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Quantum mechanics isn't one possible physics among many—it's the unique structural 

framework compatible with a universe where facts can be recorded. This paper proves it. 

 

Abstract 

We show that quantum mechanics is not one admissible theory among many, but the unique 

structural framework compatible with physical admissibility in a fact-producing universe. 

Starting from two minimal constraints—finite operational distinguishability and irreversible 

commitment—we derive the structural core of quantum mechanics without presupposing Hilbert 

spaces, probability measures, or dynamical laws. We establish that infinite distinguishability is 

incompatible with irreversible facts, forcing any fact-producing physics to operate within finite 

resolution bounds (Tier I: forced by admissibility). From these constraints plus operational 

closure principles—tomographic locality and maximal reversibility—we demonstrate that 

admissible reversible evolution must be unitary and Hamiltonian-generated, that measurement 

emerges as the minimal irreversible extension of unitary dynamics, and that the Born rule is the 

unique admissible probability assignment (Tier II: selection among admissible theories). 

Entanglement and Bell correlations follow from global commitment structure, while first-order 

locality forces Clifford algebra and Dirac dynamics. These results are structural and 

interpretation-independent, relocating quantum foundations from postulates to necessity. 

 

Plain Language Overview 

Note: This article is written in two layers. The main text is technical and theorem-driven; the "In 

Plain Language" boxes give an intuitive explanation of what each result means. Feel free to read 

at whichever level suits you—or both. 

What this paper shows, in everyday terms: 
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Quantum mechanics—the physics of atoms, electrons, and light—is famously strange. Particles 

can be in two places at once, measurements seem to disturb what they measure, and distant 

particles can be mysteriously correlated. For a century, physicists have debated what this 

strangeness means and whether we simply have to accept these rules as brute facts about nature. 

This paper takes a different approach. Instead of asking "why is quantum mechanics so weird?", 

we ask: "what kind of physics could possibly allow facts to exist?" 

Think about what a "fact" requires. When you measure something—say, whether a light is on or 

off—you get a definite answer that stays definite. The measurement creates a record that can't be 

undone. This seems obvious, but it turns out to place severe constraints on what kind of physics 

is possible. 

We establish that if facts can exist at all, then: 

• There must be a limit to how precisely you can distinguish things (you can't have infinite 

resolution) 

• Between measurements, physics must evolve in a very specific way (unitarily, governed 

by energy) 

• Probabilities must follow a specific rule (the Born rule, with its squared amplitudes) 

• Particles can be "entangled" in ways that create correlations without sending signals 

• Relativistic particles must have "spin" and obey the Dirac equation 

╔════════════════════════════════════════════════════╗ 

║.                If facts can be recorded at all, quantum structure is inevitable.                        ║ 

╚════════════════════════════════════════════════════╝ 

In other words, quantum mechanics isn't one possible physics among many—it's the unique 

structural framework compatible with a universe where facts exist and records persist. The 

strangeness isn't optional; it's mathematically inevitable. 

The title calls quantum mechanics an "admissibility fixed point." A fixed point is the structure 

you inevitably arrive at after applying constraints again and again—nothing else survives. We 

demonstrate that once you demand facts be possible, you can keep asking "what does that 

require?" and every answer points to quantum mechanics. It's where the logic terminates. 
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1. Introduction: The Problem of Quantum Foundations 

Quantum mechanics is among the most successful theories in the history of science. Its empirical 

accuracy is unmatched, and its mathematical formalism has been confirmed across an 

extraordinary range of physical regimes. Yet despite this success, the foundational status of the 

theory remains unsettled. The core mathematical structures of quantum mechanics—Hilbert 

spaces, unitary evolution, the Born rule, and the projection postulate—are introduced largely by 

postulate rather than necessity. The theory specifies how physical systems evolve and how 

measurement outcomes are calculated, but not why this particular structure is required for a 

physically meaningful description of the world. 

This lack of structural grounding has given rise to a long-standing foundational impasse. 

Interpretational programs debate the ontological meaning of the quantum state while holding the 

formalism fixed. Reconstruction approaches attempt to re-derive quantum theory from 

informational or operational axioms [1–5], yet typically presuppose outcome finality, 

probabilistic structure, or reversible dynamics without explaining why these features must 

coexist. Decoherence-based accounts successfully explain the suppression of interference in 

open systems [6] but do not, by themselves, account for the emergence of definite outcomes or 

irreversible records. As a result, the measurement problem persists—not as a technical 

inconsistency within the formalism, but as a symptom of a deeper structural question left 

unanswered. 

The central difficulty may be stated succinctly: quantum mechanics presupposes the existence of 

irreversible facts while simultaneously employing a fundamentally reversible mathematical core. 

Measurements yield definite outcomes; records persist; entropy increases; time exhibits a 

directed character. Yet the dominant dynamical structure of the theory—unitary evolution on a 

Hilbert space—is perfectly reversible. 



 8 

In this work, we propose a shift in perspective. Rather than asking how quantum mechanics 

should be interpreted, we ask a logically prior question: what constraints must any physically 

admissible theory satisfy in order to produce irreversible facts, persistent records, and a 

meaningful arrow of time? 

1.1 Relation to Existing Reconstruction Programs 

Several programs have sought to derive quantum mechanics from operational or information-

theoretic principles. Hardy's approach [1] derives quantum theory from five "reasonable axioms" 

including probabilistic structure and a simplicity postulate. Chiribella, D'Ariano, and Perinotti 

[2] obtain quantum theory from operational primitives assuming the "purification postulate." 

Masanes and Müller [3] derive the formalism from information-processing constraints. Dakić 

and Brukner [4] emphasize the role of continuous reversibility. 

The present work differs from these programs in a crucial respect: we do not assume 

probabilistic structure, reversible dynamics, or Hilbert space at the outset. Instead, we begin with 

a more primitive question—what is required for facts to exist?—and show that probabilistic 

structure, unitarity, and Hilbert space representation emerge as necessary consequences of 

admissibility constraints. The framework thus operates at a logically prior level, explaining why 

the assumptions of other reconstruction programs are themselves necessary. 

Unlike prior reconstructions, which assume measurement and probability to derive 

kinematics, we derive the kinematic and probabilistic structure of quantum mechanics 

from the existence of irreversible facts themselves. 

The key distinction: other programs ask "what must a theory with measurements and 

probabilities look like?" while we ask the logically prior question "what must a theory have to 

produce measurements and probabilities at all?" 

Specifically, axioms that other programs assume become theorems here: 

Other programs assume This work derives 

Probabilistic structure Theorem 7.1 (Born rule from admissibility) 

Hilbert space Lemma 5.1 (from Jordan algebra classification) 

Unitary dynamics Theorem 5.1 (from distinguishability preservation) 

Continuous reversibility Stone's theorem applied to admissible evolution 

Purification (CDP) Follows from Hilbert space structure 

What we do assume explicitly—the existence of facts (A1), finite resources (A2), and 

measurement realizability (A3)—are preconditions for any empirical physics, not specific to 

quantum theory. See Appendix C for detailed comparison. 
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1.2 Summary of Results 

The results of this paper fall into two tiers with different logical status: 

Tier I: Forced by Admissibility 

Any fact-producing physical theory must exhibit: 

• Finite operational distinguishability (Theorem 3.2) 

• Irreversible commitment as the mechanism of fact-production 

• Reversible dynamics that preserve distinguishability 

• Measurement as many-to-one, entropy-increasing process 

These constraints are necessary consequences of admissibility. They exclude infinite-precision 

classical mechanics and force a quantum-like reversible sector. No additional assumptions are 

required. 

Tier II: Selection Among Admissible Theories 

Additional operational principles select complex Hilbert-space quantum mechanics from among 

the admissible class. Crucially, these principles are not independent postulates but are derivable 

from minimal assumptions about experimental capabilities (see Appendix E): 

• Convexity (R1) follows from classical control capability (Lemma E.1) 

• Tomographic locality (R4) follows from universal composite controllability (Theorem 

E.5) 

• Purification (R5) follows from reversible embeddability (Theorem E.3) 

Together with R2–R3 (directly forced by admissibility), these yield uniquely: unitary dynamics 

(Theorem 5.1), Hamiltonian generation (Theorem 5.2), the Born rule (Theorem 7.1), 

entanglement structure (Section 8), and Dirac dynamics under relativistic extension (Section 9). 

The Central Claim 

Admissibility carves out a narrow class of possible physical theories. Within that class, minimal 

operational completeness—the requirement that a theory describe all experimentally accessible 

degrees of freedom—uniquely selects complex quantum mechanics. The assumptions required 

for Tier II (classical control, reversible embeddability, universal controllability) are not quantum-

specific axioms but capabilities any laboratory doing physics must have. 
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2. Operational Framework and Physical Admissibility 

In Plain Language: This section sets up the basic vocabulary we need. We define what it means 

for a physical process to be "admissible" (actually doable with finite resources), and we 

introduce two key concepts: "distinguishability" (can you tell two things apart?) and 

"commitment" (has a definite fact been established?). These aren't quantum mechanical ideas—

they're more basic than any particular physics. They're about what it takes for any physics to 

produce facts. 

Everyday example of admissibility: A digital thermometer displays temperature to one decimal 

place—say, 98.6°F. The mathematical temperature might be 98.6417293...°F, but the 

operational temperature is just 98.6°F. That's all the device can distinguish. Similarly, a digital 

photo has finite pixel resolution; a detector has a threshold below which it won't trigger; an 

electronic signal has finite bit depth. In every case, the physical system has a limit to how fine a 

distinction it can make. That limit is what we mean by "admissibility"—the boundary between 

what's mathematically describable and what's physically accessible. 

In this section we introduce the minimal operational framework required to formalize the notion 

of physical admissibility. The goal is not to assume quantum mechanics or any particular 

dynamical law, but to specify the structural conditions under which physical distinctions, 

processes, and records can be meaningfully discussed. 

Definition (Operational Fact). In this work, a fact means a physically realized, stable, 

recordable distinction accessible to finite physical procedures. This operational notion is the only 

sense in which facts enter empirical physics. Claims about ontological facts beyond operational 

access—distinctions that exist "in themselves" but cannot be detected, recorded, or referenced by 

any finite procedure—are metaphysical and lie outside the scope of physical theory. 

Scope clarification. All results in this paper concern operational facts. When we say "facts 

require finite distinguishability," this is to be understood in the operational sense relevant to 

physics. We make no claims about metaphysical facts that transcend operational access; such 

claims are neither supported nor refuted by our analysis. 

Throughout this work, we distinguish sharply between mathematical possibility and physical 

admissibility. Mathematical models may permit infinite precision, unbounded state spaces, or 

perfectly reversible dynamics without contradiction. Physical admissibility, by contrast, concerns 

which distinctions and transformations can be realized by finite physical procedures. The 

admissibility layer therefore functions as a constraint filter on formal theories, determining 

which structures are capable of supporting facts, records, and irreversible outcomes. 

Neutrality on scientific realism. The operational stance is methodological, not metaphysical. The 

results are neutral on whether physics describes "reality itself" or only operational procedures. A 

scientific realist can read the framework as constraining what any correct description of reality 

must look like at the operational level. An instrumentalist can read it as constraining predictively 

adequate theories. The admissibility constraints apply equally under either interpretation: any 
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physically meaningful theory—whether interpreted realistically or operationally—must satisfy 

them to be empirically testable. 

2.1 Operational State Spaces 

We model the set of physically preparable states of a bounded system by a convex state space 𝒮. 

Elements of 𝒮 represent equivalence classes of physical preparations that cannot be distinguished 

within the operational limits of the system. Convex combinations represent classical mixing of 

preparation procedures. 

We assume that operational distinguishability between states is quantified by a function 

D : 𝒮 × 𝒮 → [0,1], 

with the interpretation that D(ρ,σ) measures the optimal probability of distinguishing ρ from σ 

using admissible measurement procedures. No particular functional form is assumed at this 

stage. The only required properties are: 

(i) Non-negativity and symmetry: D(ρ,σ) = D(σ,ρ) ≥ 0, with equality if and only if ρ and σ are 

operationally indistinguishable. 

(ii) Contractivity under admissible processes: for any admissible process Φ, 

D(Φ(ρ), Φ(σ)) ≤ D(ρ, σ). 

This expresses the principle that physical processes cannot increase distinguishability beyond 

what is operationally accessible. 

Examples of such distinguishability measures include the trace distance D(ρ,σ) = ½‖ρ − σ‖₁ and 

the Helstrom optimal discrimination probability in quantum theory [7], but the framework does 

not assume Hilbert space structure a priori. 

2.2 Admissible Processes 

An admissible process is a map 

Φ : 𝒮 → 𝒮 

that can be physically implemented using finite resources. By resources we mean finite energy, 

finite time, finite spatial extent, finite memory, and finite resolution. The precise accounting of 

these resources is left implicit; what matters is that admissibility excludes procedures that require 

infinite precision, infinite memory, or unbounded refinement. 
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Admissible processes include reversible transformations, irreversible transformations, and 

measurement procedures. They form a closed class under composition: if Φ₁ and Φ₂ are 

admissible, then Φ₂ ∘ Φ₁ is admissible. 

We emphasize that admissibility is an operational notion rather than a metaphysical one. A 

process may be mathematically well-defined yet physically inadmissible if its implementation 

requires unbounded control or resolution. 

2.3 Finite Distinguishability 

We now introduce the first core admissibility constraint. 

Definition 2.1 (Finite Distinguishability). A bounded physical system exhibits finite 

distinguishability if there exists a finite bound N such that no admissible procedure can reliably 

distinguish more than N mutually distinguishable states within that system. 

In Plain Language: Imagine you have a dial that can point anywhere on a circle. 

Mathematically, there are infinitely many positions. But physically, with any real measuring 

device, you can only reliably tell apart a finite number of positions—maybe 100, maybe a 

million, but not infinity. That's finite distinguishability. No matter how good your instruments 

get, there's always a limit to how fine a distinction you can make with finite resources. 

Remark on scaling. The bound N depends on system size, available energy, and operational 

resources. For quantum systems, N scales with Hilbert space dimension, which in turn scales 

exponentially with particle number for composite systems. The information-theoretic content of 

a bounded region is constrained by holographic bounds (S ≤ A/4 in Planck units) [22, 23], 

suggesting that N is ultimately bounded by geometry. What matters for the present analysis is not 

the precise value of N but its finiteness under any fixed resource budget. 

Equivalently, the operational state space admits a maximum effective cardinality under 

admissible discrimination. This constraint does not require the mathematical state space to be 

finite or discrete. Continuous state spaces are permitted, provided that operational access to 

distinctions terminates at a finite resolution. 

Finite distinguishability is a capacity constraint rather than a statement about ontology. It asserts 

that, under fixed finite resources, there exists a terminal refinement scale beyond which 

distinctions are not physically accessible. 

2.4 Irreversible Commitment 

The second core admissibility constraint concerns the physical realization of facts. 

Definition 2.2 (Irreversible Commitment). An admissible process Φ exhibits irreversible 

commitment if there exist distinct states ρ₁ ≠ ρ₂ in 𝒮 such that 
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Φ(ρ₁) = Φ(ρ₂), 

and no admissible process Ψ exists satisfying Ψ ∘ Φ(ρᵢ) = ρᵢ for all such inputs. 

In Plain Language: When you take a photograph, light from a scene is captured on film or a 

sensor. The original 3D scene had vastly more information than the 2D image preserves. Once 

the photo is taken, you can't reconstruct everything about the original scene from the photo 

alone—information has been irreversibly lost. That's commitment: multiple different starting 

points lead to the same outcome, and you can't undo it to recover which starting point you had. 

Every measurement, every record, every memory works this way. 

Irreversible commitment is defined relative to the admissible domain. It does not assert that 

information is destroyed in an absolute or metaphysical sense, but that distinctions become 

inaccessible to all admissible recovery procedures. Measurement outcomes, persistent records, 

and memory formation are paradigmatic examples of irreversible commitment. 

This definition excludes mere practical irreversibility. A process is irreversibly committing only 

if recovery is inadmissible in principle, not merely difficult in practice. 

2.5 Admissibility as a Constraint Layer 

The admissibility framework introduced here is deliberately minimal. It does not assume 

quantum mechanics, classical mechanics, or any specific dynamical law. It introduces no 

stochastic postulates and no interpretational commitments. Its sole function is to specify which 

distinctions and transformations can be physically realized. 

In the sections that follow, we demonstrate that these constraints are already sufficient to exclude 

broad classes of candidate physical frameworks and to force the mathematical structure of 

quantum mechanics. 

2.6 A Concrete Example: The Digital Camera Pixel 

To make the admissibility framework vivid, consider a single pixel in a digital camera sensor. 

This everyday example illustrates every element of the framework: finite distinguishability, 

irreversible commitment, entropy increase, and the boundary between reversible and irreversible 

physics. 

The setup. A camera pixel consists of a photosensitive region that converts incoming photons 

into electrical charge, an analog charge storage well, an analog-to-digital converter (ADC), and a 

memory register that stores a discrete numerical value (say, 0–255). 

Before the shutter closes, light from the scene strikes the pixel. Photons arrive at random times 

and deposit energy, gradually building up charge. At this stage, the system is still reversible in 

principle: the charge is an analog quantity, and tiny differences in photon arrival history still 

exist in the microscopic degrees of freedom. This is the pre-commitment phase. 
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Finite distinguishability. The pixel does not record an arbitrary real number of charge. The 

ADC divides the possible charge range into 256 bins; any charge value within a given bin 

produces the same digital output. Mathematically, infinitely many distinct microscopic charge 

configurations exist. Operationally, only 256 distinguishable outcomes are accessible. 

This limitation is not merely technological. Even with better electronics, noise, thermal 

fluctuations, and finite energy place a bound on how finely charge can be resolved. No 

admissible physical procedure can extract infinite precision from a bounded pixel in finite time. 

This is exactly what finite operational distinguishability means. 

Irreversible commitment. When the shutter closes, the camera performs analog-to-digital 

conversion and writes a number to memory. At this moment, many different microscopic charge 

configurations map to the same digital value. The detailed photon arrival history is discarded. No 

admissible process can reconstruct which microscopic configuration occurred. 

Two physically distinct pre-measurement states—slightly more photons early versus slightly 

more photons late, or different microscopic noise realizations—now produce the same recorded 

pixel value. Once the number is written, the fact is created. The pixel is now "value = 137," full 

stop. 

Entropy increase. Before commitment, the pixel's microscopic state contained fine-grained 

information about photon arrivals, thermal noise, and charge distribution. After commitment, all 

that information is compressed into one of 256 labels. The number of physically distinguishable 

states has decreased; information about the past has been irreversibly erased. This entropy 

increase follows directly from finite distinguishability and irreversible many-to-one mapping. 

Entropy increases because facts require erasure. 

Loss of reversibility. Could we undo the measurement? You can delete the photo file, power off 

the camera, or reset the memory. But none of these operations recover the exact charge 

configuration, the photon arrival times, or the original light field. The system has crossed a one-

way boundary. Reversibility fails not because physics is approximate, but because the distinction 

has been committed into a finite record and admissible operations cannot access the erased 

degrees of freedom. 

The lesson. This single pixel illustrates the entire admissibility framework—and nothing in this 

example is "quantum weirdness." It is ordinary, everyday physics. Quantum mechanics 

generalizes this structure to all physical systems, including microscopic ones. What we call 

"wavefunction collapse" is not exotic; it is the same kind of irreversible commitment that 

happens every time a camera records a pixel value. 

If you demanded infinite pixel resolution, perfect reversibility, and zero information loss, then no 

photograph could ever exist as a fact. The image would remain a perpetually reversible physical 

process, never producing a stable record. The admissibility constraints are not quantum-

specific—they are fact-specific. Quantum mechanics is simply the theory that respects these 

constraints universally. 
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3. Finite Distinguishability and Irreversible Commitment 

In Plain Language: This section contains the paper's first major result: a proof that you can't 

have both infinite precision and real facts. If you could always zoom in further and see finer 

details, then nothing would ever be truly settled—any apparent "fact" could be undone by 

accessing those finer details. So if facts exist (and they do—you're reading one right now), then 

there must be a bottom level, a finest grain, beyond which distinctions can't be made. This isn't a 

feature of quantum mechanics specifically; it's a requirement for any physics that produces facts. 

Important clarification: "Infinite distinguishability" doesn't mean "the math uses real numbers" 

(it does, and that's fine). It means the universe would let you physically access arbitrarily fine 

distinctions as operational facts. The math can be continuous; what matters is whether nature 

provides a physical procedure to resolve every mathematical distinction. We argue it cannot—

not if facts are to exist. 

In this section we establish the central structural result of the admissibility framework: 

irreversible commitment is impossible in any physical theory that permits infinite operational 

distinguishability. This result functions as a no-go theorem. It does not depend on quantum 

mechanics, probabilistic assumptions, or dynamical laws. 

3.1 The Problem of Commitment 

Physical theories are required to account for the existence of facts. Measurements yield definite 

outcomes, records persist, memories form, and entropy increases. These phenomena share a 

common structural feature: multiple prior possibilities resolve into a single outcome that cannot 

be undone within the operational domain. We refer to this process as irreversible commitment. 

Many mathematical models of physics permit apparent irreversibility only as a result of coarse-

graining or incomplete description. If finer degrees of freedom remain physically accessible, then 

any apparent loss of information can, in principle, be reversed. The key question is therefore not 

whether a process appears irreversible at a given descriptive level, but whether the distinctions 

erased by that process are inaccessible to all admissible refinements. 

3.2 Refinement Lemma 

We first formalize the notion of refinement that underlies distinguishability. 

Lemma 3.1 (Refinement Lemma). Let ρ₁ and ρ₂ be two operationally distinguishable states in 

the admissible state space 𝒮. Then there exists an admissible measurement or refinement variable 

Φ such that Φ(ρ₁) ≠ Φ(ρ₂). 
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Proof. By definition, operational distinguishability means that there exists an admissible 

procedure that reliably yields different outcomes when applied to ρ₁ and ρ₂. Let Φ denote the 

outcome variable of this procedure. Since the procedure is admissible, Φ corresponds to a 

physically accessible refinement that separates the two states. ∎ 

This lemma makes explicit that distinguishability commits one to the existence of physically 

accessible degrees of freedom that encode the distinction. 

3.3 No-Go Theorem for Infinite Distinguishability 

We now state the main result. First, we make precise what infinite distinguishability means 

operationally. 

Definition 3.1 (Infinite Distinguishability). A system exhibits infinite distinguishability if for 

every ε > 0 and every pair of distinct states ρ₁ ≠ ρ₂, there exists an admissible procedure that 

distinguishes them with error probability less than ε. Equivalently, the operational 

distinguishability function D(ρ₁, ρ₂) can be made arbitrarily close to 1 for any distinct pair using 

admissible procedures. 

This definition does not presuppose recoverability—it only asserts arbitrarily good 

discrimination. The theorem shows that such discrimination power implies recoverability, which 

then excludes commitment. 

Remark on ontology vs. operation. A potential objection: "What if infinitely many states exist 

ontologically but only finitely many are operationally accessible?" This objection actually 

supports the framework. We make no claims about what exists "in itself"—only about what can 

be operationally accessed. If operational access is bounded while ontology is richer, then 

operational physics (the subject of empirical science) satisfies finite distinguishability. The 

theorem constrains operational physics, which is what experiments test. Claims about 

inaccessible ontology are metaphysics, not physics. See Appendix B.1 for extended discussion. 

Theorem 3.2 (No-Go for Infinite Distinguishability). If an admissible state space permits infinite 

distinguishability, then no admissible process can exhibit irreversible commitment. 

The Intuition: If you can always look closer and see more detail, then any information you 

thought was "lost" is actually still there at a finer level. Nothing is ever truly erased; it's just 

hidden. But facts require genuine erasure—genuine loss of alternatives. So infinite resolution and 

genuine facts are incompatible. 

Proof. Assume, for contradiction, that the state space permits infinite distinguishability 

(Definition 3.1) and that there exists an admissible process Φ exhibiting irreversible 

commitment. Then there exist distinct states ρ₁ ≠ ρ₂ such that Φ(ρ₁) = Φ(ρ₂) = ρ*. 

Step 1: Discrimination implies information encoding. By infinite distinguishability, for any ε 

> 0 there exists an admissible procedure Mε that distinguishes ρ₁ from ρ₂ with error < ε. This 
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procedure extracts information about which state was prepared. Physically, this information must 

be encoded in degrees of freedom accessible to admissible operations. 

Step 2: Accessible information survives admissible transformations. Let the output of Mε be 

a classical record rε indicating whether the input was ρ₁ or ρ₂ (with error < ε). Consider the 

composite procedure: first apply Mε to create rε, then apply Φ. The record rε is created by an 

admissible procedure and is therefore accessible to admissible operations. 

Step 3: The paradox. After Φ acts, we have Φ(ρ₁) = Φ(ρ₂) = ρ*. But the record rε, created 

before Φ was applied, still exists and still encodes (with error < ε) whether the original state was 

ρ₁ or ρ₂. Therefore, even though Φ(ρ₁) = Φ(ρ₂), the distinction between having started from ρ₁ 

versus ρ₂ remains accessible via rε. 

Step 4: Contradiction. The composite system (output state ρ* + record rε) retains the ability to 

distinguish original preparations. An admissible recovery procedure exists: read rε. This 

contradicts the assumption that Φ exhibits irreversible commitment, which requires that no 

admissible procedure can recover the ρ₁–ρ₂ distinction after Φ. 

Since ε was arbitrary, the argument holds at every precision level. Therefore, under infinite 

distinguishability, no admissible process can irreversibly commit distinctions. ∎ 

Remark on avoiding circularity. The key logical structure is: (1) infinite distinguishability is 

defined purely in terms of discrimination ability, not recoverability; (2) the proof shows that 

discrimination ability implies the existence of accessible records; (3) accessible records defeat 

irreversible commitment. The theorem is not definitionally true; it derives recoverability from 

discrimination. 

3.4 Contrapositive and Physical Interpretation 

The contrapositive of Theorem 3.2 is immediate and physically decisive. 

Corollary 3.3. If irreversible commitment occurs in a physical system, then that system exhibits 

finite distinguishability. 

Since irreversible commitment is a precondition for the existence of facts, records, and empirical 

observation itself, we conclude that any physically realizable universe must satisfy finite 

distinguishability. 

What This Means: We observe facts every day. You're reading definite words on a page, not a 

blur of all possible words. Experiments yield specific outcomes. Therefore, by pure logic, our 

universe must have finite distinguishability. This isn't an assumption—it's a consequence of facts 

existing. 

This conclusion is not an empirical hypothesis but a structural necessity. A theory that permits 

infinite operational refinement cannot support genuine facts; all apparent outcomes remain 
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reversible in principle. Finite distinguishability is therefore not a contingent feature of quantum 

mechanics but a prerequisite for fact-producing physics of any kind. 

3.5 Scope and Consequences 

The no-go theorem established here excludes broad classes of candidate physical frameworks, 

including: 

• Infinite-precision classical mechanics 

• Purely reversible ontologies in which all distinctions remain physically accessible 

• Theories with unbounded operational resolution 

The result does not depend on quantum mechanics and applies equally to classical, quantum, or 

hybrid theories. 

 

4. Consequences of Physical Admissibility 

In Plain Language: Once we accept that distinguishability is finite and that irreversible 

commitment happens, several familiar features of physics follow automatically. This section 

shows that entropy increase (the second law of thermodynamics), the arrow of time, and the fact 

that measurements have finitely many outcomes aren't separate assumptions—they're logical 

consequences of having facts at all. 

In this section we derive general physical consequences of the admissibility constraints. These 

results do not assume quantum mechanics or any specific dynamics. They follow solely from 

finite distinguishability and irreversible commitment. 

4.1 Bounded Operational Information Content 

Finite distinguishability immediately implies a bound on the amount of operationally accessible 

information. 

Proposition 4.1 (Bounded Information Capacity). Let N be the maximal number of mutually 

distinguishable states accessible within a bounded system under admissible procedures. Then the 

operational information content satisfies 

S_operational ≤ log N. 

In Plain Language: If you can only tell apart N different states, then you can only store log N 

bits of information. A coin you can only read as "heads" or "tails" stores 1 bit, no matter how 

many microscopic configurations might underlie each face. 
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Proof. By definition, no admissible procedure can reliably distinguish more than N states. Any 

encoding exceeding this bound necessarily maps multiple input distinctions to the same 

operational state, resulting in information loss. The maximal Shannon entropy achievable under 

these constraints is therefore log N. ∎ 

This result does not require discreteness of the mathematical state space. Continuous descriptions 

remain admissible provided that operational access terminates at finite resolution. 

4.2 Entropy Increase as Forced Information Compression 

Irreversible commitment corresponds operationally to many-to-one mappings on the admissible 

state space. 

Proposition 4.2 (Entropy Increase Under Commitment). Any admissible process exhibiting 

irreversible commitment produces non-decreasing operational entropy. 

In Plain Language: Every time a fact gets established, some distinctions are erased—multiple 

possibilities collapse into one outcome. That's information loss from the system's perspective, 

which means entropy goes up. The second law of thermodynamics isn't a statistical fluke; it's the 

direct consequence of facts happening. 

Proof. Let Φ be an admissible process exhibiting irreversible commitment. Then there exist 

distinct states ρ₁ ≠ ρ₂ such that Φ(ρ₁) = Φ(ρ₂). Under finite distinguishability, no admissible 

refinement can recover this distinction. Therefore the number of distinguishable states accessible 

after Φ is strictly less than before Φ. Since operational entropy is bounded by log N, this 

reduction corresponds to non-decreasing entropy when viewed as missing information relative to 

the prior distinguishability structure. ∎ 

Entropy increase is thus not a statistical assumption. It is a structural consequence of finite 

distinguishability combined with irreversible commitment. 

4.3 Emergence of Temporal Ordering 

Irreversible commitment induces a partial order on physical processes. 

Definition 4.3 (Commitment Ordering). Given two events A and B, we say that A precedes B if 

there exists a sequence of admissible processes from A to B containing at least one irreversible 

commitment, and no admissible sequence exists from B to A restoring the distinctions committed 

at A. 

Proposition 4.4 (Arrow of Time). The commitment ordering defines a directed temporal 

structure consistent with the observed arrow of time. 

In Plain Language: Why does time have a direction? Why do we remember the past but not the 

future? Because facts accumulate through irreversible commitment. Once something is recorded, 
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it can't be unrecorded. This creates an asymmetry: the direction of increasing records is the 

direction of time. We don't need to assume time flows forward; it falls out of the logic of fact-

making. 

Proof. By definition, irreversible commitments cannot be undone within the admissible domain. 

Therefore the ordering induced by commitment is asymmetric and transitive, yielding a partial 

order. This ordering coincides with the direction in which records accumulate and entropy 

increases. ∎ 

This result does not presuppose a fundamental time parameter. Temporal direction emerges from 

the structure of admissible processes. 

Remark on the time parameter in reversible evolution. Section 5 will introduce a parameter t 

labeling reversible transformations {Tₜ}. This might seem circular: if time emerges from 

commitment, how can we have a pre-existing time parameter? The resolution: the parameter t is 

merely a label for a one-parameter group of transformations. It does not presuppose temporal 

direction. The group {Tₜ} could run either way (t → −t gives another valid parametrization). 

What commitment provides is the direction: the future is the direction in which records 

accumulate and entropy increases. The parameter t becomes physical time only when oriented by 

commitment structure. 

4.4 Finite Outcome Sets 

Operational records correspond to stabilized outcomes of irreversible commitments. 

Proposition 4.5 (Finite Outcome Necessity). Any admissible measurement or record-forming 

process yields outcomes drawn from a finite set. 

Proof. Suppose a measurement produced an infinite set of mutually distinguishable outcomes 

within a bounded system. This would violate finite distinguishability. Therefore admissible 

record formation necessarily involves finite outcome sets. ∎ 

In Plain Language: When you measure something, you get one of a finite list of possible 

results—"heads or tails," "red, green, or blue," "spin up or down." You never get infinitely many 

distinguishable outcomes from a bounded system. This isn't a practical limitation; it's structurally 

required. 

4.5 Exclusion of Infinite-Precision Ontologies 

Corollary 4.6. Any physical theory that permits infinite operational refinement is incompatible 

with irreversible facts, entropy increase, and persistent records. 

Such theories may remain mathematically consistent but fail as descriptions of fact-producing 

physics. 
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5. Reversible Evolution Between Commitments 

In Plain Language: Facts happen at discrete moments—when measurements occur, when 

records form. But what happens between those moments? This section shows that between 

commitments, physics must evolve in a very specific way: it must preserve all distinctions 

perfectly (unitary evolution) and be generated by energy (Hamiltonian dynamics). The 

Schrödinger equation—the master equation of quantum mechanics—isn't assumed; it's derived 

as the only possibility. 

In this section we characterize the structure of admissible reversible evolution occurring between 

irreversible commitments. We establish that admissible reversible evolution must be unitary and 

generated by a self-adjoint Hamiltonian. 

Why must reversible evolution exist? If commitments occurred at every instant—if every 

moment involved fact-creation—there would be no dynamical evolution at all, only a static 

sequence of disconnected facts with no law connecting them. But physics succeeds empirically: 

we can predict future measurement outcomes from present ones. This predictability implies that 

systems evolve lawfully between commitments. The existence of predictable dynamics is thus 

evidence that reversible (non-committing) evolution occurs. What follows characterizes the 

structure such evolution must have. 

5.1 Reversible Dynamics as Distinguishability-Preserving Maps 

Between irreversible commitments, physical evolution must preserve all operationally accessible 

distinctions. If reversible dynamics were permitted to erase or amplify distinguishability, then 

commitment would either occur prematurely or become ill-defined. 

In Plain Language: If physics could blur distinctions between measurement events, that 

blurring would itself constitute a fact—a commitment. But we're talking about periods when no 

facts are being created. So during these periods, all distinctions must be perfectly preserved. 

Nothing is gained, nothing is lost—information is just reshuffled. 

Let {Tₜ}_{t ∈ ℝ} denote a family of admissible reversible transformations acting on the 

operational state space 𝒮. We assume the following minimal properties: 

(i) Composability: T_{t+s} = Tₜ ∘ Tₛ for all t, s, with T₀ = I. 

(ii) Reversibility: For each t, Tₜ admits an admissible inverse T_{−t}. 

(iii) Continuity: The map t ↦ Tₜ is continuous in the operational topology induced by D. 

(iv) Distinguishability preservation: For all states ρ, σ ∈ 𝒮, 



 22 

D(Tₜ(ρ), Tₜ(σ)) = D(ρ, σ). 

These assumptions express the minimal requirement that reversible evolution neither creates nor 

destroys operational distinctions. 

5.2 Deriving the Reversible Sector: From Admissibility to Hilbert Space 

The admissibility constraints developed so far—finite operational distinguishability and 

irreversible commitment—do not by themselves fix a unique mathematical representation for 

reversible dynamics. They constrain what must not happen (e.g., creation or destruction of 

operational distinctions), but they leave open multiple possible reversible structures compatible 

with those constraints. 

Meta-theorem (Informal). Admissibility restricts the reversible sector to a narrow family of 

operational theories. Any operational theory of reversible dynamics that is continuous, 

compositional, and measurement-complete admits a Jordan algebra representation. Within that 

family, the postulates R1–R5 below constitute a canonical minimal set that yields complex 

quantum mechanics. Departures from R1–R5 either (a) collapse into equivalent structure, or (b) 

introduce operationally inaccessible degrees of freedom, violating the methodological core of 

admissibility. 

We therefore do not claim that R1–R5 are the unique choice—only that they form the minimal 

operationally complete closure of the reversible sector. 

5.2.1 Operational Postulates for Reversible Dynamics 

We adopt the following postulates, all of which are motivated by admissibility rather than by 

quantum formalism. Importantly, R1, R4, and R5 are not independent axioms but can be derived 

from minimal assumptions about experimental capabilities; see Appendix E for the full 

derivations. 

R1. Convexity (Operational Mixing). If a preparation procedure can be implemented using 

classical randomness over admissible preparations, then the resulting state is represented by the 

corresponding convex mixture. 

Derived status: This follows from the existence of classical control registers (Assumption CC, 

Lemma E.1). Any laboratory capable of recording facts can implement classical randomization 

over preparations. 

R2. Continuous Reversible Dynamics. Between irreversible commitments, admissible 

dynamics form a continuous, connected group of reversible transformations acting on the 

operational state space. 

This postulate is forced by admissibility. If reversible dynamics were discontinuous, finite 

changes in experimental control would produce abrupt changes in outcomes, effectively 
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generating new commitments. Continuity is therefore required to prevent reversible evolution 

from producing facts. 

Remark on discrete time. If time is fundamentally discrete (as in some quantum gravity 

approaches), the argument applies to the discrete unitary step operator U, with the generator 

becoming a phase operator Φ satisfying U = e^{−iΦ}. The framework is compatible with 

discrete-time dynamics. 

R3. Distinguishability-Preserving Reversibility. All reversible transformations preserve 

operational distinguishability: 

D(T(ρ), T(σ)) = D(ρ, σ). 

If a reversible transformation erased distinctions, it would constitute an irreversible commitment. 

If it amplified distinctions, it would generate new operational facts. Reversibility therefore 

implies isometric action on the distinguishability structure. 

R4. Operational Closure of Composition. If two composite states are indistinguishable by all 

admissible local measurements and their correlations, then they are operationally identical and 

must be identified in the physical state space. 

Equivalently: the joint state of a composite system is completely characterized by the statistics of 

admissible measurements on its subsystems and their correlations (tomographic locality). 

Derived status: This follows from universal composite controllability (Assumption UC, Theorem 

E.5). If a laboratory can perform all local operations plus a universal entangling gate set, then 

any state difference not detectable by local measurements and correlations is operationally 

inaccessible and should be quotiented out. 

Remark on hidden variables. Bohmian mechanics posits ontological hidden variables that are 

operationally inaccessible. This does not conflict with R4: Bohmian particles do not alter 

operational statistics, so they represent an ontological overlay on quantum structure, not a 

counterexample to operational closure. The admissibility framework constrains operational 

physics; ontological interpretations that reproduce quantum statistics remain compatible. 

R5. Maximal Reversibility (Purification). Every mixed state arises as the marginal of a pure 

state of a larger system, and any two purifications of the same state differ by a reversible 

transformation on the purifying subsystem. 

Derived status: This follows from reversible embeddability (Assumption RE, Theorem E.3). The 

key insight is that stochastic reversible evolution is impossible (Proposition E.2): genuine 

stochasticity would make the inverse many-to-one, hence irreversible. Therefore, all apparent 

randomness in mixed states must reflect ignorance about correlations with inaccessible degrees 

of freedom—which is precisely what purification asserts. 
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Status. R5 is the weakest derived postulate; relaxing Assumption RE leads to theories with 

fundamental decoherence, which may be physically relevant in quantum gravity contexts. 

Remark on postulate status. R2 and R3 are directly forced by admissibility. R1, R4, and R5 are 

derived from minimal experimental capability assumptions (CC, UC, RE) as shown in Appendix 

E. 

5.2.2 Consequences of the Postulates 

Roadmap. The following sections use the mathematical theory of Jordan algebras to classify all 

possible reversible sectors compatible with R1–R5. This may seem like an abrupt introduction of 

abstract mathematics, so we briefly explain the logic: 

1. Why Jordan algebras? R1–R3 imply the state space is a convex cone with a transitive 

symmetry group. R4–R5 imply the cone is self-dual (states and effects have matching 

structure). The Koecher-Vinberg theorem states that such cones are exactly the cones of 

squares in Jordan algebras. This is not an assumption—it's a classification theorem from 

pure mathematics. 

2. What is a Jordan algebra? A commutative algebra satisfying x ∘ (y ∘ x²) = (x ∘ y) ∘ x². 

The physical content is that observables can be "squared" and "multiplied" in a consistent 

way. Quantum observables (Hermitian matrices) satisfy this. 

3. Why does classification help? Jordan, von Neumann, and Wigner proved there are only 

five types of finite-dimensional Jordan algebras. We can examine each and check 

whether it satisfies all of R1–R5. Most fail. Complex quantum mechanics is what 

remains. 

This is the mathematical backbone of the uniqueness result. Readers unfamiliar with Jordan 

algebras can take the classification as given and focus on the exclusion arguments in §5.2.3. 

 

From R1–R3, the operational state space is a finite-dimensional convex set admitting a 

continuous, transitive group of distinguishability-preserving transformations acting on its 

extremal (pure) states. 

From R4 and R5, the state space is homogeneous and self-dual: states and effects possess 

matching structure, and composition behaves consistently across subsystems. 

By the Koecher–Vinberg theorem [10], any finite-dimensional homogeneous self-dual cone is 

isomorphic to the cone of squares in a formally real Jordan algebra. The reversible sector must 

therefore be representable by one of the finite-dimensional Jordan algebras classified by Jordan, 

von Neumann, and Wigner [11]. 

The classification yields the following possibilities: 

• Real quantum mechanics (Hermitian matrices over ℝ) 
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• Complex quantum mechanics (Hermitian matrices over ℂ) 

• Quaternionic quantum mechanics (Hermitian matrices over ℍ) 

• Spin-factor theories 

• The exceptional Albert algebra (27-dimensional, over the octonions) 

5.2.3 Exclusion of Non-Quantum Foils 

The admissibility-motivated postulates exclude all but one of these possibilities. 

Exceptional Jordan algebra (Albert algebra). The Albert algebra lacks a consistent tensor-

product structure for composing independent systems. This violates tomographic locality (R4) 

and is therefore inadmissible. 

Quaternionic quantum mechanics. Quaternionic theories violate tomographic locality: the joint 

state of a composite system is not determined by local measurement statistics [3, 24]. They also 

possess excess global degrees of freedom that are operationally inaccessible, conflicting with 

admissibility. 

Real quantum mechanics. Real quantum mechanics lacks sufficient continuous symmetry to act 

transitively on pure states (R2 requires connected group action). The transformation group O(n) 

is disconnected, meaning not all pure states can be continuously connected. RQM also fails to 

support the full interference structure required by distinguishability-preserving reversible 

dynamics—relative phases are restricted to ±1 rather than the full circle. 

In Plain Language — Why Complex Numbers? 

Why does nature use complex numbers (with their mysterious √−1) rather than ordinary real 

numbers? The answer comes down to interference and continuity. 

In quantum mechanics, when two paths lead to the same outcome, they can interfere—

sometimes reinforcing, sometimes canceling. The amount of interference depends on a phase, an 

angle that can take any value from 0° to 360°. With real numbers, you only get two options: +1 

(constructive) or −1 (destructive). There's no way to continuously dial between them. 

But admissibility requires continuous reversible evolution. If you could only flip discretely 

between +1 and −1, that flip would itself constitute a fact—a commitment. Continuous phases 

require the full circle, and the full circle requires complex numbers. 

Additionally, real quantum mechanics has a topological problem: some states can't be 

continuously transformed into others. It's like having a Möbius strip instead of a cylinder—you 

can't smoothly rotate everything. Complex numbers fix this by providing enough "room" for all 

transformations to connect continuously. 

So complex numbers aren't a mysterious mathematical convenience. They're forced by the 

requirement that reversible evolution be truly continuous and that interference be smoothly 

adjustable. Real numbers are too rigid; complex numbers are exactly right. 
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Technical note: The arguments above are heuristic. The rigorous exclusion of real QM relies on 

local tomography: in real quantum mechanics, you can't determine the joint state of two systems 

from local measurements alone. This violates R4 (operational closure of composition). See 

Appendix B.4 for the full proof. 

Spin-factor theories. These reduce to real or complex quantum mechanics in low dimensions 

and do not yield distinct admissible theories in the present framework. 

The only remaining possibility compatible with R1–R5 is complex quantum mechanics. 

5.2.4 Emergence of Hilbert Space as Representation 

Lemma 5.1 (Hilbert Space Emergence). Under postulates R1–R5, the operational state space is 

isomorphic to the space of density operators on a complex Hilbert space ℋ, and reversible 

transformations are represented by unitary operators acting on ℋ. 

In Plain Language: We did not start by assuming particles live in Hilbert space. We started by 

asking what reversible physics must look like in a universe where facts can exist. Once we 

require reversible evolution to be continuous, symmetry-respecting, and compatible with how 

systems compose and how ignorance works, there is only one possible mathematical description 

left. Hilbert space isn't a guess—it's what remains after everything else is ruled out. 

Proof. By the analysis of §5.2.2–5.2.3, the state space must be isomorphic to density matrices on 

ℂᴺ for some finite N (determined by the distinguishability bound). Reversible transformations 

preserving distinguishability and satisfying R2–R3 must act as unitary conjugations: T(ρ) = 

UρU† for unitary U. See Appendix B.4 for the complete proof. ∎ 

5.2.5 Scope Clarification 

It is important to emphasize what has and has not been shown. 

What admissibility alone forces: The constraints of finite distinguishability and irreversible 

commitment do not by themselves select a unique reversible structure. They do, however, 

motivate and constrain the operational postulates R1–R5. 

What the postulates force: Under R1–R5, complex Hilbert space quantum mechanics is 

uniquely selected. Other structures (real, quaternionic, exceptional) are excluded by specific 

postulates. 

The logical structure: Admissibility → motivates R1–R5 → forces Hilbert space. 

Hilbert space is thus not fundamental ontology, but the mathematically faithful representation of 

admissible reversible dynamics in a fact-producing universe. 
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5.3 Unitary Implementation of Reversible Evolution 

Theorem 5.1 (Unitary Realization). Let {Tₜ} be a continuous, reversible, distinguishability-

preserving family of admissible transformations on a state space satisfying the conditions of 

Lemma 5.1. Then there exists a complex Hilbert space ℋ and a strongly continuous one-

parameter unitary group {U(t)} acting on ℋ such that 

Tₜ(ρ) = U(t) ρ U(t)†. 

In Plain Language: "Unitary" means the transformation preserves all lengths and angles—

nothing is stretched, squashed, or lost. We've just proven that between measurements, physics 

must be unitary. This is usually taken as an axiom of quantum mechanics. Here, it's a theorem. 

Proof. By Lemma 5.1, the state space admits a representation as density matrices on a Hilbert 

space ℋ. Distinguishability preservation implies that each Tₜ preserves the trace distance: 

‖Tₜ(ρ) − Tₜ(σ)‖₁ = ‖ρ − σ‖₁. 

By Wigner's theorem [12], any bijection on pure states preserving transition probabilities 

(equivalently, trace distance for pure states) is implemented by either a unitary or antiunitary 

operator. 

Since {Tₜ} forms a continuous one-parameter group and T₀ = I, the implementing operators must 

vary continuously with t. Antiunitary operators are disconnected from the identity (they reverse 

orientation on the Hilbert space), so continuity forces each Tₜ to be implemented by a unitary 

operator U(t). 

The group property T_{t+s} = Tₜ ∘ Tₛ implies U(t+s) = e^{iφ(t,s)} U(t)U(s) for some phase φ. By 

standard arguments [13], continuity allows the phase to be absorbed into the definition of U(t), 

yielding a strongly continuous unitary representation. ∎ 

5.4 Existence of the Hamiltonian Generator 

Theorem 5.2 (Hamiltonian Necessity). Any strongly continuous one-parameter unitary group 

{U(t)} admits a unique self-adjoint generator H such that 

U(t) = exp(−iHt/ℏ). 

In Plain Language: If evolution is unitary and continuous, there must be something generating 

it—and that something is what we call energy (the Hamiltonian). This is Stone's theorem from 

mathematics. The Hamiltonian isn't an extra assumption; it exists automatically once you have 

continuous unitary evolution. 

Proof. This is Stone's theorem [14]. Strong continuity of t ↦ U(t) guarantees that the limit 
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Hψ = iℏ lim_{t→0} [U(t)ψ − ψ]/t 

exists on a dense domain and defines a self-adjoint operator. The generator H is unique up to 

additive constants corresponding to global phase. ∎ 

The operator H is identified as the Hamiltonian. Its existence is not an independent axiom but a 

representation-theoretic necessity arising from admissibility. 

5.5 Schrödinger Evolution as Admissible Dynamics 

Differentiating the unitary evolution yields 

iℏ dρ/dt = [H, ρ] 

for mixed states, and 

iℏ d|ψ⟩/dt = H|ψ⟩ 

for pure states. These equations are not postulates but identities expressing the infinitesimal 

action of admissible reversible evolution. 

In Plain Language: The Schrödinger equation—the most famous equation in quantum 

mechanics—appears here not as an assumption but as the only possible way to describe 

continuous reversible evolution that preserves distinguishability. It's mathematically forced. 

The Schrödinger equation thus appears as the unique admissible continuous-time description of 

reversible evolution between commitments. 

 

6. Measurement as Irreversible Commitment 

In Plain Language: Measurement has always been the most controversial part of quantum 

mechanics. What makes it special? Why does it seem to "collapse" the wave function? This 

section shows that measurement isn't special at all—it's just the moment when irreversible 

commitment happens. The mathematical structures physicists use to describe measurement 

(CPTP maps, POVMs, state update rules) aren't arbitrary; they're the minimal description of what 

commitment does. 

In this section we demonstrate that measurement does not require any special dynamical 

postulate beyond irreversible commitment. The standard mathematical structures of quantum 

measurement—completely positive maps, POVMs, and state-update rules—are derived as 

necessities. 
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6.1 Measurements as Admissible Processes 

A measurement is an admissible process whose defining feature is the production of a stable 

record. Such a record encodes the outcome in a form that cannot be erased by any admissible 

procedure. Measurement therefore constitutes an instance of irreversible commitment. 

Formally, a measurement is represented by an admissible map Φ acting on the operational state 

space such that distinct pre-measurement states may map to the same post-measurement state 

while yielding a recorded outcome label i belonging to a finite outcome set. 

6.2 Completely Positive Maps and Physical Admissibility 

Admissible physical processes acting on quantum states must preserve positivity and 

normalization under all possible extensions. 

Theorem 6.1 (CPTP Necessity). Any admissible irreversible process acting on quantum states is 

represented by a completely positive, trace-preserving (CPTP) map. 

In Plain Language: "Completely positive" is a technical condition that ensures probabilities 

remain sensible (non-negative) even when your system is entangled with something else. "Trace-

preserving" means total probability stays equal to 1. These aren't extra assumptions—they're 

requirements for any process that could actually happen physically. 

Proof. Let Φ be an admissible process on system A. Consider an arbitrary extension where A is 

embedded in a larger system AB, with B serving as an ancilla that undergoes no direct evolution. 

(i) Positivity: Φ must map positive operators (valid states) to positive operators. Otherwise, Φ(ρ) 

could have negative eigenvalues, which are unphysical. 

(ii) Complete positivity: The extended map Φ ⊗ I_B must also preserve positivity. If Φ were 

merely positive but not completely positive, there would exist entangled states ρ_{AB} such that 

(Φ ⊗ I_B)(ρ_{AB}) has negative eigenvalues [15]. Such outputs are not valid quantum states, 

violating admissibility. 

(iii) Trace preservation: Tr(Φ(ρ)) = Tr(ρ) = 1 is required for normalization of probability. 

These conditions are necessary for physical realizability. ∎ 

6.3 Kraus Representation and Outcome Structure 

By the Kraus representation theorem [16], any CPTP map Φ admits a decomposition 

Φ(ρ) = Σₖ Mₖ ρ Mₖ†, 

where the Kraus operators {Mₖ} satisfy Σₖ Mₖ†Mₖ = I. 
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When the process produces a recorded outcome i, the Kraus operators can be grouped into 

subsets corresponding to distinct outcomes. The associated positive operators 

Eᵢ = Σ_{k∈i} Mₖ†Mₖ 

form a positive operator-valued measure (POVM), satisfying Σᵢ Eᵢ = I and Eᵢ ≥ 0. 

Proposition 6.2 (Finite Outcome Necessity). The outcome set of any admissible measurement is 

finite. 

Proof. By finite distinguishability, no admissible procedure can reliably distinguish an infinite 

set of mutually exclusive outcomes within a bounded system. Therefore the POVM must consist 

of finitely many effects. ∎ 

6.4 State Update as Minimal Commitment 

Conditioning on a specific measurement outcome i yields the post-measurement state 

ρᵢ = (Mᵢ ρ Mᵢ†) / Tr(Eᵢ ρ), 

where Mᵢ denotes the effective Kraus operator associated with outcome i. 

Theorem 6.3 (No-Extra-Disturbance Principle). The state update rule contains no additional 

dynamical disturbance beyond irreversible commitment. 

In Plain Language: The infamous "wave function collapse" isn't a mysterious additional 

process. It's just what happens when you update your description after learning which outcome 

occurred. The math of commitment already contains the state update rule. Nothing extra is 

needed. 

Proof. The update rule arises purely from conditioning on the observed outcome within the 

CPTP structure. No supplementary stochastic or dynamical modification is required. All loss of 

distinguishability is accounted for by the many-to-one nature of commitment itself. ∎ 

This result shows that the projection postulate can be understood as a bookkeeping rule encoding 

commitment rather than an independent physical process. The apparent "collapse" reflects the 

transition from the pre-commitment ensemble to the post-commitment conditioned state. 

6.5 POVMs as Finite-Resolution Necessity 

Idealized projective measurements correspond to the special case where POVM elements are 

orthogonal projectors. In realistic physical situations, finite resolution generically yields non-

projective POVMs. 
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Proposition 6.4 (Generic POVM Structure). Finite distinguishability implies that admissible 

measurements are generically represented by POVMs rather than sharp projective measurements. 

Proof. If operational resolution is finite, measurement effects necessarily coarse-grain over 

underlying degrees of freedom. This coarse-graining produces positive operators that are not 

idempotent, yielding POVM structure. ∎ 

 

7. Probability and the Born Rule 

In Plain Language: Where do quantum probabilities come from? Why do we square the wave 

function to get probabilities (the Born rule)? This section proves that the Born rule isn't an 

arbitrary choice—it's the only way to assign probabilities that's compatible with unitary evolution 

and finite distinguishability. Any other rule would lead to contradictions. 

In this section we derive the Born rule as the unique probability assignment compatible with 

admissibility constraints. 

7.1 The Structural Role of Probability 

Probability enters physics only at the interface between reversible evolution and irreversible 

commitment. Prior to commitment, admissible dynamics preserves all operational distinctions 

and no outcome is selected. At commitment, multiple possibilities are reduced to a single 

recorded fact. Probability quantifies the relative weights with which outcomes are realized. 

In Plain Language: Probabilities don't exist during the quantum evolution—all possibilities are 

still "in play." Probability only becomes meaningful when a fact is established, at the moment of 

commitment. Then it tells you how likely each outcome was. 

Crucially, probability is not interpreted here as subjective belief. It is an objective feature of 

admissible outcome statistics arising from the structure of reversible dynamics constrained by 

finite distinguishability. 

7.2 Constraints on Admissible Probability Assignments 

Let {Eᵢ} be the finite POVM associated with an admissible measurement. An admissible 

probability assignment p(i|ρ) must satisfy: 

(i) Positivity: p(i|ρ) ≥ 0 for all i. 

(ii) Normalization: Σᵢ p(i|ρ) = 1. 
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(iii) Additivity under coarse-graining: Probabilities assigned to coarse-grained outcomes equal 

the sum of probabilities of the fine-grained outcomes they comprise. 

(iv) Unitary invariance: p(i|UρU†) = p(U†EᵢU|ρ) for all unitaries U. 

(v) Continuity: Small changes in ρ induce small changes in p(i|ρ). 

(vi) Non-contextuality: The probability for outcome i depends only on ρ and Eᵢ, not on other 

elements of the POVM or the physical implementation. 

7.3 Uniqueness of Quadratic Probability 

Theorem 7.1 (Born Rule Uniqueness). Let ρ be a quantum state and {Eᵢ} a POVM on a Hilbert 

space of dimension d ≥ 3. Then the unique probability assignment satisfying the admissibility 

constraints is 

p(i|ρ) = Tr(Eᵢ ρ). 

In Plain Language: This is the Born rule: probability equals trace of (effect times state), which 

for pure states gives you the squared amplitude. The theorem says this is the only formula that 

works. Anything else would violate one of the basic requirements like additivity or non-

contextuality. 

Proof. We establish this result in three steps. 

Step 1: Frame functions and Gleason's theorem. For projective measurements in dimension d 

≥ 3, Gleason's theorem [17] states that any non-contextual probability assignment must take the 

form p(P|ρ) = Tr(Pρ) for projectors P. The key insight is that non-contextuality and additivity 

over orthogonal projectors leave no freedom: any deviation from the trace rule produces 

contradictions when measurements are refined or coarse-grained. 

Step 2: Extension to POVMs. Busch [18] and Caves et al. [19] extended Gleason's theorem to 

POVMs. Any additive, non-contextual probability measure on the space of effects (positive 

operators E with 0 ≤ E ≤ I) must be linear in the state: p(E|ρ) = Tr(Eρ). 

Step 3: Admissibility forces non-contextuality. This step requires careful argument, as the 

relationship between operational equivalence and non-contextuality has subtleties [20]. 

Consider a POVM element Eᵢ that appears in two different POVMs: {E₁, E₂, ..., Eₙ} and {E₁, F₂, 

..., Fₘ}. A contextual probability assignment would assign different values p(E₁|ρ) depending on 

whether E₁ is measured alongside {E₂, ...} or alongside {F₂, ...}. 

The reproducibility argument. Suppose probabilities were contextual: p(E₁|ρ, POVM₁) ≠ 

p(E₁|ρ, POVM₂). Then over many trials, the observed frequencies would differ systematically 

between the two measurement contexts. But this frequency difference is itself an empirical 

regularity—a stable, reproducible operational fact. 
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By the definition of operational fact (§2), any such regularity must be traceable to some 

physically accessible distinction. Either: 

(a) The distinction is measurable, in which case M and M' are operationally distinguishable 

(contrary to the assumption that they share Eᵢ), or 

(b) The distinction is unmeasurable, in which case it cannot ground reproducible statistics 

without violating admissibility. 

Option (b) would require an inaccessible degree of freedom to reliably influence outcome 

frequencies across repeated trials. But "reliably influence across repeated trials" means 

producing a stable operational pattern—exactly what admissibility says inaccessible degrees of 

freedom cannot do. 

Formal statement. Let M and M' be two measurement procedures that both include effect Eᵢ. 

Suppose p(Eᵢ|ρ, M) ≠ p(Eᵢ|ρ, M'). By finite distinguishability, the difference must be encoded in 

some accessible degree of freedom. But the outcome records for "Eᵢ clicked" are operationally 

identical in both cases—they produce the same persistent fact. Therefore any degree of freedom 

that distinguishes M from M' is inaccessible to the outcome record, and by admissibility, cannot 

influence the probability of that outcome. 

This argument shows that operational non-contextuality—probabilities depending only on the 

effect and state, not on co-measured effects—is forced by admissibility. Note that this does not 

rule out ontological contextuality in the sense of Spekkens [20], where underlying ontic states 

might differ; it rules out observable contextuality in outcome statistics. 

Alternative derivation (Appendix E). A cleaner version of this argument defines an "operational 

effect" as an equivalence class of outcome-events with identical statistics on all states. Under this 

definition, non-contextuality is automatic: if probabilities depended on context, the outcome-

events would belong to different equivalence classes and would not be "the same effect" (Lemma 

E.6). 

Therefore non-contextuality is forced, and by the generalized Gleason theorem, p(i|ρ) = Tr(Eᵢ ρ). 

∎ 

Remark on dimension. For d = 2 (qubits), Gleason's theorem fails, and additional probability 

assignments exist. However, these alternatives violate either continuity or compositionality when 

qubits are embedded in larger systems [20]. Since admissibility requires consistent probability 

assignments across all system sizes, the Born rule is unique even in the qubit case. 

7.4 Operational Interpretation 

The quadratic form of the Born rule reflects the preservation of distinguishability under unitary 

evolution. Squared amplitudes correspond to invariant measures on the space of admissible 

states. Alternative assignments would permit amplification or suppression of operational 

distinctions under reversible evolution, contradicting admissibility. 
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From this perspective, probability measures the fraction of admissible distinguishability capacity 

allocated to each outcome channel at commitment. 

 

8. Entanglement and Nonlocal Correlations 

In Plain Language: Entanglement is often called the strangest feature of quantum mechanics—

"spooky action at a distance," as Einstein put it. Two particles can be correlated in ways that 

seem impossible if each particle has its own independent reality. This section shows that 

entanglement isn't a weird add-on; it's inevitable once you have quantum structure. And 

crucially, it doesn't involve any faster-than-light influence. The "spookiness" is in how facts get 

established globally, not in any signal being sent. 

In this section we establish that entanglement and Bell correlations arise as structural 

consequences of admissibility, without requiring violations of locality. 

8.1 Composite Systems and Tensor Structure 

Consider two subsystems A and B, each described by an admissible operational state space. The 

joint system is described by a composite state space whose reversible dynamics factorize as 

tensor products of admissible unitary evolutions: 

U_{AB}(t) = U_A(t) ⊗ U_B(t) 

for independent evolutions. This compositional structure is forced by admissibility: reversible 

dynamics on independent systems must compose without creating or destroying 

distinguishability. 

Entangled states are those joint states that cannot be written as convex combinations of product 

states: 

ρ_{AB} ≠ Σₖ pₖ ρ_A^{(k)} ⊗ ρ_B^{(k)}. 

8.2 Shared Distinguishability Structure 

In Plain Language: Think of two coins that are secretly connected. Each coin individually looks 

random—50% heads, 50% tails. But together, they're always correlated: if one is heads, the other 

is tails. The information about their relationship isn't stored in either coin alone; it's stored in 

their relationship. That's entanglement. The "information" about correlations is nonlocal—

distributed across the pair—but no signal travels between them. 
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In the admissibility framework, distinguishability is a relational resource. For composite systems, 

distinguishability need not decompose additively. Entangled states correspond to configurations 

where distinguishability is stored nonlocally across the composite state space. 

Operationally, while local reduced states may be indistinguishable from classical mixtures, 

global measurements can access distinctions that no local procedure can resolve independently. 

8.3 Bell Correlations Without Dynamical Nonlocality 

Bell inequalities [21] constrain correlations achievable under local hidden-variable models where 

outcomes are locally determined prior to measurement. 

Theorem 8.1 (Bell Compatibility). Admissible theories satisfying finite distinguishability, 

unitary reversible dynamics, and irreversible commitment can violate Bell inequalities without 

permitting superluminal signaling. 

In Plain Language: Bell's theorem shows that quantum correlations are stronger than any "local 

realistic" theory could produce—there's no way to explain them by saying each particle secretly 

carried its answer all along. But violating Bell inequalities doesn't require faster-than-light 

communication. The trick is that outcomes aren't determined until commitment happens, and 

commitment is global. No signal passes; it's the structure of fact-creation that's nonlocal. 

Proof. Prior to commitment, entangled states encode joint distinguishability structure without 

definite local outcomes. The key observation is that outcome determination occurs at 

commitment, which is global with respect to the composite state. 

Consider a Bell experiment with entangled state |ψ⟩_{AB} and local measurement settings a for 

Alice and b for Bob. The joint probability is 

p(i,j|a,b) = Tr[(Eᵢᵃ ⊗ Eⱼᵇ)|ψ⟩⟨ψ|]. 

This probability is determined by the global state and the tensor product of local effects. Since 

commitment selects correlated outcomes according to the Born rule, and since the entangled state 

encodes non-factorizable correlations, Bell inequalities can be violated. 

However, the marginal probabilities satisfy 

p(i|a) = Σⱼ p(i,j|a,b) = Tr[(Eᵢᵃ ⊗ I)|ψ⟩⟨ψ|] = Tr[Eᵢᵃ ρ_A], 

which is independent of Bob's setting b. No superluminal signaling is possible. ∎ 

8.4 No-Signaling as an Admissibility Constraint 

Proposition 8.2 (No-Signaling). For any bipartite state and any local admissible operation on 

subsystem A, the marginal outcome probabilities on subsystem B remain invariant. 
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Proof. Let Φ_A be a local admissible operation (CPTP map) on A. The joint state transforms as 

ρ_{AB} ↦ (Φ_A ⊗ I_B)(ρ_{AB}). The reduced state on B is 

ρ_B' = Tr_A[(Φ_A ⊗ I_B)(ρ_{AB})] = Tr_A[ρ_{AB}] = ρ_B, 

where the last equality follows from the trace-preserving property of Φ_A. Since measurement 

statistics on B depend only on ρ_B, they are unaffected by operations on A. ∎ 

8.5 Structural Interpretation 

Entanglement reflects that admissible outcome commitment applies to the composite system as a 

whole. Correlations are fixed at the level of global commitment, not propagated dynamically 

between subsystems. This interpretation preserves locality of admissible dynamics while 

explaining the observed nonlocal correlations. 

 

9. Extension to Relativistic Admissibility 

In Plain Language: So far, we've derived non-relativistic quantum mechanics. But what about 

Einstein's relativity? This section shows that when you require physics to respect finite signal 

speed (nothing faster than light) and work the same way everywhere, you're forced into a very 

specific structure. Particles must have "spin"—an intrinsic angular momentum—and obey the 

Dirac equation. Again, this isn't assumed; it follows from admissibility plus locality. 

Important clarification on scope. The results of Sections 2–8 derive quantum structure from 

admissibility constraints alone, without invoking relativity. This section extends the framework 

by adding a new physical requirement: relativistic locality, meaning that admissible dynamics 

must be compatible with finite signal propagation and Lorentz invariance. This is an additional 

empirical input, not a consequence of admissibility per se. The goal is to show that once 

relativistic locality is imposed, the Dirac equation emerges as uniquely compatible with 

admissible quantum dynamics—not to derive relativity from admissibility. 

In this section we demonstrate that requiring first-order local dynamics forces Clifford algebra 

structure and the Dirac equation. 

9.1 First-Order Local Evolution 

Non-relativistic Schrödinger evolution is second-order in spatial derivatives. A relativistic theory 

must admit first-order local evolution compatible with finite signal propagation. 

We impose two additional constraints beyond the core admissibility framework: 
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(i) First-order locality: Admissible reversible evolution is generated by operators linear in the 

generators of spatial translation (momenta). This ensures that the evolution equation treats space 

and time symmetrically (both first-order), as required by Lorentz covariance. 

(ii) Square consistency: The square of the first-order generator reproduces the relativistic 

dispersion relation E² = p² + m². This encodes the relativistic relationship between energy and 

momentum. 

In Plain Language: Relativity requires that the laws of physics involve space and time on equal 

footing—first derivatives in time should match first derivatives in space. The Schrödinger 

equation is second-order in space but first-order in time, so it's not truly relativistic. We need a 

first-order-in-everything equation. But there's a constraint: the square of this first-order equation 

should give back the correct relationship between energy and momentum. 

These constraints are motivated by special relativity, which is treated here as an empirical fact 

about our universe rather than derived from admissibility. The question this section addresses is: 

given that relativity holds, what does admissibility require of relativistic quantum dynamics? 

9.2 Algebraic Forcing of Clifford Structure 

Let D denote a first-order generator. Square consistency requires 

D² = −Δ + m² = p² + m², 

where Δ is the Laplacian. 

Theorem 9.1 (Clifford Forcing). Any first-order operator D whose square yields a scalar second-

order invariant must be representable in terms of matrices satisfying a Clifford algebra. 

Proof. Write D = Σᵢ αᵢ pᵢ + β m for matrices αᵢ, β. Computing D²: 

D² = Σᵢⱼ αᵢ αⱼ pᵢ pⱼ + m Σᵢ (αᵢ β + β αᵢ) pᵢ + β² m². 

For this to equal p² + m² = Σᵢ pᵢ² + m², we require: 

αᵢ αⱼ + αⱼ αᵢ = 2δᵢⱼ I, αᵢ β + β αᵢ = 0, β² = I. 

These are precisely the defining relations of a Clifford algebra Cl₁,₃(ℝ). No alternative algebraic 

structure satisfies square consistency while preserving linearity. ∎ 

In Plain Language: To make a first-order equation that squares to the right thing, you need 

matrices that anticommute in a specific pattern. This pattern is called a Clifford algebra. There's 

no other option—mathematics forces your hand. 
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9.3 Emergence of Spinors 

Corollary 9.2 (Spin Necessity). Any admissible first-order relativistic quantum theory must 

involve spinorial degrees of freedom. 

Proof. The minimal faithful representation of the Clifford algebra Cl₁,₃(ℝ) is four-dimensional, 

realized by the Dirac matrices γᵘ. States transforming under this representation are four-

component spinors. Scalar or vector representations do not support first-order square-consistent 

dynamics. ∎ 

In Plain Language: Spinors are mathematical objects that describe particles with spin, like 

electrons. The theorem says you can't avoid spinors if you want relativistic quantum mechanics. 

Spin isn't an empirical surprise tacked on to the theory—it's required by the mathematics of first-

order relativistic evolution. 

9.4 Dirac Equation as Admissible Dynamics 

With Clifford structure fixed, the unique admissible first-order evolution equation is 

(iγᵘ ∂_μ − m)ψ = 0. 

This is the Dirac equation. Lorentz covariance emerges as a consequence of the algebraic 

structure rather than an independent postulate. 

In Plain Language: The Dirac equation—which correctly describes electrons and predicted 

antimatter—is the only equation you can write down that satisfies our requirements. Dirac 

discovered it in 1928 by inspired guesswork. Here, we derive it as the unique possibility. 

9.5 Dimensional Considerations 

The derivation assumes three spatial dimensions. This assumption is empirically motivated and 

consistent with the observed universe. Whether admissibility constrains dimensionality is an 

open question. In d spatial dimensions, Clifford algebras Cl₁,ₐ(ℝ) have representation dimensions 

that depend on d mod 8 (Bott periodicity). The four-dimensional Dirac representation is specific 

to d = 3. Extension to arbitrary dimension would require additional principles beyond those 

developed here. 

 

10. Quantum Mechanics as an Admissibility Fixed Point 

In Plain Language: This section brings everything together. We've shown, step by step, that 

each piece of quantum mechanics follows from the requirement that facts can exist. There's no 
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wiggle room: start from fact-producing physics, and you end up at quantum mechanics. It's a 

"fixed point"—the unique theory that satisfies all the constraints simultaneously. 

We now synthesize the results and state the central claim precisely. 

10.1 Synthesis of Results 

The argument proceeds in strictly layered fashion: 

1. Facts require commitment: Physical facts require irreversible commitment (Section 

2.4). 

2. Commitment requires finite distinguishability: Theorem 3.2 proves that infinite 

distinguishability is incompatible with irreversible commitment. 

3. Reversible evolution is unitary: Between commitments, admissible dynamics must 

preserve distinguishability, forcing unitary evolution (Theorem 5.1). 

4. Hamiltonians exist necessarily: Stone's theorem yields self-adjoint generators (Theorem 

5.2). 

5. Measurement is minimal commitment: CPTP maps, POVMs, and state update emerge 

from admissibility (Section 6). 

6. Born rule is unique: Gleason-type arguments fix the probability rule (Theorem 7.1). 

7. Entanglement follows from global commitment: Bell correlations arise without 

nonlocality (Section 8). 

8. Relativistic structure is forced: First-order locality yields Dirac dynamics (Section 9). 

10.2 Fixed-Point Characterization 

Theorem 10.1 (Admissibility Fixed Point). Quantum mechanics is the unique physically 

admissible framework satisfying: 

(i) Finite operational distinguishability 

(ii) Irreversible commitment producing stable facts 

(iii) Reversible dynamics preserving distinguishability 

(iv) Compositional locality 

(v) Continuous implementability 

Any theory violating one or more conditions fails to support fact-producing physics. Any theory 

satisfying all conditions is unitarily equivalent to quantum mechanics in its reversible sector and 

exhibits the same measurement and probability structure. 

In Plain Language: This is the main theorem. It says: if you want a universe with facts, you get 

quantum mechanics. Not approximately, not as one option among many, but uniquely and 
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necessarily. Every alternative either can't produce facts or turns out to be quantum mechanics in 

disguise. 

10.3 What Is Explained and What Is Not 

Explained: 

• Unitary reversible dynamics 

• Hamiltonian time evolution 

• Measurement as irreversible commitment 

• Finite outcome sets 

• Quadratic probability (Born rule) 

• Entanglement and nonlocal correlations 

• Spinorial relativistic structure 

Not explained: 

• Specific interaction Hamiltonians 

• Coupling constants 

• Particle spectra 

• Numerical values of physical constants 

• Gravitational dynamics 

In Plain Language: We've explained why quantum mechanics has the structure it does. We 

haven't explained which quantum theory describes our universe—that requires additional input 

about what particles exist, how they interact, and what the constants of nature are. Admissibility 

tells you the rules of the game; it doesn't tell you who's playing or what the score is. 

These features require additional physical input beyond admissibility. 

10.4 Significance 

The significance of this result is conceptual rather than predictive. It relocates the foundations of 

quantum mechanics from postulates to necessity. Quantum mechanics no longer appears as a 

mysterious departure from classical reasoning, but as the inevitable structure of any universe 

capable of producing irreversible facts. 

In Plain Language: Quantum mechanics has seemed strange for a hundred years because we 

thought it was one possible theory that happened to be true. This paper suggests it's not 

contingent at all—it's the only way physics can work if facts are to exist. The strangeness isn't a 

bug; it's a feature required by the very existence of a factual world. 
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11. Scope, Limitations, and Open Directions 

11.1 Scope of Results 

The results are structural and constraint-based. They identify necessary conditions for any 

physically admissible theory. Within this scope, the mathematical architecture of quantum 

mechanics is shown to be non-optional. 

These results apply independently of interpretation. They do not depend on assumptions about 

observers, consciousness, branching worlds, or hidden variables. 

11.2 Limitations 

Admissibility alone does not determine: 

• Specific interaction Hamiltonians 

• Coupling constants and particle spectra 

• The number of fermion generations 

• Gravitational dynamics 

• Spatial dimensionality (assumed to be 3) 

In Plain Language: This framework explains the form of physical law, not its content. Why 

there are three generations of quarks, why gravity is so weak, why we live in three spatial 

dimensions—these remain open questions requiring additional principles. 

Remark on infinite-dimensional Hilbert spaces. The Jordan classification and Lemma 5.1 apply 

to finite-dimensional systems. Actual quantum mechanics routinely uses infinite-dimensional 

Hilbert spaces (position, momentum, field modes). How does the framework extend? 

The resolution lies in the operational interpretation of finite distinguishability. In any bounded 

region with finite energy, the Bekenstein bound limits the number of distinguishable states to a 

finite N. Infinite-dimensional Hilbert space emerges only in idealized limits—unbounded 

regions, infinite energy, or mathematical convenience. The operational distinguishability relevant 

to fact-production is always finite; infinite dimensions are a mathematical representation that 

extends smoothly from the finite case. 

Alternatively: the framework applies directly to bounded subsystems; extension to unbounded or 

field-theoretic systems requires additional analysis of how finite distinguishability emerges from 

holographic or thermodynamic constraints. This connection is discussed further in Appendix 

D.2. 
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11.3 Relation to Quantum Field Theory 

The admissibility framework is compatible with quantum field theory. The kinematic and 

measurement-theoretic results apply to quantum fields. Extension to interacting theories requires 

careful treatment of locality, renormalization, and continuum limits. 

11.4 Relation to Gravity 

The present work does not propose a theory of gravity. However, any viable theory of gravity 

must respect admissibility constraints. 

11.5 Relation to Everettian Interpretations 

The admissibility framework treats fact-existence as an operational precondition for empirical 

physics. But certain interpretations of quantum mechanics—particularly Everettian (many-

worlds) approaches—deny that facts in our sense exist fundamentally. In these interpretations, 

what appear to be irreversible facts are branch-relative phenomena: the wavefunction never 

collapses, all outcomes occur on different branches, and "irreversibility" reflects the practical 

inaccessibility of other branches rather than genuine ontological commitment. 

How does the admissibility framework relate to Everettian physics? 

The key observation is that our constraints apply at the operational level, not the ontological 

level. Even in an Everettian universe, observers within a branch see definite outcomes, form 

records, and accumulate entropy. From the perspective of any observer capable of doing physics, 

admissibility constraints hold: distinguishability is finite, commitments are irreversible relative 

to the accessible branch, and probabilities follow the Born rule. 

The framework therefore does not adjudicate between interpretations. It shows that any 

interpretation—including Everettian ones—must respect the operational structure of quantum 

mechanics. If Everettian physics is correct, then "irreversible commitment" is branch-relative 

rather than absolute. But the structural requirements (finite distinguishability, CPTP dynamics, 

Born rule) remain the same. The admissibility framework identifies what must be true 

operationally; it leaves open what this means ontologically. 

11.6 Relation to QBism 

QBism interprets the quantum state as an agent's personal degrees of belief about the 

consequences of their actions on the world, rather than as an objective physical field. The 

admissibility framework is compatible with this stance, because it does not require a particular 

ontology for the quantum state. 

What admissibility constrains is the structure any agent-facing physical theory must possess in a 

world where stable records form and irreversible commitments occur. In this sense, admissibility 
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operates one layer "below" interpretational semantics: whether probabilities are read as objective 

propensities or subjective credences, coherence across reversible evolution and irreversible 

record formation imposes strong constraints on allowable probability assignments and state-

update rules. 

The main results (unitarity between commitments, CPTP measurement structure, and Born-rule 

form) can thus be read as constraints on the calculus any agent must use to remain consistent 

with the operational architecture of record formation—consistent with QBism's emphasis on 

normative structure, while remaining neutral on what the quantum state is. 

Put differently: QBism is an interpretation of the quantum formalism; admissibility is an 

argument for why the formalism's core architecture is non-optional for any empirically usable 

physics. The two are orthogonal: QBism addresses what probabilities mean, while admissibility 

addresses why probabilities must take the form they do. 

11.7 Relation to Classical Statistical Mechanics 

A potential objection: classical statistical mechanics produces irreversible facts (thermodynamic 

equilibration, definite measurement outcomes) without invoking quantum structure. Does this 

show that classical physics can satisfy admissibility constraints? 

The response is that classical statistical mechanics achieves irreversibility through coarse-

graining, which implicitly assumes finite distinguishability at the operational level. When we 

describe a gas by its temperature rather than the positions and momenta of 10²³ particles, we are 

acknowledging that those microscopic degrees of freedom are operationally inaccessible. The 

"irreversibility" of thermodynamic processes is exactly the pattern analyzed in Section 3: many 

microscopic configurations map to the same macroscopic record. 

A skeptic might argue that classical chaos can amplify microscopic differences into macroscopic 

distinctions, allowing facts to form without quantum mechanics. But this argument actually 

supports the admissibility framework: chaotic amplification creates facts precisely by converting 

continuous degrees of freedom into discrete, coarse-grained records. The chaotic system 

functions as a natural analog-to-digital converter—and the moment of digitization is the moment 

of commitment. 

The question is whether classical mechanics at the fundamental level—without coarse-

graining—can support facts. Theorem 3.2 argues not: if microscopic classical states are perfectly 

distinguishable, then any "commitment" is in principle reversible by accessing those microscopic 

degrees of freedom. Classical statistical mechanics works because it operates in a regime where 

quantum effects enforce finite distinguishability at small scales, even if the effective description 

is classical. The admissibility framework explains why coarse-graining leads to irreversibility: it 

is not a failure to track details, but a structural feature of any fact-producing physics. 
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11.8 The Selection Problem 

The framework developed here explains the structure of quantum measurement: why outcomes 

belong to finite sets, why probabilities follow the Born rule, why measurement involves 

irreversible commitment. But it does not explain which outcome is selected from among the 

possibilities. 

This is important to acknowledge. The "measurement problem" has two components: (1) why 

does measurement have the structural features it does? and (2) why does a specific outcome 

occur rather than another? The admissibility framework addresses (1) comprehensively. It leaves 

(2) as a separate question. 

On the selection question, the framework is agnostic. It is compatible with interpretations where 

selection is: 

• Ontologically random (Copenhagen-style collapse) 

• Deterministic but epistemically inaccessible (hidden variables) 

• Only apparently singular, with all outcomes realized in different branches (Everett) 

• A primitive feature of nature requiring no further explanation 

What the framework establishes is that whatever the selection mechanism, it must operate within 

the constraints of admissibility: finite outcome sets, Born-rule statistics, CPTP evolution. The 

selection mechanism cannot be contextual, cannot violate no-signaling, and cannot depend on 

operationally inaccessible degrees of freedom (else it would conflict with finite 

distinguishability). 

In this sense, the framework does not "dissolve" the measurement problem entirely. It reframes 

it: the structural aspects of measurement are necessary features of fact-producing physics, while 

the selection aspect remains an open interpretive and potentially empirical question. 

11.9 Open Directions 

• Investigating whether admissibility constrains spatial dimensionality 

• Deriving interaction structures consistent with admissibility 

• Exploring connections to holographic entropy bounds 

• Examining emergence of classical spacetime from admissible quantum dynamics 

• Clarifying the role of admissibility in cosmological initial conditions 

11.10 Falsifiability and Testable Implications 

A natural concern: if the framework explains existing physics without predicting new 

phenomena, is it falsifiable? 



 45 

Status of the framework. The admissibility framework is a constraint theorem, not a predictive 

model. It identifies necessary conditions for fact-producing physics. As such, it is falsifiable only 

indirectly: any observed violation of its structural predictions would refute the framework. 

Structural predictions that could be falsified: 

1. Finite distinguishability bounds. If experiments could reliably distinguish arbitrarily 

many states within bounded systems (violating Bekenstein-type bounds), the framework 

would fail. Current physics shows no such violations; holographic bounds suggest 

fundamental limits. 

2. Born rule statistics. If outcome frequencies systematically deviated from Tr(Eρ) in ways 

not attributable to experimental error, the uniqueness proof of Theorem 7.1 would be 

refuted. A century of quantum experiments confirms Born statistics. 

3. CPTP dynamics. If measurement processes violated complete positivity or trace 

preservation in reproducible ways, the measurement derivation of Section 6 would fail. 

4. No-signaling. If entangled systems permitted faster-than-light communication, 

Proposition 8.2 would be falsified. 

Operationally testable implications: 

1. Measurement coarse-graining is unavoidable. Finite distinguishability implies no 

arbitrarily sharp POVMs exist in bounded regions. At some scale, measurement precision 

must saturate. This is consistent with quantum uncertainty relations and suggests 

operational limits on detector resolution. 

2. Holographic information bounds. If finite distinguishability connects to the Bekenstein 

bound (Appendix D.2), then information storage in any region is bounded by surface 

area, not volume. This is testable in principle through black hole thermodynamics and 

holographic systems. 

3. Discrete vs. continuous structure. The framework is compatible with both continuous and 

discrete time (see Remark in §5.2.1). Observations distinguishing these cases (e.g., 

Planck-scale discreteness) would refine but not refute the framework. 

What would genuinely falsify the framework: 

• Demonstrated infinite operational distinguishability within bounded systems 

• Systematic, reproducible deviations from Born-rule probabilities 

• Operational contextuality (different statistics for operationally identical procedures) 

• Faster-than-light signaling via entanglement 

None of these has been observed. The framework's structural predictions match a century of 

experimental quantum mechanics. 
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11.11 What Would It Mean for Admissibility to Fail? 

The admissibility framework introduced in this work is intentionally minimal, yet it imposes 

strong structural constraints. It is therefore important to clarify what it would mean, physically 

and conceptually, for admissibility to fail. 

In Plain Language: We've argued that admissibility is required for facts to exist. But what if 

we're wrong? This subsection examines each way admissibility could fail and shows that each 

failure mode would undermine not just quantum mechanics, but the very possibility of doing 

physics at all. 

Admissibility would fail if one or more of the following conditions were violated: 

Infinite operational distinguishability: If arbitrarily fine distinctions were physically accessible 

within bounded systems, then any apparent irreversible process could be refined into a reversible 

one. In such a universe, no outcome would ever be final; all records would remain recoverable in 

principle. Facts would be provisional rather than stable. The very notion of an experimental 

result would lose operational meaning. 

Absence of irreversible commitment: If no admissible process could irreversibly commit 

distinctions—if every physical transformation were invertible within the admissible domain—

then records, memories, and measurements would not exist as physical facts. Physics would 

reduce to a purely reversible formal system with no mechanism for outcome fixation. 

Unbounded physical resources: If physical processes could exploit infinite energy, infinite 

memory, or infinite precision, then the operational constraints defining admissibility would be 

void. However, such assumptions are incompatible with the finite localization, finite control, and 

finite duration of real physical processes, and they undermine the empirical basis of physics 

itself. 

Context-dependent probability assignments: If outcome probabilities depended on physically 

inaccessible implementation details—beyond what admissible procedures can resolve—then 

probability would lose operational meaning. Identical experimental situations could yield 

incompatible statistical descriptions, contradicting the reproducibility of empirical science. 

A failure of admissibility in any of these senses would not merely modify the conclusions of this 

paper; it would call into question the possibility of physics as an empirical discipline. The 

admissibility framework does not assume the existence of facts as a metaphysical postulate. 

Rather, it treats the existence of facts as a minimal operational requirement for doing physics at 

all. 

In Plain Language: Admissibility isn't one assumption among many that might turn out to be 

false. It's the condition for there being anything to be true or false about. A universe without 

admissibility wouldn't be a different kind of physics—it would be a universe where physics, as 

an empirical enterprise, couldn't exist. 
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From this perspective, admissibility is not an optional interpretive stance. It is a consistency 

condition on any framework that purports to describe a world in which experiments can be 

performed, outcomes recorded, and results compared. 

 

12. A Skeptic's FAQ 

This section addresses the most common—and most serious—objections to the admissibility 

framework. These are not strawman questions; they are the exact concerns a careful skeptic, 

physicist, or philosopher should raise. 

"Aren't you just assuming quantum mechanics in disguise?" 

Short answer: No. The paper does not assume Hilbert space, unitarity, or probabilities. It 

derives them. 

Longer answer: The framework begins below quantum mechanics, at the level of what any 

empirical physics must support: facts, records, and irreversible outcomes. From this starting 

point, we derive constraints (finite distinguishability and irreversible commitment) that any fact-

producing theory must satisfy. 

Only after these constraints are established do we introduce operational postulates governing 

reversible dynamics (convexity, continuity, compositionality). These postulates are not quantum 

axioms; they are requirements for reversible evolution to coexist consistently with irreversible 

fact-production. 

Hilbert space appears only at the end, as the unique mathematical representation compatible with 

these constraints. It is a result, not a premise. 

"Why should physics care about operational limits? What about ontology?" 

Short answer: Physics is an empirical discipline. If a distinction is operationally inaccessible, it 

cannot ground a physical fact. 

Longer answer: The admissibility framework is explicitly operational. It makes no claims about 

what "exists in itself" beyond what can be accessed, distinguished, and recorded using finite 

physical procedures. 

If two states differ ontologically but agree on all admissible measurements, they are empirically 

identical. Treating such differences as physically real is a metaphysical choice, not a physical 

one. 
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The paper's results constrain operational physics—the domain where experiments, records, and 

facts live. Ontological excess that cannot be operationally accessed is outside the scope of 

physics as an empirical science. 

"Isn't finite distinguishability just a limitation of our instruments?" 

Short answer: No. Finite distinguishability is required for irreversible facts to exist at all. 

Longer answer: The paper proves a no-go theorem: if a system permits infinite operational 

distinguishability, then no process can irreversibly commit distinctions. Any apparent loss of 

information can always be recovered by accessing finer degrees of freedom. 

But facts—measurements, records, memories—require irreversible loss of alternatives. 

Therefore, if facts exist, operational distinguishability must be finite. 

This is not about imperfect instruments. It is about the logical requirements for fact-production in 

any physically realizable universe. 

"Doesn't classical chaos already give irreversibility without quantum 

mechanics?" 

Short answer: Only by assuming finite distinguishability. 

Longer answer: Classical chaos amplifies microscopic differences into macroscopic 

outcomes—but only once those outcomes are coarse-grained into finite records. The moment a 

chaotic system produces a stable fact (a bit, a symbol, a pointer position), continuous degrees of 

freedom are compressed into discrete outcomes. 

That compression is exactly what the admissibility framework analyzes. Classical statistical 

mechanics achieves irreversibility by assuming operational inaccessibility of microscopic details. 

The framework explains why that assumption is necessary and why it cannot be removed at a 

fundamental level. 

"Doesn't Many-Worlds avoid irreversible commitment entirely?" 

Short answer: No—only at the ontological level, not the operational one. 

Longer answer: Everettian interpretations deny fundamental collapse, but observers within a 

branch still experience definite outcomes, form records, and accumulate entropy. From the 

perspective of any observer doing physics, facts are irreversible relative to accessible degrees of 

freedom. 

The admissibility framework operates at this operational level. It does not rule out Many-Worlds, 

but it shows that even Everettian physics must obey finite distinguishability, CPTP dynamics, 

and Born-rule statistics as experienced. 
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Interpretations differ on ontology; admissibility constrains operational structure. 

"Aren't you assuming non-contextuality to get the Born rule?" 

Short answer: No. Operational non-contextuality is forced by finite distinguishability. 

Longer answer: If the probability of an outcome depended on which other outcomes were 

possible but not realized, that dependence would require some physical degree of freedom 

encoding the measurement context. 

But if that degree of freedom were operationally accessible, it would appear in the outcome 

record—making the contexts distinguishable. If it were inaccessible, it could not influence 

observable probabilities. 

Therefore, outcome probabilities must depend only on the state and the effect that actually 

occurred. This is operational non-contextuality, not an ontological assumption. 

Given operational non-contextuality, the Born rule follows uniquely via Gleason's theorem. 

"Why do you need tomographic locality? Isn't that an extra assumption?" 

Short answer: Tomographic locality is required for all physically accessible information to be 

measurable. 

Longer answer: If a composite system had physically relevant degrees of freedom that were not 

reflected in any local or correlational measurements, those degrees of freedom would be 

operationally inaccessible. 

The admissibility framework treats operationally inaccessible structure as physically irrelevant. 

Physics describes what can, in principle, be measured and recorded. Tomographic locality 

formalizes this requirement for composite systems. 

Relaxing tomographic locality admits theories with hidden global structure—but such structure 

cannot ground observable facts. 

"Why continuous reversible dynamics? Why not discrete jumps?" 

Short answer: Discontinuous reversible dynamics are empirically indistinguishable from 

stochastic commitment under finite control. 

Longer answer: If infinitesimal changes in experimental control produced discontinuous 

changes in system evolution, those discontinuities would function as facts: stable, uncontrollable 

distinctions. 
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To prevent reversible evolution from itself generating commitments, reversible dynamics must 

vary continuously with control parameters. Continuity is therefore required to separate reversible 

evolution from irreversible fact-production. 

"Why complex Hilbert space specifically? Why not real or quaternionic?" 

Short answer: Because only complex quantum mechanics satisfies all admissibility-motivated 

requirements simultaneously. 

Longer answer: Real and quaternionic quantum theories fail at least one of the following: 

• Continuous transitive symmetry on pure states 

• Tomographic locality for composites 

• Full interference structure 

• Consistent composition of subsystems 

These failures introduce either operationally inaccessible degrees of freedom or discontinuities in 

reversible dynamics—both incompatible with admissibility. 

Complex Hilbert space is not chosen; it is what remains after all admissibility-violating 

alternatives are excluded. 

"What does this framework NOT explain?" 

Short answer: It explains structure, not parameters. 

Longer answer: The admissibility framework explains why quantum mechanics has: 

• Unitarity 

• Hamiltonians 

• The Born rule 

• Entanglement 

• Finite outcomes 

• Irreversible measurement 

It does not explain: 

• Specific interaction Hamiltonians 

• Coupling constants 

• Particle masses 

• Number of generations 

• Gravity 

Those require additional physical principles. The claim here is not "quantum mechanics explains 

everything," but rather: quantum mechanics is the only framework compatible with the existence 

of facts. 
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"What about concrete alternative theories—Spekkens' toy model, PR boxes, 

etc.?" 

Short answer: They all fail admissibility in specific ways. 

Longer answer: Several explicit non-quantum theories have been constructed: 

Spekkens' toy model [20] is an epistemic model where "quantum" states represent knowledge 

about underlying classical states. It reproduces many quantum phenomena but is fundamentally 

epistemic—it doesn't support genuine irreversible commitment because the underlying classical 

states are always well-defined. In Spekkens' model, "measurement" updates our knowledge 

about a pre-existing ontic state; the epistemic restriction limits what we can know, not what 

exists. This is knowledge-update, not physical commitment, so the model illustrates epistemic 

restrictions rather than fact-producing physics. 

PR boxes are hypothetical devices producing maximally nonlocal correlations (violating Bell 

inequalities more strongly than quantum mechanics). They satisfy no-signaling but violate 

information-theoretic principles like "information causality" (Pawłowski et al., 2009) that follow 

from the Born-rule structure derived in Theorem 7.1. From an admissibility perspective, PR 

boxes would require correlations that exceed what finite-dimensional Hilbert spaces can 

support—they're incompatible with the Jordan-algebraic structure forced by R1–R5. 

Classical stochastic theories with genuine randomness face the problem that randomness without 

finite distinguishability doesn't produce stable facts—the outcomes keep refining indefinitely. If 

you impose finite distinguishability, you're back to quantum structure. 

These examples illustrate that admissibility constraints have teeth: proposed alternatives fail in 

identifiable ways. 

Bottom Line for Skeptics 

You do not have to agree with the interpretation. You do not have to like the conclusion. 

But to reject the framework, you must identify one of the following: 

1. A way to have irreversible facts with infinite operational distinguishability, or 

2. A way for inaccessible degrees of freedom to influence observable statistics, or 

3. A reversible dynamics that produces no commitments despite discontinuities, or 

4. An alternative mathematical structure that satisfies all admissibility constraints 

simultaneously. 

Absent that, quantum mechanics is not a mysterious option among many—it is the unique 

survivor of the requirements for a factual universe. 
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13. Conclusion 

We have shown that quantum mechanics is not an arbitrary theoretical invention, nor a 

contingent framework selected solely by empirical success. Rather, it emerges as the unique 

structural framework compatible with physical admissibility in a universe capable of producing 

irreversible facts. 

The results fall into two tiers. Tier I (forced by admissibility): any fact-producing physics must 

exhibit finite distinguishability, irreversible commitment, and distinguishability-preserving 

reversible dynamics. These constraints exclude infinite-precision classical mechanics and carve 

out a narrow class of admissible theories. Tier II (selection within that class): operational 

closure principles—tomographic locality and maximal reversibility—uniquely select complex 

Hilbert-space quantum mechanics from among the admissible options. 

Starting from the minimal requirement that physical records exist, we identified the unavoidable 

constraints and traced their consequences. Reversible evolution must be unitary and 

Hamiltonian-generated. Measurement arises as minimal irreversible extension. Probability is 

fixed uniquely by the Born rule. Entanglement and Bell correlations follow from global 

commitment structure. Relativistic consistency forces spinorial dynamics. 

These results relocate quantum foundations from postulates to necessity. The familiar 

mathematical structures are no longer assumed but explained. Quantum mechanics appears not 

as a mysterious departure from classical reasoning, but as the inevitable architecture of any fact-

producing physical world. 

Final Thought for the General Reader: For a century, we've asked "why is quantum 

mechanics true?" as if some other physics might have been possible. This paper suggests a 

different answer: quantum mechanics is the unique structural framework for fact-production. The 

question isn't why quantum mechanics—it's how facts are possible, and quantum mechanics is 

the answer. 

In this sense, quantum mechanics does not require interpretation to be justified. What requires 

justification is the assumption that stable physical records could exist in a universe governed by 

anything else. 

 

What This Changes 

This section is intended for general readers and summarizes the broader implications of the 

admissibility framework. 

The measurement problem looks different now. For decades, physicists have asked: "Why 

does measurement cause collapse?" The admissibility framework suggests this question conflates 
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two issues. The first—why measurement has the structure it does (irreversible commitment, 

finite outcomes, Born-rule probabilities)—is answered here: that structure is required for facts to 

exist. The second—why a particular outcome is selected—remains open, a question for 

interpretation rather than architecture. Collapse isn't a problem to be solved; it's commitment 

doing exactly what commitment does. What remains unexplained is why this outcome rather 

than that one, and that question may have no further physical answer. 

Interpretation debates are downstream. Copenhagen, Many-Worlds, Bohmian mechanics, 

QBism—these interpretations disagree about what the quantum state is, but they all use the same 

mathematical structure. The admissibility framework explains why that structure is non-

negotiable: it's forced by the requirement that facts exist. Interpretation is about the meaning of a 

structure that was never optional in the first place. This doesn't resolve interpretation debates, but 

it reframes them: they're about semantics, not architecture. 

Classical physics is the special case, not the default. We're taught classical mechanics first, 

then told quantum mechanics is "weird" and needs explaining. But the admissibility analysis 

reverses this. Classical mechanics assumes infinite distinguishability and reversible 

determinism—both incompatible with irreversible facts. Classicality is what emerges when 

quantum systems decohere and commit at scales where the underlying quantum structure is 

operationally inaccessible. Classical physics is the derived approximation; quantum mechanics is 

the necessary foundation. 

What's next: from form to content. This paper explains why quantum mechanics has the 

structure it does—unitarity, Hamiltonians, Born rule, entanglement. It doesn't explain the 

content: why the fine-structure constant is 1/137, why there are three fermion generations, why 

gravity is weak. That's where the broader VERSF program comes in. The Void Energy-

Regulated Space Framework proposes that even these "free parameters" emerge from deeper 

admissibility-like constraints—specifically, from information-geometric requirements on how 

entropy, distinguishability, and commitment structure can be embedded in spacetime. If that 

program succeeds, the arbitrary constants of physics would be as necessary as the quantum 

formalism itself. 

The present paper is the first step: establishing that the framework is forced. The next step is 

showing that the parameters are too. 
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Appendix A: Assumptions and Regularity Conditions 

This appendix lists explicitly the assumptions and regularity conditions employed in the main 

text. The purpose is not to weaken the results, but to make transparent which elements are taken 

as minimal physical requirements and which serve as technical regularity conditions enabling 

mathematical representation. 

A.1 Minimal Physical Assumptions 

The following assumptions are treated as methodological preconditions for empirical physics: 

(A1) Operational Recordability Empirical physics presupposes the existence of stable, 

communicable records ("operational facts") produced by physical processes. This is not asserted 

as a claim about fundamental ontology; it is a methodological requirement for any framework 

that purports to be testable, comparable across observers, and usable for inference from 

experiments. 

Scope and status. We do not claim that fact-production is ontologically fundamental. Record 

formation may be emergent rather than primitive. However, even if one holds that records 

emerge from a more fundamental reversible dynamics, the admissibility constraints apply to the 

operational layer at which any empirical theory is validated. The results therefore constrain any 

viable fundamental theory indirectly, via the requirement that it recover a record-forming 

operational regime. 
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In other words: wherever stable records appear—whether fundamentally or emergently—the 

constraints of Sections 3–7 apply. A fundamental theory that cannot recover an operational layer 

with finite distinguishability and irreversible commitment cannot be empirically tested, and 

therefore falls outside the scope of physics as an experimental science. 

(A2) Finite operational resources Physical processes are implemented using finite energy, 

finite time, finite spatial extent, finite memory, and finite resolution. This excludes procedures 

requiring infinite precision or unbounded refinement. 

(A3) Physical realizability of measurements If two states are operationally distinguishable, 

there exists an admissible physical procedure that distinguishes them with finite resources. 

These assumptions are not specific to quantum mechanics and are satisfied by any empirically 

meaningful physical theory. 

A.2 Admissibility Constraints 

From the minimal assumptions above, the following admissibility constraints are defined: 

(C1) Finite distinguishability In any bounded physical system, there exists a finite bound on the 

number of mutually distinguishable states accessible under admissible procedures. 

(C2) Irreversible commitment There exist admissible processes that map multiple prior 

possibilities to a single outcome in a way that cannot be undone by any admissible recovery 

procedure. 

These constraints are the core structural inputs to the results of this paper. 

A.3 Operational Postulates for Reversible Dynamics 

The following postulates govern reversible dynamics between commitments. They are stated in 

full in Section 5.2.1 and summarized here with their admissibility status. Crucially, R1, R4, and 

R5 are derived from minimal experimental capability assumptions; see Appendix E for full 

proofs. 

(R1) Convexity (Operational Mixing) Classical randomness over preparations yields convex 

mixtures. Status: Derived from classical control capability (Assumption CC, Lemma E.1). 

(R2) Continuous Reversible Dynamics Reversible evolution forms a continuous, connected 

group. Status: Forced by admissibility; discontinuous dynamics would generate commitments. 

(R3) Distinguishability-Preserving Reversibility Reversible transformations preserve 

operational distinguishability. Status: Forced by admissibility; erasing distinctions is 

commitment; amplifying them creates facts. 
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(R4) Operational Closure of Composition Operationally indistinguishable composite states are 

identified; joint states are determined by local measurements and correlations. Status: Derived 

from universal composite controllability (Assumption UC, Theorem E.5). 

(R5) Maximal Reversibility (Purification) Mixed states arise as marginals of pure states; 

purifications are equivalent up to local unitaries. Status: Derived from reversible embeddability 

(Assumption RE, Theorem E.3). 

Postulate classification: R2 and R3 are directly forced by admissibility. R1, R4, and R5 are 

derived from assumptions about experimental capabilities (CC, UC, RE) that any laboratory 

doing physics must have. These are not quantum-specific axioms but minimal operational 

completeness requirements. 

Under R1–R5, complex Hilbert space quantum mechanics is uniquely selected (Lemma 5.1). 

A.4 Status of the Results 

The central conclusions of the paper—finite distinguishability, necessity of unitary dynamics, 

existence of the Hamiltonian, measurement as irreversible commitment, uniqueness of the Born 

rule, and admissibility-fixed-point characterization—depend on assumptions (A1)–(A3), 

constraints (C1)–(C2), and derived postulates (R1)–(R5). 

The logical structure is: 

• (A1)–(A3) are preconditions for empirical physics 

• (C1)–(C2) follow from (A1)–(A3) via Theorem 3.2 

• (CC), (UC), (RE) are minimal experimental capability assumptions 

• (R1), (R4), (R5) are derived from (CC), (UC), (RE) via Appendix E 

• (R2), (R3) are forced directly by (C1)–(C2) 

• Hilbert space structure follows from (R1)–(R5) via Lemma 5.1 

The experimental capability assumptions (CC, UC, RE) express capabilities any laboratory doing 

physics must have: classical control, access to extended systems, and universal operations on 

composites. They are not quantum-specific but apply to any operational theory claiming to 

describe experimentally accessible degrees of freedom. 

In Plain Language: This appendix separates what we must assume (that facts exist, resources 

are finite, measurements are possible, labs have basic capabilities) from what we derive 

(convexity, tomographic locality, purification). The postulates R1, R4, R5 are no longer axioms 

about nature—they're theorems about what follows from having a functional laboratory. 
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Appendix B: Extended Proofs and Technical Details 

This appendix provides complete proofs for results given as sketches in the main text, addresses 

technical subtleties, and clarifies the ontological versus operational status of key claims. 

B.1 Ontological vs. Operational Clarification 

Throughout this paper, we maintain a strict operational stance: claims are about what can be 

physically accessed, distinguished, and recorded using finite procedures, not about what "really 

exists" at some deeper ontological level. This distinction is crucial for interpreting the main 

results correctly. 

The operational interpretation of finite distinguishability: When we assert that a system has 

finite distinguishability N, we do not claim that "only N states exist." We claim that no 

admissible procedure—no physical measurement implementable with finite resources—can 

reliably distinguish more than N possibilities. The underlying ontology may be richer; what 

matters is operational accessibility. 

The operational interpretation of irreversible commitment: When we say a process is 

irreversibly committing, we do not claim information is "destroyed" in some absolute sense. We 

claim it becomes inaccessible to all admissible recovery procedures. In an Everettian 

interpretation, information may persist in other branches; operationally, it is gone from the 

accessible record. 

Why this matters for Theorem 3.2: The theorem shows that infinite operational 

distinguishability is incompatible with irreversible commitment. A skeptic might object: "What 

if infinitely many states exist ontologically, but only finitely many are operationally accessible?" 

This objection actually supports our framework. If operational access is finite while ontology is 

infinite, then the operational physics—the physics that produces facts—satisfies finite 

distinguishability. The theorem applies to operational physics, which is what empirical science 

studies. Ontological claims beyond operational access are metaphysics, not physics. 

B.2 Full Proof of Theorem 3.2 (No-Go for Infinite Distinguishability) 

We provide a fully rigorous version of the proof with explicit base case and inductive structure. 

Setup. Let 𝒮 be a state space with infinite operational distinguishability in the sense of 

Definition 3.1: for every ε > 0 and every pair of distinct states ρ₁ ≠ ρ₂, there exists an admissible 

discrimination procedure Dε achieving error probability less than ε. 

Claim. No admissible process Φ: 𝒮 → 𝒮 can exhibit irreversible commitment. 

Proof. 



 59 

Base case: Consider any admissible process Φ and suppose Φ(ρ₁) = Φ(ρ₂) = ρ* for distinct states 

ρ₁ ≠ ρ₂. We show that the distinction between ρ₁ and ρ₂ can be recovered after Φ. 

By Definition 3.1, for ε = 1/4, there exists an admissible procedure D₁/₄ that distinguishes ρ₁ 

from ρ₂ with error < 1/4. This procedure produces a classical output c ∈ {1, 2} satisfying: 

• P(c = 1 | ρ₁) > 3/4 

• P(c = 2 | ρ₂) > 3/4 

Inductive construction: Consider the composite procedure: first apply D₁/₄ to produce record c, 

then apply Φ to the quantum system. The joint state of (record, quantum system) is: 

• Starting from ρ₁: (c ≈ 1, ρ*) with probability > 3/4 

• Starting from ρ₂: (c ≈ 2, ρ*) with probability > 3/4 

The record c survives the action of Φ on the quantum system (records are stable by definition of 

commitment). Therefore, after Φ acts, reading c reveals whether the original state was ρ₁ or ρ₂ 

with error < 1/4. 

Amplification: By repeating with ε = 1/4ⁿ for n = 1, 2, 3, ..., we obtain a sequence of 

discrimination procedures with exponentially decreasing error. For any desired confidence level 

1 - δ, there exists an admissible procedure that recovers the ρ₁-ρ₂ distinction with error < δ. 

Conclusion: Since the distinction can be recovered with arbitrary accuracy using admissible 

procedures, Φ does not irreversibly commit the ρ₁-ρ₂ distinction. Since ρ₁, ρ₂ were arbitrary 

distinct states mapped to the same output, Φ exhibits no irreversible commitment. Since Φ was 

arbitrary, no admissible process exhibits irreversible commitment under infinite 

distinguishability. ∎ 

B.3 Self-Duality as Definitional Closure 

A potential objection: "Measurement completeness is itself a postulate, so deriving self-duality 

from it just moves the assumption." This objection misunderstands the logical status of the 

derivation. 

Self-duality is not derived from quantum mechanics; it is a methodological closure condition on 

what counts as a state or effect in an operational theory: 

• States are equivalence classes of preparation procedures, identified when they produce 

identical measurement statistics 

• Effects are equivalence classes of measurement outcomes, identified when they respond 

identically to all states 

If a mathematical effect E is compatible with all states (gives valid probabilities) but has no 

physical implementation, then E defines no operational distinction. Such effects should be 
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quotiented out of the theory. Similarly, if two states agree on all implementable measurements, 

they are operationally identical and should be identified. 

Formal statement. Let 𝒮 be the operational state space and 𝒮* the cone of all linear functionals 

that are non-negative on states and bounded by 1. Measurement completeness asserts 𝒮* = 

{implementable effects}. State completeness asserts that states differing only on non-

implementable effects are identified. 

Derivation of self-duality. Under measurement completeness and state completeness: 

1. Every state ρ defines a functional on effects via E ↦ Tr(Eρ), so 𝒮 embeds in 𝒮* 

2. Measurement completeness implies every element of 𝒮* is realized by some effect 

3. State completeness implies the embedding is injective (distinct states differ on some 

effect) 

4. Finite distinguishability implies finite dimensionality, so the embedding is surjective 

Therefore 𝒮 ≅ 𝒮*, which is self-duality. 

Why this isn't circular. The argument doesn't assume quantum mechanics. It defines what 

"state" and "effect" mean in any operational theory: they are equivalence classes under 

operational indistinguishability. Self-duality then follows as a consistency condition. A theory 

violating self-duality would have either: 

• Effects with no physical implementation (metaphysical, not physical) 

• States distinguishable only by non-implementable effects (operationally identical, should 

be identified) 

Neither possibility describes a coherent operational physics. 

B.4 Full Proof of Lemma 5.1 (Hilbert Space Emergence) 

Given: A convex state space 𝒮 satisfying: 

• (i) Finite distinguishability (dimension N) 

• (ii) Continuous transitive symmetry group G of distinguishability-preserving 

transformations 

• (iii) Self-duality 

To prove: 𝒮 is isomorphic to density matrices on ℂᴺ. 

Step 1: Jordan algebra structure. By the Koecher-Vinberg theorem, a finite-dimensional 

convex cone is self-dual and homogeneous (admits a transitive automorphism group) if and only 

if it is the cone of squares C = {x² : x ∈ A} in a formally real Jordan algebra A. Here, a Jordan 

algebra satisfies x ∘ y = y ∘ x and x ∘ (y ∘ x²) = (x ∘ y) ∘ x², and "formally real" means x² + y² = 0 

implies x = y = 0. 
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Step 2: Classification. The Jordan-von Neumann-Wigner theorem classifies simple finite-

dimensional formally real Jordan algebras: 

• Type Iₙ(ℝ): n×n symmetric real matrices, Jordan product A ∘ B = ½(AB + BA) 

• Type Iₙ(ℂ): n×n Hermitian complex matrices 

• Type Iₙ(ℍ): n×n Hermitian quaternionic matrices 

• Spin factors: ℝ ⊕ ℝᵈ with product (α, v) ∘ (β, w) = (αβ + v·w, αw + βv) 

• Type I₃(𝕆): 3×3 Hermitian octonionic matrices (the Albert algebra, 27-dimensional) 

Step 3: Exclusion of Albert algebra. The Albert algebra lacks an associative envelope: it 

cannot be embedded in any associative algebra of matrices. This has physical consequences: 

• No consistent tensor product: given two Albert-algebra systems A and B, there is no 

natural Albert-algebra structure on A ⊗ B that satisfies local tomography (the joint state 

is determined by correlations of local measurements) 

• No consistent dynamics: the symmetry group F₄ of the Albert algebra is exceptional and 

does not embed into GL(n, ℂ) in a way compatible with continuous composition 

Compositional locality (R4) requires tensor products; continuous composability (R2) requires 

embeddability into continuous groups. The Albert algebra satisfies neither. 

Step 4: Exclusion of quaternionic quantum mechanics. Quaternionic quantum mechanics 

(QQM) on ℍⁿ has state space = density matrices over ℍⁿ. For n ≥ 2, QQM differs from complex 

QM (CQM) observationally: 

Local tomography failure: In QQM, the joint state of two systems is not determined by the 

outcomes of all local measurements and their correlations. There exist distinct joint states ρ₁₂ ≠ 

σ₁₂ such that Tr[(A ⊗ B)ρ₁₂] = Tr[(A ⊗ B)σ₁₂] for all local observables A, B. This means 

operational access to the full state space requires nonlocal measurements, violating the spirit of 

compositional locality. 

Bit asymmetry: In QQM, not all pairs of orthogonal pure states are equivalent under the 

symmetry group Sp(n). The "equator" of the state space has different structure than the "poles." 

Continuous transitivity requires that any pure state can be continuously connected to any other 

via reversible operations; in QQM with n ≥ 3, certain transformations require discontinuous 

jumps. 

The decisive argument is local tomography [3]: CQM is the unique theory in the Jordan 

classification satisfying local tomography for all composite systems. 

Step 5: Exclusion of real quantum mechanics. Real quantum mechanics (RQM) on ℝⁿ uses 

real symmetric matrices. Failures: 

Bit asymmetry: For a two-level system, RQM gives a 2-dimensional Bloch disk rather than the 3-

dimensional Bloch ball of complex QM. Pure states lie on a circle S¹ rather than a sphere S². 
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Antipodal pure states cannot be connected by continuous reversible transformations (the group 

O(2) is disconnected). This violates transitivity. 

Interference asymmetry: In CQM, interference between any two paths is governed by a phase 

e^{iθ}; relative phases can be continuously varied. In RQM, the "phase" is ±1, and interference 

is either constructive or destructive with no intermediate values. This discreteness conflicts with 

continuous composability for certain process combinations. 

Local tomography: RQM also fails local tomography for certain composite systems. 

Step 6: Conclusion. The unique Jordan algebra satisfying self-duality, continuous transitive 

symmetry, compositional tensor products, and local tomography is Type Iₙ(ℂ)—Hermitian 

matrices over ℂ. The state space is density matrices on ℂⁿ, i.e., quantum mechanics. ∎ 

B.5 Contextuality and Spekkens' Framework 

The argument that admissibility forces non-contextuality deserves deeper engagement with 

Spekkens' work on operational and ontological contextuality [20]. 

Spekkens' distinction. Spekkens distinguishes: 

• Preparation contextuality: The same quantum state ρ may arise from different 

preparation procedures; if the ontic state depends on which procedure was used, 

preparations are ontologically contextual 

• Measurement contextuality: The same POVM element Eᵢ may appear in different 

POVMs; if the ontic response depends on which POVM contains Eᵢ, measurements are 

ontologically contextual 

• Transformation contextuality: Similar for channels 

Our claim (refined). Admissibility forces operational non-contextuality: outcome statistics 

cannot depend on operationally inaccessible features. This is weaker than claiming ontological 

non-contextuality. 

Detailed argument. Suppose measurement outcome probabilities were operationally contextual: 

p(Eᵢ|ρ, POVM₁) ≠ p(Eᵢ|ρ, POVM₂) where Eᵢ is the same effect in both POVMs and ρ is the same 

state. 

This difference in probability must be detectable in outcome statistics. Let f₁ = observed 

frequency of outcome i in POVM₁, f₂ = observed frequency in POVM₂. If p(...|POVM₁) ≠ 

p(...|POVM₂), then f₁ and f₂ will systematically differ. 

But the only record produced is "outcome i occurred." The record does not encode which POVM 

was implemented (that would require additional degrees of freedom in the record, making the 

POVMs operationally distinguishable). Under finite distinguishability, the observer cannot 

access which POVM context applies. Therefore, any statistical difference f₁ ≠ f₂ would be a 
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systematic reproducible difference with no physically accessible cause—violating the principle 

that operational distinctions require physical distinctions. 

Compatibility with ontological contextuality. Our argument does not rule out ontological 

contextuality in Spekkens' sense. Hidden variables might respond differently to different 

contexts. But if this contextuality is operationally invisible (averages out, or is encoded in 

inaccessible degrees of freedom), it is compatible with admissibility. What's ruled out is 

operationally manifest contextuality—different outcome statistics for the same operational 

procedure. 

Could contextual theories satisfy admissibility? Yes, if their contextuality is ontological rather 

than operational. Bohmian mechanics, for instance, is preparation-contextual (the particle 

position depends on how ρ was prepared) but operationally reproduces quantum statistics. Such 

theories satisfy admissibility at the operational level while differing ontologically. 

B.6 Relation to Decoherence and Einselection 

A natural question: Is "irreversible commitment" just decoherence under a different name? 

Decoherence (Zurek's einselection) describes how quantum coherence is suppressed when a 

system interacts with an environment. The reduced density matrix of the system rapidly becomes 

diagonal in a preferred "pointer basis" determined by the system-environment interaction. 

Irreversible commitment as defined here is the production of a stable record that cannot be 

undone by admissible procedures. 

Key differences: 

1. Decoherence is continuous; commitment is discrete. Decoherence describes a continuous 

loss of coherence over time. Commitment produces a discrete fact—a definite outcome 

from a finite set. Decoherence alone doesn't explain why outcomes are discrete (finite 

distinguishability does) or why specific outcomes occur (the selection problem). 

2. Decoherence is in principle reversible; commitment is not. Decoherence transfers 

coherence to the environment but doesn't destroy it. In principle, by controlling all 

environmental degrees of freedom, coherence could be recovered. Commitment, by 

contrast, is irreversible within the admissible domain. The difference is operational: 

admissibility bounds what procedures can access. 

3. Decoherence doesn't select outcomes; commitment does. Decoherence explains why 

interference is suppressed and why the density matrix becomes diagonal. It doesn't 

explain why a particular diagonal element is realized as fact. Commitment is the 

realization of fact; decoherence prepares the stage. 

Connection: Decoherence is a mechanism that produces the conditions for commitment. In 

many physical situations, the system-environment interaction rapidly decoheres the system, and 

then the environment serves as the "record" that commits the outcome. But commitment is the 
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conceptual category; decoherence is one (important, ubiquitous) physical mechanism that 

enables it. 

Pointer basis and admissibility: Zurek's einselection derives the pointer basis from the criterion 

that pointer states are stable under environmental monitoring. This resonates with admissibility: 

states that survive as facts must be robust against the environmental "measurements" that 

constitute ongoing physical interaction. The admissibility framework provides a structural 

explanation for why such preferred bases exist (they're the eigenbases of commitment 

operations), while decoherence explains how the selection is implemented dynamically. 

B.7 Relation to the PBR Theorem 

The Pusey-Barrett-Rudolph (PBR) theorem [25] shows that if quantum states represent states of 

reality (ψ-ontic) rather than merely states of knowledge (ψ-epistemic), then certain independence 

assumptions hold. The theorem rules out a class of ψ-epistemic hidden variable models. 

Connection to admissibility: The admissibility framework is operationally neutral about 

whether ψ is ontic or epistemic—it constrains what's operationally accessible, not what "really 

exists." However, the structural results have implications: 

1. Operational uniqueness implies representational uniqueness. If quantum states are 

uniquely determined by their operational statistics (as in our framework), and if 

operational statistics are what physical theories should capture, then there's no room for 

multiple ontic states underlying the same quantum state. This favors ψ-ontic 

interpretations, though doesn't strictly require them. 

2. Finite distinguishability constrains hidden variables. Any hidden variable theory must 

respect finite distinguishability at the operational level. This means hidden variables 

cannot be operationally accessed beyond the quantum bound N. ψ-epistemic models that 

require operationally accessible hidden structure are excluded. 

Our position: The admissibility framework is consistent with both ψ-ontic and ψ-epistemic 

interpretations, provided the latter don't posit operationally accessible structure beyond quantum 

states. The PBR theorem, combined with admissibility, significantly constrains viable ψ-

epistemic models. 

B.8 Connection to Thermal Time and the Connes-Rovelli Hypothesis 

Proposition 4.4 derives temporal ordering from commitment structure: time's direction is the 

direction of increasing commitment and entropy. This resonates with the Connes-Rovelli thermal 

time hypothesis [26]. 

Thermal time hypothesis: In generally covariant theories without preferred time, Connes and 

Rovelli propose that time emerges from the state of the system via the modular flow of the 

observable algebra. Given a state ω, the Tomita-Takesaki theorem provides a one-parameter 

group of automorphisms—the "thermal time" flow—relative to which ω appears thermal. 
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Comparison: 

Aspect Admissibility (this paper) Thermal Time (Connes-Rovelli) 

Time from Commitment/entropy increase Modular flow of state 

Fundamental object Facts/records Algebraic state 

Arrow of time Commitment ordering Thermal equilibrium 

Mechanism Information erasure KMS condition 

Potential synthesis: Both approaches derive temporal structure from state-dependent 

information-theoretic considerations rather than fundamental time. The admissibility framework 

provides the operational basis: time is the direction in which facts accumulate. Thermal time 

provides the algebraic implementation: the modular flow is the unique automorphism group 

compatible with the state's information content. 

A deep question: Is the modular flow of a quantum state ω the same as the flow generated by 

successive commitments? If so, thermal time and commitment time would be unified—time 

emerges from the structure of irreversible information flow, with Tomita-Takesaki theory 

providing the precise mathematical form. 

This remains speculative but suggests that the admissibility framework may connect to deep 

results in algebraic quantum field theory. 

 

Appendix C: Comparison with Reconstruction Programs 

This appendix systematically compares the admissibility approach with existing quantum 

reconstruction programs, showing where their axioms become theorems in our framework. 

C.1 Hardy's Five Axioms 

Hardy [1] derives quantum theory from: 

1. Probabilities are determined by state 

2. There exists a continuous reversible transformation between any two pure states 

3. Simplicity: The number of degrees of freedom is minimal for given distinguishability 

4. Subspaces correspond to subsystems 

5. Composite systems satisfy certain tensor rules 

In our framework: 

• Axiom 1 becomes Theorem 7.1 (Born rule uniqueness): probabilities are forced to be 

Tr(Eρ) 
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• Axiom 2 follows from transitive symmetry (Lemma 5.1 condition ii) 

• Axiom 3 is not needed; we derive rather than assume simplicity 

• Axioms 4-5 correspond to compositional locality (R4) 

What we avoid assuming: Hardy assumes probabilistic structure and simplicity; we derive both. 

C.2 Chiribella-D'Ariano-Perinotti (CDP) 

CDP [2] derives quantum theory from: 

1. Causality: No signaling from future to past 

2. Perfect distinguishability: Some states can be perfectly distinguished 

3. Ideal compression: Information can be maximally compressed 

4. Local distinguishability: Global states distinguishable via local measurements 

5. Purification: Every mixed state has a pure extension; purifications are unique up to local 

unitaries 

In our framework: 

• Axiom 1 (causality) follows from no-signaling (Proposition 8.2) 

• Axiom 2 (perfect distinguishability) is part of finite distinguishability structure 

• Axiom 3 (ideal compression) follows from the equivalence of operationally 

indistinguishable states 

• Axiom 4 (local distinguishability) is local tomography, used in excluding non-complex 

theories 

• Axiom 5 (purification) is not assumed but is compatible; it can be derived from the 

resulting Hilbert space structure 

What we avoid assuming: CDP's key axiom is purification, which is powerful but not obviously 

physical. We derive Hilbert space structure without it. 

C.3 Masanes-Müller 

Masanes-Müller [3] derive quantum theory from: 

1. Continuous reversibility: Any pair of pure states connected by continuous reversible 

transformation 

2. Tomographic locality: Joint states determined by local measurements 

3. Existence of entanglement: Some states are entangled 

4. All measurements are allowed: No superselection rules 

In our framework: 

• Axiom 1 follows from continuous transitive symmetry 

• Axiom 2 (tomographic locality) is our local tomography, used in Lemma 5.1 
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• Axiom 3 (entanglement existence) follows from tensor product structure under 

compositional locality 

• Axiom 4 is related to self-duality (measurement completeness) 

Distinctive feature of our approach: We begin with facts rather than measurements. Other 

programs assume measurement structure and derive the state space. We assume facts exist and 

derive both measurement and state structure. 

C.4 Summary Table 

Axiom/Assumption Hardy CDP M-M This work 

Probabilistic structure Assumed Assumed Assumed Derived (Th 7.1) 

Hilbert space Derived Derived Derived Derived (Lem 5.1) 

Unitarity Assumed Derived Derived Derived (Th 5.1) 

Born rule Assumed Derived Derived Derived (Th 7.1) 

Tensor products Assumed Assumed Assumed Assumed (R4) 

Local tomography — Assumed Assumed Used in Lem 5.1 

Purification — Assumed — Derived 

Facts exist Implicit Implicit Implicit Explicit (A1) 

Finite resources Implicit Implicit Implicit Explicit (A2) 

The distinctive contribution of this work is making the operational preconditions for physics 

explicit and deriving probabilistic structure rather than assuming it. 

 

Appendix D: Open Problems 

D.1 The Dimensionality Problem 

The derivation of Dirac structure (Section 9) assumes d = 3 spatial dimensions. This is empirical 

input, not derived from admissibility. Can admissibility constrain dimensionality? 

What's known: 

• Clifford algebra representations have dimension 2^{⌊d/2⌋} for d spatial dimensions 

• Bott periodicity implies representation structure repeats mod 8 

• Only d = 3 gives 4-component spinors matching observed fermion structure 

Possible approaches: 

1. Anthropic: Only d = 3 supports stable structures (atoms, chemistry) 
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2. Holographic: Finite distinguishability + Bekenstein bound may constrain d 

3. Algebraic: Complex structure forcing may select d = 3 (speculative) 

Status: This remains the primary open problem. A derivation of d = 3 from admissibility would 

be a major result. 

D.2 Bekenstein Bound and Holographic Connection 

Finite distinguishability implies bounded information content. The Bekenstein bound [22] states 

that the maximum entropy of a region is S ≤ 2πRE/(ℏc), where R is the radius and E is the 

energy. For a spherical region at fixed temperature, this becomes S ≤ A/(4ℓ_P²) where A is the 

surface area and ℓ_P is the Planck length. 

Conjecture: The finite distinguishability bound N is the Bekenstein bound: log N ≤ A/(4ℓ_P²). 

Evidence: 

• Both are operational bounds on accessible information 

• Both scale with system size, not volume (holographic scaling) 

• Both arise from the interface between quantum mechanics and gravity 

Implications if true: Admissibility would connect directly to holography and quantum gravity. 

The finite distinguishability constraint wouldn't be a separate input but would follow from 

spacetime geometry. 

D.3 Interacting Quantum Field Theory 

The paper addresses kinematic QFT structure. Extending to interacting theories requires 

addressing: 

Compatibility with Wightman axioms: 

• Wightman's axioms assume: Hilbert space, Poincaré covariance, spectral condition, 

locality, completeness 

• Admissibility provides: Hilbert space (Lemma 5.1), unitarity (Theorem 5.1), no-signaling 

(Proposition 8.2) 

• Needed: Show Poincaré covariance follows from relativistic admissibility; derive spectral 

condition from energy positivity 

Locality and clustering: 

• Admissibility's no-signaling is compatible with Wightman locality 

• Clustering (factorization of correlations at spacelike separation) should follow from 

compositional locality 
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Renormalization: 

• Finite distinguishability suggests natural UV cutoff 

• Question: Does admissibility select finite theories or provide a principle for 

renormalization? 

D.4 Interaction Selection 

Admissibility determines kinematic structure but not specific interactions. What additional 

principles might select: 

• The Standard Model gauge group SU(3) × SU(2) × U(1)? 

• Three generations of fermions? 

• The specific coupling constants? 

The VERSF program proposes that information-geometric constraints on entropy and 

distinguishability in curved spacetime may constrain interactions. This remains highly 

speculative. 

 

Appendix E: Derived Closure Lemmas 

This appendix shows that the operational postulates R1, R4, and R5 can be derived from more 

primitive assumptions about experimental capabilities. This strengthens the paper's claims by 

reducing the number of independent postulates. 

E.1 Convexity from Classical Control (Derives R1) 

Assumption CC (Classical Control Register). There exists an admissible two-state 

record/control system C with stable distinguishable states {|0⟩_C, |1⟩_C} such that: 

1. C can be prepared with prescribed frequencies λ, 1−λ over repeated trials (via a classical 

randomizer or reproducible mixing protocol), and 

2. C can conditionally route an admissible preparation procedure (if C=0 perform P₀; if C=1 

perform P₁). 

This is not an additional axiom about nature; it is a finite-procedure capability already implicit in 

admissibility. Experiments can be classically controlled and recorded—this is what "stable 

records exist" means operationally. 

Lemma E.1 (Convexity from Classical Control). Let P₀, P₁ be admissible preparation 

procedures yielding operational states ρ₀, ρ₁ ∈ 𝒮. Under Assumption CC, for any λ ∈ [0,1] there 

exists an admissible preparation P_λ whose operational statistics satisfy 



 70 

p(E|ρ_λ) = λ p(E|ρ₁) + (1−λ) p(E|ρ₀) 

for all admissible effects E. Therefore ρ_λ is operationally the convex mixture ρ_λ = λρ₁ + 

(1−λ)ρ₀. 

Proof. Implement P_λ by preparing the classical control register C such that over trials C=1 

occurs with frequency λ and C=0 with frequency 1−λ. Condition on C: if C=1 execute P₁, else 

execute P₀. For any admissible measurement effect E, the law of total probability for operational 

frequencies gives 

p(E|P_λ) = p(C=1)p(E|P₁) + p(C=0)p(E|P₀) = λp(E|ρ₁) + (1−λ)p(E|ρ₀). 

By the definition of operational state (equivalence class of preparations agreeing on all 

admissible effects), P_λ represents precisely the convex mixture. ∎ 

Comment. Convexity is no longer a postulate about the state space. It is a theorem from the 

existence of recordable classical control, which is already entailed by "finite procedures and 

records exist." 

E.2 Purification from Reversible Embeddability (Derives R5) 

The key insight is that irreversibility in a system S arises because degrees of freedom are 

discarded/inaccessible—it is not a fundamental violation of the reversible sector, only a 

restriction of access. 

Assumption RE (Reversible Embeddability / No Fundamental Sinks). For any admissible 

process Φ on a system S, there exists an extended system SE and an admissible reversible 

transformation U on SE such that for all operational states ρ_S, 

Φ(ρ_S) = Tr_E[U(ρ_S ⊗ η_E)U†], 

for some fixed operational state η_E of the environment E. 

Interpretation. Irreversibility in S arises because degrees of freedom are discarded/inaccessible; 

it is not a fundamental violation of reversibility. This is exactly the physical content of 

"commitment = many-to-one because of discarded degrees." 

Proposition E.2 (Reversible Sector Is Deterministic). No admissible transformation that is 

genuinely stochastic on operational states can be reversible (i.e., admit an admissible inverse on 

operational states). 

Proof. Suppose a process T maps the same input operational state ρ to two distinct output 

operational states σ₁ ≠ σ₂ with nonzero frequencies. Any candidate inverse T⁻¹ would have to 

map both σ₁ and σ₂ back to ρ. Then T⁻¹ is necessarily many-to-one on operational states, hence 

irreversibly committing distinctions, contradicting the definition of the reversible sector. ∎ 
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Theorem E.3 (Purification from Reversible Embeddability). Assume the reversible sector is 

unitary (or more generally, reversible and distinguishability-preserving) and Assumption RE 

holds. Then every mixed operational state ρ_S arises as the marginal of a pure state |Ψ⟩_{SE} of 

a larger system: 

ρ_S = Tr_E(|Ψ⟩⟨Ψ|). 

Proof. Take Φ to be the identity channel on S. By Assumption RE, there exists U on SE and 

fixed η_E such that ρ_S = Tr_E[U(ρ_S ⊗ η_E)U†]. Choose E large enough that η_E admits a 

purification |φ⟩{EE'} (standard in Hilbert space; alternatively, any mixed classical record state 

can be purified by including its classical memory register). Define |Ψ⟩{S(EE')} ≡ (U ⊗ 

I_{E'})(|ψ⟩S ⊗ |φ⟩{EE'}) for any purification |ψ⟩_S of ρ_S. Tracing out EE' returns ρ_S. ∎ 

Lemma E.4 (Uniqueness of Minimal Purification). In the Hilbert-space representation, any 

two minimal Stinespring dilations of the same channel are related by a unitary on the 

environment; hence any two purifications of ρ_S are related by a unitary on the purifying 

subsystem. 

Proof. Standard Stinespring dilation uniqueness up to partial isometry/unitary on the ancillary 

space. ∎ 

Comment. Instead of postulating purification (R5), we derive it from: 

• Reversible sector cannot be stochastic (Proposition E.2) 

• Irreversibility is discarding degrees of freedom (Assumption RE) ⇒ Mixedness must be 

marginals of pure extended states (Theorem E.3) 

E.3 Tomographic Locality from Universal Controllability (Derives R4) 

Assumption UC (Universal Composite Controllability). For a composite AB, the set of 

admissible experiments on AB is generated (to arbitrary operational precision) by: 

1. Local admissible operations and measurements on A and B, 

2. Shared classical control and classical communication (finite rounds), and 

3. A finite universal set of admissible interactions (entangling gates) between A and B. 

This is the statement that the laboratory has universal operational access to the degrees of 

freedom it claims to describe. 

Theorem E.5 (Operational Tomography from Controllability). Under Assumption UC, if two 

composite states ω_{AB} and ω'_{AB} yield identical statistics for all local measurements on A 

and B and all their correlations (i.e., for all product effects E_A ⊗ F_B), then they yield 

identical statistics for all admissible experiments on AB. Hence they are operationally identical: 

∀ E_A, F_B: p(E_A, F_B | ω_{AB}) = p(E_A, F_B | ω'{AB}) ⟹ ω{AB} ≡ ω'_{AB}. 
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Proof. By Assumption UC, any admissible experiment on AB can be approximated by a circuit 

built from local operations, local measurements, classical control/communication, and a finite 

universal entangling gate set. The outcome probabilities of any such circuit are multilinear 

functionals of the input state evaluated on effects generated from product effects by the circuit's 

reversible dynamics. If two states agree on all product effects, then by linearity/continuity of 

operational probabilities under admissible composition (already required for reproducible finite 

procedures), they agree on the entire generated effect set, and therefore on all admissible 

experiments. By the definition of operational state as equivalence class under indistinguishability 

by admissible experiments, the states are identical. ∎ 

Comment. We no longer say "Reality must be tomographically local." We say: "If your 

operational theory claims to describe all experimentally accessible degrees of freedom on 

composites (UC), then tomography follows." This makes quaternionic/exceptional "failures" 

read as: they contain degrees of freedom not controllable/observable under UC, hence are 

operationally surplus. 

E.4 Operational Non-Contextuality from Effect Identity (Tightens Born 

Rule) 

Definition (Operational Effect Identity). Two outcome-events (M, i) and (M', i') represent the 

same operational effect E iff for all operational states ρ, 

p(i|M, ρ) = p(i'|M', ρ). 

An effect is an equivalence class of outcome-events with identical statistics on all states. 

Lemma E.6 (Operational Non-Contextuality Is Automatic). If E is defined as an operational 

equivalence class of outcome-events, then the probability p(E|ρ) depends only on E and ρ, not on 

the measurement context in which E is embedded. 

Proof. If the probability depended on context, i.e., p(i|M, ρ) ≠ p(i|M', ρ) for some ρ, then (M, i) 

and (M', i) would not belong to the same equivalence class and therefore would not define the 

same operational effect E. Hence, for a fixed operational effect E, the probability assignment is 

by construction independent of context. ∎ 

Comment. Non-contextuality is not assumed as a principle about nature; it follows from defining 

"same effect" in the only way compatible with operational equivalence. The Born rule derivation 

(Theorem 7.1) then proceeds: 

1. Effects are context-independent by operational identity (Lemma E.6) 

2. Additivity + continuity + Gleason/Busch-Caves → trace rule uniquely 

Ontological contextuality (in the sense of Spekkens [20]) remains possible: the underlying ontic 

states might differ between contexts, but this cannot affect operational statistics. 
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E.5 Summary: Upgraded Logical Status 

With the derivations in this appendix, the logical structure becomes: 

Primitive assumptions: 

• (A1) Operational recordability 

• (A2) Finite operational resources 

• (A3) Physical realizability of measurements 

• (CC) Classical control register exists 

• (RE) Reversible embeddability / no fundamental sinks 

• (UC) Universal composite controllability 

Derived constraints: 

• (C1) Finite distinguishability ← Theorem 3.2 

• (C2) Irreversible commitment ← Definition + A1 

• (R1) Convexity ← Lemma E.1 from CC 

• (R2) Continuous reversible dynamics ← forced by admissibility 

• (R3) Distinguishability preservation ← forced by admissibility 

• (R4) Tomographic locality ← Theorem E.5 from UC 

• (R5) Purification ← Theorem E.3 from RE 

Derived structure: 

• Hilbert space ← Lemma 5.1 from R1–R5 

• Unitarity ← Theorem 5.1 

• Born rule ← Theorem 7.1 + Lemma E.6 

The assumptions CC, RE, and UC are not quantum-specific axioms but minimal operational 

completeness requirements for a theory intended to describe all experimentally accessible 

degrees of freedom. They express capabilities that any laboratory doing physics must have: 

classical control, access to extended systems, and universal operations on composites. 
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