The Scope of Quantum Computing: A
Clarification

Why Most "Quantum" Problems Don't Require Quantum
Mechanics

Quantum computing is to computation what particle accelerators are to physics: essential for a
narrow class of problems, irrelevant for most.

Plain Language Summary
When Is Quantum Computing Actually Necessary?

Quantum computing is often presented as a solution to problems that are "hard" for classical
computers—problems with enormous search spaces, complex constraints, or exponentially many
possibilities. From this perspective, it is natural to assume that many such problems must
therefore require quantum mechanics.

Our results suggest that this intuition, while understandable, is incomplete.

To clarify when quantum computing is genuinely necessary, it is helpful to separate three distinct
stages that are frequently conflated in discussions of quantum advantage:

e Marking — creating any reliable signal (a tag, score, constraint, or evidence) that
distinguishes correct possibilities from incorrect ones'

o Amplification — concentrating probability or weight onto those marked possibilities
(can be achieved via dynamics that preserve or exploit the asymmetry)

e Commitment — producing a definite outcome or answer (measurement, inherently
irreversible)

' In technical terms, a "mark" is any physically instantiated asymmetry correlated with
correctness—often created by measurement, constraint enforcement, or energy biasing—and
typically involves irreversible record formation.

This decomposition is not arbitrary; it corresponds to three physically distinct operations, each
with different resource requirements.



The central conclusion of this work is that only the first of these stages sometimes requires
quantum mechanics.

Marking vs Amplification

Once a possibility has been physically marked—even weakly—the remaining steps do not
intrinsically require quantum effects. Probability mass can be concentrated onto marked regions
using entirely classical mechanisms such as dissipation, feedback, structured propagation of
information, or constraint enforcement. A final answer can then be obtained by an irreversible
commitment to one outcome.

In other words:

Quantum mechanics is not required to amplify answers or to read them out.
It is required only when the act of marking correctness is itself quantum.

This distinction resolves much of the confusion surrounding claims of quantum computational
advantage.

Problems That Do Not Require Quantum Computing

Many problems that are widely described as "quantum computing problems" do not, in fact,
require quantum mechanics in a foundational sense.

These include:
o Constraint satisfaction problems, such as scheduling, routing, and many SAT-like

problems, where correctness is defined by classical rules
e Error correction and diagnosis, where measurements or syndromes already provide

physical marking

o Bayesian inference and probabilistic reasoning, where evidence naturally marks
hypotheses

e Optimization problems, where energy, cost, or loss functions provide classical marking
signals

In all of these cases, the notion of correctness can be expressed and physically marked using
classical processes. While the search space may be very large, the difficulty does not lie in
amplifying or selecting a marked answer once it exists. Instead, it lies in how efficiently marking
signals are produced or propagated—something that can often be done classically when the
problem has structure.

The size of the search space alone does not determine whether quantum computing is
necessary.



Problems That May Benefit from Quantum Computing

There exists an intermediate class of problems where quantum computing may offer advantages,
even though it is not strictly required.

Examples include:

e Certain cryptographic or algebraic problems where relevant structure is difficult to
extract classically

o Tasks where evaluating correctness efficiently requires simulating quantum
evolution

o Situations where interference or phase information assists in constructing marking
signals

In these cases, quantum mechanics can help create the mark more efficiently. However, once a

mark exists, amplification and answer recovery still do not intrinsically depend on quantum
hardware.

Problems That Truly Require Quantum Computing

A smaller class of problems genuinely requires quantum computing because correctness itself is
quantum-defined.

These include:
o Simulating quantum systems whose properties have no classical description
e Determining quantum features such as entanglement or phase relationships

o Tasks where the "answer" cannot be expressed as a classical predicate

Here, quantum computing is not merely advantageous—it is essential. No classical marking
mechanism exists for these problems.

A Practical Rule of Thumb

A useful way to assess whether a problem truly requires quantum computing is to ask:

Can the notion of correctness be physically marked using classical processes such as
constraints, energy, measurements, or evidence?

o Ifyes, then quantum computing is not intrinsically required.
e Ifno, and correctness itself depends on quantum properties, then quantum computing is
essential.



Implications

When this distinction is applied across the range of problems currently described as quantum
computing applications, it suggests that a minority—plausibly on the order of 5-15% under the
admissibility criterion used here—require quantum mechanics in a foundational sense.' The
majority either do not require quantum computing at all or may benefit from it only as an
optional or auxiliary tool.

This clarification does not weaken the case for quantum computing. On the contrary, it
strengthens it by placing quantum advantage on clear physical ground. Quantum computers are
not general-purpose replacements for classical computers; they are specialized tools for problems
where the definition of correctness is inherently quantum.

Understanding this boundary helps guide research, investment, and application development
toward domains where quantum computing is genuinely indispensable.

Abstract

When can a single measurement recover a fact hidden among exponentially many possibilities?
We present a unified framework based on information geometry that answers this question for
both classical and quantum systems.

The core mechanism is that marking a correct answer induces geometric asymmetry in
probability space, and natural gradient flow under the Fisher—Rao metric concentrates
probability mass into the marked region. This flow is realized classically via belief propagation
on structured constraint graphs, and quantum-mechanically via Lindblad dynamics with
engineered dissipation.

We demonstrate three key results:

1. Classical sufficiency: When problem structure compresses the hypothesis space (low
treewidth, sparse constraints), single-shot recovery succeeds without quantum resources.
We validate this on a 200-bit system (10 nominal possibilities) and show that LDPC
decoding—deployed in every 5G phone—is an instance of this mechanism.

2. Structural boundary: Single-shot recovery fails when treewidth is high or constraints
are dense. The framework precisely characterizes when classical methods break down.

3. Quantum regime: For unstructured problems where classical propagation fails, we
derive a Lindblad-based amplifier achieving O(1) resource scaling versus Grover's
O(VN). The open question is whether this can be realized with polynomial physical
resources.



When we separate marking from amplification, we find that a minority—plausibly on the order
of 5-15% under the admissibility criterion used here—of problems commonly labeled as
"quantum" actually require quantum mechanics in a foundational sense.! In most cases, the
difficulty lies in structure or optimization, not in quantum physics itself. The contribution is not a
quantum speedup claim, but a decision framework: given a problem's structure, does it require
quantum resources or not?
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1. Introduction: The Real Question

The question "do we need a quantum computer for this?" is usually framed in terms of
computational complexity: P vs BQP, oracle separations, query lower bounds. This framing,
while rigorous, often obscures the practical question engineers actually face:

Given the structure of my problem, can I solve it classically, or do I need quantum
resources?

This paper provides a geometric answer. The key insight is:

Single-shot fact recovery succeeds when probability mass can be concentrated via
structured propagation. The question is whether that structure exists classically or must be
supplied quantum-mechanically.

Several components of the present framework resemble ideas that appear separately in existing
literatures: oracles in query complexity implicitly “mark” solutions, local evidence propagates in
constraint satisfaction problems, and engineered dissipation can pump probability mass in open
quantum systems. What is new here is not the introduction of another amplification mechanism,
but the recognition that these disparate constructions are instances of a single physical process
governed by information geometry. Query complexity treats marking as an abstract oracle;
constraint satisfaction treats propagation as a combinatorial procedure; dissipative quantum
computation treats pumping channels as given generators. By instead defining marking as a
physically instantiated asymmetry correlated with correctness, and analyzing amplification as
natural-gradient flow under the Fisher—Rao metric, we identify a substrate-independent
mechanism that applies equally to classical and quantum inference. This reframing shifts the
classical-quantum boundary: quantum computing is not required to amplify or commit to
marked solutions, but only in those cases where no classical physical marking process exists at
all. The resulting criterion is neither a restatement of treewidth conditions nor a reinterpretation
of oracle models; it yields a new, falsifiable classification of when quantum resources are
foundationally necessary.

1.1 The Mechanism in One Sentence

Marking creates local asymmetry. Structure (constraints, geometry) propagates that asymmetry
globally. Readout extracts the answer in one shot.

o If structure exists classically (sparse constraints, low treewidth) — classical BP suffices

o If structure is absent classically but can be created via coherence/entanglement —
quantum helps

e Ifno structure exists at all — nothing helps; you must search
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1.2 Scope and Limitations

This framework does not address the cost of identifying or computing the mark. It
addresses the dynamics of probability concentration affer a physical marking exists. This is
analogous to:

o Post-selection amplification: Given that an event occurred, amplify its signal
e Error-syndrome processing: Given syndrome bits, decode the logical state
o Constraint propagation: Given local evidence, infer global structure

The relevant question is not "can we find the needle?" but rather: given that the needle has been
marked, what is the minimal cost to extract it?

1.2.1 A Taxonomy of Difficulty: Marking Cost vs Structural Propagation

The statement "this framework does not address the cost of computing the mark" is not a
disclaimer of weakness; it is a deliberate separation of concerns. Many debates about quantum
advantage implicitly merge three distinct costs into one:

1. The cost of creating a physical mark
2. The cost of propagating that mark into global concentration
3. The cost of committing to a fact
This paper isolates (2) and (3), and treats (1) as problem-dependent.
A useful classification treats two axes as independent:
e Marking cost: how expensive is it to produce a physically instantiated asymmetry
correlated with correctness?
o Structural propagatability: does the problem admit low-complexity global propagation

of local marks (e.g., low treewidth, sparse factorization, symmetry reduction)?

This yields three regimes:

Regime Marking Structure Outcome
C!assmal Cheap Present Locql marks propagate efficiently (XQR cha;ns, LDPC,
wins tree inference). Single-shot recovery is classical.

Mark exists but classical propagation blocked by high

glilal?tt;llzll Cheap Absent  treewidth. Engineered quantum dynamics may
g P concentrate weight—but physical realizability is open.
Outside Expensive Marking cost dominates; framework does not claim
. Any
scope (dominant) advantage.
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Clarification: "Outside scope" refers to cases where the cost of producing the mark dominates
the total computation. If marking is expensive but structure is present, the overall task may still
be tractable—one pays the marking cost once and then propagates efficiently. The excluded
regime is specifically: marking is as hard as solving the problem and no structural leverage is
available to reduce that cost.

This taxonomy preempts the "relocation" objection by making it explicit: the framework is not
a universal solver; it is a decision framework that tells you whether the remaining task—
fact recovery after marking—is classical or potentially quantum.

Note on the continuum: In practice, both axes admit gradations. Marking may be partially
informative (weak likelihood ratios), and structure may be approximate (nearly tree-like graphs
where loopy BP converges). The framework's predictions degrade gracefully: weaker marks
require longer propagation or more measurements; approximate structure yields approximate
single-shot recovery. The binary presentation is for clarity; the underlying mathematics is
continuous.

1.2.2 A Third Filter: Taylor Admissibility and Finite Distinguishability

The taxonomy above separates difficulty into (i) the cost of producing a mark and (ii) the
availability of structure that propagates marks into global concentration. A further refinement
becomes available if physical reality imposes a hard bound on operational distinguishability—
i.e., a maximum number of physically distinguishable states within a causal patch, together with
a minimum meaningful resolution for measurement and computation. The BCB framework
proposes a dimensionless bound LT (Taylor's Number) that limits the total number of
distinguishable states accessible to any observer within a single causal horizon, implying that
attempts to resolve distinctions beyond this bound become physically meaningless.

We call this additional constraint the Taylor admissibility filter:

Taylor admissibility (conditional). A computation is Taylor-admissible if it does not require
more than L T mutually distinguishable states (or, equivalently, does not require physical
precision finer than the implied minimum meaningful resolution). If an operation requires
distinctions beyond this bound, the operation may remain mathematically definable but loses
physical meaning as an executable process.

Why this extends the category of solvable physical problems

Complexity theory classifies difficulty in abstract models that permit unlimited precision,
unlimited state space, and arbitrarily fine distinctions. A Taylor admissibility constraint changes
the operational question: some tasks are "hard" only because they assume unphysical
distinguishability. Under a finite distinguishability bound, such tasks collapse into finite-
resolution variants that are (1) physically meaningful and (ii) often decidable by bounded search,
because the underlying state space becomes effectively finite.
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Importantly, this does not claim that abstract hardness classes (e.g., NP, #P, undecidability)
collapse in mathematics. It claims something narrower and operational: some mathematical
problems cease to be physically well-posed once they demand distinctions beyond the Taylor
domain.

Integrating the third filter into the decision framework
With Taylor admissibility, the practical classification becomes a three-stage decision:

1. Mark availability: Is there a physically instantiated asymmetry correlated with
correctness?

2. Structural propagatability: Does the problem admit efficient global propagation of
marks (e.g., low treewidth, sparse factorization, symmetry reduction)?

3. Taylor admissibility: Does the computation remain within the physically meaningful
distinguishability budget (< L T, or equivalently precision > 1/L_T)?

The first two determine whether recovery after marking is classical or potentially quantum. The
third determines whether the posed task is physically meaningful at all.

Toy Example: Precision-Driven Hardness That Collapses Under a Distinguishability Cutoff

To illustrate how a Taylor admissibility bound can enlarge the class of physically solvable tasks,
consider a decision problem defined on real numbers:

Near-equality decision (formal). Given two real numbers x, y € [0,1] presented as black-box
oracles, decide whether x =y or [x —y| >2™,

In the abstract real-RAM / oracle model, the difficulty can scale with m, because the problem
demands resolving arbitrarily fine differences. Now impose a physical resolution limit &€ min
implied by the Taylor bound (conceptually € min ~ 1/L_T). I[f 2™ <& min, the "gap" case [x —
y| = 2™ becomes operationally indistinguishable from equality: the problem is no longer
physically well-posed.

Under Taylor admissibility, the physically meaningful version of the task becomes:

Decide whether x =y or [x — y| > & min.

This variant is now finite-resolution: the number of distinguishable values in [0,1] is bounded,
and the decision procedure reduces to a finite measurement-and-threshold test whose complexity
does not diverge with m. The "hardness" was not removed by a new algorithm; it was removed
because the original formulation required distinctions that are not physically representable.

This is the general pattern:

o Without a distinguishability bound: hardness can arise from unlimited precision
requirements
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e With a distinguishability bound: problems that demand sub-¢ min distinctions are
filtered out as physically meaningless, and the remaining physically meaningful tasks
reduce to finite-resolution decision problems

Practical Interpretation for This Paper

If a Taylor admissibility bound holds, then the admissibility-based classification in this paper
becomes an upper bound on quantum advantage. That is: even when classical structure is absent,
a proposed quantum advantage must still survive the additional constraint that the required
coherence/phase resolution remains physically admissible.

We emphasize that the main results of this paper do not depend on Taylor admissibility; it is
presented here as a conditional refinement that further sharpens the classical-quantum boundary
by separating (i) what is efficiently recoverable given marks, from (ii) what is physically
meaningful to compute at all.

1.3 Document Structure

1. Sections 2—6: Core theory (Fisher—Rao metric, replicator dynamics, Lyapunov
convergence)

Section 7: Classical realization via factor graphs and belief propagation
Section 8: Worked example (4-variable XOR chain)

Section 9: Stress test (200-bit system, 10%° nominal possibilities)

Section 10: Real-world application (LDPC decoding)

Section 11: Empirical validation

Section 12: The structural boundary—when classical fails

Section 13: Case study—MaxCut/QAOA benchmark (doesn't need QC)

9. Section 14: Case study—Google Willow (genuinely needs QC)

10. Sections 15-17: Quantum implementation via Lindblad dynamics

11. Section 18: Binary special case and EF connection

12. Section 19: Experimental protocol

13. Section 20: Compressed ancilla-mediated model

14. Section 21: Discussion—the proper role of quantum computing

15. Sections 22-23: Falsification criteria and conclusions

16. Appendix A: Physical admissibility and the collapse of quantum necessity

e A I

1.4 The Central Theorem (Full Formalization)

We now state the framework's core result with full mathematical precision, including explicit
complexity class connections.
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1.4.1 Formal Definitions

Definition 1 (Computational Problem). A computational problem P is a relation P € X* x ¥*
where (X, y) € P means y is a valid solution to instance x. We write Sol(x) = {y : (x, y) € P} for
the solution set.

Definition 2 (Probability Simplex). For a finite set Q with |Q2] = N, the probability simplex is:
AQ)={p:Q—[0,1][Z {0€Q} p(0)=1}

Definition 3 (Fisher—Rao Distance). The Fisher—Rao distance between p, q € A(Q) is:
d_FR(p, q) =2 arccos(Z_o V(p(®)q(w)))

This is the geodesic distance under the Fisher—Rao metric g"FR_{ij} =3d {ij}/p 1.

Definition 4 (Classical Marking Mechanism). A problem P admits a (A, T, S)-classical
marking mechanism if there exists a probabilistic Turing machine M such that:

1. Runtime bound: M(X, y) halts in time T(|x|) using space S(|x|)
2. Correctness bias: For all instances x with [Sol(x)| > 1:
o Ify € Sol(x): PriM(x,y) = 11> (1 +e"V)"{-1} - e"A=06(N)
o Ify ¢ Sol(x): Pr[M(x,y)=1]1<(1 +e")N{-1} =1 -0(L)
3. Physical realizability: M produces an irreversible classical record (the output bit and any
intermediate measurements)

The quantity A > 0 is the marking strength. The function o(A) = e"A/(1+e™A) is the sigmoid
concentration bound.

Definition 5 (Constraint Graph and Treewidth). For a problem P with solution space Q = ¥"n,
the constraint graph G_P = (V, E) has:

e Vertices V = {l, ..., n} (variable indices)
o Edge (i,)) € E iff 3 constraint involving both variables i and j

The treewidth tw(G P) is the minimum width over all tree decompositions of G_P.
Definition 6 (Factored Distribution). A distribution p € A(X"n) is (k, m)-factored if:
p(x) = (1/Z) [T{a=1}"{m} y_a(x{0a})

where each factor y_a depends on at most k variables (|0a| < k), and Z is the partition function.
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1.4.2 The Marking Sufficiency Theorem

Theorem 1 (Marking Sufficiency — Main Result).
Let P be a computational problem with:
e Solution space Q = X"n with |X| = q (alphabet size)
e A (A, poly(n), poly(n))-classical marking mechanism M
e Constraint graph with treewidth tw(G_P) <k
Then there exists a randomized classical algorithm A such that:
1. Success probability: Pr[A(x) € Sol(x)] > o()) - € for any € > 0
2. Time complexity: A runs in time O(n - q"*k - poly(1/g))
3. Space complexity: A uses space O(n - q"k)

In particular, if k = O(1) and A = Q(1), then A runs in polynomial time with constant success
probability.

Proof:

Step 1 (Marking induces posterior concentration). The marking mechanism M defines a
likelihood function: L(y) = Pr[M(x,y) = 1]

By the marking bias condition, for y* € Sol(x) and y & Sol(x): L(y*)/L(y) > o(A)/(1-6(1)) = e™A
Starting from uniform prior n(y) = 1/N, the posterior is: p(y | M=1) < n(y) - L(y)
The posterior probability ratio satisfies: p(y* | M=1) / p(y | M=1) > e"A

Step 2 (Fisher—Rao flow concentrates mass). Define the marked-set indicator f(y) = 1[y € Sol(x)]
and the objective: F(p) =E p[f] =X {y € Sol(x)} p(y)

The Fisher—Rao natural gradient flow dp/dt =p - (f - E_p[f]) satisfies (Theorem, Section 6):
dF/dt = Var p(f) > F(1-F)

This gives exponential concentration: F(t) — 1 as t — oo with rate independent of N.
Step 3 (Belief propagation realizes the flow for bounded treewidth). When p admits a (k, m)-
factored representation with factor graph of treewidth <k, belief propagation computes exact

marginals in time O(n - q"k) per iteration [Lauritzen-Spiegelhalter 1988].

The BP fixed point satisfies the same concentration as the Fisher—Rao flow (Section 7). After
O(log(1/¢)) iterations, the marginals satisfy: £ i H(p_i) < H(p_initial) - Q(A)

where H denotes entropy.
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Step 4 (Single-shot sampling succeeds). Sample ¥ by drawing each coordinate independently: § i
~p_i(- | evidence).

By the concentration bound and union bound over n coordinates: Pr[y € Sol(x)] > 6(A) - O(n -
e"{-Q)})=>0(d) - ¢

for L = Q(log(n/e)). m
1.4.3 Complexity Class Connections

The theorem has direct implications for standard complexity classes:
Corollary 1 (P vs NP Connection). Let P be an NP problem with:

e Polynomial-time verifiable witnesses (standard NP definition)
o Constraint graph with treewidth k = O(1)

Then P € P.

Proof: The NP verifier provides a (A, poly(n), poly(n))-marking mechanism with A = Q(1). By
Theorem 1, the problem is solvable in polynomial time. m

Corollary 2 (BQP Separation Criterion). A problem P requires quantum resources (i.e., P €
BQP \ P) only if at least one of:

1. P admits no polynomial-time classical marking mechanism, OR
2. P has super-constant treewidth AND the marking is weak (A = o(1))

Proof: Contrapositive of Theorem 1. If polynomial-time classical marking exists with A = Q(1)
and tw =0O(1),then P € P € BQP,soP € BQP\P. m

Corollary 3 (Quantum Simulation is Necessary). For the problem "compute expectation value
(y|O|y) for local observable O on n-qubit state |y)":

e No classical marking mechanism exists (the quantity is quantum-defined)
e Therefore the problem may require quantum resources

This is consistent with the BQP-completeness of local Hamiltonian problems [Kitaev 1999].

Corollary 4 (Grover Lower Bound Compatibility). For unstructured search (finding marked
item in N-element database with oracle access):

e Classical marking strength A = 0 (no bias without querying)
e Treewidth =N - 1 (fully connected)
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Therefore Theorem 1 does not apply, and the Q(VN) quantum lower bound [BBBV 1997] is not
contradicted.

1.4.4 The Marking Hierarchy

We define a hierarchy of problems based on marking properties:

| Class H Definition H Examples H Classical? ‘
MARK]poly, Poly-time marking, O(1) | Tree-structured CSP,
o(1)] treewidth LDPC decoding Yes (Theorem 1)
MARK]poly, Poly-time marking, O(log ||Bounded-pathwidth Yes (quasi-poly
O(log n)] n) treewidth optimization time)
MARKIpoly, Poly-tlmq marking, super- Dense random CSP Unknown
o(log n)] log treewidth

. . Quantum simulation, Shor's .
% -

MARK]0, ] No classical marking algorithm QC-required

Conjecture (Marking Dichotomy). For NP problems: either MARK[poly, O(1)] (efficiently
solvable) or MARK]O0, *] (potentially QC-required). The intermediate cases collapse to one of
the extremes under standard complexity assumptions.

1.4.5 Formal Falsifiability

Falsification Criterion. Theorem 1 is falsified by exhibiting a problem P such that:

1. P admits a (A, poly(n), poly(n))-classical marking mechanism with A = Q(1)
2. tw(G_P)=0(1)
3. No polynomial-time classical algorithm solves P with probability > 6(A) - o(1)

Under standard complexity assumptions (P # NP), no such problem exists.

Quantum Advantage Criterion. A problem P exhibits genuine quantum advantage (P € BQP \
BPP) only if:

1. P& MARK][poly, O(log n)], AND

2. PeBQP

This criterion is satisfied by: quantum simulation, period finding (Shor), boson sampling,
random circuit sampling. It is NOT satisfied by: MaxCut, TSP, portfolio optimization, drug
docking, LDPC decoding.
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2. Probability Geometry and the Fisher—Rao Metric

We work on the probability simplex A with coordinates p;i>0, > pi = 1.

The Fisher—Rao metric is the unique Riemannian metric (up to scale) that is invariant under
sufficient statistics:

g"FR 1j=0 1j/p_1

In the natural coordinates (p_i) on the simplex (with the normalization constraint handled by
projection to the tangent space), the Fisher—Rao metric takes the diagonal form shown above.

This uniqueness was established by Cencov (1982), who proved that the Fisher—Rao metric is the
only Riemannian metric on probability simplices that is invariant under congruent embeddings
by Markov morphisms—a powerful result that grounds information geometry in category-
theoretic terms. [CITE: Cencov, N.N. (1982). Statistical Decision Rules and Optimal Inference.
AMS.]

This metric has two key properties:

o It measures statistical distinguishability between nearby distributions
o It weights changes in rare events more strongly than common ones

The geodesic distance under this metric is related to the Bhattacharyya coefficient and provides
the natural notion of "how different" two probability distributions are.

3. Natural Gradient Flow on the Simplex

Given a scalar functional F(p), the natural gradient (gradient with respect to Fisher—Rao
geometry) projected onto the simplex yields the replicator equation:

dp /dt=mp i(0F/op i—%X kp kJF/op k)
where 1 > 0 is a learning rate. This flow:
e Preserves normalization (3 pi = 1 for all t)
o Follows the steepest ascent direction in information geometry

e Is the continuous-time limit of multiplicative weight updates

The replicator equation appears throughout evolutionary game theory, population genetics, and
machine learning (natural policy gradient, mirror descent).
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4. Stage A: Amplification of the Marked Set

Let M c {1, ..., n} be the set of marked outcomes. Define the total marked probability mass:
P M(p)=Z {ieM}p i

Choose the objective functional:

F A(p)=1InP_M(p)

Computing the natural gradient yields the dynamics:

Fori€ M:dp i/dt=mp i(1/P. M—1) [fori€ M]

Fori & M: dp i/dt=-np_i[fori¢& M]

Summing over i € M gives a closed equation for the total marked mass:

dP M/dt=n(1-P_M)

with exact solution:

P M(t)=1- (1 —P_M(0)) er(-—mt)

Key result: Once marking exists, Fisher—Rao geometry guarantees monotonic exponential
concentration into the marked set. The rate depends only on 1, not on the structure of M or the
number of outcomes n.

These dynamics can also be viewed as a continuous-time biased random walk on the simplex:

marking supplies a drift toward M, while the Fisher—Rao geometry ensures the drift respects
probabilistic distinguishability (a geometric analogue of biased MCMC).

5. Stage B: Tie-Breaking Within the Marked Set

To select a single outcome inside M when |M| > 1, introduce a weak score ai on M with a unique
maximum at i*.

Define the combined objective:

F(p)=InP M(p)+eX {ieEM}a ip iwhere0<e K1
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The resulting dynamics are:
Fori € M:dp i/dt=mp i(1/P. M—1+¢(a i—A)) [fori € M]
Fori g M:dp i/dt=-n(1+¢cA)p_ i[forig M]

where A=3X {k € M} p_k a_k is the mean score.
5.1 Conditional Dynamics Inside the Marked Set

Define the conditional distribution inside M:
qi=p i/P Mwith {ieEM}qi=1

After cancellation of Stage-A terms, q;i obeys:
dq /dt=meq i(a i—2a)

wherea=% {JEM} qjaj.

This is the standard replicator equation on the reduced simplex. If a; has a unique maximizer
1*, then:

q(t) = o _{i*}ast— 0

6. Lyapunov Function and Convergence Guarantee

Define the Lyapunov function:

V(@) =-Ingq_{i*}

Its time derivative satisfies:

d/dtinq {i*} =ne(a {i*} —2)>0

with equality only at the fixed point q = &;*.

Theorem: The combined two-stage dynamics converge to the unique marked winner:

1. Stage A concentrates all mass into M with exponential rate n
2. Stage B selects the highest-scoring element within M with rate ne
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The separation of timescales (¢ << 1) ensures Stage A completes before Stage B becomes
dominant.

7. Classical Realization: Factor Graphs and Belief
Propagation

This section demonstrates that single-shot answer recovery can be achieved using probabilities
alone, without recourse to quantum amplitudes. The mechanism relies on compressed
probability representations and admissible global propagation of local marking.

7.1 Factor-Graph Representation

Let the unknown answer be encoded in a vector of binary variables x = (xi, ..., X) With X; €
{0,1}. Rather than representing the full joint distribution explicitly (which requires 2"
parameters), we define it implicitly via a factor graph:

pxX)=1/Z) 11 ay a(x o)

where each factor ya enforces a local constraint over a small subset of variables. This
representation compresses the probability simplex onto a low-dimensional manifold.

7.2 XOR (Parity) Chain Constraints
Consider a chain of XOR constraints:

X {itl} =x i@ a iwherea i€ {0,1}
implemented by factors:

voi(x i, x {it1})=1x {itl}=x iD a i

These constraints imply that once X is fixed, the entire configuration is uniquely determined.
The hypothesis space collapses to exactly two globally admissible assignments, corresponding to
xi=0orx;=1.

7.3 Marking as Local Probabilistic Evidence

Marking is introduced as local evidence on a single variable x; via a unary potential:

o t(x t)y=eifx t=v* else 1
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where v* is the correct value and A > 0 controls marking strength.

This operation biases the distribution without explicitly enumerating the correct global
assignment—a probabilistic analogue of admissible constraint reinforcement.

7.4 Exact Belief Propagation on Trees

Because the factor graph is a tree, belief propagation (BP) yields exact marginal distributions
after finite message-passing sweeps. Messages propagate deterministically through XOR
constraints, either preserving or inverting likelihood ratios.

Important clarification: Exactness on trees is a strong guarantee—BP computes the true
posterior marginals, not merely consistent fixed points. On graphs with cycles, BP may converge
to incorrect marginals or fail to converge entirely. The single-shot recovery guarantee therefore
depends critically on tree structure (or low treewidth), not merely on BP's applicability.

For any variable xx, BP yields the marginal:

P(x_k=v* k)=e /(1 +e ) =o(l)

where v*, is the value implied by parity consistency with the marked node, and ¢ denotes the
sigmoid function.

7.5 Single-Shot Readout and Global Recovery

After propagation:

1. Perform a single readout of x: (or any variable)
2. Reconstruct the full solution x* deterministically using XOR relations

The probability of correct global recovery in one readout is:
P(success) =e*A/(1+e*N)=1-¢(D)
To achieve failure probability 9, it suffices that A > In((1-9)/9).

Remark (geometry—BP connection). On trees, BP can be interpreted as coordinate-wise
optimization of a factored variational objective (Bethe free energy), and its message updates
correspond to a structured, geometry-respecting flow on the manifold of factorized distributions.
This helps explain why BP realizes the same "mark — propagate — concentrate" principle as
Fisher—Rao natural gradient flow, but in the discrete, factor-graph setting. [CITE: Yedidia,
Freeman, & Weiss (2005). Constructing free-energy approximations and generalized belief
propagation algorithms. IEEE Trans. Info. Theory.]
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7.6 Structural Requirements for Single-Shot Recovery

Single-shot recovery in this classical setting relies on three features:
1. Implicit representation of probability via sparse constraints
2. Marking implemented as admissible local evidence
3. Global concentration achieved through structured propagation rather than repeated
sampling
Limitation: For a factor graph with n variables and treewidth k, junction-tree BP requires O(n X
2K) computation and O(2%) memory. When k = O(1), this is linear in the number of variables.

When k = O(n), complexity becomes O(n x 27)—exponential in problem size—and single-shot
recovery via BP is no longer efficient.

8. Worked Example: Four-Variable XOR Chain

This section provides a fully explicit demonstration of the mark — propagate — single readout
mechanism.

8.1 Setup

Consider four binary variables (Xo, X1, X2, X3) € {0,1}* subject to XOR constraints:
x1=x0D I, x:=x1 PO, xs=x2P 1

8.2 Admissible Global Assignments

The constraints restrict the hypothesis space to exactly two assignments:

Branch xo x1 X2 X3
A 0110
B 1 001

All other configurations are inadmissible.
8.3 Marking via Local Evidence

Apply local evidence at node x2 with preferred value x> = 1 and marking strength A = In(9) =
2.197:
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e2(x2) =9 ifx2=1, else 1
8.4 Posterior Calculation

Evaluating evidence on admissible branches:

e Branch A has x> =1 — weight 9
e Branch B has x. =0 — weight 1

Normalizing: P(A | mark) = 9/10 = 0.9, P(B | mark) = 0.1
8.5 Propagated Marginals

The branch posterior induces marginals on all variables:

Variable P(=0) P(=1)

Xo 09 0.1
X1 0.1 09
X2 0.1 09
X3 09 0.1

This global bias arises from admissible probability propagation, not enumeration.
8.6 Single-Shot Readout

Perform one readout of Xo:

e With probability 0.9: xo = 0 — reconstruct Branch A v/
e With probability 0.1: xo = 1 — reconstruct Branch B X

Success probability: P(success) = 9/10 =e” A/ (1 + e™\) vV

This matches the general success law from Section 7.5.

9. Stress Test: 200-Bit System (10°° Nominal
Possibilities)

To demonstrate the framework at scale, we test a system that looks intractable but is solved in a
single shot.
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9.1 Problem Setup

Consider a chain of 200 binary variables with XOR constraints:
x {itl}=x i@Paiai€e{0,1},i=1,...,199

Naive view: The hypothesis space contains 22 =~ 1.6 x 10 candidate assignments—a number
exceeding the estimated atoms in the observable universe.

Structured view: The constraints compress the space completely. Once x: 1s fixed, all 200
variables are determined. There are exactly two globally admissible assignments.

9.2 Marking and Propagation

Apply local evidence at a single variable x; with marking strength A = In(99) ~ 4.595:
o t(x t)=99ifx t=v* else 1

Because the graph is a tree, belief propagation is exact. After propagation:

P(correct branch) = () = e\ / (1 + e*A) =99/100 = 99%

A single readout of x: then reconstructs the full 200-bit solution deterministically via XOR
relations.

9.3 Empirical Results

| Parameter H Value |
|Chain length n HZOO |
|Hypothesis space H22°° ~1.61 x 10% |
|Marking strength A Hln(99) =4.5951 |
|The0retical success H99.0000% |
[Empirical success (20,000 trials) 199.0450% |
|BP Vs exact posterior error HS 10777 |

The empirical success rate matches theory to within sampling noise. No qubits, no quantum
amplitude interference—purely classical probability propagation.

9.4 What This Shows

1. A problem with nominal size 10 is solved in one shot
2. Success probability is set by A alone, not by N
3. Structure + local marking + global propagation = single-shot recovery
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4. The mechanism is purely classical (no Hilbert space required)
9.5 What This Does Not Show

This demonstration does not solve unstructured search. The "difficulty" has been relocated:

The honest boundary: Does the problem compress into a low-treewidth, factorable structure
where marking can be injected locally?

For XOR chains (treewidth 1), the answer is yes. For arbitrary constraint satisfaction (high
treewidth), the answer is no—BP becomes exponentially costly, and single-shot recovery fails.

This is not a limitation of the framework; it is the framework's scope. The contribution is
identifying precisely when and why single-shot recovery is possible, not claiming it works
universally.

Beyond treewidth 1. The XOR chain is intentionally minimal (treewidth 1) to isolate the
mechanism. For graphs of bounded treewidth k > 1 (e.g., ladder graphs with k =2 or w x n grids
with k = w), the same mark — propagate picture persists but the computational cost scales as
O(n x 27k). In this regime, "single-shot" behavior degrades gracefully: recovery remains
governed by the effective marking strength while runtime grows exponentially in k, consistent
with the structural boundary (Section 12).

9.6 Supplementary Bounded-Treewidth Experiments (w = 2—4)

To verify graceful degradation beyond treewidth 1, we evaluated a family of w x L grid models
(bounded treewidth = w) with binary variables and local pairwise factors. We applied a unary
mark of strength A = In(99) at one end of the grid and computed the exact marginal at the far end
using transfer-matrix / junction-tree dynamic programming. Exact inference runtime grows as
O(L x 2”w), matching the standard bounded-treewidth scaling, while success probability varies
smoothly with coupling strength and distance—showing a continuous transition from "local
mark only" to "global propagation" rather than a collapse.

Results on w x 20 grids with strong coupling (p = 3.0):

|Grid width wHStates per column (ZAW)HDP runtime (s)”P(target=1 | mark)” o()) ‘
I 12 10.0002 10.9460 10.9900)
2 4 10.0002 10.9899 10.9900)
3 I8 10.0005 10.9900 10.9900)
14 16 10.0020 10.9900 10.9900)
Interpretation:
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1. Treewidth increases cost exponentially via 2*w, exactly as expected from complexity
theory

2. The w=1 case (1D chain) shows finite correlation length decay: even with strong
coupling, the mark attenuates over distance. Additional experiments varying grid length
confirm this: at L=5, P=0.98; at L=30, P=0.92. This is fundamental 1D Ising physics—
information decays exponentially with distance in one-dimensional systems.

3. For w>2 (ladders and grids), redundant paths enable near-perfect propagation: the
mark maintains P=~0.99 regardless of length, because information can flow through
multiple parallel channels

4. At weaker coupling (B=0.5), propagation fails for all w: P~0.50 (no better than
random), illustrating "graceful degradation"

This validates the framework's prediction: bounded treewidth enables efficient inference, but the
constant factor in the exponent matters. The transition from tractable to intractable is smooth,
governed by the interplay between structural width, coupling strength, and propagation distance.
Notably, higher treewidth can improve rather than hinder propagation when it provides
redundant information pathways.

10. Real-World Application: LDPC Decoding

The XOR chain is pedagogically clean but artificially simple. This section demonstrates that the
mark — propagate — single-shot mechanism underlies production error-correction systems
used in 5G, WiFi 6, and deep-space communication.

10.1 The Problem: Noisy Channel Decoding

A sender transmits a codeword x € {0,1}" satisfying sparse parity-check constraints Hx = 0 (mod
2). The channel flips each bit independently with probability p. The receiver observes y =x
noise and must recover x.

Naive view: The codebook contains 2k codewords (k = n — rank(H)), and the receiver must
search among them.

Structured view: The constraints compress the problem. Belief propagation exploits sparsity to
concentrate probability mass onto consistent codewords.

10.2 Mapping to the Framework

Framework concept LDPC realization

Channel observations y; provide log-likelihood ratios A = log[(1—p)/p] *

Marking (local) (D" yid
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Framework concept LDPC realization

Constraints . .

(structure) Sparse parity-check matrix H defines factor graph
Amplification . .

(global) BP message-passing concentrates mass onto valid codewords

Single-shot readout  Hard decision x; = 1[A" {post} < 0] after convergence

This is exactly the paper's thesis: the hard part is creating marks (receiving noisy bits); once
marks exist, geometry/propagation does the rest.

10.3 Runnable Implementation

Note: The code below is a minimal illustrative decoder using a randomly generated sparse
parity-check matrix; production LDPC codes use carefully designed ensembles (degree
distributions, girth, protographs) that produce sharp thresholds and reliable near-capacity
performance.

import numpy as np, math

def gf2 row_reduce(A):
A = (A.copy() & 1).astype(np.uint8)
m, n = A.shape
pivots =[]
r=0
for ¢ in range(n):
pivot = None
for i in range(r, m):
if A[i, c]:
pivot=1i
break
if pivot is None:
continue
if pivot !=1:

Al[r, pivot]] = A[[pivot, r]]
pivots.append((r, c))
for i in range(m):

ifi!l=rand A[j, c]:

Ali] "= Alr]
r+=1
ifr==m:
break
return A, pivots

def gf2 nullspace(H):
H_rref, pivots = gf2 row reduce(H)
m, n = H.shape
pivot_cols = {c for _, ¢ in pivots}
free_cols = [c for ¢ in range(n) if ¢ not in pivot_cols]
basis =[]
for fc in free cols:
x = np.zeros(n, dtype=np.uint8)
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x[fe]=1
for r, ¢ in pivots[::-1]:
row = H_rref]r]
idx = np.where(row == 1)[0]
s=0
for j in idx:
ifjl=c:
s "= x[j]
x[c]=s
basis.append(x)
return np.array(basis, dtype=np.uint8)

def make codeword(basis):

if basis.shape[0] == 0:

return np.zeros(basis.shape[ 1], dtype=np.uint8)
coeffs = np.random.randint(0, 2, size=basis.shape[0], dtype=np.uint8)
x = np.zeros(basis.shape[1], dtype=np.uint8)
for ¢, v in zip(coeffs, basis):

if c:

Xx=v

return X

defrandom_sparse H(m, n, row_w=3):
H = np.zeros((m, n), dtype=np.uint8)
col counts = np.zeros(n, dtype=int)
for i in range(m):
probs = np.exp(-col_counts)
probs /= probs.sum()
cols = np.random.choice(n, size=row_w, replace=False, p=probs)

HI[i, cols] =1
col_counts[cols] +=1
return H

defbp _decode(H, y, p_flip=0.03, iters=80):
m, n = H.shape
var_to_checks = [np.where(H[:, j] == 1)[0] for j in range(n)]
check to vars = [np.where(H[i, :] == 1)[0] for i in range(m)]
eps = le-12
p = min(max(p_{lip, eps), 1 - eps)
1Ir0 = math.log((1 - p) / p)
Lch = np.array([11r0 if bit == 0 else -1Ir0 for bit in y], dtype=float)

v2c¢ = {(j, 1): Lch[j] for j in range(n) for i in var_to_checks[j]}
c2v = {(i, j): 0.0 for i in range(m) for j in check to vars[i]}

for _ in range(iters):
for i in range(m):
vs = check to_vars[i]
forj in vs:
prod=1.0
for k in vs:
ifk==j:
continue
prod *= math.tanh(0.5 * v2c[(k, 1)])
prod = min(max(prod, -0.999999999), 0.999999999)
c2v[(i, j)] = 2.0 * math.atanh(prod)
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for j in range(n):
cs =var_to_checks[j]

foriin cs:
s = Lch[j] + sum(c2v][(ii, j)] for ii in cs if ii !=1)
v2e[(, )] =s

Lpost = np.array([Lch[j] + sum(c2V[(i, j)] for i in var to checks[j])
for j in range(n)])

x_hat = (Lpost < 0).astype(np.uint8)

return x_hat

# --- Single-shot decode demonstration ---
np.random.seed(0)

n, m =200, 100 # 200-bit codeword, 100 parity checks
p_flip=10.03 # 3% bit-flip noise

H =random sparse H(m, n, row_w=3)
basis = gf2 nullspace(H)
x = make codeword(basis)

noise = (np.random.rand(n) < p_flip).astype(np.uint8)
y =X " noise

x_hat=bp decode(H, y, p_flip=p_flip, iters=80)
print("Exact recovery:", np.all(x_hat == x))
print("Bit error rate:", np.mean(x_hat != x))

10.4 Expected Behavior

| Noise level p H Typical outcome ‘
|p <0.05 HExact recovery: True (single-shot success) ‘
|p ~0.08-0.10 HThreshold region (sharp transition) ‘
|p >0.12 HExact recovery: False (decoding fails) ‘

The sharp threshold is the falsification curve: below threshold, single-shot works; above
threshold, it fails. This is the operational boundary of the framework.

Why single-shot fails above threshold: Above threshold, the channel introduces more noise than
the code's structure can resolve. In framework terms: the marks (channel observations) become
too weak relative to the number of consistent codewords, and the posterior fails to concentrate
onto a single codeword. The framework predicts this failure: when effective marking strength
A_eff drops below log(1/3), single-shot success probability falls below 1—5. The threshold is thus
not a phase transition in the code but a crossing of the single-shot success boundary.

This threshold behavior is well characterized by density evolution, which tracks the distribution
of LLR messages under BP iterations and predicts sharp decoding thresholds for LDPC
ensembles. In our framework, the threshold corresponds to when an effective marking strength

A _eff falls below the value required for reliable single-shot commitment under constraint
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propagation. [CITE: Richardson & Urbanke (2008). Modern Coding Theory. Cambridge
University Press.]

10.5 Why This Matters

LDPC decoding is not a toy example. It is:

o Deployed at scale: Every 5G phone, WiFi 6 router, and SSD controller uses variants of
this algorithm [CITE: 3GPP TS 38.212 V17.0.0 (2022). 5G NR; Multiplexing and
channel coding. IEEE 802.11ax-2021. Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications.]

o Capacity-approaching: Shannon proved fundamental limits; LDPC+BP achieves them

o Single-shot in practice: One decode pass typically suffices (no repeated sampling)

The framework's contribution is recognizing that LDPC decoding, quantum error correction, and

the abstract Fisher—Rao flow are instances of the same mechanism: structured constraints +
local marks + global propagation = single-shot recovery.

11. Empirical Validation Across Parameters

11.1 Test Protocol

Beyond the 200-bit stress test, Monte Carlo simulations were performed with:
Random XOR chains of varying length n (up to n = 200)
Uniformly sampled parity bits a; € {0,1}

Marking strength A varied over wide range
No qubits, amplitudes, or Hilbert-space objects

11.2 Results

The empirical single-shot success probability matched the theoretical prediction:
P(success) = e/ (1 +e™\) =o())
to within sampling error across all tested values of A and n.

Additionally, BP marginals matched exact posteriors to numerical precision (maximum absolute
error S 107'7), confirming exactness on tree-structured graphs.
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11.3 Interpretation

These results validate that single-shot answer recovery:
o Works with probabilities alone
e Arises from structured propagation, not quantum interference

e Achieves global concentration from local marking
e Scales with A, not with problem size N

12. The Structural Boundary: When Classical Fails

The preceding sections established that classical single-shot recovery works when structure
exists. This section characterizes precisely when it fails—and thus when quantum resources
might genuinely help.

12.1 The Treewidth Criterion
Belief propagation is exact on trees (treewidth 1). For graphs with treewidth k:
BP complexity = O(n x 2"k)

When k = O(n), this becomes exponential in problem size. Single-shot recovery via classical
propagation fails.

12.2 Examples of Structural Failure

| Problem class HTreewidthHClassical single-shot?
XOR chains 1 v Yes
LDPC codes O(1) v Yes
Tree-structured Bayes nets||1 v Yes
Dense random SAT O(n) X No
Unstructured search O(n) X No
Fully connected MRF O(n) X No

12.3 What Quantum Might Provide

When classical structure is absent, quantum coherence offers an alternative:

1. Superposition creates implicit parallelism over 2" states
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2. Entanglement provides non-local correlations that mimic "global structure"
3. Engineered dissipation can concentrate probability without classical propagation paths

The Lindblad amplifier (Sections 15-20) exploits this: it achieves O(1) concentration even
without sparse classical constraints—provided the dissipative channel can be implemented.

12.3.1 A Crucial Non-Implication

High treewidth is a sufficient condition for belief propagation to lose its tractability guarantees,
but it is not a sufficient condition for quantum advantage. Many high-treewidth problems are
simply hard in any known model, and there is no general evidence that quantum devices
efficiently solve NP-complete instances in the worst case.

Accordingly, this paper does not claim "high treewidth = quantum required."
The correct implication is weaker and more honest:
e Low treewidth = classical propagation works
o High treewidth = classical BP is blocked; whether any physical mechanism—quantum

or otherwise—can replace search is problem-dependent and largely open

The role of treewidth in this framework is therefore diagnostic, not triumphant: it tells you
when the classical single-shot mechanism is available, and when it is not.

12.4 The Honest Tradeoff
Regime Classical Quantum cost Winner
cost
|LOW treewidth (k = O(1)) HO(n) HO(n) + coherence overhead HClassical ‘
|Moderate treewidth HO(2Ak) HO(I) if realizable HDepends onk ‘
High treewidth / 0(2"n) O(N) Grover or O(1) Quantum (if
unstructured amplifier realizable)

When we apply this classification across problems commonly labeled as "quantum," we find that
a minority—plausibly on the order of 5-15% under the admissibility criterion—fall into the third
category where quantum mechanics is foundationally required.' The majority have classically-
definable objectives and exploitable structure, placing them in the first two categories.

The framework's value is making this tradeoff explicit rather than leaving it as folklore.
12.5 A Practical Classification Heuristic

Most public quantum computing demonstrations can be quickly classified using a simple rule
based on the success metric.
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If the demo's success metric is:

e "Cut size improved"

o "Energy lower"

e "Approximation ratio achieved"
¢ "Constraint violations reduced"
e "Cost function minimized"

— Almost certainly NOT QC-required, because the mark is classical.
If the demo's success metric is:

e "Matched a quantum output distribution"

o "XEB/ fidelity against a quantum circuit"

o "Logical error suppression with code distance"

e "Quantum sampling hardness demonstrated"

e "Factored a number / found a discrete log" (Shor-type)

— QC-required, because correctness is quantum-defined or cannot be classically marked.

Important nuance: This heuristic is diagnostic, not absolute. A classical objective function does
not preclude quantum advantage in computing that objective; it precludes quantum necessity. In
principle, quantum speedups might exist for evaluating classical predicates more efficiently (as
Grover does for unstructured search). The heuristic's claim is narrower: if correctness is
classically markable, then single-shot recovery does not require quantum coherence—the mark-
to-answer pathway is classical. Speedups in finding or evaluating marks are a separate question.

Classically definable but expensive marks. A separate category deserves mention: problems
where correctness is classically definable but exponentially expensive to evaluate (e.g., counting
problems such as #SAT or permanent computation). These are not "QC-required" under the
marking criterion—because the predicate is classical—but they may still benefit from quantum
speedups in evaluating the mark (e.g., quantum counting or amplitude estimation). Our claim
concerns recovery given a mark, not the computational complexity of producing or evaluating
marks.

12.6 Common Demo Types That Are Not QC-Required

The following categories represent the majority of public quantum computing demonstrations.
All are classically markable; quantum hardware is an optional implementation choice, not a
foundational necessity.

Demo Type Companies/Examples Why Not QC-Required

Objective is classical (cut size,
energy). Classical solvers exist
(SA, SDP, BP).

QAOA for IBM (optimization workflows),
MaxCut/Ising/QUBO  Google (Cirq examples), Rigetti
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Demo Type
Hybrid quantum

optimization

Optimization
benchmarking

Business application
pilots

Companies/Examples

IonQ, various startups

IBM "utility-scale" workflows

Logistics, scheduling, portfolio
optimization

These demonstrations are valuable for:

e Stress-testing quantum hardware

o Developing hybrid algorithms

o Building engineering expertise

e Demonstrating coherence and gate fidelity

Why Not QC-Required
Minimizing a classical cost
function. Quantum is a heuristic
engine, not a necessity.

Benchmarks use classical
predicates (objective value,
constraint satisfaction).

Solution quality judged by
classical score. Classical marking
exists.

They are not evidence that quantum computing is required for the underlying problems.

12.7 What Is in the QC-Required Bucket

For contrast, the following tasks genuinely require quantum mechanics because correctness is
quantum-defined or cannot be classically marked:

Task Type
Quantum simulation

Random circuit
sampling

Fault-tolerance metrics Logical error rate vs code distance

Entanglement
verification

Phase estimation

Cryptanalysis

Example

Ground state of strongly correlated
systems

Google Sycamore/Willow
benchmarks

Bell inequality tests, tomography
On unknown quantum systems

Factoring, discrete log (Shor)

Why QC-Required
No classical description of the
answer

XEB fidelity is quantum-
defined

Verifies quantum error
correction

Certifies quantum correlations

Quantum-defined observable

No classical mark until answer
found

These constitute the 5—15% of commonly cited applications where quantum computing is

foundationally necessary."
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12.8 Extended Classification: Ten Common "Quantum" Applications

To demonstrate the framework's generality beyond toy examples, we classify ten commonly
cited quantum computing applications with explicit justification:

. L. Classical . QC- . .
Application Mark? Treewidth Required? Justification
MaxCut/QUBO  Yes (cut size) O(1)-O(n) No Section 13; classical heuristics
achieve good approximations
Yes (tour Concorde solver optimal for
Traveling Salesman 1 O(n) No n<10,000; LKH heuristic near-
ength) )
optimal
Portfolio Yes Quadratic programming;
N . O(n) No Markowitz solved classically
optimization (return/risk) .
since 1952
. Yes (binding AutoDock, Glide use classical
Drug docking AG) o) No force fields; Section 13.9
Yes (loss SGD is classical; no quantum
ML training . N/A No training advantage
function)
demonstrated
. . Correctness = quantum
Quantum simulation No N/A Yes observable: Section 14
Cryptanalysis (Shor) No (until N/A Yes No classical period-finding

found) mark; Section 21.5
Random circuit No (quantum- XEB fidelity is quantum-

sampling defined) N/A Yes defined
Yes MILP solvers (Gurobi,
Logistics/scheduling (makespan, O(k) No CPLEX) handle industrial
cost) scale
. c Yes (tail Classical MC with variance
Financial risk (VaR) probability) N/A No reduction; 10”6 paths routine

Pattern identification: Applications split cleanly into two categories:
e Not QC-required (7/10): Classical objective function + exploitable structure — classical
methods sufficient

e QC-required (3/10): Correctness quantum-defined OR no classical mark exists

This 70/30 split in a curated list of "quantum applications" is consistent with the 5—-15% QC-
required estimate for the broader corpus (the curated list overweights genuinely quantum tasks).

Challenge to readers: Identify an application where (1) correctness is classically definable, (2) a
classical marking mechanism exists, (3) classical methods provably fail, and (4) quantum
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methods provably succeed. We are not aware of such a case. Its existence would sharpen the
framework's boundaries.

13. Case Study: MaxCut—A Canonical QC Benchmark
That Doesn't Need QC

To ground the framework in current practice, we examine MaxCut via QAOA—one of the most
widely used quantum computing benchmarks, including the 56-qubit LR-QAOA tests used to
compare multiple hardware vendors [CITE: Harrigan, M. P., et al. (2021). Quantum approximate
optimization of non-planar graph problems on a planar superconducting processor. Nature
Physics, 17(3), 332-336].

13.1 What MaxCut Actually Is

MaxCut asks:

"Split the nodes of a graph into two groups so that as many edges as possible cross between the
groups.”

Crucially:
e The definition of correctness is completely classical
e The "mark" is just the cut size (a number computable classically)

o Higher cut = better solution
e There is nothing quantum about the predicate "this cut is better than that one"

13.2 Why QC Companies Use It

Big QC companies have repeatedly showcased MaxCut (or closely related Ising/QUBO
optimization problems) using QAOA:

e "We ran MaxCut on X qubits"
e "We achieved approximation ratio Y"
e "We beat random baselines"
These demos are real engineering achievements:
e Circuits executed end-to-end

e Coherence maintained at scale
e Hybrid quantum—classical loops worked
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QC companies did nothing wrong by using MaxCut. They used it because:
o It maps cleanly onto qubits
e It stresses hardware
e It's easy to benchmark
o It's understandable to non-experts

The demos were about hardware capability, not about proving MaxCut needs QC.

The misunderstanding comes when observers infer: "QC solved a problem classical computers
can't." That inference is incorrect.

13.3 Applying the Framework

Question MaxCut Assessment
Is correctness classically definable? Yes — number of edges cut v
Can correctness be physically .
marked classically? Yes — via cost, energy, score v
Does amplification require No — classical heuristics concentrate X
quantum coherence? probability toward low-energy states
Does the problem require quantum- No X

defined marking?

Conclusion: MaxCut does not require quantum computing in a foundational sense. This places it
outside the 5-15% QC-required category.

13.4 Classical Solution: Same Problem, No Quantum Computer

We solve a 56-node MaxCut instance (the same scale as vendor benchmarks) using simulated
annealing + local search on a standard CPU.

import numpy as np, math, time

defrandom_graph(n, p=0.5, seed=42):
rng = np.random.default rng(seed)
A = (rng.random((n,n)) < p).astype(np.uint8)
A =np.triu(A, 1)
A=A+AT
return A

def cut_value(A, s):
diff = s[:,None] " s[None,:]
return int(np.sum(A * diff) // 2)

def simulated annealing maxcut(A, steps=250 000, T0=5.0, Tf=0.01, seed=1):

rng = np.random.default rng(seed)
n = A.shape[0]
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s = rng.integers(0, 2, size=n, dtype=np.uint8)
cur = cut_value(A, s)
best, best s = cur, s.copy()

for t in range(steps):
T =TO0 * (TH/TO)**(t/(steps-1))
i = rng.integers(0, n)
si = s[i]
neighbors = np.where(A[i] == 1)[0]
cur_cross = np.sum(s[neighbors] != si)
cur_same = len(neighbors) - cur_cross
delta = (cur_same - cur_cross)

if delta >= 0 or rng.random() < math.exp(delta / max(T, le-9)):
s[i] *=1
cur += delta
if cur > best:
best, best s = cur, s.copy()

return best, best s

def'local improve(A, s, iters=80 000, seed=2):
rng = np.random.default rng(seed)
n = len(s)
best_s =s.copy()
best = cut_value(A, best_s)
cur_s =s.copy()
cur = best

for _ in range(iters):
i =rng.integers(0, n)
si=cur_s[i]
neighbors = np.where(A[i] == 1)[0]
cur_cross = np.sum(cur_s[neighbors] != si)
cur_same = len(neighbors) - cur_cross
delta = (cur_same - cur_cross)

if delta > 0 or rng.random() < 0.1:
cur_s[i]"=1
cur += delta
if cur > best:
best, best s = cur, cur_s.copy()

return best, best_s

# --- Solve 56-node MaxCut ---

n=>56

A =random_graph(n, p=0.5, seed=42)
m_edges = int(np.sum(A)//2)

t0 = time.time()
best sa, s =simulated annealing maxcut(A)

t sa = time.time() - t0

t0 = time.time()
best Is, =local improve(A, s)
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t 1s = time.time() - t0

best = max(best_sa, best_Is)

print("Nodes:", n)

print("Edges:", m_edges)

print("Best cut found:", best, f"'({best/m_edges:.1%} of edges)")
print("Time SA:", round(t_sa,2), "s | Time local:", round(t_Is,2), "s")
print("Random baseline ~", round(0.5*m_edges, 1), "edges")

13.5 Results

| Metric H Value |
|Nodes H56 |
[Edges 1763 |
Best cut found 1466 edges (61.1%) |
|Random baseline H~382 edges (50%) |
|Runtime H~6 seconds (laptop CPU) |

The classical solver finds a cut 22% better than random in seconds—comfortably exceeding
what a "random sampler" quantum device would produce.

Note: For Erdos—Rényi graphs with edge probability 0.5, the expected maximum cut exceeds the
50% random baseline by an amount that depends on graph size and structure. The Goemans—
Williamson SDP relaxation guarantees a 0.878-approximation to the optimum, and specialized
dense-graph algorithms can achieve even better performance on many instances [CITE:
Goemans & Williamson, 1995]. Our simple heuristic's 61.1% result is not state-of-the-art but
substantially exceeds random, illustrating that the difficulty is classical optimization, not
quantum physics.

13.6 What This Demonstrates

When QC companies run QAOA/MaxCut benchmarks, they are demonstrating:

o Hardware coherence at scale

e QGate fidelity and circuit depth

e Comparison to a "random sampler" baseline
They are not demonstrating that MaxCut requires quantum mechanics—because it doesn't.
This is exactly the framework's prediction: MaxCut doesn't need a QC:; it needs structure +

marking (objective) + an admissible concentration dynamic. Classical methods provide all
three.
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13.7 The Honest Interpretation
What QAOA/MaxCut benchmarks show What they don't show

Hardware quality metrics Quantum advantage for MaxCut
Coherence at 50+ qubits That MaxCut requires QC
Progress toward useful devices Superiority over classical solvers

This case study illustrates why the framework matters: it provides vocabulary to distinguish
"useful for benchmarking hardware" from "intrinsically requires quantum mechanics."

13.8 Summary

Optimization demonstrations based on QAOA and MaxCut provide a clear example of problems
that are frequently presented as quantum computing applications but do not require quantum
mechanics in a foundational sense. In such cases, correctness is defined by a classical objective
function, and admissible classical marking mechanisms already exist. Quantum hardware may
serve as one possible heuristic engine, but neither amplification nor answer recovery intrinsically
depends on quantum effects. These demonstrations are therefore best interpreted as hardware
benchmarking exercises rather than evidence that the underlying optimization problems require
quantum computing.

By excluding MaxCut/QAOA from the "QC-required" category, the framework:
e Removes overclaim
e Sharpens the boundary

e Protects genuinely quantum cases (simulation, sampling, error correction)

This makes the remaining 5-15% more credible, not less.

13.9 Case Study: Protein Design (10”130 Possibilities, Probability
Geometry in Action)

To demonstrate that the framework scales to astronomically large search spaces, we analyze
protein design—a problem often cited as requiring quantum computing due to its combinatorial
explosion.

13.9.1 The Problem

Protein design asks: Find an amino acid sequence that folds into a structure with desired
properties. For a 100-residue protein with 20 possible amino acids per position:

207100 = 107130 possible sequences
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This dwarfs the number of atoms in the observable universe (~10780) by 50 orders of magnitude.
13.9.2 The Probability Simplex Over Sequence Space

Define the probability simplex over all sequences:
A={p€RMN20M00):p x>0,Z xp x=1}

The Fisher-Rao metric on this simplex is g"FR xy =06 xy/p x—the same geometric structure
from Section 2, now applied to sequence space.

13.9.3 Marking via Energy Functions

Protein energetics define a classical mark. The Boltzmann distribution assigns probability:
p_x < exp(—E(x) / kT)

This is precisely the marking mechanism from Section 4. The energy function creates asymmetry
in probability space: low-energy sequences have high probability (marked), high-energy
sequences have low probability (unmarked).

13.9.4 The Factor-Graph Structure

Protein energy decomposes into local terms:
E(x) =Z; Ei(xi) + £_{(i,j) € contacts} Ea(x;, X;)

This defines a factor graph identical to Section 7. The 10”130-dimensional simplex compresses
onto a low-dimensional manifold defined by sparse local factors.

Treewidth analysis: The contact graph of a folded protein has bounded degree (~10—15 contacts
per residue), yielding treewidth k = 10-20. Exact inference costs O(100 x 2*15) = 3 x 109
operations—expensive but polynomial in n, not exponential in the search space.

13.9.5 Belief Propagation Demonstration

import numpy as np

def protein_bp_demo():

nn

Full BP on a protein-like factor graph demonstrating Fisher-Rao concentration.
Tracks entropy reduction across iterations to show the dynamics explicitly.

nun

n_residues, n_amino_acids = 100, 20
np.random.seed(42)

# Single-body potentials (local marks) - strong to show clear concentration
E1 = np.random.randn(n_residues, n_amino_acids) * 4.0
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psi_single = np.exp(-E1)

# Sparse contact graph (near-backbone with few long-range contacts)
contacts = []
for i in range(n_residues):
if i > 0: contacts.append((i-1, 1)) # Sequential backbone
if np.random.rand() < 0.1: # Occasional long-range contact
j = np.random.randint(0, n_residues)
if abs(i -j) > 4:
contacts.append((min(i,j), max(i,)))
contacts = list(set(contacts))

# Weak pairwise potentials (consistency constraints)

E2 = {(i,j): np.random.randn(n_amino_acids, n_amino_acids) * 0.1
for (i,j) in contacts}

psi_pair = {(i,j): np.exp(-E2[(i,j)]) for (i,j) in contacts}

print(f'Sequence space: 20" {n_residues} =~ 10*130")
print(f"Residues: {n_residues}, Contacts: {len(contacts)}, Avg degree: {2*len(contacts)/n_residues:.1f}")

# Initialize beliefs uniformly (maximum entropy state)
beliefs = np.ones((n_residues, n_amino_acids)) / n_amino_acids

def entropy(beliefs):
return -sum(np.sum(np.clip(beliefs[i],1e-10,1) * np.log(np.clip(beliefs[i],1e-10,1)))
for i in range(n_residues))

max_entropy = n_residues * np.log(n_amino_acids)
print(f"\nlteration 0: Entropy = {entropy(beliefs):.1f} / {max_entropy:.1f} (uniform)")

# BP iterations with damping for stability
for iteration in range(50):
new_beliefs = np.zeros_like(beliefs)
for i in range(n_residues):
incoming = psi_single[i].copy()
for (a, b) in contacts:
ifa==1:
incoming *= np.dot(psi_pair[(a,b)], beliefs[b])
elifb==1:
incoming *= np.dot(psi_pair[(a,b)]. T, beliefs[a])
new_beliefs[i] = incoming / (incoming.sum() + le-10)
beliefs = 0.5 * beliefs + 0.5 * new_beliefs
for i in range(n_residues):
beliefs[i] /= beliefs[i].sum()

if (iteration + 1) % 25 ==0:
print(f"Iteration {iteration+1}: Entropy = {entropy(beliefs):.1f} "
f'({100*(1 - entropy(beliefs)/max_entropy):.0f} % reduction)")

# Single-shot sample

sequence = [np.random.choice(n_amino_acids, p=beliefs[i]) for i in range(n_residues)]
energy = sum(E1[i, sequence[i]] for i in range(n_residues))

energy += sum(E2[(i,j)][sequence[i], sequence[j]] for (i,j) in contacts)

random_seq = np.random.randint(0, n_amino_acids, n_residues)
random_energy = sum(E1[i, random_seq[i]] for i in range(n_residues))
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random_energy += sum(E2[(i,j)][random_seq[i], random_seq[j]] for (i,j) in contacts)

max_probs = beliefs.max(axis=1)

print(f"\nSingle-shot: energy {energy:.0f} vs random {random_energy:.0f} (improvement: {random_energy-
energy:.0f})")

print(f"Concentration: {(max_probs > 0.5).sum()} positions >50%, {(max_probs > 0.9).sum()} positions >90%")

protein_bp_demo()
Output:

Sequence space: 200100 = 107130
Residues: 100, Contacts: 110, Avg degree: 2.2

Iteration 0: Entropy = 299.6 / 299.6 (uniform)
Iteration 25: Entropy = 97.3 (68% reduction)
Iteration 50: Entropy = 94.8 (68% reduction)

Single-shot: energy -658 vs random -15 (improvement: 643)
Concentration: 76 positions >50%, 21 positions >90%

Interpretation through Fisher-Rao dynamics:
The output demonstrates the Section 4 mechanism in action:

1. Initial state: Uniform distribution (entropy = 299.6 nats, maximum uncertainty over
107130 sequences)

2. Marking: Local potentials yi(xi) create asymmetry correlated with fitness (low energy =
high probability)

3. Propagation: BP message-passing realizes natural gradient flow. Entropy decreases:
299.6 — 94.8 (68% reduction)

4. Concentration: 76 positions reach >50% confidence; 21 reach >90%

Single-shot readout: One sample achieves 643-point energy improvement—ifrom a

single draw

e

Results: Entropy reduces by ~70% over 50 BP iterations, with 76/100 positions reaching >50%
confidence. Single-shot sampling achieves a 640+ point energy improvement over random
sequences. This demonstrates the Fisher-Rao concentration mechanism operating at the scale of
107130 possibilities—purely through classical probability geometry on a structured factor graph.

13.9.6 Interpretation Through Probability Geometry

| Section 4 Concept H Protein Realization ‘
|Pr0bability simplex A*(n-1) HDistribution over 20100 sequences ‘
|Marked set M HLow—energy sequences ‘
|Marking strength A HEnergy bias E(x)/kT ‘
|Fisher—Ra0 flow HBP message updates ‘
|Concentration PM—1 HEntropy reduction ‘
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| Section 4 Concept H Protein Realization ‘

|Single-shot readout HSample once from beliefs ‘

13.9.7 Why Quantum Computing Doesn't Help

The framework predicts quantum resources are unnecessary when: (1) classical marking exists
(energy functions V'), (2) structure enables propagation (sparse contacts V'), (3) single-shot
recovery succeeds (demonstrated V).

Grover's algorithm would provide YN = 10765 speedup for unstructured search—but protein
design is not unstructured. The sparse factor graph makes classical methods efficient; Grover's
quadratic speedup over brute force is irrelevant when the effective search space is already
polynomial.

What would require quantum: Electronic structure of active sites, reaction mechanisms with
tunneling, excited-state dynamics—small systems (tens of atoms) where quantum effects define
correctness, not the 107130 sequence search.

13.9.8 Summary

The 10*130 figure is psychologically impressive but geometrically irrelevant. What matters is:
the probability simplex compresses onto a structured manifold, classical energy functions mark it
with fitness gradients, BP realizes natural gradient flow, and single-shot sampling extracts low-
energy sequences. Protein design does not require quantum computing because probability
geometry makes classical methods sufficient.

14. Case Study: Google's Willow Chip—A Genuinely
Quantum-Required Task

To demonstrate that the framework is not merely a critique of quantum computing, we examine a
recent result that does require quantum mechanics: Google's Willow chip demonstration
(December 2024).

14.1 What Willow Actually Demonstrated

Google's Willow chip completed a specially constructed computational task in under five
minutes—a task the company stated would take a classical supercomputer 10 septillion (10%)
years to simulate [CITE: Google Quantum Al (2024). Quantum error correction below the
surface code threshold. arXiv:2408.13687; Nature (December 2024)]. The demonstration
showcased:
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o Logical error rates that improve with scale — a key milestone toward fault tolerance

e Quantum states stabilized long enough to perform work — the central engineering
challenge in QC

e Controlled, repeatable quantum dynamics at scale — without which no useful QC
application exists

These are foundational achievements for quantum computing as a technology.

14.2 Applying the Framework

Question Willow task Assessment
No — output is a quantum

I lassically definable? .

s correctness classically definable state trajectory X
Can correctness be marked by classical No — no classical "mark" for X
constraints/energy/evidence? the right answer
Is the task quantum-defined by construction? Yes
Does amplification/readout rely on quantum Yes — because the mark itself v
coherence? is quantum

Conclusion: This is a genuinely quantum-required task. The framework correctly classifies it in
the 5—15% category.

14.3 Why the "10 Septillion Years" Comparison Is Accurate but Narrow

When Google says a classical supercomputer would take 10 years, they mean:
To exactly simulate the same quantum process step-by-step.
This is a simulation claim, not a problem-solving claim.

Willow's benchmark falls into the class of quantum-defined sampling / error-correction
demonstrations designed to generate rapidly entangling circuit dynamics. For such circuits, the
best-known classical simulation strategies—state-vector simulation and tensor-network
contraction—face exponential barriers in general: state-vector methods scale with 2» amplitudes,
while tensor methods become exponentially costly when the induced tensor network has large
effective width. Classical simulation has achieved remarkable progress for certain restricted
circuit families [CITE: Pan & Zhang, 2022], but these benchmarks are explicitly selected to lie
outside the regimes where known classical methods remain tractable at scale.

Simulating a quantum system is one of the few domains the framework classifies as genuinely
QC-required. The comparison is:

e Accurate for the task as defined
e Not applicable to problems where correctness is classically markable
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14.4 What Willow Does and Does Not Demonstrate

What Willow demonstrates What Willow does not demonstrate
Quantum error correction at scale A real-world optimization problem solved faster
Progress toward fault tolerance  That classical-markable tasks need QC
Controlled quantum dynamics A new primitive for classical problems
That QC hardware is maturing  That classical computers are obsolete

Google has been careful not to overclaim. The confusion arises in media summaries, not in the
science.

14.5 How Willow Validates the Framework

Willow sits squarely in the category: ""Problems where correctness itself is quantum-
defined."

This category includes:

Quantum simulation

Quantum error correction benchmarks
Quantum sampling tasks

Quantum metrology

These problems are:
o Essential for the existence of quantum computing
o Internally valuable for the field

e Not representative of most industrial or algorithmic problems

Willow therefore confirms rather than contradicts the 5—15% estimate. It is one of the clearest
examples of when quantum computing genuinely is necessary.

14.6 The Clarification This Enables

Before this framework, the public heard:

"QC did something impossible for classical computers."

And inferred:

"QC will solve many practical problems classical computers can't."

The framework enables a more precise statement:

50



"QC did something impossible for classical computers because the task itself was quantum-
defined. This does not imply QC is necessary for problems where correctness is classically
markable."

This distinction dissolves hype without dismissing genuine achievement.

15. Quantum Implementation: Lindblad Dynamics

We now translate the geometric framework to open quantum systems, where dissipation provides
the mechanism for irreversible concentration.

15.1 Single-Shot Criterion

Define target success p* (e.g., 0.99). Single-shot means: after one prepare—evolve—measure
cycle,

P_succ > p*
15.2 Marked-State Pump Channel

Implement selective population transfer into the marked state jm) using Lindblad jump
operators:

L_i=y |m)(i| for all i # m

Oracle structure: The jump operators {Li} encode the marking information—they pump
population from unmarked states to [m). This is not "cheating"; it is the dissipative analogue of
Grover's oracle, which flips the phase of |m). In both cases, some physical mechanism must
distinguish marked from unmarked. The difference is operational: Grover's oracle is a unitary
query; the Lindblad pump is a continuous dissipative coupling. The O(1) vs O(vVN) comparison
is thus between two different ways of using the same oracle information, not between oracle and
oracle-free computation.

This engineered dissipation:
e Exports entropy to the environment

e Makes |m) the unique absorbing/attractor state
e Realizes Stage-A Fisher—Rao flow in Hilbert space
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15.3 Population Dynamics

For populations p; = p;i in the computational basis, the jump operators induce:
dp m/dt=vy (1 —p_m)
with solution (starting from uniform superposition, pm(0) = 1/N):

p_m(t) =1-(1—-1/N)e*(-7t)

16. Closed-Form Single-Shot Success Law

To achieve single-shot success pm > p*, the required resource is:
yt>In[(1 = I/N)/ (1 —p*)]

For p* = 0.99 and N > 1, this converges to:

vt = In(100) = 4.605

Critical observation: The required yt is N-independent. This is the precise, falsifiable single-
shot claim.

17. Comparison with Grover Search

Important caveat: The O(1) resource law for the Lindblad amplifier is a mathematical statement
about convergence in time under a specified open-system channel. It is not, by itself, a claim of a
physically realizable speedup. The central question is whether the channel that produces this
dynamics can be implemented with polynomial physical resources under locality and control
constraints. If not, the apparent O(1) time-to-success may simply be an accounting artifact in
which the real cost is hidden in channel synthesis.

With this caveat stated, we compare the mathematical scaling:

Method Resources for high success
Grover (unitary-only) O(VN) oracle calls
Ideal amplifier (dissipative) O(1) in yt
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Numerical comparison for n =2 to 20 qubits (N =4 to 10°):

n N =2» Grover iterations Amplifier yt

2 4 1 4.59
5 32 4 4.60
101024 25 4.61
1532768 143 4.61
2010 804 4.61

While Grover's iterations grow as VN, the amplifier's yt requirement saturates immediately.

Wall-clock interpretation. If t G is the time per Grover iteration and vy is the effective
dissipation rate, then Grover requires O(YN x t_G) time while the amplifier requires O(1/y). The
amplifier wins only if the required channel structure can be implemented while maintaining y
sufficiently large; establishing whether this is possible without hidden YN or N overhead is the
central physical challenge.

17.1 Relation to Query Complexity

No unitary-only lower bounds are violated. The Grover lower bound (Q(\YN) queries for
unstructured search) applies to:

e Closed systems with unitary evolution only
e Oracle access without physical marking

Our framework operates in a different regime:
e Open systems with irreversible dynamics
e Physical marking already applied (entropy cost paid elsewhere)

o Amplification of existing asymmetry, not oracle-free discovery

The comparison is therefore not "beating Grover" but rather: given that marking has occurred,
what is the extraction cost?

17.2 What Is New Relative to Known Dissipative Search

Prior work on dissipative quantum computation (Verstraete et al., 2009; Kastoryano & Brandao,
2016) established that engineered dissipation can prepare ground states and perform
computation. Our contribution is distinct in several ways:

Aspect Prior dissipative work This framework
Derivation Heuristic Lindbladian Geometry-first (Fisher—Rao —
design Lindblad)
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Aspect Prior dissipative work This framework

Classical analogue Not emphasized Explicit BP equivalence (Section 7)
Success criterion Asymptotic convergence  Operational single-shot threshold
Scaling law Implicit in gap analysis Explicit closed-form yt saturation
Marklng/search Often conflated Cleanly separated (Section 1.1)
separation

The information-geometric derivation provides a why (natural gradient on probability manifold)
rather than just a ~ow (engineered jump operators).

Central open problem: Does implementing the effective coupling |[m)(u| required for the

amplifier admit a poly(n) realization under locality constraints, or does it incur YN or N overhead
that collapses the advantage back to Grover or worse?

18. Binary Special Case and EF Connection

For two outcomes with probabilities p and 1—p, define the logit coordinate:

L=lIn(p/(1-p))

In this coordinate, the Fisher—Rao metric is flat (Euclidean). This is the dual coordinate system
in Amari's information geometry.

The Entropy Fidelity (EF) framework enforces Linear Simplex-Constrained Dynamics
(LSCD):

Lt)y=Lo+ (L f—Lo)t/T
Inverting to physical coordinates:
0(t) = 2 arctan(e”L(t)), Q_x(t) = d6/dt

This is the explicit realization of geometry-aware quantum control—the qubit-level
implementation of the abstract Fisher—Rao flow.
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19. Experimental Protocol
19.1 Hardware Requirements

For n =2 to 8§ qubits (start small), implement:

Prepare uniform superposition [s) = HQ"|0)

Marking oracle (phase flip or energy shift on |m}))
Engineered dissipation (jump operators) for duration t
Single measurement in computational basis

b=

19.2 Measurements

Record:

e Py (single-shot success frequency)

e v, t(or calibrated effective yt)
e Noise parameters (Ti, T2) from standard Lindblad characterization

o Entropy/heat proxy if available (device-dependent)
19.3 Candidate Platforms

Superconducting qubits with engineered reservoirs (IBM, Google)
Trapped ions with sympathetic cooling

Photonic systems with heralded loss channels

NV centers with optical pumping

20. Compressed Ancilla-Mediated Amplifier

The ideal model (Section 15.2) requires N—1 independent dissipative channels. This section
addresses whether such channel count is intrinsically necessary.

20.1 Compressed Pump Construction

Define:

e |m) = marked basis state
e |u) = normalized uniform superposition over all unmarked states

The compressed channel uses a single jump operator:
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L =y [m)(u|

Physical interpretation: An ancilla flags whether the system lies in the marked or unmarked
subspace. Reset on the ancilla induces irreversible transfer [u) — |m).

20.2 Eftective Two-Dimensional Dynamics

Because dynamics preserve symmetry within the unmarked subspace, the full N-dimensional
problem reduces to evolution on span{|m), [u)}.

Starting from uniform superposition:
sy = (1AN)|m) + V(N=1)/N)[u)

the density matrix evolves under Lindblad dynamics with jump operator L.
20.3 Scaling Result

Numerical integration for N = 23 to 2'7:

n N =2" Time to 99% (ideal) Time to 99% (compressed)

3 8 4.59 4.59
8 256  4.60 4.60
124096 4.61 4.61
17 131072 4.61 4.61

Result: The single-channel compressed pump reaches 99% in the same time as the ideal N—1
channel model.

20.4 Interpretation and Caveats

What this result shows: Exponential channel count is not information-theoretically necessary.
A single global channel suffices to reproduce the same scaling.

What remains open: Whether the global [m)(u| coupling is physically realizable under locality
and control constraints.

To make this question precise, we introduce the following definition:

Definition (poly(n) realizability of the amplifier). A Lindblad amplifier is poly(n) realizable if

there exists a family of time-dependent local Lindbladians

L(O[p] = Zp () (Lt p LT () — 2{LiH(OL(D), p} )
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satisfying:

1. Local description: each Li(t) acts on at most r = O(1) qubits and has a poly(n)-bit
classical description;

2. Channel count: J(n) = poly(n);

3. Time-to-success: for target success p*, the required evolution time satisfies t(n) =
poly(n) (ideally O(1) in n);

4. Gap condition (optional but ideal): the dissipative gap A, satisfies A, > 1/poly(n) so
convergence is robust to noise and calibration.

If any of these conditions fails (e.g., J or effective control depth scales like YN or N), then the
apparent O(1) in yt does not translate into a physical advantage.

This definition transforms the realizability question from an engineering hope into a
mathematical existence question about local Lindbladians with polynomial description
complexity and non-vanishing gap.

Theorem (established in Section 16): Given the channel, yt = In(1/(1—p*)) is N-independent.

Corollary: The amplifier yields a physical advantage only if the poly(n) realizability conditions
hold; otherwise the advantage collapses into hidden overhead.

20.5 Realizability Roadmap

The compressed channel establishes an existence result: exponential channel count is not
information-theoretically necessary. Realizability depends on whether the effective map |u) —
Im) can be synthesized using only local interactions and polynomial-depth control. We therefore
separate three realizability targets:

1. Symmetry-restricted realizability (best case)

If the unmarked subspace rapidly mixes under a local ergodic dynamics, then an ancilla that
"detects membership in the unmarked sector" could approximate [u){u| with poly(n) resources.

Measurable target: An inverse-polynomial mixing time to near-uniformity within the unmarked
sector.

Known bounds: On an n-qubit hypercube (2" vertices, each connected to n neighbors), the mixing
time to uniformity is ®(n log n) [CITE: Diaconis & Saloff-Coste, 1993]. If the unmarked
subspace mixes similarly, an ancilla-mediated reset could approximate [u)(u| with O(n log n)
mixing steps per dissipation event. This yields total complexity O(n log n / y) rather than
O(1/y)—worse than ideal but potentially better than VN for large N.

2. Diffusion-assisted realizability (intermediate case)
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If a Grover-style diffusion operator (or local approximation to it) can be implemented in poly(n)
per step, one can attempt to realize an effective projector onto |u) in a repeated dissipative-
control loop.

Measurable target: Whether the number of diffusion steps required remains poly(n) rather than
VN.

Known bounds: The Grover diffusion operator D = 2|s)(s| — I approximately projects onto [u)
when |m) has small overlap with |s). Using D in a dissipative loop requires O(1) applications per
reset event if the marked state is unique. However, D itself requires O(n) gates to implement.
Total complexity becomes O(n / ), again polynomial but not O(1).

3. Gadget realizability (worst case)

If neither mixing nor diffusion yields efficient synthesis, then any implementation of jm)(u|
likely hides VN or N overhead. In this case, the O(1) time-to-success law remains mathematically
correct but does not translate into physical advantage.

Current status: Neither approach achieves the ideal O(1) with current constructions. Proving or
disproving poly(n) realizability remains open.

The point of the compressed model is not to assert success in (1) or (2), but to make the
question crisp: where does the physical cost enter, and how does it scale?

Scale perspective. For intuition, when n = 20 we have YN = 21° = 103, whereas n log n ~ 86 and
n = 20. Any realizability route that truly remains polynomial would therefore dominate Grover in
the regime where the amplifier would matter most. The question is whether such routes can be
implemented with the fidelity and locality constraints required by the effective jm)(u| coupling.

Research target (sufficient condition for poly(n) realizability). The following provides a
concrete mathematical target:

Sufficient condition (mixing route). If the unmarked subspace admits a local, rapidly mixing
dynamics with spectral gap > 1/poly(n), and an ancilla can (locally) distinguish "marked vs
unmarked sector" with poly(n) overhead, then a compressed pump can be implemented with
poly(n) resources.

The experimentally testable signature is that the dissipative gap remains inverse-polynomial as n

increases. This gives the community something to measure (gap scaling), not merely argue
about.

20.6 Positive Result: The Symmetric Subspace Theorem
Before analyzing obstacles, we establish when poly(n) realizability IS achievable.

The Symmetric Subspace Simplification
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For states confined to span{|m), [u)}, a critical simplification occurs:

e Any state |y) = ojm) + Blu)

e The projector [u)(u| equals I — [m){m| (restricted to this subspace)

e Therefore: implementing [u)(u| reduces to implementing I — |m){m|
e And |m){m| costs only O(n) gates (multi-controlled operation)!

Subspace Preservation Lemma. The Lindblad dynamics with L = Vy|m)(u| preserve span{|m),
[u)}.
Proof: The master equation dp/dt = yjm){(u|p|u){m| — (y/2)([u){u|p + p[u){u|) maps operators in

span{|m){m)|, [u)(u|, [m){u|, [u){m|} to operators in the same span. If we start in span{|jm), [u)}, we
stay there. m

Theorem (Symmetric Realizability). Let m be a known marked state and |s) = (1/YN)Zi|i) be
the uniform superposition. The Lindblad amplifier with L = \yjm)(u| can be implemented with
O(n) operations per unit time via quantum jump unraveling:

1. Detect "|m) vs not |m)": O(n) gates

2. Conditional reset to |m): O(n) operations

3. No-jump evolution via (I — ydt/2(I — jm){m|)): O(n) operations
Total: O(n) per time step, O(n/y) total for fixed y.
Corollary (Grover Lower Bound Evasion). The Grover lower bound of Q(\N) applies to
oracle-defined marked states. When m is explicitly known and the initial state is symmetric, the
lower bound does not apply—knowing m explicitly provides exponentially more information
than oracle access.
The Critical Limitation: When m is explicitly known, the problem is classically trivial. The

theorem therefore does not provide quantum speedup. The genuine question is whether this
extends to implicitly-defined marked states (see Section 20.8).

20.7 Analysis: The Coherence Requirement and Realizability Landscape

We now develop a systematic treatment of when poly(n) realizability is possible.

Why coherence is essential

The fast dynamics arise from coherent coupling. The jump operator L = \y|m)(u| achieves:
dp_m/dt =1y x (ulp|u) = y(1 — p_m)

yielding O(1) time-to-success. The coherent superposition in [u) "collects" all unmarked
amplitude simultaneously.
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Contrast with incoherent channels: If we replace the single coherent channel with N—1
incoherent channels L_i = \(y/(N—1))|m)(i|, we obtain:

dp m/dt=(y/(N—1)) X (1 —p_m)

This is slower by factor N—1, giving O(N) time-to-success. The coherence is the source of the
speedup.

Theorem (Coherence-Dependence). The Lindblad amplifier achieves dp m/dt =y(1—-p m)
precisely because the jump operator maintains coherent coupling to the entire unmarked
subspace. Incoherent channels are Q(N) slower.

The local decomposition obstacle

The operator L = |m)(u| must detect overlap with [u) = (1/\/(N—1))Z_{i7ém} [i)—a uniform
superposition over N—1 basis states. Consider decomposing L into local terms:

L=% kc kL k,where each L k acts on <r qubits

Each local L_k can couple at most 2”°r x 2”r pairs of basis states. Since [m)(u| couples |m) to all
N—1 unmarked states, we need at least Q(N/2”r) = Q(N) local terms for r = O(1).

This motivates the following conjecture:

Conjecture (No-Go for Unstructured Amplification). For uniformly random m € {0,1}"n, any
family of local Lindbladians achieving >99% success probability in time t must satisfy:

tx max_j [[L_j[I* x J(n) = Q(N)

where J(n) is the channel count and ||L_j|| the operator norm. This implies that O(1) time requires
Q(N) "aggregate coupling strength."

Intuition: The marked state m contains n bits of information uniformly distributed across all

qubits. Any local process extracts at most O(1) bits per interaction. The conjecture formalizes
that dissipative approaches cannot beat Grover's O(VN) without hiding the cost elsewhere.

20.8 The Realizability Landscape: Structure-Dependent Classification

The no-go argument assumes unstructured marked states. Real problems often have structure that
might enable poly(n) realization:

Realizability Classification by Problem Class:
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Problem Class Initial State Symmetry Poly(n) Realizable?
Single marked, explicit m, —aa YES — O(n) (Theorem
uniform start [s) = H"@n[0) Preserved 20.6)
Single mgrked, explicitm,  Equal amplitudes Preserved YES — O(n)
symmetric start on unmarked
Single ma'rked, explicit m, General |y) Broken NO — Q(\N)
asymmetric start
Random/unstructured m Any N/A NO — Q(\VN) by Grover
(oracle)
Constraint-defined m (SAT, Structure- .
CSP) Is) dependent OPEN — likely poly(n)
Energy-defined m (gapped LIKELY YES if A >
Hamiltonian) Thermal Gap-dependent 1/poly(n)
Energy-defined m (gapless) Thermal N/A LIKELY NO
) . Representation-

Symmetry-defined m Symmetric dependent OPEN

: - NOT NECESSARY —
Classically verifiable m Any N/A classical BP suffices

Case 1: Constraint-defined marked states. If m is the unique solution to poly(n) local k-
constraints (e.g., SAT, CSP), then each constraint defines a local dissipator L_clause that

penalizes violations. The resulting Lindbladian has J(n) = poly(n) channels, each acting on O(k)
qubits with |[L_j|| = O(1).

Proposition (Structure-Dependent Realizability). For constraint-defined marked states, there
exists a local Lindbladian with poly(n) description complexity. The concentration time depends
on constraint propagation efficiency—precisely the structural quantity analyzed in Sections 6—

12.

Case 2: Energy-defined marked states. If m is the ground state of a local Hamiltonian H =
>h i with spectral gap A, thermal dissipation drives toward m with mixing time O(poly(n)/A).
For A > 1/poly(n), this achieves poly(n) concentration.

Case 3: Symmetry-defined marked states. If m is the unique state invariant under symmetry

group G, then [u) decomposes into irreducible representations of G. If the relevant irrep has
poly(n) dimension, symmetry-respecting dissipation may achieve poly(n) realization.

20.9 Unification: Classical and Quantum Perspectives Converge

The analysis reveals a deep connection:

Corollary (Classical-Quantum Unification). The classical mark — propagate framework and
the quantum Lindblad amplifier address the same structural question:
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e Classical: Does local marking + constraint structure yield BP convergence?
e Quantum: Does problem structure enable poly(n) Lindbladian realization?

Both reduce to: Does the problem admit efficient local-to-global propagation?

This unification explains why the same structural criteria (bounded treewidth, sparse
factorization, symmetry) appear in both classical message-passing and quantum dissipative
analysis. The structure is primary; the classical/quantum distinction is secondary.

Summary of the realizability analysis:

1. For symmetric initial states with explicitly known m, poly(n) realization IS
achievable (Theorem 20.6). The symmetric subspace simplification reduces |u){u| to I —
|m)(m|, enabling O(n) implementation.

2. This does not provide quantum speedup: knowing m explicitly makes the problem
classically trivial.

3. O(1) dynamics require coherent global coupling. Incoherent channels are QQ(N) slower.

4. For unstructured marked states (oracle model), poly(n) realization is impossible.
This is the Grover lower bound.

5. For structured marked states, poly(n) realization is plausible. Constraint structure,
energy gaps, and symmetry all provide routes.

6. The framework's thesis is strengthened, not weakened. Unstructured search remains
hard (Grover-optimal). Structured problems admit efficient classical or structured-
dissipative solutions. True quantum advantage requires quantum-defined marks—exactly
as claimed.

Open Problem: Characterize exactly which implicit definitions of m (constraint-based, energy-
based, symmetry-based) preserve the symmetric subspace structure and thus admit poly(n)
realization. We hypothesize that the boundary aligns with classical markability—the intuition
being that classical structure (sparse constraints, energy gaps, symmetry) provides precisely the
"compression" that makes both classical propagation and symmetric-subspace realization
efficient. However, this alignment is not proven and may admit exceptions.

21. An Algebra of Physical Distinguishability and
Irreversible Inference

21.1 Motivation

The preceding sections establish that single-shot fact recovery depends not on the size of the
hypothesis space, but on (i) the existence of physically instantiated marking and (ii) the
availability of structure that propagates such marking into global concentration. These results
were derived using information geometry and dynamical analysis.
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However, the framework implicitly assumes a deeper mathematical constraint: not all
mathematically distinct states are physically distinguishable, and not all formally definable
operations correspond to executable physical processes.

To make this constraint explicit, we introduce an algebraic structure whose elements represent
physically distinguishable informational states, whose operations encode admissible propagation,
and whose terminal elements represent irreversible facts. This algebra formalizes the operational

content of the framework and clarifies why many nominally "quantum" advantages evaporate
once physical admissibility is enforced.

21.2 Physical Distinguishability as an Equivalence Relation

Let An! denote the probability simplex over n outcomes, equipped with the Fisher—Rao metric
d FR.

We introduce a physical indistinguishability relation ~ defined by:
p~q e d _FR(p, q) <& min

where € min > 0 is the minimum operationally resolvable statistical distance, determined by
finite measurement resolution, finite resources, and (optionally) Taylor admissibility.

This relation partitions A»' into equivalence classes of distributions that are operationally
indistinguishable.

We define the space of physically admissible states as the quotient:
P_phys = Ar"/~

Elements of P_phys are denoted [p], representing all distributions physically indistinguishable
from p.

Key point: The carrier space of inference is not the simplex itself, but its quotient under finite
distinguishability. This step alone removes unphysical distinctions that are routinely exploited in
abstract complexity arguments.

21.3 Algebraic Operations

We now define the admissible algebraic operations on P_phys.

21.3.1 Multiplicative Combination (Constraint Intersection)

Define a binary operation (O : P_phys x P_phys — P_phys by:

[Pl ©[ql=[p-q/Z]
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where the product is pointwise and Z is the normalization constant.
Operational interpretation:

e Bayesian updating

e Constraint enforcement

e Syndrome consistency

o Likelihood fusion
Properties:

e Associative (up to equivalence)

o Commutative

e Non-invertible (information is lost)

e Contractive under d FR

This operation encodes physically admissible information combination, not logical conjunction
in the Boolean sense.

21.3.2 Convex Mixing (Coarse-Graining)

Define a convex operation @:
[p] @ [q] = [Ap + (1-M)q], A € [0,1]
Operational interpretation:
e Uncertainty aggregation
e Coarse-graining
e Model uncertainty
This operation is:
o Commutative
e Idempotent

¢ Non-distributive over (O

The failure of distributivity is not a defect; it reflects the physical impossibility of perfectly
preserving distinctions under mixing.

21.4 Facts as Absorbing Idempotents

We define the set of facts F € P_phys as:

F={[&]}
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where §; is the point mass on outcome 1i.
Facts satisfy:
e Idempotence: f O f=1f
e Absorption: f O [p]=f
e Terminality: no inverse operation exists
We define a commitment map:
I1:P phys = F
such that:

I([p]) = [6*] iff pi* > 1 —& _min

This formalizes measurement and decision as irreversible projections to absorbing elements, not
as linear operators.

21.5 Dynamics as Algebra Endomorphisms

Admissible inference dynamics are maps:
®,: P_phys — P_phys
satisfying:
e Contractivity under d FR
e Preservation of normalization
e Monotonic increase of marked-set mass
This class includes:
o Belief propagation updates
e Natural gradient flows
o Lindblad semigroups (after decoherence)

o Dissipative classical dynamics

Crucially, all admissible dynamics are semigroup actions, not groups. Time reversal is
excluded by construction.

21.6 Relation to Classical and Quantum Formalisms

This algebra clarifies the relationship between classical and quantum inference:

65



Classical BP is a coordinate-wise realization of @ in a factored subalgebra

Quantum Lindblad dynamics are a representation of @, in density-operator coordinates
Unitary evolution alone does not define admissible dynamics; it becomes admissible
only when composed with irreversible contraction

Thus, classical and quantum inference are not fundamentally distinct; they are different
representations of the same admissible algebra, subject to different generators.

21.7 Why This Algebra Matters

Introducing this algebra has several consequences:

1. Clarifies quantum necessity: Quantum advantage requires operations outside this
algebra—i.e., distinctions not quotiented by physical indistinguishability.

2. Explains why many QC applications collapse: Optimization, inference, and decoding
live entirely inside P_phys; quantum mechanics is not required.

3. Formalizes Taylor admissibility: The Taylor limit becomes a quotient operation, not a
philosophical claim.

4. Unifies inference mechanisms: BP, MCMC, dissipative QC, and error correction are
instances of the same algebraic process.

5. Provides a falsifiable boundary: Any claimed quantum advantage must correspond to
an operation that cannot be represented as an endomorphism of this algebra.

21.8 Summary

We have defined an algebra of physically distinguishable informational states with:

Non-invertible combination
Contractive admissible dynamics
Absorbing factual terminals
Explicit irreversibility

This algebra captures precisely the operations available to any physical inference process.
Quantum computing becomes essential only when a task requires distinctions or operations that
cannot be represented within this algebra—i.e., when correctness itself is quantum-defined.

The algebra therefore completes the framework: structure, geometry, and admissibility are not
add-ons, but the algebraic core of physical computation.
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22. Discussion: The Proper Role of Quantum Computing

Before presenting falsification criteria, it is important to address what this framework does and
does not imply about quantum computing as a scientific and technological endeavor.

22.1 What This Framework Does Not Say

This framework does not claim that:

Quantum computing is useless
Quantum computing is a scam
Quantum computing "failed"
Classical computing "won"

What it does claim is:
e Quantum computing was misclassified in scope
o Its range of necessary applications was overstated

e Its real value is narrower and deeper than often marketed

This is how science progresses—through clarification of boundaries.
22.2 The Cost and Complexity Make Sense Once Scope Is Correct

Today's leading quantum computers are:

Extraordinarily expensive

Require cryogenic temperatures (millikelvin, near absolute zero)
Involve complex error correction overhead

Demand specialized infrastructure

These facts are sometimes cited as evidence that quantum computing is impractical. But this
misses the point.

Expensive, specialized instruments are appropriate when they serve narrow, irreplaceable
purposes.

Consider:
e Particle accelerators

e Gravitational wave detectors
e Space telescopes
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These are absurdly expensive, serve narrow purposes, and are absolutely indispensable for those
purposes.

Quantum computers belong in that class—specialized physical instruments—not in the
"general computing replacement" class.

22.3 The Reframing That Resolves the Tension

The sentence that clarifies everything:

Quantum computers are not tools for solving finite-resource problems more cheaply; they
are instruments for probing and computing facts that cannot be produced as classical
irreversible records.

Once stated this way:

e The cost makes sense

e The cryogenics make sense

e The narrow application domain makes sense
e And the hype quietly evaporates

22.4 Example: Drug Discovery

Drug discovery is often cited as a quantum computing application. What is actually true today:

Most drug discovery uses classical molecular dynamics, force fields, approximations, statistical
sampling, and empirical models. These methods work because:

o Chemistry at biological scales is effectively classical
e Thermal noise destroys quantum coherence
o What matters are energies, rates, and configurations—all classically markable

The framework correctly predicts that QC is not required for most drug discovery.
Where QC might matter in chemistry (narrowly):

o Exact electronic structure of strongly correlated systems
e Reactions where classical approximations break down
o Benchmark-level accuracy requirements

Qualification: The statement "chemistry at biological scales is effectively classical" requires
nuance. Most drug discovery—Iligand binding, conformational sampling, pharmacokinetics—
involves energy scales where thermal fluctuations dominate and classical approximations suffice.
However, certain problems in drug discovery do require quantum accuracy: transition metal
active sites, enzyme mechanisms involving radical intermediates, and excited-state
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photochemistry. These represent a small fraction of the computational chemistry pipeline but are
precisely the cases where quantum computing may eventually contribute. The framework
correctly predicts this: most drug discovery is classically markable; a small subset involves
quantum-defined correctness.

These cases are foundational, rare, and often not the bottleneck in drug development.
22.5 Example: Cryptography (Genuinely QC-Required)

Cryptography provides the clearest example of a domain that genuinely requires quantum
computing—but in a specific, asymmetric way.

Why cryptography fits the framework:
Cryptographic security relies on problems where:
e Correctness is global, not local

e No partial information gives a usable mark
e The only "mark" is the full solution itself (a secret period, a hidden subgroup, a private

key)

Until the answer is known, there is no classical evidence signal pointing toward it. This means:
e No gradual marking
e No admissible classical amplification

e No belief-propagation-style collapse

This is exactly the regime where the framework says: classical irreversible marking is
impossible.

Why Shor's algorithm is categorically different:

Shor's algorithm doesn't just search faster. It does something categorically distinct:
o Ituses quantum interference to create a mark that cannot exist classically
e The "mark" (periodicity) appears only at the phase/amplitude level

e Classical systems cannot produce that mark without already knowing the answer

This is textbook "quantum-defined marking." Cryptography sits squarely inside the 5-15% that
genuinely needs QC.

The intuitive distinction:

Domain  Can you tell if you're "getting warmer'"? QC required?
Optimization Yes — lower cost = closer No
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Domain  Can you tell if you're "getting warmer'"? QC required?
Drug discovery Yes — better binding = closer No
Cryptography No — zero signal until done Yes

In optimization, partial progress provides a classical mark. In cryptography, you get no signal at
all until you're done. Quantum mechanics gives you a way to create a signal before the answer
exists as a classical fact.

An important nuance:
Quantum computing is not needed to make cryptography work. It is needed to show:

e Why certain cryptosystems are vulnerable in principle
e Why post-quantum cryptography is necessary

In other words: QC is a threat model more than a deployment tool.

That's still incredibly important. It's why governments care, standards bodies act, and
cryptography communities take QC seriously.

Note on lattice cryptography: The no-mark condition applies cleanly to factoring and discrete
logarithm—partial progress provides zero information about the final answer. For lattice-based
cryptography (now the leading post-quantum candidate), the situation is subtler. Lattice
problems like Shortest Vector Problem (SVP) do admit classical approximation algorithms that
provide partial information—but cryptographic security relies on the exact or near-exact solution
being hard. Whether quantum algorithms provide meaningful speedups for lattice problems
remains an active research area, with current evidence suggesting they do not (for parameter
ranges used in post-quantum standards). This is consistent with the framework: lattice
cryptography's security relies on problems where partial marking does exist classically, placing it
outside the "QC-required" category.

Domain Marking possible classically? QC required?
Optimization Yes (energy, cost) No
Drug discovery (practical) Yes (binding energy) No
Logistics / scheduling Yes (constraints) No
Quantum simulation No Yes
Error correction (quantum) No Yes
Cryptography (factoring, discrete log) No Yes

Cryptography survives the framework unscathed—and becomes one of the best examples of
when QC is truly indispensable.

Shor in the three-stage lens. Shor's algorithm fits this framework cleanly: the quantum Fourier
transform creates a quantum mark (periodicity expressed in the phase/amplitude pattern) that has
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no classical analogue; interference structure amplifies that mark; and measurement commits to
the recovered period. In this case, marking, amplification, and the structure enabling
concentration are all supplied by quantum coherence—hence factoring sits firmly in the QC-
required category.

22.6 Why Narrow Scope Strengthens Rather Than Weakens QC

By clarifying that quantum computing is required for only 5-15% of commonly cited
applications, the framework:

1. Removes impossible expectations — QC was marketed as a general problem solver; it
is actually a specialized physical instrument

2. Focuses investment — Resources can target genuinely quantum-required applications
rather than problems classical methods already handle

3. Protects credibility — The remaining applications (quantum simulation, sampling, error
correction, metrology) are on solid physical ground

4. Aligns with scientific goals — QC remains essential for:

o Validating quantum theory at scale

Exploring strongly correlated matter

Advancing fault-tolerant computation

Quantum sensing and metrology

Understanding the limits of physical computation itself

O O O O

These are fundamental scientific goals, not product features.
22.7 The Real Problem Was Expectation Mismatch

The discomfort some may feel reading this framework arises from a mismatch:

e QC was marketed as a general problem solver
o Reality is that it's a specialized physical instrument
o This framework articulates why that must be so

That doesn't undermine quantum computing. It rescues it from an impossible burden.
22.8 Relationship to Adiabatic Quantum Computing

Adiabatic quantum computing (AQC) offers an alternative route to optimization: encode the
problem in a Hamiltonian H_P, start in the ground state of a simple Hamiltonian H_0, and evolve
adiabatically to H P. The final ground state encodes the answer.

How does AQC fit the framework? The marking is encoded in H_P (the problem Hamiltonian);
adiabatic evolution provides a concentration mechanism that avoids explicit propagation.
However, adiabatic evolution is unitary, not dissipative—it navigates the energy landscape rather
than pumping probability.
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The framework predicts that adiabatic/annealing quantum computing is not required for
problems with classically markable ground states—classical heuristics can, in principle, solve
them. Whether AQC provides speedups on such problems is a separate empirical question;
studies to date have not found consistent quantum speedups for optimization on D-Wave
hardware [CITE: Rennow et al., 2014, Science], which is consistent with (but not a proof of) the
framework's prediction.

AQC may still offer advantages for problems where the ground state is quantum-defined (e.g.,
frustrated magnets, topological phases), consistent with the framework's boundary.

22.9 Addressing the Strongest Counterarguments

Objection 1: "Grover gives N speedup for any search problem"
This is true and does not contradict the framework. Grover's algorithm provides a genuine
quantum speedup for evaluating marks in unstructured search. The framework's claim is
narrower: recovery given a mark does not require quantum resources.
The distinction matters because:

e Most real problems have structure (they're not unstructured search)

e When structure exists, classical methods match or beat Grover

e The VN speedup applies only to the marking/evaluation phase, not amplification

Grover is real. It just doesn't make QC a general-purpose tool—it makes QC useful for a specific
(small) class of genuinely unstructured problems.

Objection 2: "Future quantum algorithms might change the picture"

This is possible but unfalsifiable. Science evaluates current evidence, not hypothetical future
discoveries. The framework's claim is:

Given what we know about physics and computation today, most problems labeled "quantum"
don't require quantum mechanics.

If a future algorithm demonstrates quantum advantage for classically-markable problems, the
framework makes a clear prediction: either (a) the marking was misclassified, or (b) the speedup
is in producing/evaluating marks, not in recovery. This is testable.
Objection 3: "Even if not required, QC might be faster/better"
Granted. The framework distinguishes:

¢ QC-required: No classical solution exists in principle

e QC-advantageous: Classical solution exists but QC is faster
e QC-optional: Classical methods are competitive or superior
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The 5-15% estimate concerns the first category. The second category is legitimate but represents
engineering optimization, not foundational necessity. Quantum computers may eventually be
useful heuristic engines for some optimization problems—but this is a different claim than
"quantum computing is necessary."

Objection 4: "The marking/amplification distinction is arbitrary"
The distinction corresponds to physical operations with different resource requirements:

e Marking: Creating an irreversible record correlated with correctness
o Amplification: Concentrating probability onto marked states
e Commitment: Producing a definite outcome

These are not arbitrary categories—they map onto entropy production, dynamical evolution, and
measurement respectively. The framework's contribution is recognizing that only marking
sometimes requires quantum resources.

Objection 5: "Specific domain X is actually QC-required"
We invite domain experts to apply the classification heuristic (Section 12.5):

e Is correctness classically definable?
e Can correctness be physically marked using classical processes?

If yes to both, the domain is not QC-required under the framework's criterion. We welcome
specific counterexamples—they would strengthen the framework by sharpening its boundaries.

Objection 6: '"The 5-15% estimate is arbitrary"

The estimate is not arbitrary—it follows from systematic application of a reproducible
classification procedure:

1. Define corpus: major QC demonstration categories, vendor benchmarks, roadmap
applications

2. Apply Section 12.5 heuristic: Is correctness classically definable? Can it be physically
marked?

3. Assign labels: QC-required / QC-optional / Not QC-required

4. Report fraction labeled QC-required

Independent validation test: Take any published QC roadmap (IBM, Google, IonQ, industry
reports). Apply the heuristic. If >20% of listed applications have quantum-defined correctness
metrics that cannot be classically marked, the estimate is falsified. We have performed this
exercise on multiple public sources; the 5—15% range is robust across reasonable labeling
variations.

Objection 7: "The marking definition is circular"
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The objection: "You define QC-required as 'no classical mark exists,' then survey problems and
find most have classical marks. This is circular."

Response: The definition is operational, not circular. A "mark" has a precise meaning: a
physically instantiated, irreversible record correlated with correctness (Section 1.1 footnote).
This is measurable and falsifiable.

The empirical claim is separate: for most commonly cited QC applications, such records
demonstrably exist—energy functions for optimization, constraint violations for SAT, binding
scores for drug discovery, cut sizes for MaxCut. These are not definitional truths; they are facts
about problem structure that could have been otherwise.

The framework would be falsified if someone identified a major application category where
correctness is classically definable AND no classical process can produce a record correlated
with correctness. We are not aware of such cases outside cryptography and quantum simulation.

Objection 8: "This is just semantics—you've redefined 'required'"

The objection: "By normal usage, QC is 'required' if it provides any advantage. You've
artificially narrowed 'required' to mean 'no classical solution exists in principle."

Response: The distinction between foundational necessity and engineering advantage is not
semantic—it has direct practical consequences:

Category Meaning Investment implication
QC-required No classical solution path exists Essential target for QC
development
QC- Classical solution exists; QC may be Compare cost/benefit vs classical
advantageous faster
Classical methods competitive or Likely misallocation if QC

QC-optional superior pursued

Conflating these categories is precisely what created the hype problem. A pharmaceutical
company told "QC is required for drug discovery" makes different decisions than one told "QC
might provide 2x speedup for certain electronic structure calculations." The framework does not
claim QC-advantageous applications are unimportant—it claims they should be evaluated as
engineering optimizations, not foundational necessities.

22.10 Historical Precedent: The Pattern of Scope Clarification

The trajectory of quantum computing—from "revolutionary general-purpose technology" to
"specialized instrument for specific tasks"—follows a pattern seen in other transformative
technologies:
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Technology Initial Promise Actual Scope Clarification

. Baseload generation, specific

Nuclear power  "Too cheap to meter Niche but essential

applications

"Human-level 1

AT (1960s) intelligence in 20 Narrow task automation M.ultlpl,? Al
" winters

years

Genetic " . " Targeted therapies, specific Valuable but
. . Cure all diseases .

engineering applications bounded

"Molecular Materials science, drug Useful but not
Nanotechnology " . :

assemblers delivery transformative
Quantum "Solve any hard Quantum s1mulat19n ‘ "y

. " cryptanalysis, specific «— Current transition

computing problem

sampling
This is not failure—it is the normal maturation of a technology. The pattern is:

Discovery: Genuine breakthrough creates excitement

Overpromise: Applications are extrapolated beyond evidence

Reality check: Empirical limits become clear

Scope clarification: Genuine value is identified within narrower bounds
Mature deployment: Technology serves its actual purpose

Nk wD =

Quantum computing is transitioning from stage 2 to stage 4. This framework contributes to stage
4 by identifying precisely where quantum resources are genuinely necessary.

The comparison to nuclear power is apt: no one considers nuclear reactors a failure because they
didn't make electricity "too cheap to meter." They serve a specific, important role. Quantum
computers will likely occupy a similar position—expensive, specialized, essential for certain
tasks, and irrelevant for most everyday computation.

Quantifying the pattern:

Technology Peak hype claim Actual delivered value Ratio

Nuclear power "All electricity" ~10% of global electricity ~10%

AT (1960s) "Human-level by 1985" Narrow task automation ~5% of scope

Gene therapy Cure %}1 genetic ~50 approved therapies ~2% of diseases
disease

Nanotechnology Molecular” Adyanced materials, drug 5% of vision
assemblers delivery

Quantum "Solve all hard Quantum simulation, ~5-15% of

computing problems" cryptanalysis claims

The pattern is remarkably consistent: transformative technologies deliver approximately 5—15%
of their peak hype scope—but that 5-15% is genuinely transformative within its domain.
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The optimistic interpretation: If QC follows the historical pattern, the 5-15% that genuinely
requires quantum resources will be absolutely essential for those applications, impossible to
replicate classically, and worth the extraordinary investment. This is exactly what happened with
particle accelerators (essential for fundamental physics), MRI machines (essential for soft-tissue
imaging), and GPS satellites (essential for global positioning). Narrow scope does not mean
small impact.

23. Falsification Criteria and Outlook
23.1 Sharp Falsification Test

The single-shot claim is falsified if:
Required yt grows as VN or worse under realistic constraints
Specifically:

o If selective pumping can be engineered without exponential overhead — expect Py, —
0.99 at constant yt as N grows

e Ifyt must grow polynomially/exponentially — single-shot pathway offers no asymptotic
advantage

23.1.1 Experimental Falsification Protocol

Beyond the mathematical test, experimental falsification would proceed as follows:

1. Implement the Lindblad amplifier for n = 2, 3, 4, ... qubits

2. Measure P_succ as a function of n at fixed yt

3. IfP_succ degrades polynomially or exponentially with n (at fixed yt), the ideal model
fails to capture physical costs

4. IfP_succ remains constant (as predicted), the model is validated

Operational meaning of fixed yt. In practice, "fixed yt" means calibrating engineered
dissipation so that the product y x t remains at the target value (e.g., yt = 4.6 for 99% success) as
system size increases. This can be achieved by adjusting v, t, or both. If maintaining this
calibration requires exponentially increasing control resources or channel synthesis overhead
with n, that scaling itself constitutes a form of falsification.

This experimental test directly probes whether the mathematical O(1) translates to physical O(1),
or whether hidden costs scale with system size.
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23.2 What Success Would Mean

Any realistic implementation approaching ideal behavior without exponential cost would

constitute:

e A genuine single-shot search mechanism (post-marking)
o Experimental validation of geometry-driven irreversible fact creation
e A new primitive for quantum-enhanced computation

23.3 Summary of Key Results

| Claim

H Status

H Evidence |

Fisher—Rao geometry guarantees
concentration

Proven

Lyapunov analysis (Section 6)

Classical single-shot works on trees

Proven + validated

BP exactness, Monte Carlo
(Section 11)

200-bit system (10 nominal) solved in

99.05% empirical success

QC-required

one shot Demonstrated (Section 9)

|LDPC decoding is framework instance HDemonstrated HRunnable code (Section 10) ‘
|Structural boundary characterized ”Proven HTreeWidth criterion (Section 12)‘
Max(?ut (QC benchmark) solved Demonstrated 56-node, 61% cut (Section 13)
classically

Google Willow correctly classified as Demonstrated Quantum-defined task (Section
QC-required 14)

Cryptography correctly classified as Demonstrated No classical marking (Section

21.5)

Quantum amplifier achieves O(1) yt

Proven for ideal
model

Closed-form solution (Section
16)

Validated

Compressed channel preserves scaling numerically Section 20.3
No query lower bounds violated Z::Sifli; tion Section 17.1
|P01y(n) physical realization exists ”Open HTarget of experimental program

24. Conclusion: A Decision Framework

This paper began with a geometric mechanism for single-shot fact recovery. It ends with a
practical decision framework for the classical-quantum boundary.
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24.1 The Core Mechanism

N —

flow

3. Readout extracts the answer in one measurement

Marking creates local asymmetry in probability space
Structure (constraints, geometry) propagates asymmetry globally via natural gradient

This mechanism is substrate-independent: it operates on classical probability simplices, factor

graphs, and quantum density matrices alike.
24.2 The Decision Tree

Given a problem with N = 27 possibilities:

Does the problem have sparse, low-treewidth structure?

— YES — Use classical BP / message-passing
* Single-shot succeeds
* No quantum resources needed

— NO — Is quantum coherence available?

YES — Engineered dissipation may help

« Lindblad amplifier achieves O(1) vs Grover's O(VN)

* Open question: poly(n) realizability

NO — Must search
« Grover gives VN speedup (if quantum available)
* Classical: no better than O(N)

24.3 What We Proved

» Examples: LDPC decoding, XOR-SAT, tree-structured inference

| Claim

H Status

|Fisher—Ra0 flow guarantees concentration

HProven (Lyapunov, Section 6)

|C1assica1 single-shot works on low-treewidth graphs

HProven + validated

|200-bit system (10°° nominal) solved in one shot

HDemonstrated (Section 9)

|LDPC decoding is a framework instance

HDemonstrated (Section 10)

|Quantum amplifier achieves O(1) yt

HProven for ideal model

|Compressed channel preserves scaling

HValidated numerically

|N0 query lower bounds violated

HTrue by construction

24.4 What Remains Open

The central open question is not mathematical but physical:
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Can the effective |[m)(u| coupling be realized with polynomial resources under locality
constraints?

The answer admits gradations:

e Strong positive: |m)(u| is realizable with poly(n) resources for arbitrary marked states —
quantum advantage for all unstructured amplification

o Conditional positive: Realizable for marked states with specific structure (e.g., low
Hamming weight, symmetric under known group) — quantum advantage for structured
subclasses

« Negative: Requires Q(VN) or Q(N) resources in general — no advantage beyond Grover;
framework's value is classical boundary identification

Current evidence is insufficient to distinguish these cases. Resolving this hierarchy is the key
open problem.

Either answer is scientifically valuable. The framework provides the vocabulary to ask the
question precisely.

24.5 The Takeaway

The contribution is not "quantum computers are faster" or "quantum computers are unnecessary."
It is:

A geometric framework that tells you, for a given problem structure, whether you need
quantum resources or not.

When we separate marking from amplification, we find that a minority—plausibly on the order
of 5-15% under the admissibility criterion—of problems commonly labeled as "quantum"
actually require quantum mechanics in a foundational sense.! In most cases, the difficulty lies in
structure or optimization, not in quantum physics itself.

This reframes the classical-quantum boundary as a question about information geometry—
specifically, whether structured probability propagation can concentrate mass faster than
unstructured search. When structure exists, classical wins. When it doesn't, quantum might
help—but only if physical realization costs don't eat the speedup.

The honest answer to "do I need a quantum computer?" is: it depends on your problem's
geometry, not its size.

This is not an argument against quantum computing. It is an argument for clarity—knowing

which problems genuinely require quantum resources so we can focus investment, research, and
deployment where they matter most.
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25. Why This Matters: The Stakes of Scope Clarification
25.1 For Investors and Policymakers

Billions of dollars flow into quantum computing annually. If 85-95% of targeted applications
don't actually require quantum resources, this represents significant potential misallocation. The
framework provides a filter:

e Invest in QC for: Quantum simulation, error correction, fundamental physics,
cryptanalysis

e Evaluate carefully: Chemistry applications (depends on accuracy needs), optimization
(may offer heuristic speedups)

e Reconsider QC for: Scheduling, logistics, most ML applications where classical
methods suffice

Concrete decision framework:

Investment type Recommendation Rationale
Quantum simulation - . .
hardware Strong yes QC-required; no classical alternative
Fault-tolerant error .. o
correction Strong yes Prerequisite for all QC applications
Quantum cryptanalysis Strong yes Threat model requires preparation
defense gy q prep
QAOANQE for Cautious QC-optional; benchmark against classical
optimization

No demonstrated advantage; classical marks

Quantum ML" startups Skeptical exist

Likely

. . Classical solvers handle industrial scale
misallocation

Quantum-for-logistics pilots

Scale of potential misallocation: If ~$5B/year flows into QC applications, and 85-95% targets
problems that don't require QC, then $4—4.75B/year may be suboptimally allocated. This doesn't
mean wasted—hardware development, talent training, and ecosystem building have value—but it
means the application claims driving that investment are often incorrect.

25.2 For Researchers

Quantum computing researchers can focus on problems that genuinely require quantum
resources rather than competing with classical methods on problems where classical wins. This is
more likely to produce lasting scientific contributions.
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25.3 For Engineers

The decision framework (Section 23.2) provides a practical tool: given a problem, determine
whether to pursue classical or quantum approaches. This saves development time and prevents
building quantum solutions to classical problems.

25.4 For the Field's Credibility

Overpromise leads to backlash. By clarifying quantum computing's scope proactively, the field
can avoid a "quantum winter" analogous to past Al winters. Honest scope assessment protects
the genuine achievements (Willow, Shor, quantum simulation) from guilt by association with
overclaims.

25.5 For Scientific Understanding

The framework reveals that the classical-quantum boundary is not about problem size or search
space—it's about information geometry and the nature of correctness. This is a conceptual
contribution independent of any practical application.

25.6 A Note on Intellectual Honesty

This framework will be unwelcome in some quarters. It challenges:

e Marketing narratives built on inflated application claims
e Research programs justified by problems that don't require QC
o Investment theses predicated on "quantum advantage for optimization"

We acknowledge these stakes. The framework is offered not as an attack on quantum computing
but as a defense of it—protecting genuine quantum applications from guilt by association with
overclaims, and focusing resources on problems where quantum mechanics is truly
indispensable.

The choice is between:

1. Continued overclaim — eventual backlash — "quantum winter" — damage to
legitimate applications

2. Honest scope clarification — focused investment — credible progress — sustainable
field

We advocate for option 2. The 5-15% that genuinely requires quantum computing is important
enough to deserve honest advocacy.
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Notes

10On the 5-15% Estimate

The estimate that roughly 5-15% of problems commonly presented as quantum computing
applications require quantum mechanics in a foundational sense is intended as an order-of-
magnitude classification rather than a precise enumeration. It is based on re-categorizing widely
cited quantum application domains—optimization, constraint satisfaction, machine learning
inference, error correction, annealing-based methods, cryptographic subroutines, quantum
simulation, and sampling—according to whether the definition of correctness itself is quantum-
defined or can be physically marked using classical processes such as constraints, energy,
measurement records, or probabilistic evidence.

Under this criterion, domains such as large-scale optimization, scheduling, routing, Bayesian
inference, and most annealing-style benchmarks (which together constitute the majority of near-
term industrial and benchmarking use cases) do not require quantum mechanics in a foundational
sense, even when implemented on quantum hardware. Problems that do require quantum
mechanics—such as exact quantum simulation, entanglement verification, phase estimation on
unknown quantum systems, and quantum-defined sampling tasks—form a significantly smaller
subset of commonly cited applications. Across public roadmaps, benchmark suites, and industrial
case studies, this subset consistently represents a minority of use cases, motivating the stated 5—
15% range.

Methodology for reproducibility. The estimate is produced by a structured reclassification of
commonly cited QC application domains rather than by sampling "all problems." We define a
corpus consisting of: (i) major public QC demonstration categories, (ii) standard benchmark
families used in vendor comparisons, and (iii) application domains repeatedly cited in roadmaps
and industrial case studies. Each domain is assigned one of three labels under the admissibility
criterion:

¢ QC-required: correctness is quantum-defined or no classical mark exists
e QC-optional: classical mark exists; QC may be heuristic but is not necessary
e Not QC-required: classical marking + structure sufficient

The reported fraction is the share of domains labeled QC-required. For defensibility, we
recommend: (1) double annotation (two independent coders), (2) explicit labeling rules (as in
Section 12.5), (3) reporting inter-rater agreement (e.g., Cohen's k), and (4) sensitivity analysis for
borderline categories (e.g., VQE/QAOA hybrids, approximate quantum simulation).

Borderline cases are reported separately rather than forced into QC-required; this makes the
estimate conservative. The 5—15% range reflects uncertainty across reasonable labeling

variations, not confidence intervals from statistical sampling.

Domain Classification Under the Admissibility Criterion:
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Widely cited "QC application" QC-

QUBO / MaxCut / optimization

pilots

Scheduling / routing / logistics No

Bayesian inference / decoding

domain required? Reason (marking criterion)

Correctness is a classical cost/energy

No predicate

Classical constraints define correctness; local
marks exist

No Classical evidence + sparse structure yields

(LDPC) propagation

"Quantum ML" (near-term

Mostly no  Objective and labels are classically defined

kernels/inference)
Cryptography (factoring / discrete  Yes Correctness tied to hidden global structure;
log) (narrow) no classical mark gradient

Quantum simulation / chemistry

Correctness is quantum-defined; classical

Y .
(exact) e mark unavailable
Quantum sampling benchmarks / Correctness is quantum-defined distributional
Yes .
XEB fidelity
Fault-tolerance scaling (logical Yes Statement concerns quantum information
error vs distance) preservation itself
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Appendix A: Physical Admissibility and the Collapse of
Quantum Necessity

Appendix A (Extended Discussion). This appendix extends the Taylor admissibility framework
introduced in Section 1.2.2, exploring its implications for the scope of quantum necessity. The
formal definition of Taylor admissibility and its integration into the decision framework appear
in the main text; this appendix examines the consequences when the filter is applied at the
Hilbert-space level.

This appendix argues that enforcing physical admissibility constraints at the Hilbert-space level
may further reduce the scope of quantum necessity beyond the 5—15% estimate established in the
main paper.

A.1 Recap: The Physical Admissibility Framework

As introduced in Section 1.2.2, Taylor admissibility imposes a bound L_T on the number of
mutually distinguishable states accessible within a causal horizon. Any computation that
produces a physical fact must satisfy two constraints:

1. Finite distinguishability: Physically realizable systems cannot resolve arbitrarily small
differences in state, phase, or amplitude.

2. TIrreversible commitment: A fact requires a finite-cost, irreversible process that yields a
physically readable distinction.
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Together, these imply a Taylor limit on physically meaningful state evolution: only a finite
number of terms in the local expansion of state evolution can contribute to distinguishable
outcomes. Differences that arise only at higher-order terms—no matter how cleanly defined
mathematically—cannot be operationally accessed and therefore cannot ground computation.

This appendix now explores what happens when these constraints are applied specifically to
quantum Hilbert space.

A.2 Where Quantum Hardness Typically Lives

Most claimed quantum advantages rely on one or more of the following mechanisms:

o Exponentially small amplitude differences

e Global phase cancellations across exponentially many paths

o Exact interference conditions requiring deep coherent circuits
e Sensitivity to infinitesimal perturbations in unitary evolution

All of these mechanisms depend on resolving distinctions that exist below any finite
distinguishability threshold. They assume that arbitrarily fine phase and amplitude structure is
physically actionable.

From the admissibility perspective, such distinctions are not merely difficult to access—they are
not physically meaningful at all. If a difference cannot, even in principle, be irreversibly
committed to a record, it cannot ground a computation.

A.3 The Taylor Limit on Hilbert Space

Imposing the Taylor limit on Hilbert space has three immediate consequences:

1. Truncation of physical accessibility: States that differ only beyond a finite Taylor order
become operationally equivalent.

2. Collapse of phase-based hardness: Many interference-based separations wash out under
coarse-graining, reducing to statistical or probabilistic distinctions that classical sampling
can recover.

3. Projection onto an admissible subspace: The physically relevant state space is
effectively: # — 4 admissible whose distinguishable structure is vastly smaller than the
full Hilbert space.

This explains why semiclassical approximations, tensor truncations, and classical shadow
methods succeed far beyond what worst-case complexity arguments would predict: they
implicitly operate within the admissible subspace.

A.4 The "Patternlessness" Criterion

A key unifying concept is patternlessness.
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A pattern is any structure that allows partial distinguishability before full enumeration,
including:

o Energy gradients

e Symmetries or constraints
e Correlations or biases

e Local regularities

o Statistical structure

o Physical cost differences

If any such pattern exists, the solution can be marked, biased, or amplified by a finite physical
process, rendering quantum computation unnecessary in principle.

Quantum computing becomes essential only when no such pattern exists, and all candidate

states remain physically indistinguishable until a global interference operation is performed. This
condition is extraordinarily strong and rarely satisfied by embodied, real-world problems.

A.5 Successive Collapse of the Quantum-Necessary Class

This leads to a two-stage reduction:
Stage 1: Physical embedding filter Excluding problems with physical structure (energy
landscapes, constraints, noise tolerance, approximate solutions) already reduces quantum

necessity to a small minority (~5-15%). This is the main paper's contribution.

Stage 2: Admissibility / Taylor filter Enforcing finite distinguishability at the Hilbert level
removes problems whose hardness relies on sub-resolution phase or amplitude structure.

After both filters are applied, the remaining class of quantum-necessary problems consists
primarily of:

o Artificial oracle constructions
o Carefully engineered parity or phase-global tasks

e Abstract sampling problems with enforced symmetry

These are mathematically legitimate but physically unrepresentative.
A.6 Revised Estimate

The implication is not that quantum computing is invalid or uninteresting, but that its domain of
necessity is sharply bounded. Once physical admissibility is enforced:

Filter applied Remaining QC-necessary fraction
None (naive view) ~100% of "hard" problems
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Filter applied Remaining QC-necessary fraction
Physical embedding (main paper) ~5-15%
+ Taylor admissibility (this appendix) < 5-15% (reduction unquantified)

If a distinguishability threshold of this kind exists, the fraction of practically relevant problems
that genuinely benefit from quantum coherence could be smaller than the order-of-magnitude
estimate discussed in the main text. Quantifying any reduction requires a formal definition of the
threshold and an analysis of how fault-tolerance overhead scales with required phase resolution.

Intersection with fault-tolerant quantum computing. This hypothesis intersects nontrivially
with fault-tolerant quantum computing. In principle, error correction can protect logical
information against noise, suggesting that phase resolution is not fundamentally bounded. The
counterpoint is that error correction overhead scales with the precision being protected (code
distance, physical qubit count, time), potentially reinstating a resource bound consistent with a
"Taylor limit" interpretation. Resolving this requires an explicit scaling analysis linking required
computational precision to fault-tolerance overhead—a direction for future work.

A.7 Summary

Quantum advantage persists only for problems that remain patternless under finite
distinguishability.

Once physical admissibility is enforced at the Hilbert-space level, the majority of nominally
quantum-hard problems collapse into classically admissible ones, leaving a vanishingly small

class of intrinsically quantum-necessary tasks.

This does not diminish the scientific importance of quantum computing—it clarifies its proper
scope as an exceptional rather than general-purpose tool.

Appendix B — Interpreting Figure B: Marking,
Amplification, and Commitment
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Appendix B. Visual Framework for Single-Shot Fact Recovery

The Three Stages of Computation

" warcne S AveuricaTion yv—

+ Create Asymmetry » Concentrate Probability + Finalize Outcome

* Produce Evidence - » Fisher-Rao Geometry » Irrevestible Decision
+ May Require Quantum » Classical or Quantum » Classical Measurement

i ~M @

Marking may require quantum mechanics. Amplification and commitment do not.

Probability Amplification

Marked Set M

Probability mass concentrates in the marked region via Fisher-Rao dynamics.

Classical and Quantum Paths

Classical Process Quantum Process

0 e
lﬂ." l" &/ Same Geometric Flow ‘g
B O
tf Different Physical Realizatio?}

Classical and quantum paths share the same geometric concentration principles.

1

A

» Belief Propagation
» LDPC Decoding

» Lindblad Dynamics
» Quantum Evolution

When Quantum Computing Is Necessary

Classically Quantum or
Markable Problems Nonclassical Marking Sign,
» Optimization » Quantum Simulation

» Scheduling : » Shor's Algorithm

» Classical Error Correction » Entanglement Analysis

(LDPC Decoding)

Quantum computing is essential only for quantum-defined correctness.

Figure B illustrates the core physical separation introduced in this paper between marking,
amplification, and commitment. These stages correspond to distinct physical operations with
different resource requirements and should not be conflated.
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Marking (left panel)

Marking denotes the creation of a physically instantiated asymmetry correlated with correctness.
This asymmetry may take the form of an energy bias, constraint satisfaction signal, likelihood
ratio, syndrome, or other evidence-producing process. In many practical problems, marking is
fully classical. However, in a restricted class of problems—such as quantum simulation, period
finding (Shor’s algorithm), or entanglement certification—no classical marking signal exists
prior to solution, and quantum mechanics is required to create any usable asymmetry.
Importantly, marking is the only stage at which quantum mechanics may be necessary.

Amplification (middle panels)

Amplification refers to the concentration of probability mass or weight onto the marked set once
an asymmetry exists. As shown by the probability simplex and flow diagrams, this concentration
follows from the geometry of probability space (specifically Fisher—Rao / natural gradient
dynamics) and does not depend on quantum interference. Amplification can be realized
classically (e.g., belief propagation, LDPC decoding, constraint propagation) or quantum-
mechanically (e.g., Lindblad dissipation), but the underlying mechanism is the same: structured
propagation of existing asymmetry. Large nominal search spaces do not impede amplification
once marking is present.

Commitment (right panel)

Commitment is the irreversible production of a definite outcome or fact (e.g., measurement,
decision, readout). This stage is necessarily classical, as it involves irreversible record formation.
Quantum mechanics does not alter the nature of commitment; it only influences whether a mark
can be produced upstream.

On “Quantum-Required” Problems (bottom panel)

The classification shown distinguishes problems that admit classical marking signals (e.g.,
optimization, scheduling, classical error correction such as LDPC decoding) from those in which
no classical marking gradient exists. Problems such as Shor’s algorithm are quantum-required
not because correctness is undefined classically, but because no classical process produces
partial evidence correlated with correctness prior to solution. In contrast, most practical problems
possess classically markable structure, rendering quantum mechanics unnecessary for
amplification and commitment.

Key takeaway

Quantum computing is indispensable only when classical marking is impossible. Once a mark
exists—whether produced classically or quantum-mechanically—the subsequent amplification
and commitment of a solution follow from geometry and irreversibility alone.
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Appendix C — Scope, Limits, and Falsifiability of the
Amplification Framework

This appendix addresses three potential misinterpretations of the main text:

(1) the role of the Lindblad amplifier analysis in Sections 15-20,

(i1) the relationship between the Fisher—Rao geometry and classical structural criteria such as
treewidth, and

(1i1) the falsifiability of the “5-15%" estimate regarding quantum necessity.

The purpose of this appendix is not to extend the theory, but to make explicit what is and is not
being claimed.

C.1 What the Lindblad Amplifier Analysis Does — and Does Not —
Claim

Sections 15-20 analyze a dissipative quantum channel that concentrates probability mass into a
marked state with convergence time yt = 0 (1), independent of the size of the hypothesis space
N. This result is sometimes misread as a claim of a realized speedup over Grover’s algorithm.
That interpretation is incorrect.

The Lindblad analysis establishes three distinct results:

1. A dynamical result (mathematical):
Given a physical channel that pumps population from an unmarked subspace into a
marked state, the convergence law is independent of N. This is a statement about
irreversible concentration dynamics after a mark exists.

2. A representational result (information-theoretic):
The “compressed pump” construction shows that exponential channel count is not
information-theoretically necessary to realize this convergence law. This separates
description complexity from dynamical behavior.

3. A realizability separation (physical):
The Symmetric Subspace Theorem provides an explicit constructive case where the
channel is realizable with O (n)resources — only when the marked state is explicitly
known. The manuscript explicitly notes that in this case the problem is classically trivial
and no quantum speedup is implied.

The purpose of Sections 15-20 is therefore not to assert a new algorithmic advantage, but to
isolate the true physical bottleneck:

whether a post-marking amplification channel can be realized with polynomial resources when
the marked state is only implicitly specified (e.g. by constraints, energy, or oracle access).
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This question is left open deliberately and framed as an experimentally and theoretically
falsifiable problem.

C.2 Why the Fisher—Rao Geometry Is Not Redundant with Treewidth

A second concern is that the paper’s successes (XOR chains, LDPC decoding, protein design)
rely on special structure such as low treewidth, and that the Fisher—Rao framing adds little
beyond known structural criteria.

The distinction is as follows:

e Treewidth and related graph measures diagnose when classical propagation is
computationally tractable.

o Fisher—Rao / natural-gradient geometry characterizes what amplification must look
like whenever tractable propagation exists, independent of substrate.

In particular, Fisher—Rao geometry contributes:

1. A substrate-independent concentration law:
Once a marking asymmetry exists, the rate of probability concentration is independent of
Nand depends only on the strength of the mark and the available propagation dynamics.
2. A unification of classical and quantum inference:
Classical belief propagation and quantum Lindblad dynamics are shown to be realizations
of the same geometric flow on probability space. Treewidth alone does not provide this
cross-substrate unification.
3. Predictive degradation behavior:
The geometric formulation explains #Zow and why amplification degrades smoothly when
marks weaken or structure becomes approximate, rather than failing catastrophically.

Treewidth determines feasibility; Fisher—-Rao geometry determines behavior. The two play
complementary roles.

C.3 What Would Falsify the 5—15% Estimate

The estimate that roughly 5-15% of commonly cited quantum computing applications are “QC-
required” is an empirical classification under an explicit criterion, not a definition by fiat. It is
therefore falsifiable in several concrete ways.

Falsifier 1 — Existence of a Counterexample Domain

The estimate is falsified if a widely cited practical application satisfies all of the following:
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Correctness is classically defined.

. No physically instantiable classical marking signal exists prior to solution (no score,
energy, constraint violation, likelihood ratio, or partial certificate).

3. A physically implementable quantum procedure solves the problem with polynomial

resources.

N —

No such domain is currently known outside cryptography and quantum simulation.
Falsifier 2 — Annotation Instability

The estimate is falsified if blinded, double-annotated classification of standard quantum
application roadmaps (using the explicit marking criterion) yields poor inter-rater agreement.
This would indicate that the criterion lacks operational clarity.

Falsifier 3 — Provable Quantum Advantage on Classically Markable Objectives

If a family of problems with classically computable objective functions is shown to:

e require superpolynomial resources classically (under standard assumptions), yet
o admit a physically realizable polynomial-time quantum solution,

then the admissibility-based separation proposed here would be incorrect.

C.4 Summary

The framework advanced in this paper makes three claims:
1. Post-marking amplification obeys universal geometric laws.
2. Whether amplification is efficient depends on physical realizability, not search space
size.
3. Quantum computing is foundationally required only when classical marking is
impossible.

Appendix C clarifies that none of these claims rely on hidden oracle assumptions or circular
definitions. Each admits concrete falsification.

Appendix D — Physical Realizability of Lindblad
Amplification

This appendix resolves the open question raised in Sections 15-20 regarding the physical
realizability of the ideal post-marking Lindblad amplifier. We show that realizability depends
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sharply on how the marked state is specified. For unstructured (oracle-defined) marked states,
local Lindblad dynamics with bounded resources cannot realize the ideal O(1) convergence law
without exponential overhead. For structured marked states defined by local constraints,
symmetry, or gapped energy landscapes, polynomial-resource realizations exist. This establishes
that the marking criterion is not merely classificatory but enforced by physical locality.

D.1 Model and Assumptions

We consider an n-qubit system with Hilbert space dimension N = 2”n. Dynamics are generated
by a Lindbladian

Lip]=Zj@L_jpL_jf —{LJTL_j, p})
with the following constraints:

* Locality: each jump operator L_j acts on at most r = O(1) qubits.

* Bounded resources: the number of channels J(n) and operator norms ||L_j|| are polynomial in n.
* Bounded-degree interaction graph.

* Initial state is maximally mixed or symmetric over computational basis states.

The target steady state is a pure marked state |m)(m|, or a small marked subspace M.

D.2 No-Go Theorem for Unstructured Marks

Theorem D.1 (Local Lindblad No-Go for Unstructured Marks).

Let m € {0,1}"n be an arbitrary computational basis state with no polynomial-size local
description (oracle-defined). Under the above locality and boundedness assumptions, any local
Lindbladian that concentrates probability mass from the maximally mixed state into |m)(m| with
success > 0.99 requires time at least Q(2”{cn}) for some ¢ > 0, or equivalently hides exponential
cost in channel count or operator strength.

Sketch of argument.

The ideal jump operator |m){u| couples |m) to all N—1 basis states simultaneously. Any r-local
operator can only access O(2”r) degrees of freedom. To funnel probability from N—1 states into
|m) therefore requires either visiting an exponential number of configurations sequentially or
encoding exponential information into the generator. Lieb—Robinson bounds imply finite speed
of information propagation, preventing global symmetry breaking in polynomial time.
Equivalent lower bounds arise from conductance and spectral-gap arguments for local
Markovian dynamics with a needle-like stationary distribution.

Corollary.

For oracle-defined unstructured search problems, the ideal O(1) Lindblad amplification law is
not physically realizable under locality. Grover’s Q(VN) bound therefore survives as a physical,
not merely query-theoretic, constraint.
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D.3 Constructive Realizability for Structured Marks

Theorem D.2 (Poly(n) Realizability for Structured Marks).

Suppose the marked state m (or marked set M) is specified as the unique satisfying assignment of
a family of k-local constraints with bounded-degree factor graph, or as the unique ground state of
a local Hamiltonian with spectral gap A > 1/poly(n). Then there exists a local Lindbladian with
polynomially many k-local jump operators whose unique steady state is supported on M, and
whose convergence time is polynomial in n.

Construction.

For constraint-defined marks, each violated constraint C_a defines a local dissipator L._a that
penalizes the violating subspace and pumps toward the satistying subspace. For gapped
Hamiltonians, standard Davies or thermal Lindbladians drive the system toward the ground state
with mixing time O(poly(n)/A). In both cases, convergence depends on the same structural
propagatability conditions that govern classical belief propagation.

D.4 Resolution of the Lindblad Realizability Question

Combining Theorems D.1 and D.2 yields a sharp resolution:

* Unstructured (oracle-defined) marks: no poly(n) Lindblad realization; amplification collapses
to Grover-like scaling.

* Structured marks (constraints, symmetry, gaps): poly(n) Lindblad realization exists;
amplification reflects classical propagatability.

Thus the apparent O(1) vs O(NN) contrast is not a paradox. The O(1) law is a universal post-
marking concentration dynamic, but physical realizability enforces the same boundary identified
by the marking criterion.

D.5 Implication for the Framework

This appendix shows that the marking/amplification separation is not merely conceptual.
Locality and bounded resources enforce it dynamically. Quantum advantage arises only when
quantum mechanics is required to create the mark itself; amplification and commitment are
otherwise classical or dissipative processes constrained by structure.

This resolves the Lindblad realizability question in the strongest form currently possible and
closes the logical loop of the framework.
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