what rules govern happenings?"

1.2 Mathematical Structure

For the general reader: We need a way to say "event A might have influenced event B" without
yet having a notion of space or time. Mathematicians have a tool for this called a "partially
ordered set" or "poset"—it's a collection of things where some pairs are ordered (A comes before
B) but not all pairs need to be comparable (maybe C and D happened "independently" with
neither before the other).

Mathematically, the tick layer may be modeled as a locally finite event graph or causal poset.

Definition 1.2 (Causal Poset): A causal poset is a pair (P, <) where P is a set of primitive events
(ticks) and < is a partial order satisfying:

1. Reflexivity: e < e foralle €P
2. Antisymmetry: ife < fand f< e, thene="f
3. Transitivity: ife < fand f< g, thene<x g

In plain language:

o Reflexivity: Every event is "before or simultaneous with" itself (trivially true)



e Antisymmetry: If A is before-or-equal-to B, and B is before-or-equal-to A, then A and B
are actually the same event (no circular time)
o Transitivity: If A is before B, and B is before C, then A is before C (causation chains)

The partial order < represents potential causal influence: e < f means that event e could, in
principle, influence event f.

Definition 1.3 (Local Finiteness): A causal poset (P, X) is locally finite if for any e, f € P with e
< f, the causal interval

[e,f]l={g€EP:exg<T1}
is a finite set.

For the general reader: "Local finiteness" means that between any two causally-connected
events, only finitely many things can happen. You can't squeeze an infinite number of events
between breakfast and lunch. This might seem obvious, but it's actually a substantive assumption
that rules out certain exotic mathematical structures (like having infinitely many moments
packed into a finite time interval).

The local finiteness condition is physically crucial: it ensures that between any two causally
related events, only finitely many intermediate events occur. This prevents the existence of
infinitely dense tick structures within bounded causal intervals—a first hint of the finite
distinguishability constraint that will be formalized at the admissibility layer.

Remark 1.1: Local finiteness does not impose an upper bound on the total number of ticks, nor
does it require discreteness of any emergent spacetime. It merely ensures that causal chains are
countable and that no finite causal interval contains infinite structure.

1.3 What the Tick Layer Does Not Contain

Crucially, no assumption of reversibility or irreversibility is imposed at the tick level. The
partial order < encodes potential causal influence but does not specify:

e Whether transitions can be "undone"

e Whether information is preserved or lost

e Any dynamics or evolution law

e Any notion of energy, momentum, or conservation
e Any spatial or temporal metric

For the general reader: The tick layer is deliberately "content-free"—it's like having a blank
canvas before you've decided what to paint. We know that changes happen and that some
changes can influence later changes, but we haven't yet said anything about what is changing,
how fast, or whether you can reverse a change. All of that comes later, when we add constraints.



These concepts emerge only when ticks are aggregated under constraints at the admissibility
layer.

Remark 1.2: The tick layer is deliberately minimal. One might object that such a sparse
structure cannot ground rich physical phenomena. This objection mistakes the role of the tick
layer: it provides the ontological substrate for change, while the nomological content (laws,
constraints, regularities) resides at the admissibility layer.

Important note on incompleteness: The tick layer does not "escape" Godelian limitations. Any
sufficiently powerful formal description of the tick layer would itself be subject to
incompleteness theorems. The tick layer provides a process substrate, not a privileged formal
system.

1.4 Alternative Formalizations

While we have presented the tick layer as a causal poset, alternative mathematical structures
could serve the same foundational role:

o Causal sets (causets): Locally finite posets with additional conditions ensuring Lorentz
invariance in the continuum limit

o Event graphs: Directed acyclic graphs where edges represent direct causal links

e Process theories: Category-theoretic frameworks where morphisms represent transitions

The specific formalization matters less than the conceptual content: a pre-physical process
ontology with partial causal ordering.

Chapter 2: The Admissibility Layer

2.1 Physical Grounding

The key idea in plain language: Not every mathematically possible system can actually exist in
the physical world. A "physically grounded" mathematical model is one where every operation it
describes could actually be performed by a real physical process—using finite time, finite
energy, and finite resources. This rules out mathematical fantasies like "compute the exact value
of pi to infinite decimal places" or "check infinitely many possibilities instantly."

The admissibility framework does not reside at the tick layer. Instead, it emerges one level
above, at the admissibility layer, where aggregates of ticks are subject to operational
constraints.

Definition 2.1 (Physical Grounding): A mathematical model is physically grounded if every
operation it requires can be implemented by a finite physical procedure using finite energy, time,
memory, and precision.



This definition excludes:

e Operations requiring infinite precision (exact real number computation)

e Operations requiring infinite time (non-halting procedures treated as completed)
e Operations requiring infinite energy (unbounded force applications)

e Operations requiring infinite memory (storing infinite data)

For the general reader: Think about what your computer can actually do. It has finite memory
(maybe a terabyte), finite processing speed, and runs on finite power. Any calculation that would
require infinite memory or infinite time isn't something your computer—or any physical
device—can actually perform. Physical grounding is the requirement that our theories only
describe operations that could, in principle, be carried out by some physical system.

Physical grounding is not a limitation but a consistency requirement: any mathematics claiming
to describe the physical world must be implementable within that world.

2.2 The Operational Process Class
Before stating the core constraints, we define the class of operations they quantify over.

Definition 2.2 (Operational Process Class): Let O(R, E, 1, M, §) denote the class of physically
implementable operations within a specified finite resource budget:

e R: Spatial support (bounded region)

E: Energy budget (maximum total energy)

e 1: Time budget (maximum duration)

M: Memory budget (available storage)

o: Error tolerance (maximum acceptable error probability)

All subsequent definitions of FD and IC are stated relative to this operational class. This makes
precise that our constraints concern what can be done with finite resources, not what is
mathematically conceivable.

2.3 Core Constraints: Finite Distinguishability

Definition 2.3 (Finite Distinguishability — FD): For any fixed finite resource budget (R, E, t,
M) and fixed error tolerance o, the maximal size of a set of mutually distinguishable states—
states that can be reliably discriminated with error probability < 6 using operations in O(R, E, 1,
M, 6)—is finite.

For the general reader: Imagine you have a box, and you're trying to figure out what state it's
in. FD says that with limited time, limited equipment, and limited energy, you can only reliably
tell apart a finite number of different possibilities.

Here's an everyday example: Suppose you're trying to identify colors. With your naked eye, you
might distinguish a few million colors. With a good spectrometer, maybe billions. But no matter



how good your equipment, if it's finite, you can only distinguish finitely many colors. You can't
build a device that reliably distinguishes infinitely many different shades.

Critical clarification (capacity, not metaphysics): FD is a capacity constraint, not a
metaphysical claim about the state space. If resources scale (more time, more energy, better
equipment), the bound may increase. There is no claim that the underlying state space is
intrinsically finite—only that operational access to it is bounded under any fixed finite resources.
FD does not exclude arbitrarily fine distinctions in the limit of unbounded resources; it excludes
their availability at fixed operational capacity.

For the general reader: This is an important subtlety. In quantum mechanics, physicists often
work with mathematical structures (called Hilbert spaces) that have infinitely many
dimensions—infinitely many possible states in principle. FD doesn't say this is wrong. It says
that even if there are infinitely many mathematical states, only finitely many can be
operationally distinguished with finite resources.

Analogy: The real number line has infinitely many points between 0 and 1. But if your ruler only
has millimeter markings, you can only distinguish about 1000 positions. The infinite
mathematical structure exists; your finite ability to probe it is limited. FD is about operational
access, not metaphysics.

FD does not claim that Hilbert spaces are finite-dimensional in general. It claims that the
operationally accessible, reliably distinguishable portion of any state space is finite under finite
resources.

2.4 Core Constraints: Irreversible Commitment

Definition 2.4 (Irreversible Commitment — IC): There exist physical processes ® € O such
that for some initially distinguishable states p: # p2:

D(®(p1), @(p2)) < D(p1, p2)

and for all recovery operations ¥ € O(R, E, 1, M, 9):

D(¥(D(p1)), F(D(p2))) < D(p1, p2)

For the general reader: Some things can't be undone. If you scramble an egg, you can't
unscramble it. If you burn a book, you can't unburn it. IC is the formal statement that such
irreversible processes genuinely exist—that there are physical operations where information is
lost and cannot be recovered, no matter how clever you are (given finite resources).

This might seem obvious from everyday experience, but it's actually philosophically
controversial. Some physicists have argued that at the fundamental level, all physical laws are
reversible—that the appearance of irreversibility is just an illusion arising from our limited
perspective. IC takes no position on this debate; it just says that operationally, with finite
resources, some processes cannot be reversed.



In plain language: There exist processes that make two previously distinguishable states harder
to tell apart, and no amount of subsequent processing (with finite resources) can fully restore the
original distinguishability.

Critical clarification (operational, not ontological): IC is defined relative to the operational
process class O, not to the set of all mathematically imaginable operations. If the universe is
microscopically unitary, a "recovery" map ¥ might exist in principle but require resources far
exceeding any finite budget. IC makes no claim about microscopic ontology—only about what
can be achieved operationally.

Agnosticism on origin: IC is stated as an operational constraint, compatible with multiple
interpretations of its origin:

1. Fundamental irreversibility: Some processes genuinely destroy information at the most
basic level

2. Emergent irreversibility: All microscopic dynamics are reversible, but coarse-graining
over environmental degrees of freedom produces effective irreversibility

3. Resource-bounded irreversibility: Reversibility exists in principle but requires
resources exceeding any finite budget

For the general reader: Physicists disagree about why things are irreversible. Some think
information is truly destroyed. Others think it's just hidden in countless environmental particles
where we can't practically recover it. Still others think it's technically recoverable but would
require godlike resources. The admissibility framework doesn't take sides—it just notes that
operationally, irreversibility is real.

The admissibility framework is agnostic among these interpretations. What matters operationally
is that certain maps cannot be inverted with available resources—not whether this reflects
fundamental physics or practical limitation.

Empirical support for IC:

e Second law of thermodynamics (coarse-grained entropy increase)

e Measurement as operational irreversibility (amplification + record formation), consistent
with multiple interpretations of quantum mechanics

e Decoherence (environmental entanglement producing effective irreversibility)

e Landauer's principle (erasure requires dissipation)

e Horizon thermodynamics strongly suggests FD and IC; the status of fundamental
information loss at black hole horizons remains debated

2.5 The Arrow of Time
For the general reader: Why does time seem to flow in one direction? Why do we remember

the past but not the future? Why does a dropped glass shatter but shattered glasses never
spontaneously reassemble? The "arrow of time" is physics' name for this asymmetry.
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In our framework, the arrow of time emerges from IC: time's direction is defined by the direction
in which irreversible commitments accumulate.

The monotone ordering induced by IC is identified with the thermodynamic arrow of time.
This provides an operational definition of temporal direction:

Definition 2.5 (Temporal Order): Event A precedes event B (written A < B) if there exists a
chain of irreversible commitments connecting A to B but not B to A.

This definition:

e Does not assume a background time parameter

o Derives temporal asymmetry from operational irreversibility

e Is compatible with relativity (different observers may disagree on simultaneity but agree
on causal/commitment ordering)

o Explains why we remember the past but not the future (memory formation involves
irreversible commitment)

Clarification: The "macroscopic time metric" emerging from counting irreversible records is a
candidate operational time parameter, not necessarily the fundamental time. This framing is
compatible with relativistic settings where different observers may define different operational
clocks.

For the general reader: When you form a memory—say, of eating breakfast—that's an
irreversible physical process. Neurons fire, proteins fold, information gets encoded. You can
remember breakfast because that memory-formation was a one-way process. You can't
remember lunch (which hasn't happened yet) because no irreversible commitment has connected
you to it. Time's arrow is the direction of irreversible commitment.

2.6 Relation Between Layers

The tick layer and admissibility layer are related as follows:

Aspect Tick Layer Admissibility Layer
Content Primitive events Constraints on event aggregates
Structure Causal poset FD + IC relative to O

Reversibility Unspecified Distinguished (IC defines operational irreversibility)
Distinguishability Unspecified Bounded (FD)

Time Partial order only Full temporal direction via IC

Role Process ontology Necessary conditions for physical law

For the general reader: Think of it this way:

e Tick layer: The raw material—individual changes, with some causal connections

11



e Admissibility layer: The building codes—rules that any structure made from ticks must
follow
o Effective physics: The actual buildings—specific physical laws that obey the codes

A common misconception is that a complete physical framework must specify the deepest
ontological layer. This is incorrect. A complete admissibility framework specifies necessary
conditions that any physically realizable law must satisfy. The tick layer supplies the minimal
process ontology; the admissibility layer supplies the constraint structure.

Important limitation: The admissibility framework provides constraint-completeness at the
level of necessary conditions, not dynamical completeness. FD and IC constrain what theories
are physically admissible; they do not uniquely determine which admissible theory is realized.
Additional inputs (symmetries, initial conditions, perhaps contingent facts) are needed to select
among admissible possibilities.

For the general reader: This is crucial. We're not claiming to derive all of physics from FD and
IC alone. We're claiming that FD and IC are necessary constraints—any valid physics must
satisfy them. But they're not sufficient to determine exactly which physics we get. That's like
saying any house must follow building codes (necessary), but building codes don't tell you
exactly what your house will look like (not sufficient).

Chapter 3: Emergence of Time and Law

3.1 From Ticks to Macroscopic Time

For the general reader: How do we get from the primitive tick layer (where time isn't even
defined yet) to the familiar flow of time we experience? The answer involves "coarse-
graining"—ignoring fine details and looking at the big picture.

When ticks are aggregated under FD and IC, a partial order on equivalence classes of event-
histories is induced. This ordering is identified with macroscopic time.

The mechanism is as follows:

1. Coarse-graining: Define equivalence classes of tick configurations that are operationally
indistinguishable under finite resources (per FD)

2. Commitment tracking: Among equivalence classes, identify those related by
irreversible commitments (per IC)

3. Temporal ordering: The IC-induced partial order on equivalence classes defines
macroscopic before/after relations

4. Metric emergence: The "amount" of elapsed time between equivalence classes is
determined by the number of independent irreversible commitments required to transition
between them

12



For the general reader: Here's an analogy. Imagine watching a movie at different resolutions:

e At maximum resolution, you see every pixel of every frame
e At low resolution, many different high-res frames look identical—they blur together
e The low-resolution version has fewer distinguishable states

Time "emerges" when we go from the tick layer to a coarse-grained description:

e Many different tick configurations look the same (because FD limits what we can
distinguish)

e We group them into equivalence classes

e The irreversible commitments between these classes define temporal order

e The "amount of time" between events relates to how many irreversible steps separate
them

Proposition 3.1: The macroscopic time ordering derived from IC is consistent with the causal
ordering inherited from the tick layer: if tick e causally precedes tick f (e < f), then any
equivalence class containing e does not temporally follow any equivalence class containing f.

Proof sketch: Causal precedence at the tick level constrains which irreversible commitments are
possible. If e < f, then commitment events influenced by f cannot precede commitment events
influenced only by ¢. m

3.2 Physical Laws as Fixed Points

For the general reader: Where do physical laws come from? In this framework, they're not
handed down from on high—they emerge as stable patterns that survive coarse-graining.

Here's the intuition: Imagine looking at a beach from various distances. Up close, you see
individual grains of sand. From far away, you see "the beach"—a stable, recognizable pattern
that persists regardless of exactly which grains are where. Physical laws are like "the beach"—
patterns that remain stable even when you ignore microscopic details.

Physical laws arise as stable fixed points of coarse-graining over tick histories subject to
admissibility constraints.

Definition 3.1 (Coarse-Graining Family): Let {C A} be a family of coarse-graining maps
parameterized by resolution scale A, mapping microscopic descriptions to macroscopic
equivalence classes while respecting FD and IC.

Definition 3.2 (Induced Effective Dynamics): For each A, let L A denote the effective
dynamical law at scale A.

Definition 3.3 (Fixed Point Law): L is a fixed point of coarse-graining if LA is invariant (up to

reparametrization) under A — A'. That is, the law's form does not depend on the choice of coarse-
graining scale.

13



For the general reader: A "fixed point" is something that doesn't change when you apply some
operation to it. For example, if you keep pressing the \ button on a calculator starting from any
positive number, you eventually get to 1 (since V1 = 1). The number 1 is a fixed point of the
square root operation.

Physical laws are fixed points of coarse-graining: no matter how you adjust what counts as
"microscopic" versus "macroscopic,” the laws stay the same. That's what makes them laws—
they're the robust, universal patterns.

Clarification: In this paper we use "fixed point" in the RG-inspired structural sense; a fully
formal RG construction is beyond scope. Such a construction would require specifying the space
of effective theories, defining explicit coarse-graining operators, and proving convergence—a
program for future work.

Remark 3.1: This notion of stability parallels the renormalization group concept in statistical
mechanics and quantum field theory. Effective theories at different scales are connected by
coarse-graining flows, and physically relevant theories correspond to fixed points or slow flows
under such transformations. The laws of physics are precisely those regularities that survive
coarse-graining—that are robust against changes in how we divide the world into "relevant" and
"irrelevant" degrees of freedom.

3.3 What Admissibility Does and Does Not Determine

The admissibility constraints (FD and IC) impose necessary conditions on physical laws but do
not uniquely determine them:

Enforced by admissibility alone (+ operational axioms + continuity):

e Structure preservation of reversible dynamics
o Entropy monotonicity under irreversible processes (second law structure)
o Finite operational information density

Constrained but not determined (requires additional symmetry inputs):

o Maxwell's equations: require U(1) gauge symmetry + Lorentz covariance + locality +
variational principle

o Einstein's equations: require diffeomorphism invariance + locality + second-order
dynamics + Lovelock uniqueness

e Specific Hamiltonians: require specification of degrees of freedom and interactions

Not determined by admissibility:
e Which gauge groups are realized
e Which matter content exists

e Values of coupling constants
o Initial/boundary conditions

14



For the general reader: Here's what this means in plain terms:
Admissibility tells you:
e Quantum systems must evolve in a specific mathematical way (unitarily) between
measurements—no choice about this
o Entropy (disorder) can never decrease overall—this is required, not optional

e You can't pack infinite information into finite space—hard limit

Admissibility doesn't tell you:

What particles exist (electrons, quarks, etc.)
How strong gravity is

Why the speed of light is 299,792 km/s
How the universe started

The admissibility layer constrains the form of physical law more than its content.
3.4 Architectural Summary

The resulting structure is hierarchical:

LAYER 2: EFFECTIVE PHYSICS

Content: Dynamical laws (Schrddinger, Maxwell, Einstein...)
Status: Fixed points of coarse-graining under admissibility
Requires: Admissibility + symmetry inputs + initial data

[What we calculate with; the familiar equations of physics]

A
| constrains

LAYER 1: ADMISSIBILITY LAYER

Content: FD (finite distinguishability) + IC (irreversible

commitment) relative to O(R,E,T,M,d)
Status: Universal necessary conditions
Role: Constraint-complete specification of admissibility

[The "building codes" all physics must follow]

A
aggregates
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LAYER 0: TICK LAYER

Content: Primitive events of change

Structure: Locally finite causal poset (P, <)
Role: Minimal process ontology

[The raw "stuff happens" before physics]

This stratification preserves mathematical rigor, prevents category errors (confusing ontology
with constraint), and clarifies how constraint-based unification coexists with emergent physical
law.

Part II: Physical Admissibility Theorems

For the general reader: Now we get to the payoff. From just FD and IC, we can prove several
important theorems about what's physically possible and impossible. These aren't assumptions—
they're logical consequences of the two core constraints.

From the two core constraints FD and IC, we derive exclusion theorems that establish necessary
conditions on any physically grounded mathematics. These theorems are best understood as
reductio arguments: if the constraint were violated, physical realizability would fail in specific
ways.

Chapter 4: No Unbounded Operational Information Density

4.1 Statement

For the general reader: This theorem says: "You can't store infinite information in a finite
space with finite resources." This might seem obvious, but the proof shows why it's true—and
what would go catastrophically wrong if it weren't.

Theorem 4.1 (No Unbounded Operational Information Density — Physical CT Form):
Assume the Physical Church-Turing Thesis: every physically realizable input-output procedure
is Turing-simulable to the same operational accuracy. If a bounded system admits an unbounded
family of mutually distinguishable states with uniform preparation and uniform readout within a
fixed finite resource budget, then Physical Church-Turing is violated.

For the general reader: The "physical Church-Turing thesis" says that any computation a
physical system can perform can also be performed by a standard computer (given enough time
and memory). It's one of the most well-supported principles in computer science—no one has
ever found a physical process that computes something a regular computer couldn't.
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The theorem says: if FD were false, the physical Church-Turing thesis would also be false. Since
we strongly believe Church-Turing holds, we should believe FD holds too.

Assumptions (Uniform Prepare/Read): There exist procedures Prep(n) and Read(-) in O(R, E,
T, M, 0) such that:

e Prep(n) prepares state o, for any n € N within the same fixed resource budget
e Read discriminates ¢, from o, for any n # m with error < 8 within the same fixed budget

Assumption (Uniform Configurability): The device admits a reconfigurable control/program
register (itself physically realizable within the bounded system) such that for any finite N and
any bit pattern bo,...,b,, one can configure the device so that on inputs n < N it outputs b, with
error < o, while preserving the same uniform Prep/Read bounds. This captures the operational
notion of a programmable memory/lookup device.

4.2 Proof
Proof (by contradiction):

Assume such {c,} and uniform Prep/Read exist. Then the bounded device implements a
physically realizable, uniform input-output map f: N — N given by: input n, run Prep(n), then
Read to output n.

Now consider decision procedures parameterized by subsets S © N. By Uniform Configurability,
the device can realize arbitrarily long finite prefixes of membership functions y_S via physical
configuration: configure outputs to match x_S on {0,...,N} for any N.

If unboundedly long prefixes are physically realizable in a single bounded device without scaling
resources, the induced input-output behavior is not Turing-simulable uniformly to the same
operational accuracy. Physical Church-Turing implies the set of physically preparable
configurations is Turing-enumerable; unbounded uniform addressability would permit non-
Turing-enumerable configuration-spaces (since arbitrary S € N can be encoded), yielding
contradiction. m

For the general reader: The key insight is that if you could store unlimited information in a
finite device, you could "pre-load" the answers to problems that no computer can solve—Ilike
which programs will run forever. The device wouldn't compute the answers; it would just look
them up. But physical Church-Turing says this can't happen, so unlimited storage must be
impossible.

4.3 Interpretation
The contradiction does not require "computing" a non-recursive set during preparation; it arises
because FD failure plus uniform addressability permits physically realizing bounded

configurations whose induced input-output behavior corresponds to non-recursive sets. Physical
Church-Turing rules these out; therefore FD must hold (as an operational capacity constraint).
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Remark (Halting oracle specialization): If one additionally assumes a physically realizable
mechanism for embedding a halting oracle into initial conditions, the above construction
specializes to a direct halting decider. This stronger assumption is not required for the theorem.

4.4 On Uniform Readout

Remark (Uniformity as the operational hinge): Uniform readout is intentionally strong: it
posits a hypothetical system in which increasing the number of distinguishable states does not
force a corresponding scaling of discrimination resources. In realistic physical systems,
discrimination typically scales with dimension, time, energy, or sample complexity (e.g.,
tomography and hypothesis-testing bounds). That scaling behavior is itself a concrete
manifestation of FD. Here, Uniform Readout is introduced only to make explicit which "escape
hatch" prevents the reductio: namely, that unbounded distinguishability can only be physically
meaningful if it is uniformly accessible.

Remark (Assumption transparency): This theorem is conditional on the physical Church-
Turing thesis, which is an empirical claim, not a mathematical theorem. If future physics were to
establish violations of physical Church-Turing (e.g., through novel quantum gravitational effects
or other mechanisms), then FD would require corresponding revision rather than the argument
being invalid. The theorem shows: Physical Church-Turing = FD. The contrapositive——FD =
—Physical Church-Turing—is equally valid.

4.5 Corollaries

Corollary 4.1 (Operational Entropy Bounds): Under FD, the operationally accessible entropy
of any bounded system with bounded resources is finite:

S operational(R, E, 1,6, M) <k BInN(R, E, 1,5, M) <0

where N is the number of operationally distinguishable states.

For the general reader: Entropy measures how many different microscopic arrangements
correspond to the same macroscopic state—roughly, how much hidden information a system

contains. This corollary says that hidden information is finite, not infinite.

Corollary 4.2 (Consistency with Bekenstein-Type Bounds): FD is consistent with—and
provides operational grounding for—Bekenstein-type entropy bounds:

S <2nk B RE/ (hc)
For the general reader: In 1981, physicist Jacob Bekenstein discovered that black holes place
an upper limit on how much information can be stored in any region of space. The limit depends

on the region's size (R) and energy content (E). FD explains why such bounds exist: they're
necessary to prevent infinite information storage.
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Corollary 4.3 (Holographic Consistency): The holographic principle (entropy bounded by
boundary area rather than volume) is consistent with FD. Holography provides a gravitational
mechanism enforcing FD at the Planck scale.

For the general reader: The "holographic principle" is a deep idea from quantum gravity: the
maximum information in a 3D region is proportional to its 2D surface area, not its 3D volume.
It's as if reality is like a hologram—all the information is somehow encoded on the boundary. FD
is compatible with and helps explain this strange fact.

4.6 Relation to Existing Physics

FD is not a new physical postulate but a formalization of constraints already implicit in
established physics:

Domain FD Manifestation
Quantum mechanics Finite operationally distinguishable states for bounded systems
Statistical mechanics Finite accessible phase space volume (h» per state)
Black hole physics  Bekenstein-Hawking entropy bounds
Quantum gravity Holographic principle
Information theory  Finite channel capacity under resource constraints

Chapter 5: Irreversible Cost of Information Erasure

5.1 Clarification: Branching vs. Erasure

For the general reader: Before diving into the theorem, we need to clarify an important
distinction that even many physicists get confused about.

Branching means exploring multiple possibilities—Iike a chess computer considering many
possible moves. This can be done reversibly, keeping track of all the branches.

Erasure means forgetting which branch you took—resetting to a blank state. This is irreversible
and has an unavoidable energy cost.

The theorem below is about erasure, not branching.
A critical distinction: branching (exploring multiple computational paths) and erasure
(discarding information about which path was taken) are different operations with different
thermodynamic consequences.

e Reversible branching: A computation can explore k distinguishable branches reversibly,

maintaining full information about the branching history. Quantum computers exploit this
via superposition.
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o Irreversible erasure: Returning to a standard initial state after branching—discarding
the record of which branch was taken—is irreversible and carries unavoidable
thermodynamic cost.

The admissibility theorem concerns erasure, not branching per se.
5.2 Statement and Proof

Theorem 5.1 (Irreversible Compression Cost): Any computation that produces logzk bits of
mutually distinguishable branch record and then returns to a standard initial memory state must
dissipate at least k B T In k of heat (or export equivalent entropy to the environment), regardless
of whether the intermediate branching was performed reversibly.

For the general reader: In plain English: "Erasing information costs energy." Specifically,
erasing information about k possibilities costs at least k B T In k in energy (where k B is
Boltzmann's constant and T is temperature). At room temperature, erasing one bit costs at least
about 3x1072' joules—tiny, but not zero.

This is called "Landauer's principle," and it has been experimentally verified.

Proof:

Step 1: Consider a computation that explores k distinguishable branches, producing a branch
record—a memory state encoding which branch was taken. The k possible records are mutually

distinguishable states of the memory system.

Step 2: Information content of the branch record: logzk bits (minimum bits needed to specify one
of k possibilities).

Step 3: Returning to a standard initial state (reset/erasure) means transforming any of the k
distinguishable record states to a single fixed state. This is a many-to-one map on the memory
system.

For the general reader: If you have k different possible starting states and they all end up in the
same final state, that's a "many-to-one" map. Information about which starting state you had is

lost.

Step 4: By IC, many-to-one maps on distinguishable states cannot be implemented without
irreversible commitment—information about which input state was present is lost.

Step 5: By Landauer's principle, erasure of one bit requires dissipation of at least:
Wiie>k BTIn2

where T is the temperature of the thermal environment.
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Step 6: Erasure of logzk bits requires:

W total>k BTIn2 xlogck=k BTInk

This is a lower bound; actual implementations typically dissipate more. m

5.3 Landauer's Principle: Derivation and Status

For the general reader: Landauer's principle connects information theory to thermodynamics. It
says that information isn't free—erasing it has a physical cost. This principle, proposed by Rolf

Landauer in 1961, was controversial for decades but has now been experimentally confirmed.

Derivation: Consider a single-bit memory that can be in state 0 or 1 with equal probability.
Erasing means resetting to state 0 regardless of initial state.

o Initial entropy of memory: Si=k Bln2
e Final entropy of memory: S f=0

For the general reader: Entropy measures uncertainty or "disorder." Initially, the bit could be 0
or 1 (uncertainty = In 2). After erasure, it's definitely O (uncertainty = 0). The entropy decreased.

By the second law, total entropy (system + environment) cannot decrease:
AS total = AS_memory + AS_environment > 0

—k B1In 2+ AS_environment > 0

AS environment >k B ln 2

For the general reader: If the memory's entropy went down, the environment's entropy must go
up by at least the same amount. The total entropy can't decrease.

For a thermal environment at temperature T:

Q=T x AS environment>k BT In2=2.9 x 102! J at room temperature

Experimental status: Landauer's bound has been experimentally verified in multiple systems:
e Colloidal particles in optical traps (Bérut et al., Nature 2012)
o Single-electron boxes (Koski et al., PNAS 2014)

e Nanomagnetic bits (Hong et al., Science Advances 2016)

5.4 Implications for Computation
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Proposition 5.1: Any physical computer that explores k candidate solutions and returns to a
ready state must dissipate energy at least k B T In k, regardless of intermediate computation
strategy.

For the general reader: This has profound implications for computing. Every time your
computer clears its memory, it must pay an energy cost. Modern computers dissipate far more
than the Landauer minimum (for engineering reasons), but the minimum itself is a fundamental
physical limit.

Remark 5.2: Quantum computers do not violate this bound. Quantum speedup comes from
maintaining coherent superposition (reversible branching), exploiting interference, and
measuring only at the end. The quantum advantage is structural, not thermodynamic evasion.

For the general reader: You might wonder: "Don't quantum computers beat classical
computers by exploring many possibilities at once?" Yes, but they do it reversibly—they don't
erase the branch information until the very end (measurement). The Landauer cost is paid at
measurement, not during the quantum computation itself.

Remark 5.3: This theorem does not resolve P vs NP (a mathematical question). It establishes

that any physical implementation of exponential search pays thermodynamic cost at least linear
in the exponent—a physical constraint, not a logical one.

Chapter 6: Structure Preservation Between Commitments

6.1 Operational Metric Assumption

Assumption (Operational Metric): The distinguishability measure D is operational in the sense
that:

e (i) It is non-increasing under admissible channels (data-processing/contractivity): D(®(p),
®(c)) <D(p, o) forall ® € O

e (ii) Equality D(®(p), ®(c)) = D(p, o) for all pairs characterizes reversibility with respect
to O

Examples include trace distance, Helstrom optimal error probability, and other contractive
distinguishability measures.

6.2 Reversibility Lemma

Definition (Operational Reversibility): ® € O is operationally reversible if there exists ¥ € O
such that ¥ o @ = id on the relevant state set.
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Lemma 6.1 (Reversible = Isometry of D): If ® € O admits an inverse ¥ € O, then
contractivity of D implies D(®(p), ®(c)) = D(p, o).

Proof: By contractivity, D(®(p), ®(c)) < D(p, 6). Applying contractivity to ¥: D(p, o) =
D(Y(®(p)), ¥(P(o))) < D(D(p), ®(c)). Combined: equality. m

For the general reader: If a process can be undone, it can't lose information—the
distinguishability of states must be preserved exactly.

6.3 Structure Theorem

For the general reader: This theorem answers the question: "What kind of evolution is allowed
between irreversible events?" The answer: only transformations that preserve
distinguishability—which in quantum mechanics means unitary evolution.

Theorem 6.1 (Quantum-Case Structure Theorem): Given the operational quantum axioms
(convex state space, pure states, continuous reversible transformations) implying a Hilbert-space
representation, any continuous family of operationally reversible transformations is implemented
by a unitary one-parameter group.

Proof:

Step 1: By Lemma 6.1, operationally reversible maps preserve D (are D-isometries).

Step 2: On pure states, taking distinguishability as transition probability, Wigner's theorem
implies that any bijection preserving transition probabilities is unitary or antiunitary. More
generally, for affine bijections on the convex state space preserving an operational metric (e.g.,
trace distance), Kadison-type theorems yield implementation by unitary or antiunitary
conjugation.

For the general reader: These are famous results from quantum physics saying that the only
transformations preserving the distinguishability structure are unitary (or antiunitary). There's no

other option—it's a mathematical uniqueness result.

Step 3: Continuous one-parameter evolution connected to the identity must be unitary
throughout (antiunitary maps cannot form continuous groups connected to I).

Conclusion: Continuous reversible dynamics form one-parameter unitary groups. m
6.4 From Unitarity to Schrodinger Evolution Form
For the general reader: Now comes the punchline. A famous mathematical theorem (Stone's

theorem) says that any continuous family of unitary transformations can be written in a specific
form. This form is the Schrodinger equation.
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In other words: we didn't assume the Schrodinger equation—we derived its form from FD and
IC!

Stone's Theorem: Every strongly continuous one-parameter unitary group U(t) on a Hilbert
space # has the form:

U(t) = exp(—iHt/h)

for some self-adjoint operator H (the Hamiltonian).

Differentiating [y(t)) = U(t)|y(0)):

i 0|y (t))/0t = H)w(t))

This is the Schrodinger evolution form.

For the general reader: The Schrodinger equation is the fundamental equation of quantum
mechanics, governing how quantum states change over time. Physics students learn it as a
postulate—"this is just how quantum mechanics works."

But here we've derived its form from admissibility constraints:

FD motivates finite operational distinguishability

IC distinguishes reversible from irreversible processes

Reversible processes must preserve distinguishability (Lemma 6.1)

Distinguishability-preserving processes must be unitary (Wigner/Kadison)
Continuous unitary processes must have Schrodinger form (Stone)

kW=

The logic is airtight—given the constraints and operational quantum axioms, the Schrédinger
evolution form is inevitable.

Critical clarification on scope: We have derived the Schrodinger evolution form for
continuous reversible dynamics, not derived quantum theory from scratch.

The logical structure:

1. Admissibility (FD + IC) — Contractivity of D; reversibility = D-isometry

2. Operational quantum axioms — Hilbert space representation

3. Together — Schrodinger evolution form
Key statement: Admissibility does not derive quantum theory; it explains why any admissible
theory with a quantum-like operational state space must evolve unitarily between irreversible

record formations.

What is NOT determined: The specific Hamiltonian H requires additional physical input.
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For the general reader: The theorem tells us that quantum systems must evolve according to

some Schrodinger equation. It doesn't tell us which Schrodinger equation—that depends on the
specific Hamiltonian H, which encodes the particular physics of the system (what particles are
present, how they interact, etc.).

Chapter 7: Operational Bounds on Soft Excitations

7.1 The Problem with Naive Mass Gap Claims

For the general reader: This section addresses a potential objection: "Doesn't physics have
particles with zero mass (like photons)? Doesn't that violate finite distinguishability?"

The answer is subtle: zero-mass particles exist, but the number of distinguishable soft (low-
energy) configurations is still finite under finite resources.

A naive formulation—"FD requires a mass gap"—is false as stated. Standard physics contains
massless particles (photons, gravitons) and gapless excitations in many-body systems.

The correct statement concerns operational distinguishability, not energy gaps per se.

7.2 Correct Statement

Theorem 7.1 (No Unlimited Soft Distinctions): For fixed finite detector size R, finite
integration time T, finite total energy budget E, and fixed discrimination error 6, the number of

distinguishable soft-excitation configurations is finite.

Scope clarification: The theorem concerns fixed finite operational resources; asymptotic
symmetry charges become sharply defined only in limits (R, T — o) outside the theorem's scope.

For the general reader: In plain terms: even with massless particles, you can't have infinitely
many distinguishable low-energy states. Something must limit the number—either the energy
cost of detection, gauge redundancy (some states are actually the same), or other physical

bounds.

Proof: If arbitrarily many configurations with arbitrarily low incremental energy were all
distinguishable within O(R, E, t, M, 9), this would violate FD. m

7.3 Compatibility with Known Physics
Why massless particles don't violate Theorem 7.1:

For the general reader: Here's why photons (which have zero mass) don't create infinite
distinguishable states:
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1. Finite detection time/volume: Distinguishing soft photons with wavelength A requires
detector size > A and integration time > A/c. As A — oo, required resources — .

Analogy: Imagine trying to distinguish radio waves of slightly different frequencies. The longer
the wavelength (lower the frequency), the bigger your antenna needs to be and the longer you
need to listen. For infinitely long wavelengths, you'd need an infinitely big antenna listening for
infinite time.

2. Gauge redundancy: In QED, gauge-equivalent configurations represent the same
physical state. The number of gauge-inequivalent soft configurations is bounded.

For the general reader: "Gauge redundancy" means that some configurations that look different
mathematically are actually physically identical. Once you account for this redundancy, the
number of genuinely distinct configurations is smaller than it first appears.

3. Infrared dressing and superselection: Physical charged states are dressed by soft
photon clouds forming superselection sectors with finite internal distinguishability.

4. Gravitational bounds: Attempting to pack too many distinguishable soft quanta
eventually forms a black hole.

Footnote (Infrared subtlety): The infrared structure of gauge theories is subtle: physically
correct asymptotic states in QED involve soft dressing (e.g., Faddeev-Kulish-type constructions),
and the infrared sector is tied to asymptotic symmetries and memory effects. These refinements
do not contradict FD, because operational distinguishability remains bounded for fixed detector
size, integration time, and error tolerance; rather, they clarify which degrees of freedom label
physically meaningful asymptotic sectors and how they become accessible only in appropriate
long-time/large-radius limits.

Why gapless many-body modes don't violate Theorem 7.1:

Gapless excitations exist in the thermodynamic limit. For finite systems: spectrum is discrete,
mode number is bounded, finite temperature provides IR cutoff.

For the general reader: "Gapless excitations" occur in idealized infinite systems. Any real,

finite system has a minimum excitation energy (even if very small). The "gapless" limit is a
mathematical convenience, not physical reality.

Chapter 8: Admissibility Stress Test

For the general reader: Any good scientific theory should be falsifiable—there should be
possible observations that would prove it wrong. Here we list what would falsify the
admissibility framework.

8.1 Falsification Criteria
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The framework is falsified by physical existence of any system exhibiting:

Criterion 1 (FD Violation): A bounded system with unbounded distinguishable states under
uniform prepare/read within fixed finite resources.

What this would look like: A device of fixed size that can store any amount of data and retrieve
it perfectly, with no increase in energy, time, or equipment needed.

Criterion 2 (IC Violation): Information erasure without any thermodynamic cost or trace.

What this would look like: A memory that can be reset without generating any heat
whatsoever—perfect erasure with zero energy cost.

Criterion 3 (Soft Distinction Violation): Unbounded distinguishable stable excitations at
arbitrarily low energy, all accessible with fixed finite resources.

What this would look like: Infinitely many different stable particle types, each requiring
arbitrarily small energy to distinguish.

8.2 Status
No system satisfying any violation criterion has been observed or constructed. Black hole

debates continue but proposed resolutions preserve FD. Quantum computers use reversible
branching, not cost-free erasure.

Part II1: Canonical Equations and Spine
Compliance

For the general reader: Now we examine the major equations of physics to see which are
enforced by admissibility (no choice—they must be true), which are constrained (narrowed
down but not uniquely determined), and which are merely compatible (consistent with
admissibility but requiring additional input).

Chapter 9: The Schrodinger Evolution Form

For the general reader: The Schrodinger equation governs how quantum systems evolve in
time. It's the quantum analog of Newton's F=ma.

ih Oy(1))/0t = Hly (1))
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We derived above that this form is enforced by admissibility (given operational quantum
axioms). The specific Hamiltonian H (which determines the particular physics) requires
additional input.

9.1 Admissibility Status

Aspect Status
Linear evolution Enforced (given operational quantum axioms)
Unitarity Enforced

Self-adjoint generator Enforced
Specific Hamiltonian Not determined
Hilbert space choice Constrained, not uniquely determined

Clarification: "Enforced" means: given FD + IC + operational quantum axioms + continuity, the
Schrédinger form is necessary. The specific H requires physics input.

Chapter 10: The Heisenberg Uncertainty Principle

For the general reader: The uncertainty principle says you can't simultaneously know both the
position and momentum of a particle with perfect precision. The more precisely you know one,
the less precisely you can know the other:

Ax - Ap > h/2

This isn't about measurement disturbing the system—it's a fundamental limit on how much
information exists to be known.

10.1 Mathematical Statement

For observables x, p with [x,p] = i#:

Ax - Ap>h/2

For the general reader: Why does this follow from FD? Because FD says you can only
distinguish finitely many states in a finite region of "phase space" (the space of all possible
positions and momenta). The uncertainty principle is a mathematical expression of this finite

resolution—you can't pinpoint a state more precisely than about one "Planck cell" of phase
space.

10.2 Admissibility Status
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Aspect Status
Existence of uncertainty tradeoffs Enforced by FD (finite phase-space resolution)
Robertson-Schrodinger form Enforced given Hilbert representation
Value of 7 Not determined (contingent)
Which observables are conjugate Requires physical input

For the general reader: FD implies you can't resolve phase space infinitely finely—there must
be some uncertainty tradeoff. The specific mathematical form (Robertson-Schrodinger) requires
Hilbert space structure. The actual value of 7 is empirical.

Chapter 11: Maxwell's Equations

For the general reader: Maxwell's equations govern electricity and magnetism—how electric
and magnetic fields are created by charges and currents, and how they change in time. They
unify electricity, magnetism, and light into a single framework.

Unlike the Schrodinger equation, Maxwell's equations are NOT enforced by admissibility alone.
They require additional assumptions about symmetry (specifically, U(1) gauge symmetry and
Lorentz invariance).

11.1 Admissibility Status

Aspect Status
Existence of gauge field Not determined
U(1) structure Not determined
Maxwell form given U(1) + locality + Lorentz Strongly constrained
Vacuum reversibility Compatible with IC
Finite distinguishable modes Consistent with FD

For the general reader: Admissibility doesn't tell us that electromagnetic fields must exist or
that they must have the structure they have. But it does tell us that given certain symmetry
assumptions, Maxwell's equations are essentially the only possibility.

Chapter 12: The Einstein Field Equations

For the general reader: Einstein's field equations govern gravity—how matter and energy
curve spacetime, and how curved spacetime affects the motion of matter:

G pv+Ag pv=8nG/c*) T pv
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Like Maxwell's equations, these are not enforced by admissibility alone but are strongly
constrained given certain symmetry assumptions (diffeomorphism invariance, locality, second-
order derivatives).

12.1 Admissibility Status

Aspect Status
Dynamical spacetime Not determined
Diffeomorphism invariance Not determined
Einstein form given Lovelock inputs Uniquely constrained
Entropy bounds Consistent with FD
Horizon thermodynamics Consistent with IC

Chapter 13: The Second Law of Thermodynamics

For the general reader: The second law says that entropy (roughly, disorder or missing
information) never decreases in an isolated system:

S later > S earlier

This is the most direct expression of IC. The second law isn't just compatible with
admissibility—it's enforced by it.

13.1 Information-Theoretic Formulation

The data-processing inequality: for any quantum channel @,

D(plo) = D(®(p)ID(c))

implies entropy monotonicity under irreversible processes.

For the general reader: The data-processing inequality says that no physical process can make
two states more distinguishable than they started. You can only lose information, never create it.

This is mathematically equivalent to the second law—and it follows directly from IC.

13.2 Admissibility Status

Aspect Status
Entropy monotonicity Enforced by IC
Data-processing inequality Enforced
Landauer bound Enforced
Specific entropy formulas Requires statistical mechanics
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Chapter 14: Summary — Classification Table

Feature Enforced Constrained Compatible Not Det.
Unitary structure (given quantum axioms) v/
Uncertainty tradeoffs v
Robertson-Schrodinger (given Hilbert)
Entropy monotonicity v
v

Landauer bound

&

Maxwell equations

&

Einstein equations

<

Bekenstein bounds

&

Holographic principle
Specific Hamiltonians v
Value of 7 v

Coupling constants v

Note on classical theories: The "(given quantum axioms)" qualifier raises the question of
whether FD + IC have analogous structure-preservation consequences in non-quantum theories.
In classical stochastic theories with FD + IC, reversible dynamics would preserve
distinguishability (e.g., total variation distance), yielding measure-preserving
(symplectic/volume-preserving) flows rather than unitary groups. The admissibility constraints
thus have representation-dependent structural consequences—a direction for future investigation.

For the general reader: This table is the key result of this section. It shows that:

e Quantum mechanics' basic structure (unitarity) and thermodynamics' second law are
inevitable—any physically admissible theory must have them

e Electromagnetism and gravity are constrained but require additional symmetry
assumptions

o Specific details (particular Hamiltonians, coupling constants) are not determined at all

Part IV: Godel Reflection and the Tick Layer

Important disclaimer: The tick layer does not "escape" Godel's incompleteness. Any
sufficiently strong formalization of it is subject to incompleteness theorems. The connection is
about architecture, not metaphysical escape.
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For the general reader: This section connects our physics framework to a famous result in
mathematical logic: Godel's incompleteness theorems. The connection is suggestive rather than
definitive—we're not claiming to "solve" incompleteness, just to illuminate interesting parallels.

Chapter 15: Godel's Incompleteness

For the general reader: In 1931, Kurt Godel proved one of the most profound results in
mathematics: any consistent mathematical system capable of expressing basic arithmetic
contains true statements that cannot be proven within that system.

More precisely:
e Gaodel sentence G: "This statement is not provable in system T"
e If T is consistent, G is true but unprovable in T
e To prove G is true, you must step "outside" T to a meta-level
For consistent, sufficiently strong theory T:
e Godel sentence G T: TG T« —Prov_T(" G_T 7) ("I am unprovable in T")

o First Incompleteness: If T consistent, T i+ G T
e Meta-level requirement: Truth of G T established from outside T

Chapter 16: Tick Layer as Process Substrate

For the general reader: Here's the connection to physics: the "outside" perspective that Godel's
theorem requires can be thought of as a process—systematically checking all possible proofs.
This process can be modeled as a sequence of ticks.

Proof enumeration (systematically checking candidate proofs) can be implemented as a tick
sequence—each computational step is a tick. The tick layer provides a minimal process
substrate for meta-computation.
For the general reader: Imagine a computer program that:

1. Lists all possible proofs in order: proof #1, proof #2, proof #3, ...

2. For each proof, checks if'it's a valid proof of G T

3. If it finds one, stops; otherwise continues forever
Each step of this program is a tick. The tick layer provides the minimal "stuff" needed to run this

program. The program operates on system T (checking proofs in T) but is not within T—it's at
the meta-level.

Chapter 17: Precise Structural Parallel
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The intended analogy is not merely "both have hierarchies," but that both domains require a
principled separation between object-level descriptions and admissibility criteria that are not
fully captured by the object level alone.

In formal logic, provability is an internal notion, while consistency/truth often require meta-level
reasoning.

In our physical architecture, the tick layer provides an object-level process substrate, while

physical implementability constraints (finite distinguishability and irreversible commitment
relative to O) act as admissibility criteria on which mathematical structures can be realized.

The parallel is one of admissibility stratification: validity conditions sit one level above the

generative substrate. Both Godelian meta-theory and physical admissibility layer serve as
constraint levels that are not fully internal to the object-level description.

Chapter 18: Appropriate Interpretation
What we claim:

o Tick layer provides process substrate for meta-computation

"

e Godel's "outside" can be operationally instantiated
o Structural parallel: admissibility stratification in both logic and physics

What we do NOT claim:

e Incompleteness is "solved" or "grounded"

o Physical processes escape formal limitations

e Minds transcend formal systems
The correspondence illuminates architecture, not metaphysics.
For the general reader: We're NOT saying that the tick layer "solves" Godel's theorem or lets
us escape its limitations. Any sufficiently powerful formal system—including a formal
description of the tick layer—is subject to incompleteness.
What we ARE saying is that there's an interesting structural parallel: both physics and logic

involve layered hierarchies where some things can only be "seen" from outside a given level.
This parallel might be deep or might be superficial—we don't claim to know.

Part V: Conclusion

Summary
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Layer 0 (Tick Layer): Minimal process ontology—events of change forming a locally finite
causal poset. The raw "something happens" before physics.

Layer 1 (Admissibility Layer): Two universal constraints relative to O(R, E, 1, M, 9):

FD: Finite operational distinguishability (capacity constraint)
IC: Existence of operationally non-invertible processes

Layer 2 (Effective Physics): Laws emerging as coarse-graining fixed points:

Enforced: Unitarity (given quantum axioms), entropy monotonicity, Landauer bound,
uncertainty tradeoffs

Constrained: Maxwell, Einstein forms given symmetry inputs

Not determined: Specific Hamiltonians, constants, matter content

For the General Reader: What Have We Achieved?

What this framework does:

1.

Identifies two fundamental constraints (FD and IC) that any physical theory must satisfy

2. Derives several major features of physics from these constraints (unitarity, second law,

uncertainty)

Clarifies which features are universal necessities vs. which require additional
assumptions

Provides a clear hierarchy: tick layer — admissibility — effective physics

What this framework does NOT do:

b=

Uniquely determine which physical theory describes our universe
Explain why the fundamental constants have the values they do
Resolve interpretational debates (measurement problem, etc.)
Eliminate the need for experimental physics

The bottom line: FD and IC are like "building codes" for the universe. Any possible physics
must follow them. But just as building codes don't determine what your house looks like, FD and
IC don't uniquely determine physics. They constrain without fully determining.

What We Have and Haven't Achieved

Achieved:
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Explicit operational definitions (resource-relative, not metaphysical)

Clear assumption ledger with minimal bridges

Derivation of Schrodinger evolution form for continuous reversible dynamics
Completeness theorem for constraints



o Clean separation: necessity constraints vs dynamical selection
Not achieved:

e Derivation of quantum theory from scratch
e Unique determination of physics

o Explanation of coupling constants

e Resolution of interpretational questions

The bottom line: The result is a completeness theorem for constraints, not a completeness
theorem for dynamics.

Open Questions

1. Why these constraints? Can FD and IC be derived from something deeper, or are they
fundamental?

Quantum gravity: How do FD and IC manifest at Planck scale?

Interpretation: Which interpretation of quantum mechanics correctly implements IC?
Selection: What additional principles select our physics among admissible possibilities?
Constants: Is there a deeper explanation for specific values (o = 1/137, etc.)?

Nk

These questions define ongoing research directions. The admissibility framework provides a
structural skeleton; much remains to be filled in.

Appendices

Appendix A: Executive Spine Summary

THE ADMISSIBILITY SPINE

The core logic of the entire framework in one box

FINITE DISTINGUISHABILITY (FD)

"You can't distinguish infinitely many things with finite
resources."
(Capacity constraint; uniformity is the hinge)

Consequences:

* No unbounded information in bounded region

* Uncertainty principle (finite phase-space resolution)
* Bekenstein/holographic bounds
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IRREVERSIBLE COMMITMENT (IC)

(Operational; contractivity of D)

Consequences:

e Arrow of time

"Some processes can't be undone with finite resources."

* Entropy monotonicity (Second Law)
* Landauer bound (erasure costs k B T 1ln 2 per bit)

STRUCTURE PRESERVATION

+ Quantum axioms — Hilbert
Consequences:

e Schrodinger evolution form

"Reversible = D-isometry" (from contractivity)

* Unitarity of gquantum evolution (Wigner — Stone)

e Symplectic structure in classical limit

LAWS AS FIXED POINTS

Consequences:

"Laws = stable under {C_A}" (RG-structural sense)

* RG-like emergence of effective theories
* Universality of admissibility-compliant laws
* Specific content requires symmetry + initial data

Appendix B: Notation

Symbol Meaning
O(R,E,t,M,0) Operational process class

D(’)

Contractive distinguishability

measure
h Reduced Planck constant
k B Boltzmann constant
Speed of light
G Newton's gravitational constant
H Hilbert space

36

Plain English
All operations doable with stated resources

How different two states are

Fundamental quantum of action (~1073*
J-s)

Converts temperature to energy (~1072
J/K)

~3x10% m/s

Strength of gravity

Mathematical space of quantum states



Symbol
p, G
®
{C_A}
L A
(P, <)
Tro
r (p A

Meaning
Density matrices
Quantum channel
Coarse-graining family
Effective dynamics at scale A
Causal poset
¢ is provable in T
Godel number of ¢

Plain English
Quantum states (including mixed states)
Physical process on quantum states
Maps from fine to coarse descriptions
Laws at resolution A
Events with causal ordering
System T can derive statement @
Numerical encoding of formula ¢

Appendix C: Key Theorems Used

Theorem

Wigner's theorem
Stone's theorem
Kadison's theorem

Lovelock's theorem

are unitary/antiunitary
form

unitary

What It Says
Transition-probability-preserving bijections  Links D-isometry to

Affine bijections preserving trace norm are

How We Use It

unitarity

Continuous unitary groups have exponential Yields Schrodinger

evolution form

Alternative route to unitarity

Einstein's equations are unique given Explains uniqueness of

symmetry assumptions gravity
Data-processing  Physical processes can't increase Contractivity of D; second
inequality distinguishability law
Diagonal lemma  Self-referential sentences exist Constructs Godel sentences
andguer S Erasing one bit costs >k B T In 2 ffhermo‘d ynarmic cost of
principle - irreversibility
Appendix D: Classification Summary
. . Not
Feature Enforced Constrained Compatible .
Determined

Unitary structure (given quantum

axioms)

Entropy monotonicity

Landauer bound

Uncertainty tradeoffs
Robertson-Schrodinger (given Hilbert)

NGRS

Maxwell equations
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Not

Feature Enforced Constrained Compatible .
Determined

Einstein equations v

&

Bekenstein bounds
Holographic principle v
Specific Hamiltonians

Value of 7

Coupling constants

Matter content

NENENENEN

Initial conditions

Appendix E: Glossary for General Readers

Admissibility: Whether something is physically possible; whether it could actually exist or
happen in the physical world.

Arrow of time: Why time seems to flow in one direction; why we remember the past but not the
future.

Capacity constraint: A bound on what's operationally achievable, not a metaphysical claim
about reality.

Causal poset: A mathematical structure representing events with "before/after" relationships, but
not necessarily a full time ordering.

Coarse-graining: Ignoring fine details; looking at the big picture rather than the microscopic
level.

Contractivity: D(®(p), ®(c)) < D(p, o) for physical channels—processes can't increase
distinguishability.

D-isometry: Transformation preserving D exactly; characterizes operational reversibility.

Entropy: A measure of disorder, uncertainty, or missing information. Roughly, how many
different microscopic arrangements correspond to the same macroscopic state.

Finite Distinguishability (FD): The principle that with finite resources, you can only distinguish
finitely many different states. A capacity constraint, not a metaphysical claim.

Fixed point: Something that doesn't change when you apply some operation to it. Physical laws
are fixed points of coarse-graining.
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Godel's theorem: The mathematical result that consistent formal systems have true but
unprovable statements.

Hamiltonian: The mathematical object encoding a system's total energy and how it evolves in
time.

Hilbert space: The mathematical space in which quantum states live; an infinite-dimensional
generalization of ordinary 3D space.

Holographic principle: The idea that the information in a 3D region is bounded by its 2D
surface area.

Irreversible Commitment (IC): The principle that some physical processes cannot be undone
with finite resources. Defined relative to O, not to all conceivable operations.

Landauer's principle: Erasing one bit of information requires at least k B T In 2 of energy.

Meta-level: A perspective from "outside" a system, able to talk about the system rather than just
within it.

Process ontology: A view that reality consists fundamentally of happenings/changes rather than
static objects.

Second law of thermodynamics: Entropy never decreases in isolated systems; disorder tends to
increase.

Tick: A primitive, minimal event of change—the most basic "something happened."

Uniform Readout: Discrimination cost independent of state index—the "interesting
assumption" whose failure manifests FD.

Unitary: A transformation that preserves the structure of quantum states; reversible quantum
evolution.
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