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The Scope of Quantum Computing: A 

Clarification 

Why Most "Quantum" Problems Don't Require Quantum 

Mechanics 

 

Quantum computing is to computation what particle accelerators are to physics: essential for a 

narrow class of problems, irrelevant for most. 

 

Plain Language Summary 

When Is Quantum Computing Actually Necessary? 

Quantum computing is often presented as a solution to problems that are "hard" for classical 

computers—problems with enormous search spaces, complex constraints, or exponentially many 

possibilities. From this perspective, it is natural to assume that many such problems must 

therefore require quantum mechanics. 

Our results suggest that this intuition, while understandable, is incomplete. 

To clarify when quantum computing is genuinely necessary, it is helpful to separate three distinct 

stages that are frequently conflated in discussions of quantum advantage: 

• Marking — creating any reliable signal (a tag, score, constraint, or evidence) that 

distinguishes correct possibilities from incorrect ones¹ 

• Amplification — concentrating probability or weight onto those marked possibilities 

(can be achieved via dynamics that preserve or exploit the asymmetry) 

• Commitment — producing a definite outcome or answer (measurement, inherently 

irreversible) 

¹ In technical terms, a "mark" is any physically instantiated asymmetry correlated with 

correctness—often created by measurement, constraint enforcement, or energy biasing—and 

typically involves irreversible record formation. 

This decomposition is not arbitrary; it corresponds to three physically distinct operations, each 

with different resource requirements. 
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The central conclusion of this work is that only the first of these stages sometimes requires 

quantum mechanics. 

Marking vs Amplification 

Once a possibility has been physically marked—even weakly—the remaining steps do not 

intrinsically require quantum effects. Probability mass can be concentrated onto marked regions 

using entirely classical mechanisms such as dissipation, feedback, structured propagation of 

information, or constraint enforcement. A final answer can then be obtained by an irreversible 

commitment to one outcome. 

In other words: 

Quantum mechanics is not required to amplify answers or to read them out. 

It is required only when the act of marking correctness is itself quantum. 

This distinction resolves much of the confusion surrounding claims of quantum computational 

advantage. 

Problems That Do Not Require Quantum Computing 

Many problems that are widely described as "quantum computing problems" do not, in fact, 

require quantum mechanics in a foundational sense. 

These include: 

• Constraint satisfaction problems, such as scheduling, routing, and many SAT-like 

problems, where correctness is defined by classical rules 

• Error correction and diagnosis, where measurements or syndromes already provide 

physical marking 

• Bayesian inference and probabilistic reasoning, where evidence naturally marks 

hypotheses 

• Optimization problems, where energy, cost, or loss functions provide classical marking 

signals 

In all of these cases, the notion of correctness can be expressed and physically marked using 

classical processes. While the search space may be very large, the difficulty does not lie in 

amplifying or selecting a marked answer once it exists. Instead, it lies in how efficiently marking 

signals are produced or propagated—something that can often be done classically when the 

problem has structure. 

The size of the search space alone does not determine whether quantum computing is 

necessary. 
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Problems That May Benefit from Quantum Computing 

There exists an intermediate class of problems where quantum computing may offer advantages, 

even though it is not strictly required. 

Examples include: 

• Certain cryptographic or algebraic problems where relevant structure is difficult to 

extract classically 

• Tasks where evaluating correctness efficiently requires simulating quantum 

evolution 

• Situations where interference or phase information assists in constructing marking 

signals 

In these cases, quantum mechanics can help create the mark more efficiently. However, once a 

mark exists, amplification and answer recovery still do not intrinsically depend on quantum 

hardware. 

Problems That Truly Require Quantum Computing 

A smaller class of problems genuinely requires quantum computing because correctness itself is 

quantum-defined. 

These include: 

• Simulating quantum systems whose properties have no classical description 

• Determining quantum features such as entanglement or phase relationships 

• Tasks where the "answer" cannot be expressed as a classical predicate 

Here, quantum computing is not merely advantageous—it is essential. No classical marking 

mechanism exists for these problems. 

A Practical Rule of Thumb 

A useful way to assess whether a problem truly requires quantum computing is to ask: 

Can the notion of correctness be physically marked using classical processes such as 

constraints, energy, measurements, or evidence? 

• If yes, then quantum computing is not intrinsically required. 

• If no, and correctness itself depends on quantum properties, then quantum computing is 

essential. 
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Implications 

When this distinction is applied across the range of problems currently described as quantum 

computing applications, it suggests that a minority—plausibly on the order of 5–15% under the 

admissibility criterion used here—require quantum mechanics in a foundational sense.¹ The 

majority either do not require quantum computing at all or may benefit from it only as an 

optional or auxiliary tool. 

This clarification does not weaken the case for quantum computing. On the contrary, it 

strengthens it by placing quantum advantage on clear physical ground. Quantum computers are 

not general-purpose replacements for classical computers; they are specialized tools for problems 

where the definition of correctness is inherently quantum. 

Understanding this boundary helps guide research, investment, and application development 

toward domains where quantum computing is genuinely indispensable. 

 

Abstract 

When can a single measurement recover a fact hidden among exponentially many possibilities? 

We present a unified framework based on information geometry that answers this question for 

both classical and quantum systems. 

The core mechanism is that marking a correct answer induces geometric asymmetry in 

probability space, and natural gradient flow under the Fisher–Rao metric concentrates 

probability mass into the marked region. This flow is realized classically via belief propagation 

on structured constraint graphs, and quantum-mechanically via Lindblad dynamics with 

engineered dissipation. 

We demonstrate three key results: 

1. Classical sufficiency: When problem structure compresses the hypothesis space (low 

treewidth, sparse constraints), single-shot recovery succeeds without quantum resources. 

We validate this on a 200-bit system (10⁶⁰ nominal possibilities) and show that LDPC 

decoding—deployed in every 5G phone—is an instance of this mechanism. 

2. Structural boundary: Single-shot recovery fails when treewidth is high or constraints 

are dense. The framework precisely characterizes when classical methods break down. 

3. Quantum regime: For unstructured problems where classical propagation fails, we 

derive a Lindblad-based amplifier achieving O(1) resource scaling versus Grover's 

O(√N). The open question is whether this can be realized with polynomial physical 

resources. 
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When we separate marking from amplification, we find that a minority—plausibly on the order 

of 5–15% under the admissibility criterion used here—of problems commonly labeled as 

"quantum" actually require quantum mechanics in a foundational sense.¹ In most cases, the 

difficulty lies in structure or optimization, not in quantum physics itself. The contribution is not a 

quantum speedup claim, but a decision framework: given a problem's structure, does it require 

quantum resources or not? 
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1. Introduction: The Real Question 

The question "do we need a quantum computer for this?" is usually framed in terms of 

computational complexity: P vs BQP, oracle separations, query lower bounds. This framing, 

while rigorous, often obscures the practical question engineers actually face: 

Given the structure of my problem, can I solve it classically, or do I need quantum 

resources? 

This paper provides a geometric answer. The key insight is: 

Single-shot fact recovery succeeds when probability mass can be concentrated via 

structured propagation. The question is whether that structure exists classically or must be 

supplied quantum-mechanically. 

Several components of the present framework resemble ideas that appear separately in existing 

literatures: oracles in query complexity implicitly “mark” solutions, local evidence propagates in 

constraint satisfaction problems, and engineered dissipation can pump probability mass in open 

quantum systems. What is new here is not the introduction of another amplification mechanism, 

but the recognition that these disparate constructions are instances of a single physical process 

governed by information geometry. Query complexity treats marking as an abstract oracle; 

constraint satisfaction treats propagation as a combinatorial procedure; dissipative quantum 

computation treats pumping channels as given generators. By instead defining marking as a 

physically instantiated asymmetry correlated with correctness, and analyzing amplification as 

natural-gradient flow under the Fisher–Rao metric, we identify a substrate-independent 

mechanism that applies equally to classical and quantum inference. This reframing shifts the 

classical–quantum boundary: quantum computing is not required to amplify or commit to 

marked solutions, but only in those cases where no classical physical marking process exists at 

all. The resulting criterion is neither a restatement of treewidth conditions nor a reinterpretation 

of oracle models; it yields a new, falsifiable classification of when quantum resources are 

foundationally necessary. 

1.1 The Mechanism in One Sentence 

Marking creates local asymmetry. Structure (constraints, geometry) propagates that asymmetry 

globally. Readout extracts the answer in one shot. 

• If structure exists classically (sparse constraints, low treewidth) → classical BP suffices 

• If structure is absent classically but can be created via coherence/entanglement → 

quantum helps 

• If no structure exists at all → nothing helps; you must search 
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1.2 Scope and Limitations 

This framework does not address the cost of identifying or computing the mark. It 

addresses the dynamics of probability concentration after a physical marking exists. This is 

analogous to: 

• Post-selection amplification: Given that an event occurred, amplify its signal 

• Error-syndrome processing: Given syndrome bits, decode the logical state 

• Constraint propagation: Given local evidence, infer global structure 

The relevant question is not "can we find the needle?" but rather: given that the needle has been 

marked, what is the minimal cost to extract it? 

1.2.1 A Taxonomy of Difficulty: Marking Cost vs Structural Propagation 

The statement "this framework does not address the cost of computing the mark" is not a 

disclaimer of weakness; it is a deliberate separation of concerns. Many debates about quantum 

advantage implicitly merge three distinct costs into one: 

1. The cost of creating a physical mark 

2. The cost of propagating that mark into global concentration 

3. The cost of committing to a fact 

This paper isolates (2) and (3), and treats (1) as problem-dependent. 

A useful classification treats two axes as independent: 

• Marking cost: how expensive is it to produce a physically instantiated asymmetry 

correlated with correctness? 

• Structural propagatability: does the problem admit low-complexity global propagation 

of local marks (e.g., low treewidth, sparse factorization, symmetry reduction)? 

This yields three regimes: 

Regime Marking Structure Outcome 

Classical 

wins 
Cheap Present 

Local marks propagate efficiently (XOR chains, LDPC, 

tree inference). Single-shot recovery is classical. 

Quantum 

might help 
Cheap Absent 

Mark exists but classical propagation blocked by high 

treewidth. Engineered quantum dynamics may 

concentrate weight—but physical realizability is open. 

Outside 

scope 

Expensive 

(dominant) 
Any 

Marking cost dominates; framework does not claim 

advantage. 
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Clarification: "Outside scope" refers to cases where the cost of producing the mark dominates 

the total computation. If marking is expensive but structure is present, the overall task may still 

be tractable—one pays the marking cost once and then propagates efficiently. The excluded 

regime is specifically: marking is as hard as solving the problem and no structural leverage is 

available to reduce that cost. 

This taxonomy preempts the "relocation" objection by making it explicit: the framework is not 

a universal solver; it is a decision framework that tells you whether the remaining task—

fact recovery after marking—is classical or potentially quantum. 

Note on the continuum: In practice, both axes admit gradations. Marking may be partially 

informative (weak likelihood ratios), and structure may be approximate (nearly tree-like graphs 

where loopy BP converges). The framework's predictions degrade gracefully: weaker marks 

require longer propagation or more measurements; approximate structure yields approximate 

single-shot recovery. The binary presentation is for clarity; the underlying mathematics is 

continuous. 

1.2.2 A Third Filter: Taylor Admissibility and Finite Distinguishability 

The taxonomy above separates difficulty into (i) the cost of producing a mark and (ii) the 

availability of structure that propagates marks into global concentration. A further refinement 

becomes available if physical reality imposes a hard bound on operational distinguishability—

i.e., a maximum number of physically distinguishable states within a causal patch, together with 

a minimum meaningful resolution for measurement and computation. The BCB framework 

proposes a dimensionless bound L_T (Taylor's Number) that limits the total number of 

distinguishable states accessible to any observer within a single causal horizon, implying that 

attempts to resolve distinctions beyond this bound become physically meaningless. 

We call this additional constraint the Taylor admissibility filter: 

Taylor admissibility (conditional). A computation is Taylor-admissible if it does not require 

more than L_T mutually distinguishable states (or, equivalently, does not require physical 

precision finer than the implied minimum meaningful resolution). If an operation requires 

distinctions beyond this bound, the operation may remain mathematically definable but loses 

physical meaning as an executable process. 

Why this extends the category of solvable physical problems 

Complexity theory classifies difficulty in abstract models that permit unlimited precision, 

unlimited state space, and arbitrarily fine distinctions. A Taylor admissibility constraint changes 

the operational question: some tasks are "hard" only because they assume unphysical 

distinguishability. Under a finite distinguishability bound, such tasks collapse into finite-

resolution variants that are (i) physically meaningful and (ii) often decidable by bounded search, 

because the underlying state space becomes effectively finite. 
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Importantly, this does not claim that abstract hardness classes (e.g., NP, #P, undecidability) 

collapse in mathematics. It claims something narrower and operational: some mathematical 

problems cease to be physically well-posed once they demand distinctions beyond the Taylor 

domain. 

Integrating the third filter into the decision framework 

With Taylor admissibility, the practical classification becomes a three-stage decision: 

1. Mark availability: Is there a physically instantiated asymmetry correlated with 

correctness? 

2. Structural propagatability: Does the problem admit efficient global propagation of 

marks (e.g., low treewidth, sparse factorization, symmetry reduction)? 

3. Taylor admissibility: Does the computation remain within the physically meaningful 

distinguishability budget (≤ L_T, or equivalently precision ≥ 1/L_T)? 

The first two determine whether recovery after marking is classical or potentially quantum. The 

third determines whether the posed task is physically meaningful at all. 

Toy Example: Precision-Driven Hardness That Collapses Under a Distinguishability Cutoff 

To illustrate how a Taylor admissibility bound can enlarge the class of physically solvable tasks, 

consider a decision problem defined on real numbers: 

Near-equality decision (formal). Given two real numbers x, y ∈ [0,1] presented as black-box 

oracles, decide whether x = y or |x − y| ≥ 2⁻ᵐ. 

In the abstract real-RAM / oracle model, the difficulty can scale with m, because the problem 

demands resolving arbitrarily fine differences. Now impose a physical resolution limit ε_min 

implied by the Taylor bound (conceptually ε_min ∼ 1/L_T). If 2⁻ᵐ < ε_min, the "gap" case |x − 

y| ≥ 2⁻ᵐ becomes operationally indistinguishable from equality: the problem is no longer 

physically well-posed. 

Under Taylor admissibility, the physically meaningful version of the task becomes: 

Decide whether x = y or |x − y| ≥ ε_min. 

This variant is now finite-resolution: the number of distinguishable values in [0,1] is bounded, 

and the decision procedure reduces to a finite measurement-and-threshold test whose complexity 

does not diverge with m. The "hardness" was not removed by a new algorithm; it was removed 

because the original formulation required distinctions that are not physically representable. 

This is the general pattern: 

• Without a distinguishability bound: hardness can arise from unlimited precision 

requirements 
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• With a distinguishability bound: problems that demand sub-ε_min distinctions are 

filtered out as physically meaningless, and the remaining physically meaningful tasks 

reduce to finite-resolution decision problems 

Practical Interpretation for This Paper 

If a Taylor admissibility bound holds, then the admissibility-based classification in this paper 

becomes an upper bound on quantum advantage. That is: even when classical structure is absent, 

a proposed quantum advantage must still survive the additional constraint that the required 

coherence/phase resolution remains physically admissible. 

We emphasize that the main results of this paper do not depend on Taylor admissibility; it is 

presented here as a conditional refinement that further sharpens the classical–quantum boundary 

by separating (i) what is efficiently recoverable given marks, from (ii) what is physically 

meaningful to compute at all. 

1.3 Document Structure 

1. Sections 2–6: Core theory (Fisher–Rao metric, replicator dynamics, Lyapunov 

convergence) 

2. Section 7: Classical realization via factor graphs and belief propagation 

3. Section 8: Worked example (4-variable XOR chain) 

4. Section 9: Stress test (200-bit system, 10⁶⁰ nominal possibilities) 

5. Section 10: Real-world application (LDPC decoding) 

6. Section 11: Empirical validation 

7. Section 12: The structural boundary—when classical fails 

8. Section 13: Case study—MaxCut/QAOA benchmark (doesn't need QC) 

9. Section 14: Case study—Google Willow (genuinely needs QC) 

10. Sections 15–17: Quantum implementation via Lindblad dynamics 

11. Section 18: Binary special case and EF connection 

12. Section 19: Experimental protocol 

13. Section 20: Compressed ancilla-mediated model 

14. Section 21: Discussion—the proper role of quantum computing 

15. Sections 22–23: Falsification criteria and conclusions 

16. Appendix A: Physical admissibility and the collapse of quantum necessity 

1.4 The Central Theorem (Full Formalization) 

We now state the framework's core result with full mathematical precision, including explicit 

complexity class connections. 
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1.4.1 Formal Definitions 

Definition 1 (Computational Problem). A computational problem P is a relation P ⊆ Σ* × Σ* 

where (x, y) ∈ P means y is a valid solution to instance x. We write Sol(x) = {y : (x, y) ∈ P} for 

the solution set. 

Definition 2 (Probability Simplex). For a finite set Ω with |Ω| = N, the probability simplex is: 

Δ(Ω) = { p : Ω → [0,1] | Σ_{ω∈Ω} p(ω) = 1 } 

Definition 3 (Fisher–Rao Distance). The Fisher–Rao distance between p, q ∈ Δ(Ω) is: 

d_FR(p, q) = 2 arccos(Σ_ω √(p(ω)q(ω))) 

This is the geodesic distance under the Fisher–Rao metric g^FR_{ij} = δ_{ij}/p_i. 

Definition 4 (Classical Marking Mechanism). A problem P admits a (λ, T, S)-classical 

marking mechanism if there exists a probabilistic Turing machine M such that: 

1. Runtime bound: M(x, y) halts in time T(|x|) using space S(|x|) 

2. Correctness bias: For all instances x with |Sol(x)| ≥ 1:  

o If y ∈ Sol(x): Pr[M(x,y) = 1] ≥ (1 + e^λ)^{-1} · e^λ = σ(λ) 

o If y ∉ Sol(x): Pr[M(x,y) = 1] ≤ (1 + e^λ)^{-1} = 1 - σ(λ) 

3. Physical realizability: M produces an irreversible classical record (the output bit and any 

intermediate measurements) 

The quantity λ > 0 is the marking strength. The function σ(λ) = e^λ/(1+e^λ) is the sigmoid 

concentration bound. 

Definition 5 (Constraint Graph and Treewidth). For a problem P with solution space Ω = Σ^n, 

the constraint graph G_P = (V, E) has: 

• Vertices V = {1, ..., n} (variable indices) 

• Edge (i,j) ∈ E iff ∃ constraint involving both variables i and j 

The treewidth tw(G_P) is the minimum width over all tree decompositions of G_P. 

Definition 6 (Factored Distribution). A distribution p ∈ Δ(Σ^n) is (k, m)-factored if: 

p(x) = (1/Z) ∏{α=1}^{m} ψ_α(x{∂α}) 

where each factor ψ_α depends on at most k variables (|∂α| ≤ k), and Z is the partition function. 
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1.4.2 The Marking Sufficiency Theorem 

Theorem 1 (Marking Sufficiency — Main Result). 

Let P be a computational problem with: 

• Solution space Ω = Σ^n with |Σ| = q (alphabet size) 

• A (λ, poly(n), poly(n))-classical marking mechanism M 

• Constraint graph with treewidth tw(G_P) ≤ k 

Then there exists a randomized classical algorithm A such that: 

1. Success probability: Pr[A(x) ∈ Sol(x)] ≥ σ(λ) - ε for any ε > 0 

2. Time complexity: A runs in time O(n · q^k · poly(1/ε)) 

3. Space complexity: A uses space O(n · q^k) 

In particular, if k = O(1) and λ = Ω(1), then A runs in polynomial time with constant success 

probability. 

Proof: 

Step 1 (Marking induces posterior concentration). The marking mechanism M defines a 

likelihood function: L(y) = Pr[M(x,y) = 1] 

By the marking bias condition, for y* ∈ Sol(x) and y ∉ Sol(x): L(y*)/L(y) ≥ σ(λ)/(1-σ(λ)) = e^λ 

Starting from uniform prior π(y) = 1/N, the posterior is: p(y | M=1) ∝ π(y) · L(y) 

The posterior probability ratio satisfies: p(y* | M=1) / p(y | M=1) ≥ e^λ 

Step 2 (Fisher–Rao flow concentrates mass). Define the marked-set indicator f(y) = 𝟙[y ∈ Sol(x)] 

and the objective: F(p) = E_p[f] = Σ_{y ∈ Sol(x)} p(y) 

The Fisher–Rao natural gradient flow dp/dt = p · (f - E_p[f]) satisfies (Theorem, Section 6): 

dF/dt = Var_p(f) ≥ F(1-F) 

This gives exponential concentration: F(t) → 1 as t → ∞ with rate independent of N. 

Step 3 (Belief propagation realizes the flow for bounded treewidth). When p admits a (k, m)-

factored representation with factor graph of treewidth ≤ k, belief propagation computes exact 

marginals in time O(n · q^k) per iteration [Lauritzen-Spiegelhalter 1988]. 

The BP fixed point satisfies the same concentration as the Fisher–Rao flow (Section 7). After 

O(log(1/ε)) iterations, the marginals satisfy: Σ_i H(p_i) ≤ H(p_initial) - Ω(λ) 

where H denotes entropy. 
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Step 4 (Single-shot sampling succeeds). Sample ŷ by drawing each coordinate independently: ŷ_i 

~ p_i(· | evidence). 

By the concentration bound and union bound over n coordinates: Pr[ŷ ∈ Sol(x)] ≥ σ(λ) - O(n · 

e^{-Ω(λ)}) ≥ σ(λ) - ε 

for λ = Ω(log(n/ε)). ∎ 

1.4.3 Complexity Class Connections 

The theorem has direct implications for standard complexity classes: 

Corollary 1 (P vs NP Connection). Let P be an NP problem with: 

• Polynomial-time verifiable witnesses (standard NP definition) 

• Constraint graph with treewidth k = O(1) 

Then P ∈ P. 

Proof: The NP verifier provides a (λ, poly(n), poly(n))-marking mechanism with λ = Ω(1). By 

Theorem 1, the problem is solvable in polynomial time. ∎ 

Corollary 2 (BQP Separation Criterion). A problem P requires quantum resources (i.e., P ∈ 

BQP \ P) only if at least one of: 

1. P admits no polynomial-time classical marking mechanism, OR 

2. P has super-constant treewidth AND the marking is weak (λ = o(1)) 

Proof: Contrapositive of Theorem 1. If polynomial-time classical marking exists with λ = Ω(1) 

and tw = O(1), then P ∈ P ⊆ BQP, so P ∉ BQP \ P. ∎ 

Corollary 3 (Quantum Simulation is Necessary). For the problem "compute expectation value 

⟨ψ|O|ψ⟩ for local observable O on n-qubit state |ψ⟩": 

• No classical marking mechanism exists (the quantity is quantum-defined) 

• Therefore the problem may require quantum resources 

This is consistent with the BQP-completeness of local Hamiltonian problems [Kitaev 1999]. 

Corollary 4 (Grover Lower Bound Compatibility). For unstructured search (finding marked 

item in N-element database with oracle access): 

• Classical marking strength λ = 0 (no bias without querying) 

• Treewidth = N - 1 (fully connected) 
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Therefore Theorem 1 does not apply, and the Ω(√N) quantum lower bound [BBBV 1997] is not 

contradicted. 

1.4.4 The Marking Hierarchy 

We define a hierarchy of problems based on marking properties: 

Class Definition Examples Classical? 

MARK[poly, 

O(1)] 

Poly-time marking, O(1) 

treewidth 

Tree-structured CSP, 

LDPC decoding 
Yes (Theorem 1) 

MARK[poly, 

O(log n)] 

Poly-time marking, O(log 

n) treewidth 

Bounded-pathwidth 

optimization 

Yes (quasi-poly 

time) 

MARK[poly, 

ω(log n)] 

Poly-time marking, super-

log treewidth 
Dense random CSP Unknown 

*MARK[0, ] No classical marking 
Quantum simulation, Shor's 

algorithm 
QC-required 

Conjecture (Marking Dichotomy). For NP problems: either MARK[poly, O(1)] (efficiently 

solvable) or MARK[0, *] (potentially QC-required). The intermediate cases collapse to one of 

the extremes under standard complexity assumptions. 

1.4.5 Formal Falsifiability 

Falsification Criterion. Theorem 1 is falsified by exhibiting a problem P such that: 

1. P admits a (λ, poly(n), poly(n))-classical marking mechanism with λ = Ω(1) 

2. tw(G_P) = O(1) 

3. No polynomial-time classical algorithm solves P with probability ≥ σ(λ) - o(1) 

Under standard complexity assumptions (P ≠ NP), no such problem exists. 

Quantum Advantage Criterion. A problem P exhibits genuine quantum advantage (P ∈ BQP \ 

BPP) only if: 

1. P ∉ MARK[poly, O(log n)], AND 

2. P ∈ BQP 

This criterion is satisfied by: quantum simulation, period finding (Shor), boson sampling, 

random circuit sampling. It is NOT satisfied by: MaxCut, TSP, portfolio optimization, drug 

docking, LDPC decoding. 
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2. Probability Geometry and the Fisher–Rao Metric 

We work on the probability simplex Δⁿ⁻¹ with coordinates pᵢ ≥ 0, ∑ᵢ pᵢ = 1. 

The Fisher–Rao metric is the unique Riemannian metric (up to scale) that is invariant under 

sufficient statistics: 

g^FR_ij = δ_ij / p_i 

In the natural coordinates (p_i) on the simplex (with the normalization constraint handled by 

projection to the tangent space), the Fisher–Rao metric takes the diagonal form shown above. 

This uniqueness was established by Čencov (1982), who proved that the Fisher–Rao metric is the 

only Riemannian metric on probability simplices that is invariant under congruent embeddings 

by Markov morphisms—a powerful result that grounds information geometry in category-

theoretic terms. [CITE: Čencov, N.N. (1982). Statistical Decision Rules and Optimal Inference. 

AMS.] 

This metric has two key properties: 

• It measures statistical distinguishability between nearby distributions 

• It weights changes in rare events more strongly than common ones 

The geodesic distance under this metric is related to the Bhattacharyya coefficient and provides 

the natural notion of "how different" two probability distributions are. 

 

3. Natural Gradient Flow on the Simplex 

Given a scalar functional F(p), the natural gradient (gradient with respect to Fisher–Rao 

geometry) projected onto the simplex yields the replicator equation: 

dp_i/dt = η p_i ( ∂F/∂p_i − Σ_k p_k ∂F/∂p_k ) 

where η > 0 is a learning rate. This flow: 

• Preserves normalization (∑ᵢ pᵢ = 1 for all t) 

• Follows the steepest ascent direction in information geometry 

• Is the continuous-time limit of multiplicative weight updates 

The replicator equation appears throughout evolutionary game theory, population genetics, and 

machine learning (natural policy gradient, mirror descent). 
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4. Stage A: Amplification of the Marked Set 

Let M ⊂ {1, …, n} be the set of marked outcomes. Define the total marked probability mass: 

P_M(p) = Σ_{i ∈ M} p_i 

Choose the objective functional: 

F_A(p) = ln P_M(p) 

Computing the natural gradient yields the dynamics: 

For i ∈ M: dp_i/dt = η p_i ( 1/P_M − 1 ) [for i ∈ M] 

For i ∉ M: dp_i/dt = −η p_i [for i ∉ M] 

Summing over i ∈ M gives a closed equation for the total marked mass: 

dP_M/dt = η (1 − P_M) 

with exact solution: 

P_M(t) = 1 − (1 − P_M(0)) e^(−ηt) 

Key result: Once marking exists, Fisher–Rao geometry guarantees monotonic exponential 

concentration into the marked set. The rate depends only on η, not on the structure of M or the 

number of outcomes n. 

These dynamics can also be viewed as a continuous-time biased random walk on the simplex: 

marking supplies a drift toward M, while the Fisher–Rao geometry ensures the drift respects 

probabilistic distinguishability (a geometric analogue of biased MCMC). 

 

5. Stage B: Tie-Breaking Within the Marked Set 

To select a single outcome inside M when |M| > 1, introduce a weak score aᵢ on M with a unique 

maximum at i*. 

Define the combined objective: 

F(p) = ln P_M(p) + ε Σ_{i ∈ M} a_i p_i where 0 < ε ≪ 1 
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The resulting dynamics are: 

For i ∈ M: dp_i/dt = η p_i ( 1/P_M − 1 + ε(a_i − Ā) ) [for i ∈ M] 

For i ∉ M: dp_i/dt = −η (1 + ε Ā) p_i [for i ∉ M] 

where Ā = Σ_{k ∈ M} p_k a_k is the mean score. 

5.1 Conditional Dynamics Inside the Marked Set 

Define the conditional distribution inside M: 

q_i = p_i / P_M with Σ_{i ∈ M} q_i = 1 

After cancellation of Stage-A terms, qᵢ obeys: 

dq_i/dt = η ε q_i (a_i − ā) 

where ā = Σ_{j ∈ M} q_j a_j. 

This is the standard replicator equation on the reduced simplex. If aᵢ has a unique maximizer 

i*, then: 

q(t) → δ_{i*} as t → ∞ 

 

6. Lyapunov Function and Convergence Guarantee 

Define the Lyapunov function: 

V(q) = −ln q_{i*} 

Its time derivative satisfies: 

d/dt ln q_{i*} = η ε (a_{i*} − ā) ≥ 0 

with equality only at the fixed point q = δᵢ*. 

Theorem: The combined two-stage dynamics converge to the unique marked winner: 

1. Stage A concentrates all mass into M with exponential rate η 

2. Stage B selects the highest-scoring element within M with rate ηε 
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The separation of timescales (ε ≪ 1) ensures Stage A completes before Stage B becomes 

dominant. 

 

7. Classical Realization: Factor Graphs and Belief 

Propagation 

This section demonstrates that single-shot answer recovery can be achieved using probabilities 

alone, without recourse to quantum amplitudes. The mechanism relies on compressed 

probability representations and admissible global propagation of local marking. 

7.1 Factor-Graph Representation 

Let the unknown answer be encoded in a vector of binary variables x = (x₁, …, xₙ) with xᵢ ∈ 

{0,1}. Rather than representing the full joint distribution explicitly (which requires 2ⁿ 

parameters), we define it implicitly via a factor graph: 

p(x) = (1/Z) Π_α ψ_α(x_α) 

where each factor ψα enforces a local constraint over a small subset of variables. This 

representation compresses the probability simplex onto a low-dimensional manifold. 

7.2 XOR (Parity) Chain Constraints 

Consider a chain of XOR constraints: 

x_{i+1} = x_i ⊕ a_i where a_i ∈ {0,1} 

implemented by factors: 

ψ_i(x_i, x_{i+1}) = 𝟙[x_{i+1} = x_i ⊕ a_i] 

These constraints imply that once x₁ is fixed, the entire configuration is uniquely determined. 

The hypothesis space collapses to exactly two globally admissible assignments, corresponding to 

x₁ = 0 or x₁ = 1. 

7.3 Marking as Local Probabilistic Evidence 

Marking is introduced as local evidence on a single variable xₜ via a unary potential: 

φ_t(x_t) = e^λ if x_t = v*, else 1 
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where v* is the correct value and λ > 0 controls marking strength. 

This operation biases the distribution without explicitly enumerating the correct global 

assignment—a probabilistic analogue of admissible constraint reinforcement. 

7.4 Exact Belief Propagation on Trees 

Because the factor graph is a tree, belief propagation (BP) yields exact marginal distributions 

after finite message-passing sweeps. Messages propagate deterministically through XOR 

constraints, either preserving or inverting likelihood ratios. 

Important clarification: Exactness on trees is a strong guarantee—BP computes the true 

posterior marginals, not merely consistent fixed points. On graphs with cycles, BP may converge 

to incorrect marginals or fail to converge entirely. The single-shot recovery guarantee therefore 

depends critically on tree structure (or low treewidth), not merely on BP's applicability. 

For any variable xₖ, BP yields the marginal: 

P(x_k = v*_k) = e^λ / (1 + e^λ) = σ(λ) 

where v*ₖ is the value implied by parity consistency with the marked node, and σ denotes the 

sigmoid function. 

7.5 Single-Shot Readout and Global Recovery 

After propagation: 

1. Perform a single readout of x₁ (or any variable) 

2. Reconstruct the full solution x* deterministically using XOR relations 

The probability of correct global recovery in one readout is: 

P(success) = e^λ / (1 + e^λ) = 1 − ε(λ) 

To achieve failure probability δ, it suffices that λ ≥ ln((1−δ)/δ). 

Remark (geometry–BP connection). On trees, BP can be interpreted as coordinate-wise 

optimization of a factored variational objective (Bethe free energy), and its message updates 

correspond to a structured, geometry-respecting flow on the manifold of factorized distributions. 

This helps explain why BP realizes the same "mark → propagate → concentrate" principle as 

Fisher–Rao natural gradient flow, but in the discrete, factor-graph setting. [CITE: Yedidia, 

Freeman, & Weiss (2005). Constructing free-energy approximations and generalized belief 

propagation algorithms. IEEE Trans. Info. Theory.] 
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7.6 Structural Requirements for Single-Shot Recovery 

Single-shot recovery in this classical setting relies on three features: 

1. Implicit representation of probability via sparse constraints 

2. Marking implemented as admissible local evidence 

3. Global concentration achieved through structured propagation rather than repeated 

sampling 

Limitation: For a factor graph with n variables and treewidth k, junction-tree BP requires O(n × 

2ᵏ) computation and O(2ᵏ) memory. When k = O(1), this is linear in the number of variables. 

When k = Θ(n), complexity becomes O(n × 2ⁿ)—exponential in problem size—and single-shot 

recovery via BP is no longer efficient. 

 

8. Worked Example: Four-Variable XOR Chain 

This section provides a fully explicit demonstration of the mark → propagate → single readout 

mechanism. 

8.1 Setup 

Consider four binary variables (x₀, x₁, x₂, x₃) ∈ {0,1}⁴ subject to XOR constraints: 

x₁ = x₀ ⊕ 1, x₂ = x₁ ⊕ 0, x₃ = x₂ ⊕ 1 

8.2 Admissible Global Assignments 

The constraints restrict the hypothesis space to exactly two assignments: 

Branch x₀ x₁ x₂ x₃ 

A 0 1 1 0 

B 1 0 0 1 

All other configurations are inadmissible. 

8.3 Marking via Local Evidence 

Apply local evidence at node x₂ with preferred value x₂ = 1 and marking strength λ = ln(9) ≈ 

2.197: 
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φ₂(x₂) = 9 if x₂ = 1, else 1 

8.4 Posterior Calculation 

Evaluating evidence on admissible branches: 

• Branch A has x₂ = 1 → weight 9 

• Branch B has x₂ = 0 → weight 1 

Normalizing: P(A | mark) = 9/10 = 0.9, P(B | mark) = 0.1 

8.5 Propagated Marginals 

The branch posterior induces marginals on all variables: 

Variable P(= 0) P(= 1) 

x₀ 0.9 0.1 

x₁ 0.1 0.9 

x₂ 0.1 0.9 

x₃ 0.9 0.1 

This global bias arises from admissible probability propagation, not enumeration. 

8.6 Single-Shot Readout 

Perform one readout of x₀: 

• With probability 0.9: x₀ = 0 → reconstruct Branch A ✓ 

• With probability 0.1: x₀ = 1 → reconstruct Branch B ✗ 

Success probability: P(success) = 9/10 = e^λ / (1 + e^λ) ✓ 

This matches the general success law from Section 7.5. 

 

9. Stress Test: 200-Bit System (10⁶⁰ Nominal 

Possibilities) 

To demonstrate the framework at scale, we test a system that looks intractable but is solved in a 

single shot. 
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9.1 Problem Setup 

Consider a chain of 200 binary variables with XOR constraints: 

x_{i+1} = x_i ⊕ a_i, a_i ∈ {0,1}, i = 1, …, 199 

Naive view: The hypothesis space contains 2²⁰⁰ ≈ 1.6 × 10⁶⁰ candidate assignments—a number 

exceeding the estimated atoms in the observable universe. 

Structured view: The constraints compress the space completely. Once x₁ is fixed, all 200 

variables are determined. There are exactly two globally admissible assignments. 

9.2 Marking and Propagation 

Apply local evidence at a single variable xₜ with marking strength λ = ln(99) ≈ 4.595: 

φ_t(x_t) = 99 if x_t = v*, else 1 

Because the graph is a tree, belief propagation is exact. After propagation: 

P(correct branch) = σ(λ) = e^λ / (1 + e^λ) = 99/100 = 99% 

A single readout of x₁ then reconstructs the full 200-bit solution deterministically via XOR 

relations. 

9.3 Empirical Results 

Parameter Value 

Chain length n 200 

Hypothesis space 2²⁰⁰ ≈ 1.61 × 10⁶⁰ 

Marking strength λ ln(99) = 4.5951 

Theoretical success 99.0000% 

Empirical success (20,000 trials) 99.0450% 

BP vs exact posterior error ≲ 10⁻¹⁷ 

The empirical success rate matches theory to within sampling noise. No qubits, no quantum 

amplitude interference—purely classical probability propagation. 

9.4 What This Shows 

1. A problem with nominal size 10⁶⁰ is solved in one shot 

2. Success probability is set by λ alone, not by N 

3. Structure + local marking + global propagation = single-shot recovery 
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4. The mechanism is purely classical (no Hilbert space required) 

9.5 What This Does Not Show 

This demonstration does not solve unstructured search. The "difficulty" has been relocated: 

The honest boundary: Does the problem compress into a low-treewidth, factorable structure 

where marking can be injected locally? 

For XOR chains (treewidth 1), the answer is yes. For arbitrary constraint satisfaction (high 

treewidth), the answer is no—BP becomes exponentially costly, and single-shot recovery fails. 

This is not a limitation of the framework; it is the framework's scope. The contribution is 

identifying precisely when and why single-shot recovery is possible, not claiming it works 

universally. 

Beyond treewidth 1. The XOR chain is intentionally minimal (treewidth 1) to isolate the 

mechanism. For graphs of bounded treewidth k > 1 (e.g., ladder graphs with k = 2 or w × n grids 

with k = w), the same mark → propagate picture persists but the computational cost scales as 

O(n × 2^k). In this regime, "single-shot" behavior degrades gracefully: recovery remains 

governed by the effective marking strength while runtime grows exponentially in k, consistent 

with the structural boundary (Section 12). 

9.6 Supplementary Bounded-Treewidth Experiments (w = 2–4) 

To verify graceful degradation beyond treewidth 1, we evaluated a family of w × L grid models 

(bounded treewidth ≈ w) with binary variables and local pairwise factors. We applied a unary 

mark of strength λ = ln(99) at one end of the grid and computed the exact marginal at the far end 

using transfer-matrix / junction-tree dynamic programming. Exact inference runtime grows as 

O(L × 2^w), matching the standard bounded-treewidth scaling, while success probability varies 

smoothly with coupling strength and distance—showing a continuous transition from "local 

mark only" to "global propagation" rather than a collapse. 

Results on w × 20 grids with strong coupling (β = 3.0): 

Grid width w States per column (2^w) DP runtime (s) P(target=1 ∣ mark) σ(λ) 

1 2 0.0002 0.9460 0.9900 

2 4 0.0002 0.9899 0.9900 

3 8 0.0005 0.9900 0.9900 

4 16 0.0020 0.9900 0.9900 

Interpretation: 
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1. Treewidth increases cost exponentially via 2^w, exactly as expected from complexity 

theory 

2. The w=1 case (1D chain) shows finite correlation length decay: even with strong 

coupling, the mark attenuates over distance. Additional experiments varying grid length 

confirm this: at L=5, P=0.98; at L=30, P=0.92. This is fundamental 1D Ising physics—

information decays exponentially with distance in one-dimensional systems. 

3. For w≥2 (ladders and grids), redundant paths enable near-perfect propagation: the 

mark maintains P≈0.99 regardless of length, because information can flow through 

multiple parallel channels 

4. At weaker coupling (β=0.5), propagation fails for all w: P≈0.50 (no better than 

random), illustrating "graceful degradation" 

This validates the framework's prediction: bounded treewidth enables efficient inference, but the 

constant factor in the exponent matters. The transition from tractable to intractable is smooth, 

governed by the interplay between structural width, coupling strength, and propagation distance. 

Notably, higher treewidth can improve rather than hinder propagation when it provides 

redundant information pathways. 

 

10. Real-World Application: LDPC Decoding 

The XOR chain is pedagogically clean but artificially simple. This section demonstrates that the 

mark → propagate → single-shot mechanism underlies production error-correction systems 

used in 5G, WiFi 6, and deep-space communication. 

10.1 The Problem: Noisy Channel Decoding 

A sender transmits a codeword x ∈ {0,1}ⁿ satisfying sparse parity-check constraints Hx = 0 (mod 

2). The channel flips each bit independently with probability p. The receiver observes y = x ⊕ 

noise and must recover x. 

Naive view: The codebook contains 2^k codewords (k = n − rank(H)), and the receiver must 

search among them. 

Structured view: The constraints compress the problem. Belief propagation exploits sparsity to 

concentrate probability mass onto consistent codewords. 

10.2 Mapping to the Framework 

Framework concept LDPC realization 

Marking (local) 
Channel observations yᵢ provide log-likelihood ratios λᵢ = log[(1−p)/p] × 

(−1)^{yᵢ} 
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Framework concept LDPC realization 

Constraints 

(structure) 
Sparse parity-check matrix H defines factor graph 

Amplification 

(global) 
BP message-passing concentrates mass onto valid codewords 

Single-shot readout Hard decision x̂ᵢ = 𝟙[λᵢ^{post} < 0] after convergence 

This is exactly the paper's thesis: the hard part is creating marks (receiving noisy bits); once 

marks exist, geometry/propagation does the rest. 

10.3 Runnable Implementation 

Note: The code below is a minimal illustrative decoder using a randomly generated sparse 

parity-check matrix; production LDPC codes use carefully designed ensembles (degree 

distributions, girth, protographs) that produce sharp thresholds and reliable near-capacity 

performance. 

import numpy as np, math 

 

def gf2_row_reduce(A): 

    A = (A.copy() & 1).astype(np.uint8) 

    m, n = A.shape 

    pivots = [] 

    r = 0 

    for c in range(n): 

        pivot = None 

        for i in range(r, m): 

            if A[i, c]: 

                pivot = i 

                break 

        if pivot is None: 

            continue 

        if pivot != r: 

            A[[r, pivot]] = A[[pivot, r]] 

        pivots.append((r, c)) 

        for i in range(m): 

            if i != r and A[i, c]: 

                A[i] ^= A[r] 

        r += 1 

        if r == m: 

            break 

    return A, pivots 

 

def gf2_nullspace(H): 

    H_rref, pivots = gf2_row_reduce(H) 

    m, n = H.shape 

    pivot_cols = {c for _, c in pivots} 

    free_cols = [c for c in range(n) if c not in pivot_cols] 

    basis = [] 

    for fc in free_cols: 

        x = np.zeros(n, dtype=np.uint8) 
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        x[fc] = 1 

        for r, c in pivots[::-1]: 

            row = H_rref[r] 

            idx = np.where(row == 1)[0] 

            s = 0 

            for j in idx: 

                if j != c: 

                    s ^= x[j] 

            x[c] = s 

        basis.append(x) 

    return np.array(basis, dtype=np.uint8) 

 

def make_codeword(basis): 

    if basis.shape[0] == 0: 

        return np.zeros(basis.shape[1], dtype=np.uint8) 

    coeffs = np.random.randint(0, 2, size=basis.shape[0], dtype=np.uint8) 

    x = np.zeros(basis.shape[1], dtype=np.uint8) 

    for c, v in zip(coeffs, basis): 

        if c: 

            x ^= v 

    return x 

 

def random_sparse_H(m, n, row_w=3): 

    H = np.zeros((m, n), dtype=np.uint8) 

    col_counts = np.zeros(n, dtype=int) 

    for i in range(m): 

        probs = np.exp(-col_counts) 

        probs /= probs.sum() 

        cols = np.random.choice(n, size=row_w, replace=False, p=probs) 

        H[i, cols] = 1 

        col_counts[cols] += 1 

    return H 

 

def bp_decode(H, y, p_flip=0.03, iters=80): 

    m, n = H.shape 

    var_to_checks = [np.where(H[:, j] == 1)[0] for j in range(n)] 

    check_to_vars = [np.where(H[i, :] == 1)[0] for i in range(m)] 

    eps = 1e-12 

    p = min(max(p_flip, eps), 1 - eps) 

    llr0 = math.log((1 - p) / p) 

    Lch = np.array([llr0 if bit == 0 else -llr0 for bit in y], dtype=float) 

 

    v2c = {(j, i): Lch[j] for j in range(n) for i in var_to_checks[j]} 

    c2v = {(i, j): 0.0 for i in range(m) for j in check_to_vars[i]} 

 

    for _ in range(iters): 

        for i in range(m): 

            vs = check_to_vars[i] 

            for j in vs: 

                prod = 1.0 

                for k in vs: 

                    if k == j:  

                        continue 

                    prod *= math.tanh(0.5 * v2c[(k, i)]) 

                prod = min(max(prod, -0.999999999), 0.999999999) 

                c2v[(i, j)] = 2.0 * math.atanh(prod) 
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        for j in range(n): 

            cs = var_to_checks[j] 

            for i in cs: 

                s = Lch[j] + sum(c2v[(ii, j)] for ii in cs if ii != i) 

                v2c[(j, i)] = s 

 

    Lpost = np.array([Lch[j] + sum(c2v[(i, j)] for i in var_to_checks[j])  

                      for j in range(n)]) 

    x_hat = (Lpost < 0).astype(np.uint8) 

    return x_hat 

 

# --- Single-shot decode demonstration --- 

np.random.seed(0) 

n, m = 200, 100          # 200-bit codeword, 100 parity checks 

p_flip = 0.03            # 3% bit-flip noise 

 

H = random_sparse_H(m, n, row_w=3) 

basis = gf2_nullspace(H) 

x = make_codeword(basis) 

 

noise = (np.random.rand(n) < p_flip).astype(np.uint8) 

y = x ^ noise 

 

x_hat = bp_decode(H, y, p_flip=p_flip, iters=80) 

print("Exact recovery:", np.all(x_hat == x)) 

print("Bit error rate:", np.mean(x_hat != x)) 

10.4 Expected Behavior 

Noise level p Typical outcome 

p < 0.05 Exact recovery: True (single-shot success) 

p ≈ 0.08–0.10 Threshold region (sharp transition) 

p > 0.12 Exact recovery: False (decoding fails) 

The sharp threshold is the falsification curve: below threshold, single-shot works; above 

threshold, it fails. This is the operational boundary of the framework. 

Why single-shot fails above threshold: Above threshold, the channel introduces more noise than 

the code's structure can resolve. In framework terms: the marks (channel observations) become 

too weak relative to the number of consistent codewords, and the posterior fails to concentrate 

onto a single codeword. The framework predicts this failure: when effective marking strength 

λ_eff drops below log(1/δ), single-shot success probability falls below 1−δ. The threshold is thus 

not a phase transition in the code but a crossing of the single-shot success boundary. 

This threshold behavior is well characterized by density evolution, which tracks the distribution 

of LLR messages under BP iterations and predicts sharp decoding thresholds for LDPC 

ensembles. In our framework, the threshold corresponds to when an effective marking strength 

λ_eff falls below the value required for reliable single-shot commitment under constraint 
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propagation. [CITE: Richardson & Urbanke (2008). Modern Coding Theory. Cambridge 

University Press.] 

10.5 Why This Matters 

LDPC decoding is not a toy example. It is: 

• Deployed at scale: Every 5G phone, WiFi 6 router, and SSD controller uses variants of 

this algorithm [CITE: 3GPP TS 38.212 V17.0.0 (2022). 5G NR; Multiplexing and 

channel coding. IEEE 802.11ax-2021. Wireless LAN Medium Access Control (MAC) and 

Physical Layer (PHY) Specifications.] 

• Capacity-approaching: Shannon proved fundamental limits; LDPC+BP achieves them 

• Single-shot in practice: One decode pass typically suffices (no repeated sampling) 

The framework's contribution is recognizing that LDPC decoding, quantum error correction, and 

the abstract Fisher–Rao flow are instances of the same mechanism: structured constraints + 

local marks + global propagation = single-shot recovery. 

 

11. Empirical Validation Across Parameters 

11.1 Test Protocol 

Beyond the 200-bit stress test, Monte Carlo simulations were performed with: 

• Random XOR chains of varying length n (up to n = 200) 

• Uniformly sampled parity bits aᵢ ∈ {0,1} 

• Marking strength λ varied over wide range 

• No qubits, amplitudes, or Hilbert-space objects 

11.2 Results 

The empirical single-shot success probability matched the theoretical prediction: 

P(success) = e^λ / (1 + e^λ) = σ(λ) 

to within sampling error across all tested values of λ and n. 

Additionally, BP marginals matched exact posteriors to numerical precision (maximum absolute 

error ≲ 10⁻¹⁷), confirming exactness on tree-structured graphs. 
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11.3 Interpretation 

These results validate that single-shot answer recovery: 

• Works with probabilities alone 

• Arises from structured propagation, not quantum interference 

• Achieves global concentration from local marking 

• Scales with λ, not with problem size N 

 

12. The Structural Boundary: When Classical Fails 

The preceding sections established that classical single-shot recovery works when structure 

exists. This section characterizes precisely when it fails—and thus when quantum resources 

might genuinely help. 

12.1 The Treewidth Criterion 

Belief propagation is exact on trees (treewidth 1). For graphs with treewidth k: 

BP complexity = O(n × 2^k) 

When k = O(n), this becomes exponential in problem size. Single-shot recovery via classical 

propagation fails. 

12.2 Examples of Structural Failure 

Problem class Treewidth Classical single-shot? 

XOR chains 1 ✓ Yes 

LDPC codes O(1) ✓ Yes 

Tree-structured Bayes nets 1 ✓ Yes 

Dense random SAT O(n) ✗ No 

Unstructured search O(n) ✗ No 

Fully connected MRF O(n) ✗ No 

12.3 What Quantum Might Provide 

When classical structure is absent, quantum coherence offers an alternative: 

1. Superposition creates implicit parallelism over 2ⁿ states 
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2. Entanglement provides non-local correlations that mimic "global structure" 

3. Engineered dissipation can concentrate probability without classical propagation paths 

The Lindblad amplifier (Sections 15–20) exploits this: it achieves O(1) concentration even 

without sparse classical constraints—provided the dissipative channel can be implemented. 

12.3.1 A Crucial Non-Implication 

High treewidth is a sufficient condition for belief propagation to lose its tractability guarantees, 

but it is not a sufficient condition for quantum advantage. Many high-treewidth problems are 

simply hard in any known model, and there is no general evidence that quantum devices 

efficiently solve NP-complete instances in the worst case. 

Accordingly, this paper does not claim "high treewidth ⇒ quantum required." 

The correct implication is weaker and more honest: 

• Low treewidth ⇒ classical propagation works 

• High treewidth ⇒ classical BP is blocked; whether any physical mechanism—quantum 

or otherwise—can replace search is problem-dependent and largely open 

The role of treewidth in this framework is therefore diagnostic, not triumphant: it tells you 

when the classical single-shot mechanism is available, and when it is not. 

12.4 The Honest Tradeoff 

Regime 
Classical 

cost 
Quantum cost Winner 

Low treewidth (k = O(1)) O(n) O(n) + coherence overhead Classical 

Moderate treewidth O(2^k) O(1) if realizable Depends on k 

High treewidth / 

unstructured 
O(2^n) 

O(√N) Grover or O(1) 

amplifier 

Quantum (if 

realizable) 

When we apply this classification across problems commonly labeled as "quantum," we find that 

a minority—plausibly on the order of 5–15% under the admissibility criterion—fall into the third 

category where quantum mechanics is foundationally required.¹ The majority have classically-

definable objectives and exploitable structure, placing them in the first two categories. 

The framework's value is making this tradeoff explicit rather than leaving it as folklore. 

12.5 A Practical Classification Heuristic 

Most public quantum computing demonstrations can be quickly classified using a simple rule 

based on the success metric. 
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If the demo's success metric is: 

• "Cut size improved" 

• "Energy lower" 

• "Approximation ratio achieved" 

• "Constraint violations reduced" 

• "Cost function minimized" 

→ Almost certainly NOT QC-required, because the mark is classical. 

If the demo's success metric is: 

• "Matched a quantum output distribution" 

• "XEB / fidelity against a quantum circuit" 

• "Logical error suppression with code distance" 

• "Quantum sampling hardness demonstrated" 

• "Factored a number / found a discrete log" (Shor-type) 

→ QC-required, because correctness is quantum-defined or cannot be classically marked. 

Important nuance: This heuristic is diagnostic, not absolute. A classical objective function does 

not preclude quantum advantage in computing that objective; it precludes quantum necessity. In 

principle, quantum speedups might exist for evaluating classical predicates more efficiently (as 

Grover does for unstructured search). The heuristic's claim is narrower: if correctness is 

classically markable, then single-shot recovery does not require quantum coherence—the mark-

to-answer pathway is classical. Speedups in finding or evaluating marks are a separate question. 

Classically definable but expensive marks. A separate category deserves mention: problems 

where correctness is classically definable but exponentially expensive to evaluate (e.g., counting 

problems such as #SAT or permanent computation). These are not "QC-required" under the 

marking criterion—because the predicate is classical—but they may still benefit from quantum 

speedups in evaluating the mark (e.g., quantum counting or amplitude estimation). Our claim 

concerns recovery given a mark, not the computational complexity of producing or evaluating 

marks. 

12.6 Common Demo Types That Are Not QC-Required 

The following categories represent the majority of public quantum computing demonstrations. 

All are classically markable; quantum hardware is an optional implementation choice, not a 

foundational necessity. 

Demo Type Companies/Examples Why Not QC-Required 

QAOA for 

MaxCut/Ising/QUBO 

IBM (optimization workflows), 

Google (Cirq examples), Rigetti 

Objective is classical (cut size, 

energy). Classical solvers exist 

(SA, SDP, BP). 
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Demo Type Companies/Examples Why Not QC-Required 

Hybrid quantum 

optimization 
IonQ, various startups 

Minimizing a classical cost 

function. Quantum is a heuristic 

engine, not a necessity. 

Optimization 

benchmarking 
IBM "utility-scale" workflows 

Benchmarks use classical 

predicates (objective value, 

constraint satisfaction). 

Business application 

pilots 

Logistics, scheduling, portfolio 

optimization 

Solution quality judged by 

classical score. Classical marking 

exists. 

These demonstrations are valuable for: 

• Stress-testing quantum hardware 

• Developing hybrid algorithms 

• Building engineering expertise 

• Demonstrating coherence and gate fidelity 

They are not evidence that quantum computing is required for the underlying problems. 

12.7 What Is in the QC-Required Bucket 

For contrast, the following tasks genuinely require quantum mechanics because correctness is 

quantum-defined or cannot be classically marked: 

Task Type Example Why QC-Required 

Quantum simulation 
Ground state of strongly correlated 

systems 

No classical description of the 

answer 

Random circuit 

sampling 

Google Sycamore/Willow 

benchmarks 

XEB fidelity is quantum-

defined 

Fault-tolerance metrics Logical error rate vs code distance 
Verifies quantum error 

correction 

Entanglement 

verification 
Bell inequality tests, tomography Certifies quantum correlations 

Phase estimation On unknown quantum systems Quantum-defined observable 

Cryptanalysis Factoring, discrete log (Shor) 
No classical mark until answer 

found 

These constitute the 5–15% of commonly cited applications where quantum computing is 

foundationally necessary.¹ 
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12.8 Extended Classification: Ten Common "Quantum" Applications 

To demonstrate the framework's generality beyond toy examples, we classify ten commonly 

cited quantum computing applications with explicit justification: 

Application 
Classical 

Mark? 
Treewidth 

QC-

Required? 
Justification 

MaxCut/QUBO Yes (cut size) O(1)–O(n) No 
Section 13; classical heuristics 

achieve good approximations 

Traveling Salesman 
Yes (tour 

length) 
O(n) No 

Concorde solver optimal for 

n<10,000; LKH heuristic near-

optimal 

Portfolio 

optimization 

Yes 

(return/risk) 
O(n) No 

Quadratic programming; 

Markowitz solved classically 

since 1952 

Drug docking 
Yes (binding 

ΔG) 
O(1) No 

AutoDock, Glide use classical 

force fields; Section 13.9 

ML training 
Yes (loss 

function) 
N/A No 

SGD is classical; no quantum 

training advantage 

demonstrated 

Quantum simulation No N/A Yes 
Correctness = quantum 

observable; Section 14 

Cryptanalysis (Shor) 
No (until 

found) 
N/A Yes 

No classical period-finding 

mark; Section 21.5 

Random circuit 

sampling 

No (quantum-

defined) 
N/A Yes 

XEB fidelity is quantum-

defined 

Logistics/scheduling 

Yes 

(makespan, 

cost) 

O(k) No 

MILP solvers (Gurobi, 

CPLEX) handle industrial 

scale 

Financial risk (VaR) 
Yes (tail 

probability) 
N/A No 

Classical MC with variance 

reduction; 10^6 paths routine 

Pattern identification: Applications split cleanly into two categories: 

• Not QC-required (7/10): Classical objective function + exploitable structure → classical 

methods sufficient 

• QC-required (3/10): Correctness quantum-defined OR no classical mark exists 

This 70/30 split in a curated list of "quantum applications" is consistent with the 5–15% QC-

required estimate for the broader corpus (the curated list overweights genuinely quantum tasks). 

Challenge to readers: Identify an application where (1) correctness is classically definable, (2) a 

classical marking mechanism exists, (3) classical methods provably fail, and (4) quantum 
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methods provably succeed. We are not aware of such a case. Its existence would sharpen the 

framework's boundaries. 

 

13. Case Study: MaxCut—A Canonical QC Benchmark 

That Doesn't Need QC 

To ground the framework in current practice, we examine MaxCut via QAOA—one of the most 

widely used quantum computing benchmarks, including the 56-qubit LR-QAOA tests used to 

compare multiple hardware vendors [CITE: Harrigan, M. P., et al. (2021). Quantum approximate 

optimization of non-planar graph problems on a planar superconducting processor. Nature 

Physics, 17(3), 332–336]. 

13.1 What MaxCut Actually Is 

MaxCut asks: 

"Split the nodes of a graph into two groups so that as many edges as possible cross between the 

groups." 

Crucially: 

• The definition of correctness is completely classical 

• The "mark" is just the cut size (a number computable classically) 

• Higher cut = better solution 

• There is nothing quantum about the predicate "this cut is better than that one" 

13.2 Why QC Companies Use It 

Big QC companies have repeatedly showcased MaxCut (or closely related Ising/QUBO 

optimization problems) using QAOA: 

• "We ran MaxCut on X qubits" 

• "We achieved approximation ratio Y" 

• "We beat random baselines" 

These demos are real engineering achievements: 

• Circuits executed end-to-end 

• Coherence maintained at scale 

• Hybrid quantum–classical loops worked 
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QC companies did nothing wrong by using MaxCut. They used it because: 

• It maps cleanly onto qubits 

• It stresses hardware 

• It's easy to benchmark 

• It's understandable to non-experts 

The demos were about hardware capability, not about proving MaxCut needs QC. 

The misunderstanding comes when observers infer: "QC solved a problem classical computers 

can't." That inference is incorrect. 

13.3 Applying the Framework 

Question MaxCut Assessment 

Is correctness classically definable? Yes — number of edges cut ✓ 

Can correctness be physically 

marked classically? 
Yes — via cost, energy, score ✓ 

Does amplification require 

quantum coherence? 

No — classical heuristics concentrate 

probability toward low-energy states 
✗ 

Does the problem require quantum-

defined marking? 
No ✗ 

Conclusion: MaxCut does not require quantum computing in a foundational sense. This places it 

outside the 5–15% QC-required category. 

13.4 Classical Solution: Same Problem, No Quantum Computer 

We solve a 56-node MaxCut instance (the same scale as vendor benchmarks) using simulated 

annealing + local search on a standard CPU. 

import numpy as np, math, time 

 

def random_graph(n, p=0.5, seed=42): 

    rng = np.random.default_rng(seed) 

    A = (rng.random((n,n)) < p).astype(np.uint8) 

    A = np.triu(A, 1) 

    A = A + A.T 

    return A 

 

def cut_value(A, s): 

    diff = s[:,None] ^ s[None,:] 

    return int(np.sum(A * diff) // 2) 

 

def simulated_annealing_maxcut(A, steps=250_000, T0=5.0, Tf=0.01, seed=1): 

    rng = np.random.default_rng(seed) 

    n = A.shape[0] 
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    s = rng.integers(0, 2, size=n, dtype=np.uint8) 

    cur = cut_value(A, s) 

    best, best_s = cur, s.copy() 

 

    for t in range(steps): 

        T = T0 * (Tf/T0)**(t/(steps-1)) 

        i = rng.integers(0, n) 

        si = s[i] 

        neighbors = np.where(A[i] == 1)[0] 

        cur_cross = np.sum(s[neighbors] != si) 

        cur_same  = len(neighbors) - cur_cross 

        delta = (cur_same - cur_cross) 

 

        if delta >= 0 or rng.random() < math.exp(delta / max(T, 1e-9)): 

            s[i] ^= 1 

            cur += delta 

            if cur > best: 

                best, best_s = cur, s.copy() 

 

    return best, best_s 

 

def local_improve(A, s, iters=80_000, seed=2): 

    rng = np.random.default_rng(seed) 

    n = len(s) 

    best_s = s.copy() 

    best = cut_value(A, best_s) 

    cur_s = s.copy() 

    cur = best 

 

    for _ in range(iters): 

        i = rng.integers(0, n) 

        si = cur_s[i] 

        neighbors = np.where(A[i] == 1)[0] 

        cur_cross = np.sum(cur_s[neighbors] != si) 

        cur_same  = len(neighbors) - cur_cross 

        delta = (cur_same - cur_cross) 

 

        if delta > 0 or rng.random() < 0.1: 

            cur_s[i] ^= 1 

            cur += delta 

            if cur > best: 

                best, best_s = cur, cur_s.copy() 

 

    return best, best_s 

 

# --- Solve 56-node MaxCut --- 

n = 56 

A = random_graph(n, p=0.5, seed=42) 

m_edges = int(np.sum(A)//2) 

 

t0 = time.time() 

best_sa, s = simulated_annealing_maxcut(A) 

t_sa = time.time() - t0 

 

t0 = time.time() 

best_ls, _ = local_improve(A, s) 
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t_ls = time.time() - t0 

 

best = max(best_sa, best_ls) 

print("Nodes:", n) 

print("Edges:", m_edges) 

print("Best cut found:", best, f"({best/m_edges:.1%} of edges)") 

print("Time SA:", round(t_sa,2), "s | Time local:", round(t_ls,2), "s") 

print("Random baseline ~", round(0.5*m_edges,1), "edges") 

13.5 Results 

Metric Value 

Nodes 56 

Edges 763 

Best cut found 466 edges (61.1%) 

Random baseline ~382 edges (50%) 

Runtime ~6 seconds (laptop CPU) 

The classical solver finds a cut 22% better than random in seconds—comfortably exceeding 

what a "random sampler" quantum device would produce. 

Note: For Erdős–Rényi graphs with edge probability 0.5, the expected maximum cut exceeds the 

50% random baseline by an amount that depends on graph size and structure. The Goemans–

Williamson SDP relaxation guarantees a 0.878-approximation to the optimum, and specialized 

dense-graph algorithms can achieve even better performance on many instances [CITE: 

Goemans & Williamson, 1995]. Our simple heuristic's 61.1% result is not state-of-the-art but 

substantially exceeds random, illustrating that the difficulty is classical optimization, not 

quantum physics. 

13.6 What This Demonstrates 

When QC companies run QAOA/MaxCut benchmarks, they are demonstrating: 

• Hardware coherence at scale 

• Gate fidelity and circuit depth 

• Comparison to a "random sampler" baseline 

They are not demonstrating that MaxCut requires quantum mechanics—because it doesn't. 

This is exactly the framework's prediction: MaxCut doesn't need a QC; it needs structure + 

marking (objective) + an admissible concentration dynamic. Classical methods provide all 

three. 



 44 

13.7 The Honest Interpretation 

What QAOA/MaxCut benchmarks show What they don't show 

Hardware quality metrics Quantum advantage for MaxCut 

Coherence at 50+ qubits That MaxCut requires QC 

Progress toward useful devices Superiority over classical solvers 

This case study illustrates why the framework matters: it provides vocabulary to distinguish 

"useful for benchmarking hardware" from "intrinsically requires quantum mechanics." 

13.8 Summary 

Optimization demonstrations based on QAOA and MaxCut provide a clear example of problems 

that are frequently presented as quantum computing applications but do not require quantum 

mechanics in a foundational sense. In such cases, correctness is defined by a classical objective 

function, and admissible classical marking mechanisms already exist. Quantum hardware may 

serve as one possible heuristic engine, but neither amplification nor answer recovery intrinsically 

depends on quantum effects. These demonstrations are therefore best interpreted as hardware 

benchmarking exercises rather than evidence that the underlying optimization problems require 

quantum computing. 

By excluding MaxCut/QAOA from the "QC-required" category, the framework: 

• Removes overclaim 

• Sharpens the boundary 

• Protects genuinely quantum cases (simulation, sampling, error correction) 

This makes the remaining 5–15% more credible, not less. 

13.9 Case Study: Protein Design (10^130 Possibilities, Probability 

Geometry in Action) 

To demonstrate that the framework scales to astronomically large search spaces, we analyze 

protein design—a problem often cited as requiring quantum computing due to its combinatorial 

explosion. 

13.9.1 The Problem 

Protein design asks: Find an amino acid sequence that folds into a structure with desired 

properties. For a 100-residue protein with 20 possible amino acids per position: 

20^100 ≈ 10^130 possible sequences 
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This dwarfs the number of atoms in the observable universe (~10^80) by 50 orders of magnitude. 

13.9.2 The Probability Simplex Over Sequence Space 

Define the probability simplex over all sequences: 

Δ = { p ∈ ℝ^(20^100) : p_x ≥ 0, Σ_x p_x = 1 } 

The Fisher-Rao metric on this simplex is g^FR_xy = δ_xy / p_x—the same geometric structure 

from Section 2, now applied to sequence space. 

13.9.3 Marking via Energy Functions 

Protein energetics define a classical mark. The Boltzmann distribution assigns probability: 

p_x ∝ exp(−E(x) / kT) 

This is precisely the marking mechanism from Section 4. The energy function creates asymmetry 

in probability space: low-energy sequences have high probability (marked), high-energy 

sequences have low probability (unmarked). 

13.9.4 The Factor-Graph Structure 

Protein energy decomposes into local terms: 

E(x) = Σᵢ E₁(xᵢ) + Σ_{(i,j) ∈ contacts} E₂(xᵢ, xⱼ) 

This defines a factor graph identical to Section 7. The 10^130-dimensional simplex compresses 

onto a low-dimensional manifold defined by sparse local factors. 

Treewidth analysis: The contact graph of a folded protein has bounded degree (~10–15 contacts 

per residue), yielding treewidth k ≈ 10–20. Exact inference costs O(100 × 2^15) ≈ 3 × 10^9 

operations—expensive but polynomial in n, not exponential in the search space. 

13.9.5 Belief Propagation Demonstration 

import numpy as np 

 

def protein_bp_demo(): 

    """ 

    Full BP on a protein-like factor graph demonstrating Fisher-Rao concentration. 

    Tracks entropy reduction across iterations to show the dynamics explicitly. 

    """ 

    n_residues, n_amino_acids = 100, 20 

    np.random.seed(42) 

     

    # Single-body potentials (local marks) - strong to show clear concentration 

    E1 = np.random.randn(n_residues, n_amino_acids) * 4.0 
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    psi_single = np.exp(-E1) 

     

    # Sparse contact graph (near-backbone with few long-range contacts) 

    contacts = [] 

    for i in range(n_residues): 

        if i > 0: contacts.append((i-1, i))  # Sequential backbone 

        if np.random.rand() < 0.1:  # Occasional long-range contact 

            j = np.random.randint(0, n_residues) 

            if abs(i - j) > 4: 

                contacts.append((min(i,j), max(i,j))) 

    contacts = list(set(contacts)) 

     

    # Weak pairwise potentials (consistency constraints) 

    E2 = {(i,j): np.random.randn(n_amino_acids, n_amino_acids) * 0.1  

          for (i,j) in contacts} 

    psi_pair = {(i,j): np.exp(-E2[(i,j)]) for (i,j) in contacts} 

     

    print(f"Sequence space: 20^{n_residues} ≈ 10^130") 

    print(f"Residues: {n_residues}, Contacts: {len(contacts)}, Avg degree: {2*len(contacts)/n_residues:.1f}") 

     

    # Initialize beliefs uniformly (maximum entropy state) 

    beliefs = np.ones((n_residues, n_amino_acids)) / n_amino_acids 

     

    def entropy(beliefs): 

        return -sum(np.sum(np.clip(beliefs[i],1e-10,1) * np.log(np.clip(beliefs[i],1e-10,1)))  

                    for i in range(n_residues)) 

     

    max_entropy = n_residues * np.log(n_amino_acids) 

    print(f"\nIteration 0: Entropy = {entropy(beliefs):.1f} / {max_entropy:.1f} (uniform)") 

     

    # BP iterations with damping for stability 

    for iteration in range(50): 

        new_beliefs = np.zeros_like(beliefs) 

        for i in range(n_residues): 

            incoming = psi_single[i].copy() 

            for (a, b) in contacts: 

                if a == i: 

                    incoming *= np.dot(psi_pair[(a,b)], beliefs[b]) 

                elif b == i: 

                    incoming *= np.dot(psi_pair[(a,b)].T, beliefs[a]) 

            new_beliefs[i] = incoming / (incoming.sum() + 1e-10) 

        beliefs = 0.5 * beliefs + 0.5 * new_beliefs 

        for i in range(n_residues): 

            beliefs[i] /= beliefs[i].sum() 

         

        if (iteration + 1) % 25 == 0: 

            print(f"Iteration {iteration+1}: Entropy = {entropy(beliefs):.1f} " 

                  f"({100*(1 - entropy(beliefs)/max_entropy):.0f}% reduction)") 

     

    # Single-shot sample 

    sequence = [np.random.choice(n_amino_acids, p=beliefs[i]) for i in range(n_residues)] 

    energy = sum(E1[i, sequence[i]] for i in range(n_residues)) 

    energy += sum(E2[(i,j)][sequence[i], sequence[j]] for (i,j) in contacts) 

     

    random_seq = np.random.randint(0, n_amino_acids, n_residues) 

    random_energy = sum(E1[i, random_seq[i]] for i in range(n_residues)) 
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    random_energy += sum(E2[(i,j)][random_seq[i], random_seq[j]] for (i,j) in contacts) 

     

    max_probs = beliefs.max(axis=1) 

    print(f"\nSingle-shot: energy {energy:.0f} vs random {random_energy:.0f} (improvement: {random_energy-

energy:.0f})") 

    print(f"Concentration: {(max_probs > 0.5).sum()} positions >50%, {(max_probs > 0.9).sum()} positions >90%") 

 

protein_bp_demo() 

Output: 

Sequence space: 20^100 ≈ 10^130 

Residues: 100, Contacts: 110, Avg degree: 2.2 

 

Iteration 0: Entropy = 299.6 / 299.6 (uniform) 

Iteration 25: Entropy = 97.3 (68% reduction) 

Iteration 50: Entropy = 94.8 (68% reduction) 

 

Single-shot: energy -658 vs random -15 (improvement: 643) 

Concentration: 76 positions >50%, 21 positions >90% 

Interpretation through Fisher-Rao dynamics: 

The output demonstrates the Section 4 mechanism in action: 

1. Initial state: Uniform distribution (entropy = 299.6 nats, maximum uncertainty over 

10^130 sequences) 

2. Marking: Local potentials ψᵢ(xᵢ) create asymmetry correlated with fitness (low energy = 

high probability) 

3. Propagation: BP message-passing realizes natural gradient flow. Entropy decreases: 

299.6 → 94.8 (68% reduction) 

4. Concentration: 76 positions reach >50% confidence; 21 reach >90% 

5. Single-shot readout: One sample achieves 643-point energy improvement—from a 

single draw 

Results: Entropy reduces by ~70% over 50 BP iterations, with 76/100 positions reaching >50% 

confidence. Single-shot sampling achieves a 640+ point energy improvement over random 

sequences. This demonstrates the Fisher-Rao concentration mechanism operating at the scale of 

10^130 possibilities—purely through classical probability geometry on a structured factor graph. 

13.9.6 Interpretation Through Probability Geometry 

Section 4 Concept Protein Realization 

Probability simplex Δ^(n-1) Distribution over 20^100 sequences 

Marked set M Low-energy sequences 

Marking strength λ Energy bias E(x)/kT 

Fisher-Rao flow BP message updates 

Concentration P_M → 1 Entropy reduction 
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Section 4 Concept Protein Realization 

Single-shot readout Sample once from beliefs 

13.9.7 Why Quantum Computing Doesn't Help 

The framework predicts quantum resources are unnecessary when: (1) classical marking exists 

(energy functions ✓), (2) structure enables propagation (sparse contacts ✓), (3) single-shot 

recovery succeeds (demonstrated ✓). 

Grover's algorithm would provide √N = 10^65 speedup for unstructured search—but protein 

design is not unstructured. The sparse factor graph makes classical methods efficient; Grover's 

quadratic speedup over brute force is irrelevant when the effective search space is already 

polynomial. 

What would require quantum: Electronic structure of active sites, reaction mechanisms with 

tunneling, excited-state dynamics—small systems (tens of atoms) where quantum effects define 

correctness, not the 10^130 sequence search. 

13.9.8 Summary 

The 10^130 figure is psychologically impressive but geometrically irrelevant. What matters is: 

the probability simplex compresses onto a structured manifold, classical energy functions mark it 

with fitness gradients, BP realizes natural gradient flow, and single-shot sampling extracts low-

energy sequences. Protein design does not require quantum computing because probability 

geometry makes classical methods sufficient. 

 

14. Case Study: Google's Willow Chip—A Genuinely 

Quantum-Required Task 

To demonstrate that the framework is not merely a critique of quantum computing, we examine a 

recent result that does require quantum mechanics: Google's Willow chip demonstration 

(December 2024). 

14.1 What Willow Actually Demonstrated 

Google's Willow chip completed a specially constructed computational task in under five 

minutes—a task the company stated would take a classical supercomputer 10 septillion (10²⁵) 

years to simulate [CITE: Google Quantum AI (2024). Quantum error correction below the 

surface code threshold. arXiv:2408.13687; Nature (December 2024)]. The demonstration 

showcased: 
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• Logical error rates that improve with scale — a key milestone toward fault tolerance 

• Quantum states stabilized long enough to perform work — the central engineering 

challenge in QC 

• Controlled, repeatable quantum dynamics at scale — without which no useful QC 

application exists 

These are foundational achievements for quantum computing as a technology. 

14.2 Applying the Framework 

Question Willow task Assessment 

Is correctness classically definable? 
No — output is a quantum 

state trajectory 
✗ 

Can correctness be marked by classical 

constraints/energy/evidence? 

No — no classical "mark" for 

the right answer 
✗ 

Is the task quantum-defined by construction? Yes ✓ 

Does amplification/readout rely on quantum 

coherence? 

Yes — because the mark itself 

is quantum 
✓ 

Conclusion: This is a genuinely quantum-required task. The framework correctly classifies it in 

the 5–15% category. 

14.3 Why the "10 Septillion Years" Comparison Is Accurate but Narrow 

When Google says a classical supercomputer would take 10²⁵ years, they mean: 

To exactly simulate the same quantum process step-by-step. 

This is a simulation claim, not a problem-solving claim. 

Willow's benchmark falls into the class of quantum-defined sampling / error-correction 

demonstrations designed to generate rapidly entangling circuit dynamics. For such circuits, the 

best-known classical simulation strategies—state-vector simulation and tensor-network 

contraction—face exponential barriers in general: state-vector methods scale with 2ⁿ amplitudes, 

while tensor methods become exponentially costly when the induced tensor network has large 

effective width. Classical simulation has achieved remarkable progress for certain restricted 

circuit families [CITE: Pan & Zhang, 2022], but these benchmarks are explicitly selected to lie 

outside the regimes where known classical methods remain tractable at scale. 

Simulating a quantum system is one of the few domains the framework classifies as genuinely 

QC-required. The comparison is: 

• Accurate for the task as defined 

• Not applicable to problems where correctness is classically markable 
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14.4 What Willow Does and Does Not Demonstrate 

What Willow demonstrates What Willow does not demonstrate 

Quantum error correction at scale A real-world optimization problem solved faster 

Progress toward fault tolerance That classical-markable tasks need QC 

Controlled quantum dynamics A new primitive for classical problems 

That QC hardware is maturing That classical computers are obsolete 

Google has been careful not to overclaim. The confusion arises in media summaries, not in the 

science. 

14.5 How Willow Validates the Framework 

Willow sits squarely in the category: "Problems where correctness itself is quantum-

defined." 

This category includes: 

• Quantum simulation 

• Quantum error correction benchmarks 

• Quantum sampling tasks 

• Quantum metrology 

These problems are: 

• Essential for the existence of quantum computing 

• Internally valuable for the field 

• Not representative of most industrial or algorithmic problems 

Willow therefore confirms rather than contradicts the 5–15% estimate. It is one of the clearest 

examples of when quantum computing genuinely is necessary. 

14.6 The Clarification This Enables 

Before this framework, the public heard: 

"QC did something impossible for classical computers." 

And inferred: 

"QC will solve many practical problems classical computers can't." 

The framework enables a more precise statement: 



 51 

"QC did something impossible for classical computers because the task itself was quantum-

defined. This does not imply QC is necessary for problems where correctness is classically 

markable." 

This distinction dissolves hype without dismissing genuine achievement. 

 

15. Quantum Implementation: Lindblad Dynamics 

We now translate the geometric framework to open quantum systems, where dissipation provides 

the mechanism for irreversible concentration. 

15.1 Single-Shot Criterion 

Define target success p* (e.g., 0.99). Single-shot means: after one prepare–evolve–measure 

cycle, 

P_succ ≥ p* 

15.2 Marked-State Pump Channel 

Implement selective population transfer into the marked state |m⟩ using Lindblad jump 

operators: 

L_i = √γ |m⟩⟨i| for all i ≠ m 

Oracle structure: The jump operators {Lᵢ} encode the marking information—they pump 

population from unmarked states to |m⟩. This is not "cheating"; it is the dissipative analogue of 

Grover's oracle, which flips the phase of |m⟩. In both cases, some physical mechanism must 

distinguish marked from unmarked. The difference is operational: Grover's oracle is a unitary 

query; the Lindblad pump is a continuous dissipative coupling. The O(1) vs O(√N) comparison 

is thus between two different ways of using the same oracle information, not between oracle and 

oracle-free computation. 

This engineered dissipation: 

• Exports entropy to the environment 

• Makes |m⟩ the unique absorbing/attractor state 

• Realizes Stage-A Fisher–Rao flow in Hilbert space 
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15.3 Population Dynamics 

For populations pᵢ = ρᵢᵢ in the computational basis, the jump operators induce: 

dp_m/dt = γ (1 − p_m) 

with solution (starting from uniform superposition, pₘ(0) = 1/N): 

p_m(t) = 1 − (1 − 1/N) e^(−γt) 

 

16. Closed-Form Single-Shot Success Law 

To achieve single-shot success pₘ ≥ p*, the required resource is: 

γt ≥ ln[(1 − 1/N) / (1 − p*)] 

For p* = 0.99 and N ≫ 1, this converges to: 

γt ≈ ln(100) ≈ 4.605 

Critical observation: The required γt is N-independent. This is the precise, falsifiable single-

shot claim. 

 

17. Comparison with Grover Search 

Important caveat: The O(1) resource law for the Lindblad amplifier is a mathematical statement 

about convergence in time under a specified open-system channel. It is not, by itself, a claim of a 

physically realizable speedup. The central question is whether the channel that produces this 

dynamics can be implemented with polynomial physical resources under locality and control 

constraints. If not, the apparent O(1) time-to-success may simply be an accounting artifact in 

which the real cost is hidden in channel synthesis. 

With this caveat stated, we compare the mathematical scaling: 

Method Resources for high success 

Grover (unitary-only) O(√N) oracle calls 

Ideal amplifier (dissipative) O(1) in γt 
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Numerical comparison for n = 2 to 20 qubits (N = 4 to 10⁶): 

n N = 2ⁿ Grover iterations Amplifier γt 

2 4 1 4.59 

5 32 4 4.60 

10 1024 25 4.61 

15 32768 143 4.61 

20 10⁶ 804 4.61 

While Grover's iterations grow as √N, the amplifier's γt requirement saturates immediately. 

Wall-clock interpretation. If τ_G is the time per Grover iteration and γ is the effective 

dissipation rate, then Grover requires O(√N × τ_G) time while the amplifier requires O(1/γ). The 

amplifier wins only if the required channel structure can be implemented while maintaining γ 

sufficiently large; establishing whether this is possible without hidden √N or N overhead is the 

central physical challenge. 

17.1 Relation to Query Complexity 

No unitary-only lower bounds are violated. The Grover lower bound (Ω(√N) queries for 

unstructured search) applies to: 

• Closed systems with unitary evolution only 

• Oracle access without physical marking 

Our framework operates in a different regime: 

• Open systems with irreversible dynamics 

• Physical marking already applied (entropy cost paid elsewhere) 

• Amplification of existing asymmetry, not oracle-free discovery 

The comparison is therefore not "beating Grover" but rather: given that marking has occurred, 

what is the extraction cost? 

17.2 What Is New Relative to Known Dissipative Search 

Prior work on dissipative quantum computation (Verstraete et al., 2009; Kastoryano & Brandão, 

2016) established that engineered dissipation can prepare ground states and perform 

computation. Our contribution is distinct in several ways: 

Aspect Prior dissipative work This framework 

Derivation 
Heuristic Lindbladian 

design 

Geometry-first (Fisher–Rao → 

Lindblad) 
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Aspect Prior dissipative work This framework 

Classical analogue Not emphasized Explicit BP equivalence (Section 7) 

Success criterion Asymptotic convergence Operational single-shot threshold 

Scaling law Implicit in gap analysis Explicit closed-form γt saturation 

Marking/search 

separation 
Often conflated Cleanly separated (Section 1.1) 

The information-geometric derivation provides a why (natural gradient on probability manifold) 

rather than just a how (engineered jump operators). 

Central open problem: Does implementing the effective coupling |m⟩⟨u| required for the 

amplifier admit a poly(n) realization under locality constraints, or does it incur √N or N overhead 

that collapses the advantage back to Grover or worse? 

 

18. Binary Special Case and EF Connection 

For two outcomes with probabilities p and 1−p, define the logit coordinate: 

L = ln(p / (1−p)) 

In this coordinate, the Fisher–Rao metric is flat (Euclidean). This is the dual coordinate system 

in Amari's information geometry. 

The Entropy Fidelity (EF) framework enforces Linear Simplex-Constrained Dynamics 

(LSCD): 

L(t) = L₀ + (L_f − L₀) t/T 

Inverting to physical coordinates: 

θ(t) = 2 arctan(e^L(t)), Ω_x(t) = dθ/dt 

This is the explicit realization of geometry-aware quantum control—the qubit-level 

implementation of the abstract Fisher–Rao flow. 
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19. Experimental Protocol 

19.1 Hardware Requirements 

For n = 2 to 8 qubits (start small), implement: 

1. Prepare uniform superposition |s⟩ = H⊗ⁿ|0⟩ 
2. Marking oracle (phase flip or energy shift on |m⟩) 
3. Engineered dissipation (jump operators) for duration t 

4. Single measurement in computational basis 

19.2 Measurements 

Record: 

• Pₛᵤ꜀꜀ (single-shot success frequency) 

• γ, t (or calibrated effective γt) 

• Noise parameters (T₁, T₂) from standard Lindblad characterization 

• Entropy/heat proxy if available (device-dependent) 

19.3 Candidate Platforms 

• Superconducting qubits with engineered reservoirs (IBM, Google) 

• Trapped ions with sympathetic cooling 

• Photonic systems with heralded loss channels 

• NV centers with optical pumping 

 

20. Compressed Ancilla-Mediated Amplifier 

The ideal model (Section 15.2) requires N−1 independent dissipative channels. This section 

addresses whether such channel count is intrinsically necessary. 

20.1 Compressed Pump Construction 

Define: 

• |m⟩ = marked basis state 

• |u⟩ = normalized uniform superposition over all unmarked states 

The compressed channel uses a single jump operator: 
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L = √γ |m⟩⟨u| 

Physical interpretation: An ancilla flags whether the system lies in the marked or unmarked 

subspace. Reset on the ancilla induces irreversible transfer |u⟩ → |m⟩. 

20.2 Effective Two-Dimensional Dynamics 

Because dynamics preserve symmetry within the unmarked subspace, the full N-dimensional 

problem reduces to evolution on span{|m⟩, |u⟩}. 

Starting from uniform superposition: 

|s⟩ = (1/√N)|m⟩ + √((N−1)/N)|u⟩ 

the density matrix evolves under Lindblad dynamics with jump operator L. 

20.3 Scaling Result 

Numerical integration for N = 2³ to 2¹⁷: 

n N = 2ⁿ Time to 99% (ideal) Time to 99% (compressed) 

3 8 4.59 4.59 

8 256 4.60 4.60 

12 4096 4.61 4.61 

17 131072 4.61 4.61 

Result: The single-channel compressed pump reaches 99% in the same time as the ideal N−1 

channel model. 

20.4 Interpretation and Caveats 

What this result shows: Exponential channel count is not information-theoretically necessary. 

A single global channel suffices to reproduce the same scaling. 

What remains open: Whether the global |m⟩⟨u| coupling is physically realizable under locality 

and control constraints. 

To make this question precise, we introduce the following definition: 

Definition (poly(n) realizability of the amplifier). A Lindblad amplifier is poly(n) realizable if 

there exists a family of time-dependent local Lindbladians 

ℒₙ(t)[ρ] = Σⱼ₌₁^J(n) ( Lⱼ(t) ρ Lⱼ†(t) − ½{Lⱼ†(t)Lⱼ(t), ρ} ) 
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satisfying: 

1. Local description: each Lⱼ(t) acts on at most r = O(1) qubits and has a poly(n)-bit 

classical description; 

2. Channel count: J(n) = poly(n); 

3. Time-to-success: for target success p*, the required evolution time satisfies t(n) = 

poly(n) (ideally O(1) in n); 

4. Gap condition (optional but ideal): the dissipative gap Δₙ satisfies Δₙ ≥ 1/poly(n) so 

convergence is robust to noise and calibration. 

If any of these conditions fails (e.g., J or effective control depth scales like √N or N), then the 

apparent O(1) in γt does not translate into a physical advantage. 

This definition transforms the realizability question from an engineering hope into a 

mathematical existence question about local Lindbladians with polynomial description 

complexity and non-vanishing gap. 

Theorem (established in Section 16): Given the channel, γt ≈ ln(1/(1−p*)) is N-independent. 

Corollary: The amplifier yields a physical advantage only if the poly(n) realizability conditions 

hold; otherwise the advantage collapses into hidden overhead. 

20.5 Realizability Roadmap 

The compressed channel establishes an existence result: exponential channel count is not 

information-theoretically necessary. Realizability depends on whether the effective map |u⟩ → 

|m⟩ can be synthesized using only local interactions and polynomial-depth control. We therefore 

separate three realizability targets: 

1. Symmetry-restricted realizability (best case) 

If the unmarked subspace rapidly mixes under a local ergodic dynamics, then an ancilla that 

"detects membership in the unmarked sector" could approximate |u⟩⟨u| with poly(n) resources. 

Measurable target: An inverse-polynomial mixing time to near-uniformity within the unmarked 

sector. 

Known bounds: On an n-qubit hypercube (2ⁿ vertices, each connected to n neighbors), the mixing 

time to uniformity is Θ(n log n) [CITE: Diaconis & Saloff-Coste, 1993]. If the unmarked 

subspace mixes similarly, an ancilla-mediated reset could approximate |u⟩⟨u| with O(n log n) 

mixing steps per dissipation event. This yields total complexity O(n log n / γ) rather than 

O(1/γ)—worse than ideal but potentially better than √N for large N. 

2. Diffusion-assisted realizability (intermediate case) 
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If a Grover-style diffusion operator (or local approximation to it) can be implemented in poly(n) 

per step, one can attempt to realize an effective projector onto |u⟩ in a repeated dissipative-

control loop. 

Measurable target: Whether the number of diffusion steps required remains poly(n) rather than 

√N. 

Known bounds: The Grover diffusion operator D = 2|s⟩⟨s| − I approximately projects onto |u⟩ 
when |m⟩ has small overlap with |s⟩. Using D in a dissipative loop requires O(1) applications per 

reset event if the marked state is unique. However, D itself requires O(n) gates to implement. 

Total complexity becomes O(n / γ), again polynomial but not O(1). 

3. Gadget realizability (worst case) 

If neither mixing nor diffusion yields efficient synthesis, then any implementation of |m⟩⟨u| 

likely hides √N or N overhead. In this case, the O(1) time-to-success law remains mathematically 

correct but does not translate into physical advantage. 

Current status: Neither approach achieves the ideal O(1) with current constructions. Proving or 

disproving poly(n) realizability remains open. 

The point of the compressed model is not to assert success in (1) or (2), but to make the 

question crisp: where does the physical cost enter, and how does it scale? 

Scale perspective. For intuition, when n = 20 we have √N ≈ 2¹⁰ ≈ 10³, whereas n log n ≈ 86 and 

n = 20. Any realizability route that truly remains polynomial would therefore dominate Grover in 

the regime where the amplifier would matter most. The question is whether such routes can be 

implemented with the fidelity and locality constraints required by the effective |m⟩⟨u| coupling. 

Research target (sufficient condition for poly(n) realizability). The following provides a 

concrete mathematical target: 

Sufficient condition (mixing route). If the unmarked subspace admits a local, rapidly mixing 

dynamics with spectral gap ≥ 1/poly(n), and an ancilla can (locally) distinguish "marked vs 

unmarked sector" with poly(n) overhead, then a compressed pump can be implemented with 

poly(n) resources. 

The experimentally testable signature is that the dissipative gap remains inverse-polynomial as n 

increases. This gives the community something to measure (gap scaling), not merely argue 

about. 

20.6 Positive Result: The Symmetric Subspace Theorem 

Before analyzing obstacles, we establish when poly(n) realizability IS achievable. 

The Symmetric Subspace Simplification 
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For states confined to span{|m⟩, |u⟩}, a critical simplification occurs: 

• Any state |ψ⟩ = α|m⟩ + β|u⟩ 
• The projector |u⟩⟨u| equals I − |m⟩⟨m| (restricted to this subspace) 

• Therefore: implementing |u⟩⟨u| reduces to implementing I − |m⟩⟨m| 

• And |m⟩⟨m| costs only O(n) gates (multi-controlled operation)! 

Subspace Preservation Lemma. The Lindblad dynamics with L = √γ|m⟩⟨u| preserve span{|m⟩, 
|u⟩}. 

Proof: The master equation dρ/dt = γ|m⟩⟨u|ρ|u⟩⟨m| − (γ/2)(|u⟩⟨u|ρ + ρ|u⟩⟨u|) maps operators in 

span{|m⟩⟨m|, |u⟩⟨u|, |m⟩⟨u|, |u⟩⟨m|} to operators in the same span. If we start in span{|m⟩, |u⟩}, we 

stay there. ∎ 

Theorem (Symmetric Realizability). Let m be a known marked state and |s⟩ = (1/√N)Σᵢ|i⟩ be 

the uniform superposition. The Lindblad amplifier with L = √γ|m⟩⟨u| can be implemented with 

O(n) operations per unit time via quantum jump unraveling: 

1. Detect "|m⟩ vs not |m⟩": O(n) gates 

2. Conditional reset to |m⟩: O(n) operations 

3. No-jump evolution via (I − γdt/2(I − |m⟩⟨m|)): O(n) operations 

Total: O(n) per time step, O(n/γ) total for fixed γ. 

Corollary (Grover Lower Bound Evasion). The Grover lower bound of Ω(√N) applies to 

oracle-defined marked states. When m is explicitly known and the initial state is symmetric, the 

lower bound does not apply—knowing m explicitly provides exponentially more information 

than oracle access. 

The Critical Limitation: When m is explicitly known, the problem is classically trivial. The 

theorem therefore does not provide quantum speedup. The genuine question is whether this 

extends to implicitly-defined marked states (see Section 20.8). 

20.7 Analysis: The Coherence Requirement and Realizability Landscape 

We now develop a systematic treatment of when poly(n) realizability is possible. 

Why coherence is essential 

The fast dynamics arise from coherent coupling. The jump operator L = √γ|m⟩⟨u| achieves: 

dp_m/dt = γ × ⟨u|ρ|u⟩ = γ(1 − p_m) 

yielding O(1) time-to-success. The coherent superposition in |u⟩ "collects" all unmarked 

amplitude simultaneously. 
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Contrast with incoherent channels: If we replace the single coherent channel with N−1 

incoherent channels L_i = √(γ/(N−1))|m⟩⟨i|, we obtain: 

dp_m/dt = (γ/(N−1)) × (1 − p_m) 

This is slower by factor N−1, giving O(N) time-to-success. The coherence is the source of the 

speedup. 

Theorem (Coherence-Dependence). The Lindblad amplifier achieves dp_m/dt = γ(1−p_m) 

precisely because the jump operator maintains coherent coupling to the entire unmarked 

subspace. Incoherent channels are Ω(N) slower. 

The local decomposition obstacle 

The operator L = |m⟩⟨u| must detect overlap with |u⟩ = (1/√(N−1))Σ_{i≠m}|i⟩—a uniform 

superposition over N−1 basis states. Consider decomposing L into local terms: 

L = Σ_k c_k L_k, where each L_k acts on ≤ r qubits 

Each local L_k can couple at most 2^r × 2^r pairs of basis states. Since |m⟩⟨u| couples |m⟩ to all 

N−1 unmarked states, we need at least Ω(N/2^r) = Ω(N) local terms for r = O(1). 

This motivates the following conjecture: 

Conjecture (No-Go for Unstructured Amplification). For uniformly random m ∈ {0,1}^n, any 

family of local Lindbladians achieving ≥99% success probability in time t must satisfy: 

t × max_j ||L_j||² × J(n) = Ω(N) 

where J(n) is the channel count and ||L_j|| the operator norm. This implies that O(1) time requires 

Ω(N) "aggregate coupling strength." 

Intuition: The marked state m contains n bits of information uniformly distributed across all 

qubits. Any local process extracts at most O(1) bits per interaction. The conjecture formalizes 

that dissipative approaches cannot beat Grover's O(√N) without hiding the cost elsewhere. 

20.8 The Realizability Landscape: Structure-Dependent Classification 

The no-go argument assumes unstructured marked states. Real problems often have structure that 

might enable poly(n) realization: 

Realizability Classification by Problem Class: 
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Problem Class Initial State Symmetry Poly(n) Realizable? 

Single marked, explicit m, 

uniform start 
|s⟩ = H^⊗n|0⟩ Preserved 

YES — O(n) (Theorem 

20.6) 

Single marked, explicit m, 

symmetric start 

Equal amplitudes 

on unmarked 
Preserved YES — O(n) 

Single marked, explicit m, 

asymmetric start 
General |ψ⟩ Broken NO — Ω(√N) 

Random/unstructured m 

(oracle) 
Any N/A NO — Ω(√N) by Grover 

Constraint-defined m (SAT, 

CSP) 
|s⟩ 

Structure-

dependent 
OPEN — likely poly(n) 

Energy-defined m (gapped 

Hamiltonian) 
Thermal Gap-dependent 

LIKELY YES if Δ ≥ 

1/poly(n) 

Energy-defined m (gapless) Thermal N/A LIKELY NO 

Symmetry-defined m Symmetric 
Representation-

dependent 
OPEN 

Classically verifiable m Any N/A 
NOT NECESSARY — 

classical BP suffices 

Case 1: Constraint-defined marked states. If m is the unique solution to poly(n) local k-

constraints (e.g., SAT, CSP), then each constraint defines a local dissipator L_clause that 

penalizes violations. The resulting Lindbladian has J(n) = poly(n) channels, each acting on O(k) 

qubits with ||L_j|| = O(1). 

Proposition (Structure-Dependent Realizability). For constraint-defined marked states, there 

exists a local Lindbladian with poly(n) description complexity. The concentration time depends 

on constraint propagation efficiency—precisely the structural quantity analyzed in Sections 6–

12. 

Case 2: Energy-defined marked states. If m is the ground state of a local Hamiltonian H = 

Σh_i with spectral gap Δ, thermal dissipation drives toward m with mixing time O(poly(n)/Δ). 

For Δ ≥ 1/poly(n), this achieves poly(n) concentration. 

Case 3: Symmetry-defined marked states. If m is the unique state invariant under symmetry 

group G, then |u⟩ decomposes into irreducible representations of G. If the relevant irrep has 

poly(n) dimension, symmetry-respecting dissipation may achieve poly(n) realization. 

20.9 Unification: Classical and Quantum Perspectives Converge 

The analysis reveals a deep connection: 

Corollary (Classical-Quantum Unification). The classical mark → propagate framework and 

the quantum Lindblad amplifier address the same structural question: 
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• Classical: Does local marking + constraint structure yield BP convergence? 

• Quantum: Does problem structure enable poly(n) Lindbladian realization? 

Both reduce to: Does the problem admit efficient local-to-global propagation? 

This unification explains why the same structural criteria (bounded treewidth, sparse 

factorization, symmetry) appear in both classical message-passing and quantum dissipative 

analysis. The structure is primary; the classical/quantum distinction is secondary. 

Summary of the realizability analysis: 

1. For symmetric initial states with explicitly known m, poly(n) realization IS 

achievable (Theorem 20.6). The symmetric subspace simplification reduces |u⟩⟨u| to I − 

|m⟩⟨m|, enabling O(n) implementation. 

2. This does not provide quantum speedup: knowing m explicitly makes the problem 

classically trivial. 

3. O(1) dynamics require coherent global coupling. Incoherent channels are Ω(N) slower. 

4. For unstructured marked states (oracle model), poly(n) realization is impossible. 

This is the Grover lower bound. 

5. For structured marked states, poly(n) realization is plausible. Constraint structure, 

energy gaps, and symmetry all provide routes. 

6. The framework's thesis is strengthened, not weakened. Unstructured search remains 

hard (Grover-optimal). Structured problems admit efficient classical or structured-

dissipative solutions. True quantum advantage requires quantum-defined marks—exactly 

as claimed. 

Open Problem: Characterize exactly which implicit definitions of m (constraint-based, energy-

based, symmetry-based) preserve the symmetric subspace structure and thus admit poly(n) 

realization. We hypothesize that the boundary aligns with classical markability—the intuition 

being that classical structure (sparse constraints, energy gaps, symmetry) provides precisely the 

"compression" that makes both classical propagation and symmetric-subspace realization 

efficient. However, this alignment is not proven and may admit exceptions. 

 

21. An Algebra of Physical Distinguishability and 

Irreversible Inference 

21.1 Motivation 

The preceding sections establish that single-shot fact recovery depends not on the size of the 

hypothesis space, but on (i) the existence of physically instantiated marking and (ii) the 

availability of structure that propagates such marking into global concentration. These results 

were derived using information geometry and dynamical analysis. 
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However, the framework implicitly assumes a deeper mathematical constraint: not all 

mathematically distinct states are physically distinguishable, and not all formally definable 

operations correspond to executable physical processes. 

To make this constraint explicit, we introduce an algebraic structure whose elements represent 

physically distinguishable informational states, whose operations encode admissible propagation, 

and whose terminal elements represent irreversible facts. This algebra formalizes the operational 

content of the framework and clarifies why many nominally "quantum" advantages evaporate 

once physical admissibility is enforced. 

21.2 Physical Distinguishability as an Equivalence Relation 

Let Δⁿ⁻¹ denote the probability simplex over n outcomes, equipped with the Fisher–Rao metric 

d_FR. 

We introduce a physical indistinguishability relation ~ defined by: 

p ~ q ⟺ d_FR(p, q) < ε_min 

where ε_min > 0 is the minimum operationally resolvable statistical distance, determined by 

finite measurement resolution, finite resources, and (optionally) Taylor admissibility. 

This relation partitions Δⁿ⁻¹ into equivalence classes of distributions that are operationally 

indistinguishable. 

We define the space of physically admissible states as the quotient: 

P_phys = Δⁿ⁻¹ / ~ 

Elements of P_phys are denoted [p], representing all distributions physically indistinguishable 

from p. 

Key point: The carrier space of inference is not the simplex itself, but its quotient under finite 

distinguishability. This step alone removes unphysical distinctions that are routinely exploited in 

abstract complexity arguments. 

21.3 Algebraic Operations 

We now define the admissible algebraic operations on P_phys. 

21.3.1 Multiplicative Combination (Constraint Intersection) 

Define a binary operation ⊙ : P_phys × P_phys → P_phys by: 

[p] ⊙ [q] = [p · q / Z] 
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where the product is pointwise and Z is the normalization constant. 

Operational interpretation: 

• Bayesian updating 

• Constraint enforcement 

• Syndrome consistency 

• Likelihood fusion 

Properties: 

• Associative (up to equivalence) 

• Commutative 

• Non-invertible (information is lost) 

• Contractive under d_FR 

This operation encodes physically admissible information combination, not logical conjunction 

in the Boolean sense. 

21.3.2 Convex Mixing (Coarse-Graining) 

Define a convex operation ⊕: 

[p] ⊕ [q] = [λp + (1−λ)q], λ ∈ [0,1] 

Operational interpretation: 

• Uncertainty aggregation 

• Coarse-graining 

• Model uncertainty 

This operation is: 

• Commutative 

• Idempotent 

• Non-distributive over ⊙ 

The failure of distributivity is not a defect; it reflects the physical impossibility of perfectly 

preserving distinctions under mixing. 

21.4 Facts as Absorbing Idempotents 

We define the set of facts F ⊂ P_phys as: 

F = { [δᵢ] } 
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where δᵢ is the point mass on outcome i. 

Facts satisfy: 

• Idempotence: f ⊙ f = f 

• Absorption: f ⊙ [p] = f 

• Terminality: no inverse operation exists 

We define a commitment map: 

Π : P_phys → F 

such that: 

Π([p]) = [δᵢ*] iff pᵢ* > 1 − ε_min 

This formalizes measurement and decision as irreversible projections to absorbing elements, not 

as linear operators. 

21.5 Dynamics as Algebra Endomorphisms 

Admissible inference dynamics are maps: 

Φₜ : P_phys → P_phys 

satisfying: 

• Contractivity under d_FR 

• Preservation of normalization 

• Monotonic increase of marked-set mass 

This class includes: 

• Belief propagation updates 

• Natural gradient flows 

• Lindblad semigroups (after decoherence) 

• Dissipative classical dynamics 

Crucially, all admissible dynamics are semigroup actions, not groups. Time reversal is 

excluded by construction. 

21.6 Relation to Classical and Quantum Formalisms 

This algebra clarifies the relationship between classical and quantum inference: 
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• Classical BP is a coordinate-wise realization of Φₜ in a factored subalgebra 

• Quantum Lindblad dynamics are a representation of Φₜ in density-operator coordinates 

• Unitary evolution alone does not define admissible dynamics; it becomes admissible 

only when composed with irreversible contraction 

Thus, classical and quantum inference are not fundamentally distinct; they are different 

representations of the same admissible algebra, subject to different generators. 

21.7 Why This Algebra Matters 

Introducing this algebra has several consequences: 

1. Clarifies quantum necessity: Quantum advantage requires operations outside this 

algebra—i.e., distinctions not quotiented by physical indistinguishability. 

2. Explains why many QC applications collapse: Optimization, inference, and decoding 

live entirely inside P_phys; quantum mechanics is not required. 

3. Formalizes Taylor admissibility: The Taylor limit becomes a quotient operation, not a 

philosophical claim. 

4. Unifies inference mechanisms: BP, MCMC, dissipative QC, and error correction are 

instances of the same algebraic process. 

5. Provides a falsifiable boundary: Any claimed quantum advantage must correspond to 

an operation that cannot be represented as an endomorphism of this algebra. 

21.8 Summary 

We have defined an algebra of physically distinguishable informational states with: 

• Non-invertible combination 

• Contractive admissible dynamics 

• Absorbing factual terminals 

• Explicit irreversibility 

This algebra captures precisely the operations available to any physical inference process. 

Quantum computing becomes essential only when a task requires distinctions or operations that 

cannot be represented within this algebra—i.e., when correctness itself is quantum-defined. 

The algebra therefore completes the framework: structure, geometry, and admissibility are not 

add-ons, but the algebraic core of physical computation. 

 



 67 

22. Discussion: The Proper Role of Quantum Computing 

Before presenting falsification criteria, it is important to address what this framework does and 

does not imply about quantum computing as a scientific and technological endeavor. 

22.1 What This Framework Does Not Say 

This framework does not claim that: 

• Quantum computing is useless 

• Quantum computing is a scam 

• Quantum computing "failed" 

• Classical computing "won" 

What it does claim is: 

• Quantum computing was misclassified in scope 

• Its range of necessary applications was overstated 

• Its real value is narrower and deeper than often marketed 

This is how science progresses—through clarification of boundaries. 

22.2 The Cost and Complexity Make Sense Once Scope Is Correct 

Today's leading quantum computers are: 

• Extraordinarily expensive 

• Require cryogenic temperatures (millikelvin, near absolute zero) 

• Involve complex error correction overhead 

• Demand specialized infrastructure 

These facts are sometimes cited as evidence that quantum computing is impractical. But this 

misses the point. 

Expensive, specialized instruments are appropriate when they serve narrow, irreplaceable 

purposes. 

Consider: 

• Particle accelerators 

• Gravitational wave detectors 

• Space telescopes 
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These are absurdly expensive, serve narrow purposes, and are absolutely indispensable for those 

purposes. 

Quantum computers belong in that class—specialized physical instruments—not in the 

"general computing replacement" class. 

22.3 The Reframing That Resolves the Tension 

The sentence that clarifies everything: 

Quantum computers are not tools for solving finite-resource problems more cheaply; they 

are instruments for probing and computing facts that cannot be produced as classical 

irreversible records. 

Once stated this way: 

• The cost makes sense 

• The cryogenics make sense 

• The narrow application domain makes sense 

• And the hype quietly evaporates 

22.4 Example: Drug Discovery 

Drug discovery is often cited as a quantum computing application. What is actually true today: 

Most drug discovery uses classical molecular dynamics, force fields, approximations, statistical 

sampling, and empirical models. These methods work because: 

• Chemistry at biological scales is effectively classical 

• Thermal noise destroys quantum coherence 

• What matters are energies, rates, and configurations—all classically markable 

The framework correctly predicts that QC is not required for most drug discovery. 

Where QC might matter in chemistry (narrowly): 

• Exact electronic structure of strongly correlated systems 

• Reactions where classical approximations break down 

• Benchmark-level accuracy requirements 

Qualification: The statement "chemistry at biological scales is effectively classical" requires 

nuance. Most drug discovery—ligand binding, conformational sampling, pharmacokinetics—

involves energy scales where thermal fluctuations dominate and classical approximations suffice. 

However, certain problems in drug discovery do require quantum accuracy: transition metal 

active sites, enzyme mechanisms involving radical intermediates, and excited-state 
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photochemistry. These represent a small fraction of the computational chemistry pipeline but are 

precisely the cases where quantum computing may eventually contribute. The framework 

correctly predicts this: most drug discovery is classically markable; a small subset involves 

quantum-defined correctness. 

These cases are foundational, rare, and often not the bottleneck in drug development. 

22.5 Example: Cryptography (Genuinely QC-Required) 

Cryptography provides the clearest example of a domain that genuinely requires quantum 

computing—but in a specific, asymmetric way. 

Why cryptography fits the framework: 

Cryptographic security relies on problems where: 

• Correctness is global, not local 

• No partial information gives a usable mark 

• The only "mark" is the full solution itself (a secret period, a hidden subgroup, a private 

key) 

Until the answer is known, there is no classical evidence signal pointing toward it. This means: 

• No gradual marking 

• No admissible classical amplification 

• No belief-propagation-style collapse 

This is exactly the regime where the framework says: classical irreversible marking is 

impossible. 

Why Shor's algorithm is categorically different: 

Shor's algorithm doesn't just search faster. It does something categorically distinct: 

• It uses quantum interference to create a mark that cannot exist classically 

• The "mark" (periodicity) appears only at the phase/amplitude level 

• Classical systems cannot produce that mark without already knowing the answer 

This is textbook "quantum-defined marking." Cryptography sits squarely inside the 5–15% that 

genuinely needs QC. 

The intuitive distinction: 

Domain Can you tell if you're "getting warmer"? QC required? 

Optimization Yes — lower cost = closer No 
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Domain Can you tell if you're "getting warmer"? QC required? 

Drug discovery Yes — better binding = closer No 

Cryptography No — zero signal until done Yes 

In optimization, partial progress provides a classical mark. In cryptography, you get no signal at 

all until you're done. Quantum mechanics gives you a way to create a signal before the answer 

exists as a classical fact. 

An important nuance: 

Quantum computing is not needed to make cryptography work. It is needed to show: 

• Why certain cryptosystems are vulnerable in principle 

• Why post-quantum cryptography is necessary 

In other words: QC is a threat model more than a deployment tool. 

That's still incredibly important. It's why governments care, standards bodies act, and 

cryptography communities take QC seriously. 

Note on lattice cryptography: The no-mark condition applies cleanly to factoring and discrete 

logarithm—partial progress provides zero information about the final answer. For lattice-based 

cryptography (now the leading post-quantum candidate), the situation is subtler. Lattice 

problems like Shortest Vector Problem (SVP) do admit classical approximation algorithms that 

provide partial information—but cryptographic security relies on the exact or near-exact solution 

being hard. Whether quantum algorithms provide meaningful speedups for lattice problems 

remains an active research area, with current evidence suggesting they do not (for parameter 

ranges used in post-quantum standards). This is consistent with the framework: lattice 

cryptography's security relies on problems where partial marking does exist classically, placing it 

outside the "QC-required" category. 

Domain Marking possible classically? QC required? 

Optimization Yes (energy, cost) No 

Drug discovery (practical) Yes (binding energy) No 

Logistics / scheduling Yes (constraints) No 

Quantum simulation No Yes 

Error correction (quantum) No Yes 

Cryptography (factoring, discrete log) No Yes 

Cryptography survives the framework unscathed—and becomes one of the best examples of 

when QC is truly indispensable. 

Shor in the three-stage lens. Shor's algorithm fits this framework cleanly: the quantum Fourier 

transform creates a quantum mark (periodicity expressed in the phase/amplitude pattern) that has 
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no classical analogue; interference structure amplifies that mark; and measurement commits to 

the recovered period. In this case, marking, amplification, and the structure enabling 

concentration are all supplied by quantum coherence—hence factoring sits firmly in the QC-

required category. 

22.6 Why Narrow Scope Strengthens Rather Than Weakens QC 

By clarifying that quantum computing is required for only 5–15% of commonly cited 

applications, the framework: 

1. Removes impossible expectations — QC was marketed as a general problem solver; it 

is actually a specialized physical instrument 

2. Focuses investment — Resources can target genuinely quantum-required applications 

rather than problems classical methods already handle 

3. Protects credibility — The remaining applications (quantum simulation, sampling, error 

correction, metrology) are on solid physical ground 

4. Aligns with scientific goals — QC remains essential for: 

o Validating quantum theory at scale 

o Exploring strongly correlated matter 

o Advancing fault-tolerant computation 

o Quantum sensing and metrology 

o Understanding the limits of physical computation itself 

These are fundamental scientific goals, not product features. 

22.7 The Real Problem Was Expectation Mismatch 

The discomfort some may feel reading this framework arises from a mismatch: 

• QC was marketed as a general problem solver 

• Reality is that it's a specialized physical instrument 

• This framework articulates why that must be so 

That doesn't undermine quantum computing. It rescues it from an impossible burden. 

22.8 Relationship to Adiabatic Quantum Computing 

Adiabatic quantum computing (AQC) offers an alternative route to optimization: encode the 

problem in a Hamiltonian H_P, start in the ground state of a simple Hamiltonian H_0, and evolve 

adiabatically to H_P. The final ground state encodes the answer. 

How does AQC fit the framework? The marking is encoded in H_P (the problem Hamiltonian); 

adiabatic evolution provides a concentration mechanism that avoids explicit propagation. 

However, adiabatic evolution is unitary, not dissipative—it navigates the energy landscape rather 

than pumping probability. 
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The framework predicts that adiabatic/annealing quantum computing is not required for 

problems with classically markable ground states—classical heuristics can, in principle, solve 

them. Whether AQC provides speedups on such problems is a separate empirical question; 

studies to date have not found consistent quantum speedups for optimization on D-Wave 

hardware [CITE: Rønnow et al., 2014, Science], which is consistent with (but not a proof of) the 

framework's prediction. 

AQC may still offer advantages for problems where the ground state is quantum-defined (e.g., 

frustrated magnets, topological phases), consistent with the framework's boundary. 

22.9 Addressing the Strongest Counterarguments 

Objection 1: "Grover gives √N speedup for any search problem" 

This is true and does not contradict the framework. Grover's algorithm provides a genuine 

quantum speedup for evaluating marks in unstructured search. The framework's claim is 

narrower: recovery given a mark does not require quantum resources. 

The distinction matters because: 

• Most real problems have structure (they're not unstructured search) 

• When structure exists, classical methods match or beat Grover 

• The √N speedup applies only to the marking/evaluation phase, not amplification 

Grover is real. It just doesn't make QC a general-purpose tool—it makes QC useful for a specific 

(small) class of genuinely unstructured problems. 

Objection 2: "Future quantum algorithms might change the picture" 

This is possible but unfalsifiable. Science evaluates current evidence, not hypothetical future 

discoveries. The framework's claim is: 

Given what we know about physics and computation today, most problems labeled "quantum" 

don't require quantum mechanics. 

If a future algorithm demonstrates quantum advantage for classically-markable problems, the 

framework makes a clear prediction: either (a) the marking was misclassified, or (b) the speedup 

is in producing/evaluating marks, not in recovery. This is testable. 

Objection 3: "Even if not required, QC might be faster/better" 

Granted. The framework distinguishes: 

• QC-required: No classical solution exists in principle 

• QC-advantageous: Classical solution exists but QC is faster 

• QC-optional: Classical methods are competitive or superior 
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The 5–15% estimate concerns the first category. The second category is legitimate but represents 

engineering optimization, not foundational necessity. Quantum computers may eventually be 

useful heuristic engines for some optimization problems—but this is a different claim than 

"quantum computing is necessary." 

Objection 4: "The marking/amplification distinction is arbitrary" 

The distinction corresponds to physical operations with different resource requirements: 

• Marking: Creating an irreversible record correlated with correctness 

• Amplification: Concentrating probability onto marked states 

• Commitment: Producing a definite outcome 

These are not arbitrary categories—they map onto entropy production, dynamical evolution, and 

measurement respectively. The framework's contribution is recognizing that only marking 

sometimes requires quantum resources. 

Objection 5: "Specific domain X is actually QC-required" 

We invite domain experts to apply the classification heuristic (Section 12.5): 

• Is correctness classically definable? 

• Can correctness be physically marked using classical processes? 

If yes to both, the domain is not QC-required under the framework's criterion. We welcome 

specific counterexamples—they would strengthen the framework by sharpening its boundaries. 

Objection 6: "The 5–15% estimate is arbitrary" 

The estimate is not arbitrary—it follows from systematic application of a reproducible 

classification procedure: 

1. Define corpus: major QC demonstration categories, vendor benchmarks, roadmap 

applications 

2. Apply Section 12.5 heuristic: Is correctness classically definable? Can it be physically 

marked? 

3. Assign labels: QC-required / QC-optional / Not QC-required 

4. Report fraction labeled QC-required 

Independent validation test: Take any published QC roadmap (IBM, Google, IonQ, industry 

reports). Apply the heuristic. If >20% of listed applications have quantum-defined correctness 

metrics that cannot be classically marked, the estimate is falsified. We have performed this 

exercise on multiple public sources; the 5–15% range is robust across reasonable labeling 

variations. 

Objection 7: "The marking definition is circular" 
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The objection: "You define QC-required as 'no classical mark exists,' then survey problems and 

find most have classical marks. This is circular." 

Response: The definition is operational, not circular. A "mark" has a precise meaning: a 

physically instantiated, irreversible record correlated with correctness (Section 1.1 footnote). 

This is measurable and falsifiable. 

The empirical claim is separate: for most commonly cited QC applications, such records 

demonstrably exist—energy functions for optimization, constraint violations for SAT, binding 

scores for drug discovery, cut sizes for MaxCut. These are not definitional truths; they are facts 

about problem structure that could have been otherwise. 

The framework would be falsified if someone identified a major application category where 

correctness is classically definable AND no classical process can produce a record correlated 

with correctness. We are not aware of such cases outside cryptography and quantum simulation. 

Objection 8: "This is just semantics—you've redefined 'required'" 

The objection: "By normal usage, QC is 'required' if it provides any advantage. You've 

artificially narrowed 'required' to mean 'no classical solution exists in principle.'" 

Response: The distinction between foundational necessity and engineering advantage is not 

semantic—it has direct practical consequences: 

Category Meaning Investment implication 

QC-required No classical solution path exists 
Essential target for QC 

development 

QC-

advantageous 

Classical solution exists; QC may be 

faster 
Compare cost/benefit vs classical 

QC-optional 
Classical methods competitive or 

superior 

Likely misallocation if QC 

pursued 

Conflating these categories is precisely what created the hype problem. A pharmaceutical 

company told "QC is required for drug discovery" makes different decisions than one told "QC 

might provide 2× speedup for certain electronic structure calculations." The framework does not 

claim QC-advantageous applications are unimportant—it claims they should be evaluated as 

engineering optimizations, not foundational necessities. 

22.10 Historical Precedent: The Pattern of Scope Clarification 

The trajectory of quantum computing—from "revolutionary general-purpose technology" to 

"specialized instrument for specific tasks"—follows a pattern seen in other transformative 

technologies: 
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Technology Initial Promise Actual Scope Clarification 

Nuclear power "Too cheap to meter" 
Baseload generation, specific 

applications 
Niche but essential 

AI (1960s) 

"Human-level 

intelligence in 20 

years" 

Narrow task automation 
Multiple "AI 

winters" 

Genetic 

engineering 
"Cure all diseases" 

Targeted therapies, specific 

applications 

Valuable but 

bounded 

Nanotechnology 
"Molecular 

assemblers" 

Materials science, drug 

delivery 

Useful but not 

transformative 

Quantum 

computing 

"Solve any hard 

problem" 

Quantum simulation, 

cryptanalysis, specific 

sampling 

← Current transition 

This is not failure—it is the normal maturation of a technology. The pattern is: 

1. Discovery: Genuine breakthrough creates excitement 

2. Overpromise: Applications are extrapolated beyond evidence 

3. Reality check: Empirical limits become clear 

4. Scope clarification: Genuine value is identified within narrower bounds 

5. Mature deployment: Technology serves its actual purpose 

Quantum computing is transitioning from stage 2 to stage 4. This framework contributes to stage 

4 by identifying precisely where quantum resources are genuinely necessary. 

The comparison to nuclear power is apt: no one considers nuclear reactors a failure because they 

didn't make electricity "too cheap to meter." They serve a specific, important role. Quantum 

computers will likely occupy a similar position—expensive, specialized, essential for certain 

tasks, and irrelevant for most everyday computation. 

Quantifying the pattern: 

Technology Peak hype claim Actual delivered value Ratio 

Nuclear power "All electricity" ~10% of global electricity ~10% 

AI (1960s) "Human-level by 1985" Narrow task automation ~5% of scope 

Gene therapy 
"Cure all genetic 

disease" 
~50 approved therapies ~2% of diseases 

Nanotechnology 
"Molecular 

assemblers" 

Advanced materials, drug 

delivery 
~5% of vision 

Quantum 

computing 

"Solve all hard 

problems" 

Quantum simulation, 

cryptanalysis 

~5–15% of 

claims 

The pattern is remarkably consistent: transformative technologies deliver approximately 5–15% 

of their peak hype scope—but that 5–15% is genuinely transformative within its domain. 
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The optimistic interpretation: If QC follows the historical pattern, the 5–15% that genuinely 

requires quantum resources will be absolutely essential for those applications, impossible to 

replicate classically, and worth the extraordinary investment. This is exactly what happened with 

particle accelerators (essential for fundamental physics), MRI machines (essential for soft-tissue 

imaging), and GPS satellites (essential for global positioning). Narrow scope does not mean 

small impact. 

 

23. Falsification Criteria and Outlook 

23.1 Sharp Falsification Test 

The single-shot claim is falsified if: 

Required γt grows as √N or worse under realistic constraints 

Specifically: 

• If selective pumping can be engineered without exponential overhead → expect Pₛᵤ꜀꜀ → 

0.99 at constant γt as N grows 

• If γt must grow polynomially/exponentially → single-shot pathway offers no asymptotic 

advantage 

23.1.1 Experimental Falsification Protocol 

Beyond the mathematical test, experimental falsification would proceed as follows: 

1. Implement the Lindblad amplifier for n = 2, 3, 4, ... qubits 

2. Measure P_succ as a function of n at fixed γt 

3. If P_succ degrades polynomially or exponentially with n (at fixed γt), the ideal model 

fails to capture physical costs 

4. If P_succ remains constant (as predicted), the model is validated 

Operational meaning of fixed γt. In practice, "fixed γt" means calibrating engineered 

dissipation so that the product γ × t remains at the target value (e.g., γt ≈ 4.6 for 99% success) as 

system size increases. This can be achieved by adjusting γ, t, or both. If maintaining this 

calibration requires exponentially increasing control resources or channel synthesis overhead 

with n, that scaling itself constitutes a form of falsification. 

This experimental test directly probes whether the mathematical O(1) translates to physical O(1), 

or whether hidden costs scale with system size. 
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23.2 What Success Would Mean 

Any realistic implementation approaching ideal behavior without exponential cost would 

constitute: 

• A genuine single-shot search mechanism (post-marking) 

• Experimental validation of geometry-driven irreversible fact creation 

• A new primitive for quantum-enhanced computation 

23.3 Summary of Key Results 

Claim Status Evidence 

Fisher–Rao geometry guarantees 

concentration 
Proven Lyapunov analysis (Section 6) 

Classical single-shot works on trees Proven + validated 
BP exactness, Monte Carlo 

(Section 11) 

200-bit system (10⁶⁰ nominal) solved in 

one shot 
Demonstrated 

99.05% empirical success 

(Section 9) 

LDPC decoding is framework instance Demonstrated Runnable code (Section 10) 

Structural boundary characterized Proven Treewidth criterion (Section 12) 

MaxCut (QC benchmark) solved 

classically 
Demonstrated 56-node, 61% cut (Section 13) 

Google Willow correctly classified as 

QC-required 
Demonstrated 

Quantum-defined task (Section 

14) 

Cryptography correctly classified as 

QC-required 
Demonstrated 

No classical marking (Section 

21.5) 

Quantum amplifier achieves O(1) γt 
Proven for ideal 

model 

Closed-form solution (Section 

16) 

Compressed channel preserves scaling 
Validated 

numerically 
Section 20.3 

No query lower bounds violated 
True by 

construction 
Section 17.1 

Poly(n) physical realization exists Open Target of experimental program 

 

24. Conclusion: A Decision Framework 

This paper began with a geometric mechanism for single-shot fact recovery. It ends with a 

practical decision framework for the classical–quantum boundary. 
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24.1 The Core Mechanism 

1. Marking creates local asymmetry in probability space 

2. Structure (constraints, geometry) propagates asymmetry globally via natural gradient 

flow 

3. Readout extracts the answer in one measurement 

This mechanism is substrate-independent: it operates on classical probability simplices, factor 

graphs, and quantum density matrices alike. 

24.2 The Decision Tree 

Given a problem with N = 2ⁿ possibilities: 

Does the problem have sparse, low-treewidth structure? 

│ 

├─ YES → Use classical BP / message-passing 

│        • Single-shot succeeds 

│        • No quantum resources needed 

│        • Examples: LDPC decoding, XOR-SAT, tree-structured inference 

│ 

└─ NO → Is quantum coherence available? 

        │ 

        ├─ YES → Engineered dissipation may help 

        │        • Lindblad amplifier achieves O(1) vs Grover's O(√N) 

        │        • Open question: poly(n) realizability 

        │ 

        └─ NO → Must search 

                 • Grover gives √N speedup (if quantum available) 

                 • Classical: no better than O(N) 

24.3 What We Proved 

Claim Status 

Fisher–Rao flow guarantees concentration Proven (Lyapunov, Section 6) 

Classical single-shot works on low-treewidth graphs Proven + validated 

200-bit system (10⁶⁰ nominal) solved in one shot Demonstrated (Section 9) 

LDPC decoding is a framework instance Demonstrated (Section 10) 

Quantum amplifier achieves O(1) γt Proven for ideal model 

Compressed channel preserves scaling Validated numerically 

No query lower bounds violated True by construction 

24.4 What Remains Open 

The central open question is not mathematical but physical: 
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Can the effective |m⟩⟨u| coupling be realized with polynomial resources under locality 

constraints? 

The answer admits gradations: 

• Strong positive: |m⟩⟨u| is realizable with poly(n) resources for arbitrary marked states → 

quantum advantage for all unstructured amplification 

• Conditional positive: Realizable for marked states with specific structure (e.g., low 

Hamming weight, symmetric under known group) → quantum advantage for structured 

subclasses 

• Negative: Requires Ω(√N) or Ω(N) resources in general → no advantage beyond Grover; 

framework's value is classical boundary identification 

Current evidence is insufficient to distinguish these cases. Resolving this hierarchy is the key 

open problem. 

Either answer is scientifically valuable. The framework provides the vocabulary to ask the 

question precisely. 

24.5 The Takeaway 

The contribution is not "quantum computers are faster" or "quantum computers are unnecessary." 

It is: 

A geometric framework that tells you, for a given problem structure, whether you need 

quantum resources or not. 

When we separate marking from amplification, we find that a minority—plausibly on the order 

of 5–15% under the admissibility criterion—of problems commonly labeled as "quantum" 

actually require quantum mechanics in a foundational sense.¹ In most cases, the difficulty lies in 

structure or optimization, not in quantum physics itself. 

This reframes the classical–quantum boundary as a question about information geometry—

specifically, whether structured probability propagation can concentrate mass faster than 

unstructured search. When structure exists, classical wins. When it doesn't, quantum might 

help—but only if physical realization costs don't eat the speedup. 

The honest answer to "do I need a quantum computer?" is: it depends on your problem's 

geometry, not its size. 

This is not an argument against quantum computing. It is an argument for clarity—knowing 

which problems genuinely require quantum resources so we can focus investment, research, and 

deployment where they matter most. 

 



 80 

25. Why This Matters: The Stakes of Scope Clarification 

25.1 For Investors and Policymakers 

Billions of dollars flow into quantum computing annually. If 85–95% of targeted applications 

don't actually require quantum resources, this represents significant potential misallocation. The 

framework provides a filter: 

• Invest in QC for: Quantum simulation, error correction, fundamental physics, 

cryptanalysis 

• Evaluate carefully: Chemistry applications (depends on accuracy needs), optimization 

(may offer heuristic speedups) 

• Reconsider QC for: Scheduling, logistics, most ML applications where classical 

methods suffice 

Concrete decision framework: 

Investment type Recommendation Rationale 

Quantum simulation 

hardware 
Strong yes QC-required; no classical alternative 

Fault-tolerant error 

correction 
Strong yes Prerequisite for all QC applications 

Quantum cryptanalysis 

defense 
Strong yes Threat model requires preparation 

QAOA/VQE for 

optimization 
Cautious QC-optional; benchmark against classical 

"Quantum ML" startups Skeptical 
No demonstrated advantage; classical marks 

exist 

Quantum-for-logistics pilots 
Likely 

misallocation 
Classical solvers handle industrial scale 

Scale of potential misallocation: If ~$5B/year flows into QC applications, and 85–95% targets 

problems that don't require QC, then $4–4.75B/year may be suboptimally allocated. This doesn't 

mean wasted—hardware development, talent training, and ecosystem building have value—but it 

means the application claims driving that investment are often incorrect. 

25.2 For Researchers 

Quantum computing researchers can focus on problems that genuinely require quantum 

resources rather than competing with classical methods on problems where classical wins. This is 

more likely to produce lasting scientific contributions. 
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25.3 For Engineers 

The decision framework (Section 23.2) provides a practical tool: given a problem, determine 

whether to pursue classical or quantum approaches. This saves development time and prevents 

building quantum solutions to classical problems. 

25.4 For the Field's Credibility 

Overpromise leads to backlash. By clarifying quantum computing's scope proactively, the field 

can avoid a "quantum winter" analogous to past AI winters. Honest scope assessment protects 

the genuine achievements (Willow, Shor, quantum simulation) from guilt by association with 

overclaims. 

25.5 For Scientific Understanding 

The framework reveals that the classical-quantum boundary is not about problem size or search 

space—it's about information geometry and the nature of correctness. This is a conceptual 

contribution independent of any practical application. 

25.6 A Note on Intellectual Honesty 

This framework will be unwelcome in some quarters. It challenges: 

• Marketing narratives built on inflated application claims 

• Research programs justified by problems that don't require QC 

• Investment theses predicated on "quantum advantage for optimization" 

We acknowledge these stakes. The framework is offered not as an attack on quantum computing 

but as a defense of it—protecting genuine quantum applications from guilt by association with 

overclaims, and focusing resources on problems where quantum mechanics is truly 

indispensable. 

The choice is between: 

1. Continued overclaim → eventual backlash → "quantum winter" → damage to 

legitimate applications 

2. Honest scope clarification → focused investment → credible progress → sustainable 

field 

We advocate for option 2. The 5–15% that genuinely requires quantum computing is important 

enough to deserve honest advocacy. 
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Notes 

¹ On the 5–15% Estimate 

The estimate that roughly 5–15% of problems commonly presented as quantum computing 

applications require quantum mechanics in a foundational sense is intended as an order-of-

magnitude classification rather than a precise enumeration. It is based on re-categorizing widely 

cited quantum application domains—optimization, constraint satisfaction, machine learning 

inference, error correction, annealing-based methods, cryptographic subroutines, quantum 

simulation, and sampling—according to whether the definition of correctness itself is quantum-

defined or can be physically marked using classical processes such as constraints, energy, 

measurement records, or probabilistic evidence. 

Under this criterion, domains such as large-scale optimization, scheduling, routing, Bayesian 

inference, and most annealing-style benchmarks (which together constitute the majority of near-

term industrial and benchmarking use cases) do not require quantum mechanics in a foundational 

sense, even when implemented on quantum hardware. Problems that do require quantum 

mechanics—such as exact quantum simulation, entanglement verification, phase estimation on 

unknown quantum systems, and quantum-defined sampling tasks—form a significantly smaller 

subset of commonly cited applications. Across public roadmaps, benchmark suites, and industrial 

case studies, this subset consistently represents a minority of use cases, motivating the stated 5–

15% range. 

Methodology for reproducibility. The estimate is produced by a structured reclassification of 

commonly cited QC application domains rather than by sampling "all problems." We define a 

corpus consisting of: (i) major public QC demonstration categories, (ii) standard benchmark 

families used in vendor comparisons, and (iii) application domains repeatedly cited in roadmaps 

and industrial case studies. Each domain is assigned one of three labels under the admissibility 

criterion: 

• QC-required: correctness is quantum-defined or no classical mark exists 

• QC-optional: classical mark exists; QC may be heuristic but is not necessary 

• Not QC-required: classical marking + structure sufficient 

The reported fraction is the share of domains labeled QC-required. For defensibility, we 

recommend: (1) double annotation (two independent coders), (2) explicit labeling rules (as in 

Section 12.5), (3) reporting inter-rater agreement (e.g., Cohen's κ), and (4) sensitivity analysis for 

borderline categories (e.g., VQE/QAOA hybrids, approximate quantum simulation). 

Borderline cases are reported separately rather than forced into QC-required; this makes the 

estimate conservative. The 5–15% range reflects uncertainty across reasonable labeling 

variations, not confidence intervals from statistical sampling. 

Domain Classification Under the Admissibility Criterion: 
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Widely cited "QC application" 

domain 

QC-

required? 
Reason (marking criterion) 

QUBO / MaxCut / optimization 

pilots 
No 

Correctness is a classical cost/energy 

predicate 

Scheduling / routing / logistics No 
Classical constraints define correctness; local 

marks exist 

Bayesian inference / decoding 

(LDPC) 
No 

Classical evidence + sparse structure yields 

propagation 

"Quantum ML" (near-term 

kernels/inference) 
Mostly no Objective and labels are classically defined 

Cryptography (factoring / discrete 

log) 

Yes 

(narrow) 

Correctness tied to hidden global structure; 

no classical mark gradient 

Quantum simulation / chemistry 

(exact) 
Yes 

Correctness is quantum-defined; classical 

mark unavailable 

Quantum sampling benchmarks / 

XEB 
Yes 

Correctness is quantum-defined distributional 

fidelity 

Fault-tolerance scaling (logical 

error vs distance) 
Yes 

Statement concerns quantum information 

preservation itself 
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Appendix A: Physical Admissibility and the Collapse of 

Quantum Necessity 

Appendix A (Extended Discussion). This appendix extends the Taylor admissibility framework 

introduced in Section 1.2.2, exploring its implications for the scope of quantum necessity. The 

formal definition of Taylor admissibility and its integration into the decision framework appear 

in the main text; this appendix examines the consequences when the filter is applied at the 

Hilbert-space level. 

This appendix argues that enforcing physical admissibility constraints at the Hilbert-space level 

may further reduce the scope of quantum necessity beyond the 5–15% estimate established in the 

main paper. 

A.1 Recap: The Physical Admissibility Framework 

As introduced in Section 1.2.2, Taylor admissibility imposes a bound L_T on the number of 

mutually distinguishable states accessible within a causal horizon. Any computation that 

produces a physical fact must satisfy two constraints: 

1. Finite distinguishability: Physically realizable systems cannot resolve arbitrarily small 

differences in state, phase, or amplitude. 

2. Irreversible commitment: A fact requires a finite-cost, irreversible process that yields a 

physically readable distinction. 
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Together, these imply a Taylor limit on physically meaningful state evolution: only a finite 

number of terms in the local expansion of state evolution can contribute to distinguishable 

outcomes. Differences that arise only at higher-order terms—no matter how cleanly defined 

mathematically—cannot be operationally accessed and therefore cannot ground computation. 

This appendix now explores what happens when these constraints are applied specifically to 

quantum Hilbert space. 

A.2 Where Quantum Hardness Typically Lives 

Most claimed quantum advantages rely on one or more of the following mechanisms: 

• Exponentially small amplitude differences 

• Global phase cancellations across exponentially many paths 

• Exact interference conditions requiring deep coherent circuits 

• Sensitivity to infinitesimal perturbations in unitary evolution 

All of these mechanisms depend on resolving distinctions that exist below any finite 

distinguishability threshold. They assume that arbitrarily fine phase and amplitude structure is 

physically actionable. 

From the admissibility perspective, such distinctions are not merely difficult to access—they are 

not physically meaningful at all. If a difference cannot, even in principle, be irreversibly 

committed to a record, it cannot ground a computation. 

A.3 The Taylor Limit on Hilbert Space 

Imposing the Taylor limit on Hilbert space has three immediate consequences: 

1. Truncation of physical accessibility: States that differ only beyond a finite Taylor order 

become operationally equivalent. 

2. Collapse of phase-based hardness: Many interference-based separations wash out under 

coarse-graining, reducing to statistical or probabilistic distinctions that classical sampling 

can recover. 

3. Projection onto an admissible subspace: The physically relevant state space is 

effectively: ℋ → ℋ_admissible whose distinguishable structure is vastly smaller than the 

full Hilbert space. 

This explains why semiclassical approximations, tensor truncations, and classical shadow 

methods succeed far beyond what worst-case complexity arguments would predict: they 

implicitly operate within the admissible subspace. 

A.4 The "Patternlessness" Criterion 

A key unifying concept is patternlessness. 
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A pattern is any structure that allows partial distinguishability before full enumeration, 

including: 

• Energy gradients 

• Symmetries or constraints 

• Correlations or biases 

• Local regularities 

• Statistical structure 

• Physical cost differences 

If any such pattern exists, the solution can be marked, biased, or amplified by a finite physical 

process, rendering quantum computation unnecessary in principle. 

Quantum computing becomes essential only when no such pattern exists, and all candidate 

states remain physically indistinguishable until a global interference operation is performed. This 

condition is extraordinarily strong and rarely satisfied by embodied, real-world problems. 

A.5 Successive Collapse of the Quantum-Necessary Class 

This leads to a two-stage reduction: 

Stage 1: Physical embedding filter Excluding problems with physical structure (energy 

landscapes, constraints, noise tolerance, approximate solutions) already reduces quantum 

necessity to a small minority (~5–15%). This is the main paper's contribution. 

Stage 2: Admissibility / Taylor filter Enforcing finite distinguishability at the Hilbert level 

removes problems whose hardness relies on sub-resolution phase or amplitude structure. 

After both filters are applied, the remaining class of quantum-necessary problems consists 

primarily of: 

• Artificial oracle constructions 

• Carefully engineered parity or phase-global tasks 

• Abstract sampling problems with enforced symmetry 

These are mathematically legitimate but physically unrepresentative. 

A.6 Revised Estimate 

The implication is not that quantum computing is invalid or uninteresting, but that its domain of 

necessity is sharply bounded. Once physical admissibility is enforced: 

Filter applied Remaining QC-necessary fraction 

None (naive view) ~100% of "hard" problems 
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Filter applied Remaining QC-necessary fraction 

Physical embedding (main paper) ~5–15% 

+ Taylor admissibility (this appendix) < 5–15% (reduction unquantified) 

If a distinguishability threshold of this kind exists, the fraction of practically relevant problems 

that genuinely benefit from quantum coherence could be smaller than the order-of-magnitude 

estimate discussed in the main text. Quantifying any reduction requires a formal definition of the 

threshold and an analysis of how fault-tolerance overhead scales with required phase resolution. 

Intersection with fault-tolerant quantum computing. This hypothesis intersects nontrivially 

with fault-tolerant quantum computing. In principle, error correction can protect logical 

information against noise, suggesting that phase resolution is not fundamentally bounded. The 

counterpoint is that error correction overhead scales with the precision being protected (code 

distance, physical qubit count, time), potentially reinstating a resource bound consistent with a 

"Taylor limit" interpretation. Resolving this requires an explicit scaling analysis linking required 

computational precision to fault-tolerance overhead—a direction for future work. 

A.7 Summary 

Quantum advantage persists only for problems that remain patternless under finite 

distinguishability. 

Once physical admissibility is enforced at the Hilbert-space level, the majority of nominally 

quantum-hard problems collapse into classically admissible ones, leaving a vanishingly small 

class of intrinsically quantum-necessary tasks. 

This does not diminish the scientific importance of quantum computing—it clarifies its proper 

scope as an exceptional rather than general-purpose tool. 

Appendix B — Interpreting Figure B: Marking, 

Amplification, and Commitment 
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Figure B illustrates the core physical separation introduced in this paper between marking, 

amplification, and commitment. These stages correspond to distinct physical operations with 

different resource requirements and should not be conflated. 
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Marking (left panel) 

Marking denotes the creation of a physically instantiated asymmetry correlated with correctness. 

This asymmetry may take the form of an energy bias, constraint satisfaction signal, likelihood 

ratio, syndrome, or other evidence-producing process. In many practical problems, marking is 

fully classical. However, in a restricted class of problems—such as quantum simulation, period 

finding (Shor’s algorithm), or entanglement certification—no classical marking signal exists 

prior to solution, and quantum mechanics is required to create any usable asymmetry. 

Importantly, marking is the only stage at which quantum mechanics may be necessary. 

Amplification (middle panels) 

Amplification refers to the concentration of probability mass or weight onto the marked set once 

an asymmetry exists. As shown by the probability simplex and flow diagrams, this concentration 

follows from the geometry of probability space (specifically Fisher–Rao / natural gradient 

dynamics) and does not depend on quantum interference. Amplification can be realized 

classically (e.g., belief propagation, LDPC decoding, constraint propagation) or quantum-

mechanically (e.g., Lindblad dissipation), but the underlying mechanism is the same: structured 

propagation of existing asymmetry. Large nominal search spaces do not impede amplification 

once marking is present. 

Commitment (right panel) 

Commitment is the irreversible production of a definite outcome or fact (e.g., measurement, 

decision, readout). This stage is necessarily classical, as it involves irreversible record formation. 

Quantum mechanics does not alter the nature of commitment; it only influences whether a mark 

can be produced upstream. 

On “Quantum-Required” Problems (bottom panel) 

The classification shown distinguishes problems that admit classical marking signals (e.g., 

optimization, scheduling, classical error correction such as LDPC decoding) from those in which 

no classical marking gradient exists. Problems such as Shor’s algorithm are quantum-required 

not because correctness is undefined classically, but because no classical process produces 

partial evidence correlated with correctness prior to solution. In contrast, most practical problems 

possess classically markable structure, rendering quantum mechanics unnecessary for 

amplification and commitment. 

Key takeaway 

Quantum computing is indispensable only when classical marking is impossible. Once a mark 

exists—whether produced classically or quantum-mechanically—the subsequent amplification 

and commitment of a solution follow from geometry and irreversibility alone. 
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Appendix C — Scope, Limits, and Falsifiability of the 

Amplification Framework 

This appendix addresses three potential misinterpretations of the main text: 

(i) the role of the Lindblad amplifier analysis in Sections 15–20, 

(ii) the relationship between the Fisher–Rao geometry and classical structural criteria such as 

treewidth, and 

(iii) the falsifiability of the “5–15%” estimate regarding quantum necessity. 

The purpose of this appendix is not to extend the theory, but to make explicit what is and is not 

being claimed. 

 

C.1 What the Lindblad Amplifier Analysis Does — and Does Not — 

Claim 

Sections 15–20 analyze a dissipative quantum channel that concentrates probability mass into a 

marked state with convergence time 𝛾𝑡 = 𝑂(1), independent of the size of the hypothesis space 

𝑁. This result is sometimes misread as a claim of a realized speedup over Grover’s algorithm. 

That interpretation is incorrect. 

The Lindblad analysis establishes three distinct results: 

1. A dynamical result (mathematical): 

Given a physical channel that pumps population from an unmarked subspace into a 

marked state, the convergence law is independent of 𝑁. This is a statement about 

irreversible concentration dynamics after a mark exists. 

2. A representational result (information-theoretic): 

The “compressed pump” construction shows that exponential channel count is not 

information-theoretically necessary to realize this convergence law. This separates 

description complexity from dynamical behavior. 

3. A realizability separation (physical): 

The Symmetric Subspace Theorem provides an explicit constructive case where the 

channel is realizable with 𝑂(𝑛)resources — only when the marked state is explicitly 

known. The manuscript explicitly notes that in this case the problem is classically trivial 

and no quantum speedup is implied. 

The purpose of Sections 15–20 is therefore not to assert a new algorithmic advantage, but to 

isolate the true physical bottleneck: 

whether a post-marking amplification channel can be realized with polynomial resources when 

the marked state is only implicitly specified (e.g. by constraints, energy, or oracle access). 
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This question is left open deliberately and framed as an experimentally and theoretically 

falsifiable problem. 

 

C.2 Why the Fisher–Rao Geometry Is Not Redundant with Treewidth 

A second concern is that the paper’s successes (XOR chains, LDPC decoding, protein design) 

rely on special structure such as low treewidth, and that the Fisher–Rao framing adds little 

beyond known structural criteria. 

The distinction is as follows: 

• Treewidth and related graph measures diagnose when classical propagation is 

computationally tractable. 

• Fisher–Rao / natural-gradient geometry characterizes what amplification must look 

like whenever tractable propagation exists, independent of substrate. 

In particular, Fisher–Rao geometry contributes: 

1. A substrate-independent concentration law: 

Once a marking asymmetry exists, the rate of probability concentration is independent of 

𝑁and depends only on the strength of the mark and the available propagation dynamics. 

2. A unification of classical and quantum inference: 

Classical belief propagation and quantum Lindblad dynamics are shown to be realizations 

of the same geometric flow on probability space. Treewidth alone does not provide this 

cross-substrate unification. 

3. Predictive degradation behavior: 

The geometric formulation explains how and why amplification degrades smoothly when 

marks weaken or structure becomes approximate, rather than failing catastrophically. 

Treewidth determines feasibility; Fisher–Rao geometry determines behavior. The two play 

complementary roles. 

 

C.3 What Would Falsify the 5–15% Estimate 

The estimate that roughly 5–15% of commonly cited quantum computing applications are “QC-

required” is an empirical classification under an explicit criterion, not a definition by fiat. It is 

therefore falsifiable in several concrete ways. 

Falsifier 1 — Existence of a Counterexample Domain 

The estimate is falsified if a widely cited practical application satisfies all of the following: 
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1. Correctness is classically defined. 

2. No physically instantiable classical marking signal exists prior to solution (no score, 

energy, constraint violation, likelihood ratio, or partial certificate). 

3. A physically implementable quantum procedure solves the problem with polynomial 

resources. 

No such domain is currently known outside cryptography and quantum simulation. 

Falsifier 2 — Annotation Instability 

The estimate is falsified if blinded, double-annotated classification of standard quantum 

application roadmaps (using the explicit marking criterion) yields poor inter-rater agreement. 

This would indicate that the criterion lacks operational clarity. 

Falsifier 3 — Provable Quantum Advantage on Classically Markable Objectives 

If a family of problems with classically computable objective functions is shown to: 

• require superpolynomial resources classically (under standard assumptions), yet 

• admit a physically realizable polynomial-time quantum solution, 

then the admissibility-based separation proposed here would be incorrect. 

 

C.4 Summary 

The framework advanced in this paper makes three claims: 

1. Post-marking amplification obeys universal geometric laws. 

2. Whether amplification is efficient depends on physical realizability, not search space 

size. 

3. Quantum computing is foundationally required only when classical marking is 

impossible. 

Appendix C clarifies that none of these claims rely on hidden oracle assumptions or circular 

definitions. Each admits concrete falsification. 

Appendix D — Physical Realizability of Lindblad 

Amplification 

 

This appendix resolves the open question raised in Sections 15–20 regarding the physical 

realizability of the ideal post-marking Lindblad amplifier. We show that realizability depends 
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sharply on how the marked state is specified. For unstructured (oracle-defined) marked states, 

local Lindblad dynamics with bounded resources cannot realize the ideal O(1) convergence law 

without exponential overhead. For structured marked states defined by local constraints, 

symmetry, or gapped energy landscapes, polynomial-resource realizations exist. This establishes 

that the marking criterion is not merely classificatory but enforced by physical locality. 

D.1 Model and Assumptions 

We consider an n-qubit system with Hilbert space dimension N = 2^n. Dynamics are generated 

by a Lindbladian 

𝓛[ρ] = Σ_j (L_j ρ L_j† − ½{L_j†L_j, ρ}) 

with the following constraints: 

• Locality: each jump operator L_j acts on at most r = O(1) qubits. 

• Bounded resources: the number of channels J(n) and operator norms ||L_j|| are polynomial in n. 

• Bounded-degree interaction graph. 

• Initial state is maximally mixed or symmetric over computational basis states. 

The target steady state is a pure marked state |m⟩⟨m|, or a small marked subspace M. 

D.2 No-Go Theorem for Unstructured Marks 

Theorem D.1 (Local Lindblad No-Go for Unstructured Marks). 

Let m ∈ {0,1}^n be an arbitrary computational basis state with no polynomial-size local 

description (oracle-defined). Under the above locality and boundedness assumptions, any local 

Lindbladian that concentrates probability mass from the maximally mixed state into |m⟩⟨m| with 

success ≥ 0.99 requires time at least Ω(2^{cn}) for some c > 0, or equivalently hides exponential 

cost in channel count or operator strength. 

Sketch of argument. 

The ideal jump operator |m⟩⟨u| couples |m⟩ to all N−1 basis states simultaneously. Any r-local 

operator can only access O(2^r) degrees of freedom. To funnel probability from N−1 states into 

|m⟩ therefore requires either visiting an exponential number of configurations sequentially or 

encoding exponential information into the generator. Lieb–Robinson bounds imply finite speed 

of information propagation, preventing global symmetry breaking in polynomial time. 

Equivalent lower bounds arise from conductance and spectral-gap arguments for local 

Markovian dynamics with a needle-like stationary distribution. 

Corollary. 

For oracle-defined unstructured search problems, the ideal O(1) Lindblad amplification law is 

not physically realizable under locality. Grover’s Ω(√N) bound therefore survives as a physical, 

not merely query-theoretic, constraint. 
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D.3 Constructive Realizability for Structured Marks 

Theorem D.2 (Poly(n) Realizability for Structured Marks). 

Suppose the marked state m (or marked set M) is specified as the unique satisfying assignment of 

a family of k-local constraints with bounded-degree factor graph, or as the unique ground state of 

a local Hamiltonian with spectral gap Δ ≥ 1/poly(n). Then there exists a local Lindbladian with 

polynomially many k-local jump operators whose unique steady state is supported on M, and 

whose convergence time is polynomial in n. 

Construction. 

For constraint-defined marks, each violated constraint C_α defines a local dissipator L_α that 

penalizes the violating subspace and pumps toward the satisfying subspace. For gapped 

Hamiltonians, standard Davies or thermal Lindbladians drive the system toward the ground state 

with mixing time O(poly(n)/Δ). In both cases, convergence depends on the same structural 

propagatability conditions that govern classical belief propagation. 

D.4 Resolution of the Lindblad Realizability Question 

Combining Theorems D.1 and D.2 yields a sharp resolution: 

• Unstructured (oracle-defined) marks: no poly(n) Lindblad realization; amplification collapses 

to Grover-like scaling. 

• Structured marks (constraints, symmetry, gaps): poly(n) Lindblad realization exists; 

amplification reflects classical propagatability. 

Thus the apparent O(1) vs O(√N) contrast is not a paradox. The O(1) law is a universal post-

marking concentration dynamic, but physical realizability enforces the same boundary identified 

by the marking criterion. 

D.5 Implication for the Framework 

This appendix shows that the marking/amplification separation is not merely conceptual. 

Locality and bounded resources enforce it dynamically. Quantum advantage arises only when 

quantum mechanics is required to create the mark itself; amplification and commitment are 

otherwise classical or dissipative processes constrained by structure. 

This resolves the Lindblad realizability question in the strongest form currently possible and 

closes the logical loop of the framework. 
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