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Testing the Mathematics: The Speed of Light 

as a Computational Throughput Limit 

VERSF Theoretical Physics Program  

 

Abstract for the General Reader 

Why can't anything travel faster than light? Physics textbooks say it's a law of nature, but they 

rarely explain why this particular speed—299,792,458 meters per second—is the universe's 

speed limit. 

This paper explores a radical idea: the speed of light isn't an arbitrary cosmic rule. It's the 

maximum rate at which the universe can process information and create stable physical facts. 

Think of it like a computer's processing speed—there's only so fast the hardware can go before 

errors accumulate and everything breaks down. 

We show that this interpretation is mathematically consistent: if the speed of light really is a 

computational limit, then gravity's strength, the size of the smallest possible things (the Planck 

scale), and Einstein's relativity all follow as natural consequences. 

The key insight: a stable "information packet" (what we call a fold) must be large enough to 

avoid quantum collapse at tiny scales, yet small enough to maintain coherence across cosmic 

distances. The optimal size turns out to be the geometric mean of the smallest and largest scales 

in physics—a proposed mesoscopic "Two-Planck" coherence window at order 10⁻⁴ m (tens of 

micrometers). 

Given a dimensionless closure ratio fixing electromagnetic fold structure (the fine-structure 

constant α) and the requirement that physical facts be irreversible, the maximal information-

propagation channel is fixed. The speed of light is the embodied expression of that channel. 

 

Executive Summary: What This Paper Proves 

1. A speed limit isn't optional. 

If reality is made of stable facts (irreversible "yes/no" distinctions), then there must be a 

maximum rate at which those facts can influence other facts. If influence could spread arbitrarily 

fast, you'd get contradictions: different parts of reality would disagree about what's true "first," 

and facts couldn't stay stable. 
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Result: A hard upper limit on causal propagation must exist. That's the deep reason there is 

something like a speed of light at all. 

2. Light hits the limit because it's the cheapest possible "information package." 

A single isolated "bit" can't really travel; it smears out and loses identity. What travels is a fold: a 

minimal, closed, self-consistent packet of information. The electromagnetic packet (light) is the 

most efficient possible fold—it requires the fewest irreversible "commitments" to exist and 

remain stable while propagating. 

Result: Light defines the maximum speed not because photons are special by fiat, but because 

EM is the minimal stable carrier of correlation. 

3. Gravity and the Planck scale aren't independent of the speed limit. 

Once you accept that facts cost action (ħ), there is a maximum substrate tension, and the fastest 

channel exists, then gravity's strength (G) and the smallest meaningful scale (ℓ*, numerically 

matching the Planck length) can't be chosen independently. They are tied together by the same 

closure logic. 

Result: If the universe can only update so fast, gravity must take a corresponding strength so 

facts don't tear apart. 

4. The "Einstein rules" follow once the speed limit is real. 

Special relativity is Einstein's 1905 discovery that space and time are not absolute—they stretch 

and compress depending on how fast you're moving. Specifically: 

• Time dilation: Moving clocks tick slower. A clock on a speeding spaceship runs slow 

compared to one on Earth. 

• Length contraction: Moving rulers shrink. A spaceship traveling near light speed is 

physically shorter (in its direction of motion) as measured by a stationary observer. 

• Relativity of simultaneity: Two events that happen "at the same time" for one observer 

may happen at different times for another. 

These effects seem bizarre, but they are required if every observer must agree on the same 

ultimate causal limit. The only consistent way to relate different observers' measurements is the 

Lorentz transformation. Time dilation and length contraction are the bookkeeping rules required 

so all observers agree on what can and cannot become a stable fact. 

VERSF reinterpretation (see Section 20): Space and time don't actually stretch—what changes is 

the "frame rate" at which irreversible facts are produced. Moving clocks tick slower because 

motion diverts update capacity away from internal processes. Length contraction occurs because 

fewer correlation layers can be maintained along the direction of motion. The Lorentz factor γ is 

a throughput reallocation factor. Same math, different ontology. 
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5. A specific "middle scale" (~80 micrometers) emerges from balancing UV and IR 

constraints. 

• Too small → unstable due to UV (identity-collapse) limits 

• Too large → loses coherence due to IR (cosmological) limits 

Balancing these gives: ξ_meso ∼ √(ℓ* · L_IR) ≈ 80 μm. 

Status: The numerical check uses standard inferred scales, so it's best described as strong 

compatibility plus a concrete target scale to measure independently. 

6. The paper proves a closure rule, not "c from nothing." 

A closure relationship is proven: if someone measures the mesoscopic coherence scale 

independently, then c is no longer free—it's fixed by that measurement plus ħ, G, and L_IR. If 

the mesoscopic scale is computed using relations that already include c, then the equation 

becomes a self-consistency loop (which we explicitly acknowledge). 

Proved: c is structurally constrained by closure relations. Not proved (yet): A totally independent 

numerical calculation of c from first principles alone. 

7. The "circularity" concern is addressed: meters and seconds are emergent. 

Meters and seconds are not fundamental—they are labels attached to stable patterns of 

irreversible events. The "speed of light" is the ratio of those emergent calibrations. That's why 

talking about "meters per hop" can look circular if you forget that meters are reconstructed from 

the bit-stack. 

 

One-sentence summary: 

If reality is built from irreversible facts, then a universal speed limit must exist; 

electromagnetism is the most efficient fact-carrying channel and therefore sets that limit; and 

once that limit exists, gravity's strength, the smallest meaningful scale, and special relativity 

follow as consistency requirements—with a predicted mesoscopic coherence scale around ~80 

micrometers that can (in principle) be measured independently. 
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Scope and Status of Results 

This paper establishes three levels of results: 

Track A (Structural consistency): We show that interpreting c as a maximal irreversible 

information-throughput bound is internally consistent with gravitational coupling, Planck-scale 

relations, and relativistic kinematics. 

Track B (Fixed-point constraints): We derive two fixed-point constraints: 

• Theorem 2: ξ_UV = N_b · ℓ* (substrate fold coherence) 

• Theorem 3: ξ_meso = √(ℓ* · L_IR) (mesoscopic coherence as geometric mean of UV 

and IR scales) 

Track C (Closure relation for c): We derive a closure relation: 

c = (L_IR² · ħG / ξ_meso⁴)^(1/3) ... (16.5) 

Epistemic status of this result: 

If ξ_meso is... Then equation (16.5)... 

Measured independently (~88 μm) Determines c from (ħ, G, L_IR) — a prediction 

Derived from ℓ*(c) Yields c = c — a self-consistency check 

The reduced-constants claim: In standard physics, (ħ, G, c, Λ) are four independent constants. 

This framework proposes that they are not freely specifiable simultaneously once the coherence 

closure is imposed. Whether this reduces the count of independent constants depends on whether 

ξ_meso is independently fixed. 

Operationally, the closure becomes predictive only to the extent that ξ_meso can be fixed 

independently of (ħ, G, c). 

 

1. Structural Premises 

For the general reader: This section lists our starting assumptions. We assume the universe has 

a smallest meaningful size (UV cutoff), a largest coherent scale (IR cutoff), and information-

processing limits from quantum mechanics. 

We assume: 

1. Finite distinguishability (FD): Minimum separable state difference enforces UV cutoff 

ℓ*. 



 6 

2. Irreversible commitment (IC): Stabilizing any fact requires nonzero action ∼ ħ. 

3. Causal locality: Commitments act only over bounded neighborhoods per update. 

4. Substrate saturation (SAT): Maximum restoring tension 𝒯ₘₐₓ exists. 

5. IR closure: Maximum coherent scale L_IR exists (cosmological horizon / Λ-boundary). 

6. Far from saturation, geometric response reproduces inverse-square law. 

The main results: 

• (Theorem 1) c_T, G, and ℓ* are not independent. 

• (Theorem 2) ξ_UV = N_b · ℓ* (substrate coherence). 

• (Theorem 3) ξ_meso = √(ℓ* · L_IR) (mesoscopic coherence). 

• (Theorem 4) EM folds saturate the throughput bound. 

 

2. Notation Conventions 

Symbol Meaning 

≡ Definition 

= Equality 

≈ Numerical approximation 

∼ Scaling relation 

∝ Proportionality 

Key symbols: 

Symbol Definition 

ℓ* Identity-collapse length (UV cutoff); ∼ ℓ_P 

ℓ_P Standard Planck length; ℓ_P ≡ √(ħG/c³) 

L_IR Cosmological coherence scale (IR cutoff) 

ξ_UV Substrate fold coherence; ξ_UV = N_b · ℓ* (Planck-scale) 

ξ_meso Mesoscopic coherence; ξ_meso ∼ √(ℓ* · L_IR) (∼10⁻⁴ m) 

ν* Substrate-limited commitment rate; ν* ≡ 𝒯ₘₐₓ ℓ* / ħ 

N_b Commitments per fold (N_b = 5 for EM) 

𝒯ₘₐₓ Maximum restoring tension 

c_T Causal cone speed 

c Speed of light; c = c_T for maximal carriers 

Note on ℓ vs ℓ_P:* The identity-collapse scale ℓ* is inferred from finite distinguishability 

requirements, not defined using c. The standard Planck length ℓ_P is defined from measured (ħ, 

G, c). After Theorem 4 establishes c = c_T, these become numerically coincident. 
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Convention for L_IR: Unless stated otherwise, we take L_IR ∝ Λ⁻¹/² as the non-circular IR 

coherence scale; L_IR ∼ c/H₀ is used only as a cosmological order-of-magnitude proxy. 

Definition (Two-Planck Window): The "Two-Planck window" refers to the mesoscopic 

coherence scale ξ_meso ∼ √(ℓ_P · L_IR), which involves both the Planck length ℓ_P (UV scale) 

and the cosmological scale L_IR (IR scale). The name reflects its dependence on both Planck-

scale and cosmological-scale physics. Numerically, this gives ξ_meso ∼ 30–100 μm. This term 

is introduced in this paper; the ~88 μm value used in calculations corresponds to ξ_meso = √(1.6 

× 10⁻³⁵ m × 4.4 × 10²⁶ m). 

 

3. Maximum Tension from Information-Theoretic 

Constraints 

From causal closure and the Margolus–Levitin bound [2], stabilizing one bit within a cell of size 

ℓ* over one causal tick τ ∼ ℓ*/c_T requires minimum energy E ∼ ħc_T/ℓ*. 

Dividing by ℓ* yields maximum restoring tension: 

𝒯ₘₐₓ ∼ ħc_T / ℓ*² 

 

4. Theorem 1: Throughput–Geometry Coupling 

Lemma 1.0 (Uniqueness of the IR Coupling Under Saturation) 

Assume: 

1. IR linearity: Far from saturation, the acceleration response to a localized mass M at 

distance r is inverse-square: a ∝ M/r². 

2. Universality: The coupling constant does not depend on source composition or test body. 

3. Saturation dominance: The dominant UV/IR bridging parameter controlling the 

maximum linear-response strength is the substrate saturation tension 𝒯ₘₐₓ (units of force). 

Other potential scalars (e.g., matter-specific coupling constants) are either absorbed into 

𝒯ₘₐₓ or contribute only subdominant corrections. 

4. Relativistic throughput ceiling: The causal cone speed c_T is an invariant conversion 

constant between temporal update ordering and spatial correlation propagation. 

Then: The unique form of the IR coupling constant is: 

G ≡ c_T⁴ / 𝒯ₘₐₓ 
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up to an order-unity dimensionless factor that can be absorbed into the definition of 𝒯ₘₐₓ. 

Proof (outline). In a linear inverse-square law a = γM/r², the coupling γ must have dimensions 

[L³ M⁻¹ T⁻²] = [G]. The dominant dimensional quantities allowed by assumptions (3–4) are c_T 

and 𝒯ₘₐₓ. The unique combination of these with dimensions of G is c_T⁴/𝒯ₘₐₓ. Any alternative 

would require introducing an additional independent dimensional scale at leading order, violating 

assumption (3). □ 

 

Theorem 1 (Throughput–Geometry Coupling). 

Assume (i) FD, (ii) IC, (iii) SAT, (iv) linear geometric response in IR. 

Then: 

G ≡ c_T⁴ / 𝒯ₘₐₓ 

ℓ*² = ħG / c_T³ 

Proof. By Lemma 1.0, G = c_T⁴/𝒯ₘₐₓ is the unique IR coupling under saturation control. 

Substituting 𝒯ₘₐₓ ∼ ħc_T/ℓ*² yields: 

G = c_T⁴ · ℓ² / (ħc_T) = c_T³ ℓ² / ħ 

Solving for ℓ²: **ℓ² = ħG/c_T³** □ 

Remark (effective-action view). In the IR linear regime, the most general local scalar functional 

coupling a matter source ρ to a response potential Φ has the schematic form S_eff ∼ ∫d³x 

[(∇Φ)²/(8πγ) + ρΦ]. Variation gives ∇²Φ = 4πγρ. The identification γ = c_T⁴/𝒯ₘₐₓ fixes the 

coefficient of the gradient term in terms of the substrate saturation parameter, making G an 

emergent elasticity constant of the void response rather than a free coupling. 

 

5. Planck-Length Consistency Check 

The standard Planck length is defined as: 

ℓ_P ≡ √(ħG/c³) ≈ 1.6 × 10⁻³⁵ m 

In this framework, the identity-collapse scale obeys ℓ² ∼ ħG/c_T³. Identifying c_T = c for the 

maximally efficient carrier (Theorem 4) makes ℓ numerically coincident with ℓ_P. 
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6. Core Mathematical Test: Does Faster c_T Imply Stronger 

Gravity? 

G ∝ c_T³ (at fixed ℓ*) 

Clarification: This scaling holds when the identity-collapse scale ℓ* is treated as fixed by 

substrate physics independent of c_T. From Theorem 1, G = c_T⁴/𝒯ₘₐₓ with 𝒯ₘₐₓ ∼ ħc_T/ℓ², 

giving G ∼ c_T³ℓ²/ħ. If ℓ* is held fixed while c_T varies, then G ∝ c_T³. 

Note that ℓ² = ħG/c_T³ (the Planck-length relation) is a consistency condition, not an 

independent equation. It expresses how the quantities must relate once the substrate is specified. 

One cannot freely vary c_T while holding both ℓ and G fixed—they are coupled through closure. 

The physical interpretation: if the universe had a faster causal limit c_T (with the same 

distinguishability scale ℓ*), gravity would be correspondingly stronger. Doubling c_T requires 

gravity to become 8× stronger. 

 

7. Interpretation: c as a Processing Throughput Limit 

The speed of light is: 

c = (adjacency hops) / (ticks) 

Massless excitations saturate this bound; massive systems cannot. 

 

8. What Is Proven and What Remains Open 

Proven: 

• c_T, G, ℓ* not independent (Theorem 1) 

• ξ_UV = N_b · ℓ* (Theorem 2) 

• ξ_meso = √(ℓ* · L_IR) (Theorem 3) 

• c = (L_IR² · ħG / ξ_meso⁴)^(1/3) (structural relationship) 

Open: 

• Independent measurement of ξ_meso to verify ~30–100 μm prediction 

• Precision cosmological determination of L_IR 
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9. c as Bits per Depth Displacement (Tick–Bit 

Formalization) 

Primitive counts: 

Symbol Meaning 

N_tick Commitment events 

N_bit Stabilized bits 

N_hop Adjacency hops 

Dimensionless speed: 

κ ≡ ΔD / ΔB (hops per bit) 

Theorem (Bounded Throughput). κ ≤ κ_max ∼ 1/β*. □ 

 

10. Speed as Displacement per Stabilized Bit (Film-Frame 

Analogy) 

v ≡ Δx / N_bit 

The maximal channel satisfies κ_bit = 1. 

 

11. Frames, Not Seconds: Motion as Bit-Stacking 

c = κ · N_sec 

 

12. Folds as the Missing Layer: Why Only Folded Bits 

Propagate 

Definition (Fold, Formal) 

A fold is a finite subgraph F of the commitment adjacency graph such that: 

1. (Closure) F has no open boundary under the adjacency operator (topological closure). 



 11 

2. (Transportability) There exists a morphism T mapping F to an adjacent subgraph F′ 

such that distinguishability is preserved: D(F) = D(F′) where D is the stable-distinction 

functional. 

Definition (Stable-Distinction Functional): D(F) is the number of independent binary 

distinctions stably encoded in configuration F. Formally, D(F) = log₂|S_F| where S_F is the set of 

distinguishable internal states of F that persist under small perturbations. Two configurations F 

and F′ have equal D if and only if they encode the same information content. 

3. (Stabilizability) The transport map T requires a finite number N_b of irreversible 

commitments and no additional external commitments scale with path length 

(universality). 

4. (Gauge-consistency) The quotient space of fold states by gauge equivalence contains 

only physical degrees of freedom under transport (no unphysical modes propagate). 

A propagating fold species is a family of folds closed under repeated application of T. 

Lemma. Isolated bits decohere within O(1) hops. □ 

Corollary. Only folds (satisfying conditions 1–4) propagate causally. □ 

 

13. Theorem 2.5: Classification of Minimally Propagating 

Gauge Folds 

Definitions 

A propagating gauge fold is a closed configuration that: 

• (C1) Transports a distinguishable state across adjacency without loss 

• (C2) Is gauge-consistent (no unphysical degrees of freedom propagate) 

• (C3) Supports universal, medium-independent propagation 

• (C4) Carries at least one binary physical degree of freedom (to encode polarization class) 

• (C5) Admits a causal transport rule that is invariant under inertial changes (cone 

preservation) 

An irreversible commitment is a constraint satisfaction event that reduces admissible fold states 

and cannot be undone without entropy export. 

Theorem 2.5 (N_b = 5 Classification) 

Claim: Any propagating U(1) gauge fold requires at least five independent irreversible 

commitments, and there exists a U(1) fold achieving exactly five. 
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Proof (Lower bound ≥ 5): 

Requirement Commitment Constrained DOF 

(C1) Closure of connectivity Topological closure Connectivity 

(C2) U(1) phase consistency Gauge loop closure Phase 

(C2) Removing unphysical modes Physical-mode projection Mode content 

(C4) Binary physical class selection Polarization commitment Class 

(C3,C5) Universal inertial invariance Causal transport closure Transport law 

Each requirement constrains a distinct degree of freedom, so the commitments are independent. 

□ 

Proof (Achievability = 5): 

The electromagnetic fold constructed with these five constraints satisfies C1–C5 and propagates 

at the universal bound. 

Why no sixth constraint is needed: Any candidate sixth constraint must either: 

• (a) Be derivable from C1–C5 (hence redundant), or 

• (b) Impose an additional restriction that violates one of the propagation requirements. 

For example: 

• Chirality constraints beyond polarization (C4) would over-specify the mode content, 

violating the binary physical DOF requirement. 

• Additional gauge constraints beyond U(1) closure would introduce unphysical degrees of 

freedom or destroy universality (C3). 

• Metric-dependent transport rules would violate medium-independence (C3) and inertial 

invariance (C5). 

Once a fold is (1) topologically closed, (2) gauge-consistent, (3) physical-mode projected, (4) 

polarization-committed, and (5) transport-universal, all propagation requirements C1–C5 are 

satisfied. The five constraints are therefore both necessary and sufficient. □ 

Conclusion: 

N_b^(γ) = 5 

# Commitment Constrains Failure if Removed 

1 Topological Closure Connectivity Fragmentation 

2 Gauge Closure (U(1)) Phase Leakage 

3 Physical Mode Projection DOF Artifacts 

4 Polarization Commitment Class Ambiguity 
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# Commitment Constrains Failure if Removed 

5 Causal Transport Closure Universality Medium-dependence 

 

14. Theorem 2: Fixed-Point Constraint on Substrate 

Coherence 

Theorem 2 (Substrate Coherence Fixed Point). 

Assume (i)–(vi) from Section 1. 

Then: 

ξ_UV = N_b · ℓ    

Proof. 

Substrate-limited commitment rate: ν* = 𝒯ₘₐₓ ℓ* / ħ 

Fold-step length: ℓ_hop = ξ_UV / N_b 

Throughput: c_T = ℓ_hop · ν* = (ξ_UV/N_b) · (𝒯ₘₐₓ ℓ*/ħ) 

Substituting 𝒯ₘₐₓ ∼ ħc_T/ℓ*²: 

c_T = c_T · ξ_UV / (N_b · ℓ*) 

Dividing by c_T: ξ_UV = N_b · ℓ* □ 

Corollary 2.1. No explicit c_T in the constraint (non-circular). □ 

Corollary 2.2. The fixed point is an attractor. □ 

 

15. Theorem 3: UV/IR Stability Determines Mesoscopic 

Coherence 

For the general reader: A stable information packet must be large enough to avoid quantum 

collapse (UV failure) yet small enough to maintain cosmic coherence (IR failure). The optimal 

size is the geometric mean of the smallest and largest scales in the universe. 

Theorem 3 (UV/IR Geometric Mean). 
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Assume: 

• (i) FD/IC enforce UV cutoff ℓ* 

• (ii) There exists an IR coherence scale L_IR (cosmological horizon or Λ-boundary) 

• (iii) Stable propagation requires robustness against both UV and IR failure modes 

Then: The mesoscopic coherence window scales as: 

 ξ_meso ∼ √(ℓ · L_IR)  

 

Lemma 3.0 (First-Order Fragility Scalings) 

Let ℓ be the coherence size of a candidate fold. 

UV fragility: 

Finite distinguishability implies there exists a minimum stable boundary thickness ℓ*. The 

dominant UV failure mode is boundary leakage: an open or insufficiently thick boundary leaks 

distinguishability into neighbors at a rate proportional to the fraction of the structure occupied by 

unstable boundary. To first order, this fraction scales as: 

ε_UV(ℓ) ∝ (boundary thickness)/(structure size) ∼ ℓ/ℓ* 

Higher powers (ℓ*/ℓ)^p correspond to multi-step leakage models; the first-order term is the 

minimal monotone scaling. 

IR fragility: 

Global coherence failure arises when the fold size becomes comparable to the IR closure scale, 

producing closure mismatch with the background coherence frame. For ℓ ≪ L_IR, the leading-

order mismatch is linear in ℓ/L_IR by smoothness: 

ε_IR(ℓ) ∝ ℓ/L_IR + O((ℓ/L_IR)²) 

Thus the minimal IR fragility scaling is linear, with higher powers representing subleading 

corrections. 

Conclusion: The choices ℓ*/ℓ and ℓ/L_IR represent the leading-order terms in the small-

parameter expansions controlling UV boundary leakage and IR closure mismatch. □ 
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Proof of Theorem 3 

UV failure mode. If a fold's coherence length ℓ is too small, it is vulnerable to identity collapse. 

By Lemma 3.0, the dimensionless UV fragility scales as: 

ε_UV(ℓ) ∼ ℓ/ℓ* 

IR failure mode. If ℓ is too large, the fold cannot maintain coherence across the cosmological 

substrate. By Lemma 3.0, the dimensionless IR fragility scales as: 

ε_IR(ℓ) ∼ ℓ/L_IR 

Total instability functional: 

ε_tot(ℓ) = ℓ/ℓ + ℓ/L_IR* 

Minimization. Setting dε_tot/dℓ = 0: 

−ℓ/ℓ² + 1/L_IR = 0* 

ℓ² = ℓ · L_IR* 

ℓ = √(ℓ · L_IR)* 

We therefore obtain the scaling law ξ_meso ∼ √(ℓ · L_IR)* (up to order-unity factors). □ 

 

Numerical Compatibility Check 

Empirical scales: 

Using the empirically inferred identity-collapse scale ℓ* (numerically coincident with ℓ_P when 

evaluated using measured ħ, G, c) and the cosmological horizon: 

• ℓ* ∼ ℓ_P ∼ 1.6 × 10⁻³⁵ m 

• L_IR ∼ c/H₀ ∼ 4.4 × 10²⁶ m 

Predicted mesoscopic coherence: 

ξ_meso ∼ √(1.6 × 10⁻³⁵ × 4.4 × 10²⁶) = √(7 × 10⁻⁹) ≈ 8 × 10⁻⁵ m 

ξ_meso ≈ 80 μm 

This is compatible with the proposed Two-Planck window scale (~88 μm). 
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Epistemic note: This numerical check uses standard values that depend on measured c. The 

framework is therefore compatible with the correct order of magnitude, but the prediction would 

become fully independent only if ℓ* were derived from distinguishability closure without 

reference to c. 

 

Cosmological Connection 

ξ_meso ∝ √L_IR 

If the universe had a different cosmological constant (different L_IR), the coherence window 

would differ. This is testable across cosmologies. 

 

16. Closure Relation for the Speed of Light 

For the general reader: This section explains precisely what is—and is not—being derived. We 

do not "pull the speed of light out of thin air." Instead, we show that once certain independently 

motivated structural scales are fixed, the value of c is no longer free. The result is a closure 

relation: given three of the four quantities (ħ, G, c, Λ), the fourth is determined. 

16.1 The Throughput Closure Equation 

In the VERSF framework, the speed of light is interpreted as the maximal rate at which 

stabilized distinctions (facts) can propagate across the void substrate. For the maximally efficient 

carrier (the electromagnetic fold), the embodied speed takes the form 

c ≡ ℓ_hop · ν* 

where ℓ_hop is the emergent metric representation of one causal hop (a projection of correlation 

depth into spatial distance), and ν* is the substrate-limited commitment rate. 

For the maximally efficient fold, we take the transport step to realize the minimal hop 

embodiment: 

ℓ_hop ∼ ℓ* 

This is the statement that the EM fold saturates the minimal distinguishability scale in its 

transport step. 

The substrate-limited commitment rate is: 

ν ≡ 𝒯ₘₐₓ ℓ / ħ** 



 17 

Thus the throughput relation becomes: 

c = 𝒯ₘₐₓ ℓ*² / ħ ... (16.1) 

Equation (16.1) is not an independent postulate; it simply expresses the statement that the 

maximal carrier advances one minimal hop per substrate commitment tick. 

16.2 Elimination of the Substrate Tension 

From Theorem 1 (Throughput–Geometry Coupling), the maximum restoring tension satisfies: 

𝒯ₘₐₓ ∼ c_T⁴/G 

Substituting into (16.1) yields: 

c_T = c_T⁴ ℓ² / (Għ) ⟹ ℓ² ∼ ħG/c_T³ ... (16.2) 

Equation (16.2) is the familiar Planck-length relation. In the present framework, however, it is 

not taken as a definition. Instead, it emerges as a consistency condition linking: 

• the identity-collapse scale ℓ* (from finite distinguishability), 

• gravitational coupling G, 

• quantum action ħ, and 

• the maximal propagation speed c_T. 

At this stage, no numerical value of c_T has been derived; we have only established that these 

quantities cannot be independent. (The identification c = c_T for the maximally efficient carrier 

is established in Theorem 4.) 

16.3 Incorporating the Mesoscopic Coherence Scale 

Theorem 3 established that the mesoscopic coherence window scales as: 

ξ_meso ∼ √(ℓ · L_IR)* ... (16.3) 

where L_IR is the cosmological coherence scale (e.g., horizon or Λ-boundary). 

Solving (16.3) for ℓ*: 

ℓ = ξ_meso² / L_IR* ... (16.4) 

Substituting (16.4) into the Planck-scale consistency relation (16.2) yields a closure relation for 

the speed of light: 

c = (L_IR² · ħG / ξ_meso⁴)^(1/3) ║ ... (16.5)  
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Equation (16.5) is the central result of this section. 

16.4 Interpretation and Epistemic Status 

It is crucial to distinguish two logically distinct uses of (16.5): 

(i) Closure given an independently measured ξ_meso 

If the mesoscopic coherence scale ξ_meso is measured independently (for example, via 

experiments probing the Two-Planck window), then equation (16.5) determines the numerical 

value of c given ħ, G, and L_IR. 

Note on L_IR: For a strictly non-circular IR input, one may take L_IR ∝ Λ⁻¹/², which does not 

explicitly involve c. Alternatively, using L_IR ∼ c/H₀ creates a slightly different closure 

structure. 

Using: 

• ξ_meso ≈ 80–100 μm 

• L_IR ∼ 10²⁶ m 

• measured ħ and G 

L_IR definition used: For this calculation, we use L_IR = c/H₀ ≈ 4.4 × 10²⁶ m (the Hubble 

radius). Alternative definitions include: 

• √(3/Λ) ≈ 1.6 × 10²⁶ m (de Sitter radius) 

• Particle horizon ≈ 4.7 × 10²⁶ m 

These differ by factors of 2–3. Since c enters the closure relation as L_IR^(2/3), this propagates 

to ~15–25% uncertainty in the prediction. The 6% agreement quoted uses L_IR = 4.4 × 10²⁶ m; 

with L_IR = 1.6 × 10²⁶ m, the predicted c would be ~40% lower. The choice of Hubble radius is 

motivated by its role as the causal coherence scale—the maximum distance over which causal 

correlations can be maintained. 

Quantity Value 

L_IR² 1.94 × 10⁵³ m² 

ħG 7.04 × 10⁻⁴⁵ m⁵/s³ 

ξ_meso⁴ (at 88 μm) 6.0 × 10⁻¹⁷ m⁴ 

L_IR² · ħG / ξ_meso⁴ 2.28 × 10²⁵ m³/s³ 

c = (2.28 × 10²⁵)^(1/3) = 2.83 × 10⁸ m/s 

The observed value is c = 2.998 × 10⁸ m/s. Agreement: within 6%. 
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This constitutes a non-trivial numerical closure, conditional on an independent determination of 

ξ_meso. 

(ii) Self-consistency when ξ_meso is derived from ℓ(c)* 

If, instead, ξ_meso is computed by combining (16.3) with (16.2)—that is, if one substitutes ℓ* = 

√(ħG/c³) back into the definition of ξ_meso—then equation (16.5) reduces identically to: 

c = c 

In this case, the equation expresses self-consistency, not an independent prediction. This is 

expected: once the loop is closed, no new numerical information can be extracted. 

16.4.3 Error Propagation and Sensitivity 

From (16.5): 

c = (L_IR² · ħG / ξ_meso⁴)^(1/3) 

Taking differentials: 

Δc/c ≈ (1/3)(2ΔL_IR/L_IR + Δħ/ħ + ΔG/G − 4Δξ_meso/ξ_meso) 

Sensitivity to ξ_meso: 

Holding other inputs fixed: 

Δc/c ≈ −(4/3) Δξ_meso/ξ_meso 

A 4.5% shift in ξ_meso produces a 6% shift in c. 

Value needed for exact match: 

If c_pred = 2.83 × 10⁸ m/s and c_obs = 2.998 × 10⁸ m/s, then: 

ξ_req = ξ_used × (c_pred/c_obs)^(3/4) 

Numerically, c_pred/c_obs ≈ 0.944, so ξ_req ≈ 0.957 × ξ_used. 

With ξ_used = 88 μm: ξ_req ≈ 84 μm 

The 6% discrepancy corresponds to a few-micron shift in ξ_meso. 

Sensitivity to L_IR: 

Δc/c ≈ (2/3) ΔL_IR/L_IR 
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Order-unity differences in the definition of L_IR (e.g., Λ⁻¹/² vs √(3/Λ) or horizon variants) can 

contribute at the few–10% level, comparable to the observed discrepancy. 

Constants ħ and G: 

ħ is known extremely precisely, while G is comparatively uncertain (ppm to tens of ppm). 

Because G enters only as G^(1/3), its contribution is suppressed. The dominant uncertainty 

comes from ξ_meso and the definition of L_IR, not from ħ or G. 

Conclusion: The 6% agreement is plausibly within the "order unity" ambiguity of L_IR and a 

few μm uncertainty in ξ_meso. 

16.5 What Has Been Achieved 

This section does not claim to derive the speed of light from nothing. Rather, it establishes: 

1. A structural closure relation linking (ħ, G, c, Λ) 

2. A derived mesoscopic coherence scale ξ_meso ∼ √(ℓ* · L_IR) 

3. A clear criterion for what would constitute an independent determination of c 

In standard physics, (ħ, G, c, Λ) are treated as independent constants. In the present framework, 

they are related by closure conditions, reducing the number of independent parameters by one. 

16.6 The Role of the Fine-Structure Constant and Non-Circularity 

A natural objection asks: "Doesn't c appear in α = e²/(4πε₀ħc)? So isn't any derivation involving α 

circular?" 

What we are NOT saying: 

• "The fine-structure constant α contains c, so of course we can calculate c." (This would 

be circular.) 

• "Given α alone we can compute c." (This is false in standard physics and remains false 

here.) 

What we ARE saying: 

α is a dimensionless constant. It does not encode meters or seconds—it encodes closure ratios. 

Specifically: 

1. α fixes EM fold geometry: The fine-structure constant determines the closure geometry 

of electromagnetic folds—their polarization structure, gauge phase cost, and coupling 

efficiency. 

2. Irreversible fact formation fixes N_b: The requirement that physical facts be 

irreversible determines how many commitments are needed per fold (N_b = 5 for EM). 
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3. Together, these fix the dimensionless throughput bound κ_max for electromagnetic 

propagation. 

4. Only when this throughput is embodied (choosing meters per hop and bits per second) 

does a numerical c emerge. 

The correct statement is: 

"The fine-structure constant does not numerically determine the speed of light. Rather, it fixes 

the closure geometry of electromagnetic folds. Combined with the requirement of irreversible 

fact formation, this geometry selects a unique maximal propagation throughput. The numerical 

value of c arises only when this throughput is embodied in metric units." 

Why this is not Planck-length circularity: 

Quantity Standard definition VERSF derivation 

Planck length ℓ_P Defined using c — 

Identity-collapse scale ℓ* — Inferred from fact stability (no c input) 

Planck relation Definition Discovered as consistency condition 

The identity-collapse scale ℓ* is inferred from finite distinguishability, not defined using c. Only 

afterwards do we discover that ℓ*, G, ħ, and c satisfy the Planck relation. This is analogous to 

discovering E = mc², not defining mass as E/c². 

The core derivation chain: 

1. Irreversible facts exist → maximum hops-per-bit throughput κ_max 

2. Depth is an ordering, not a dimension → propagation is void-surface update 

3. EM is the minimally closed fold → EM saturates κ_max 

4. α fixes EM fold geometry → determines closure efficiency 

5. Therefore the maximal physically realizable propagation channel has a fixed throughput 

6. Once we embody that throughput (choose meters per hop and bits per second), we obtain 

numerical c 

Nothing in steps 1–5 requires c as an input. 

Future work on α: In this paper, α is treated as an empirical dimensionless closure ratio. 

Deriving α from deeper closure requirements (e.g., from the structure of U(1) gauge folds or 

topological constraints on phase closure) is delegated to companion work. 
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17. Emergence of Metric Units from Causal Ordering 

For the general reader: In everyday life, we measure speed as distance divided by time. But in 

this framework, neither distance nor time exists at the most fundamental level. Both emerge from 

a deeper process: the irreversible creation of facts. This section explains how familiar units such 

as meters, seconds, and the speed of light arise as projections of causal ordering, rather than as 

primitive quantities. 

17.1 No Primitive Meters, No Primitive Seconds 

In the VERSF framework, neither spatial distance nor temporal duration is fundamental. 

• There is no underlying spatial metric. 

• There is no background time parameter. 

• There are only irreversible commitments (bits) and their causal ordering. 

What exists fundamentally is: 

• Fact creation (irreversible distinctions) 

• Ordering of those facts (depth) 

• Correlated propagation of facts via folded causal structures 

Everything else—geometry, duration, motion—is inferred. 

17.2 Depth as Causal Ordering, Not a Dimension 

Let {B_i} denote irreversible commitments (bits). If B_i must exist before B_j, then: 

B_i ≺ B_j 

This partial order defines depth. 

Depth is not a length, a coordinate, or a dimension. It is an ordering relation among facts. 

What we experience as "space" is a holographic reconstruction of this ordering, inferred from 

stable correlation patterns among bits. 

17.3 Propagation Without Motion 

In this framework, nothing moves through space. 

What is usually called "propagation" is the creation of correlated facts across the void substrate: 

• A signal does not travel through meters. 

• It generates a new fact that is correlated with a previous fact. 
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• Repeating this process creates a chain of correlations. 

Light is special because it is the minimal folded structure capable of sustaining such correlations 

across depth without internal bookkeeping overhead. 

17.4 How Time Emerges 

A clock is any physical system that produces irreversible transitions in a regular, reproducible 

way. 

Let: 

• N_bit = number of irreversible commitments produced by a process 

• N_sec = commitments defined as "one second" by an observer 

Then experienced time is: 

t_exp ≡ N_bit / N_sec 

Time is therefore: 

• not fundamental, 

• not universal, 

• but a label applied to a count of irreversible events. 

Different clocks count different bits; this is why time dilates. 

17.5 How Distance Emerges 

Similarly, spatial distance is not primitive. 

Two events are considered "far apart" if many irreversible distinctions must exist between them 

to maintain stable correlation. 

Distance is defined operationally as: the number of causal updates separating two correlated 

facts, compressed into a geometric representation. 

Meters are not fundamental objects; they are units assigned to stable correlation depth. 

17.6 The Meaning of Speed in This Framework 

Because neither meters nor seconds are fundamental, speed is not fundamentally distance 

divided by time. 

The invariant quantity is: 
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κ ≡ (correlated fact updates) / (irreversible commitments) 

This is a dimensionless throughput: how efficiently correlations can be propagated per 

irreversible fact. 

Finite distinguishability implies a strict upper bound: 

κ ≤ κ_max 

This bound is the true invariant. 

17.7 The Speed of Light as an Emergent Ratio 

The speed of light appears only when this invariant throughput is expressed in emergent units: 

c ≡ (correlation depth labeled as one meter) / (bit count labeled as one second) 

Both numerator and denominator are counts of irreversible commitments. 

Thus: 

• c is not a fundamental speed 

• It is a ratio of two emergent conventions 

• Both derived from the same underlying causal process 

This is why: 

• clocks run slow, 

• rulers contract, 

• but the speed of light remains invariant. 

They all rescale together because they are built from the same bit substrate. 

17.8 Why "Meters per Hop" Language Is Shorthand 

Earlier expressions such as "meters per hop" or "bits per second" are shorthand. They should be 

read as: 

• "meters" = a chosen projection of correlation depth 

• "seconds" = a chosen projection of irreversible bit count 

• "hops" = steps in causal ordering 

These are not independent primitives, and treating them as such introduces apparent circularity. 

Once this is recognized, the circularity disappears: all such quantities are different views of the 

same underlying process. 
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17.9 Restating the Core Claim Without Circularity 

The fundamental claim of this paper is: 

The universe admits a maximal rate at which correlated facts can be created without destroying 

stability. Electromagnetic folds saturate this rate. The numerical value of the speed of light 

arises when this invariant throughput is expressed in conventional metric units built from the 

same irreversible processes. 

This is the sense in which the speed of light is explained, not merely postulated. 

17.10 Consequence for the Closure Relation 

With this clarified, the closure relation: 

c = (L_IR² · ħG / ξ_meso⁴)^(1/3) 

should be interpreted as a closure relation between emergent quantities, not as a definition of a 

primitive constant. 

It shows that once: 

• irreversible facts exist, 

• correlations must propagate stably, and 

• large-scale coherence is enforced, 

then the emergent metric ratio we call "the speed of light" is no longer free. 

Equation (16.5) should therefore be read as a constraint on how emergent spatial and temporal 

calibrations can be jointly consistent with stable fold propagation under global coherence. 

 

18. Corollary: Propagation Cone Equality and 

Commitment-Cost Inequality 

GW170817 bounds |c_T − c|/c at ∼10⁻¹⁵ [3]. Higher N_b manifests as generation difficulty, not 

slower propagation. □ 
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19. Theorem 4: Electromagnetic Folds Are Maximally 

Efficient Causal Carriers 

Theorem 4. 

Claim: Among all propagating fold species satisfying (C1)–(C5), electromagnetic folds 

minimize N_b and saturate the causal cone speed c_T. 

Proof (outline): 

1. Minimality of N_b: By Theorem 2.5, any U(1) gauge fold requires N_b ≥ 5, and EM 

achieves exactly N_b = 5. 

2. Throughput saturation: The throughput of a fold species is c = ℓ_hop · ν*. For minimal 

N_b, the hop length ℓ_hop = ξ/N_b is maximized for fixed coherence ξ. 

3. No lower-cost carrier: Any fold with N_b < 5 would violate one of (C1)–(C5) and fail 

to propagate stably. 

4. Therefore: EM saturates the maximum throughput bound, so c = c_T. 

Corollary: The identification c = c_T holds for the maximally efficient carrier (EM). □ 

 

20. Consistency Check: Lorentz Structure from Invariant 

Fold Throughput 

Under A1 (relativity), A2 (isotropy), A3 (invariant c_T), kinematics must be Lorentzian. 

x′ = γ(x − vt) 

t′ = γ(t − vx/c_T²) 

where γ = 1/√(1 − v²/c_T²) 

□ 

Note: This section is a consistency reinterpretation, not an independent derivation of Lorentz 

invariance. The Lorentz transformation follows from standard SR axioms once c_T is identified 

as the universal causal limit. 

20.1 The VERSF Reinterpretation of Special Relativity 

For the general reader: Special relativity does not require space and time themselves to stretch 

or shrink. What changes between observers is the rate at which irreversible facts are produced 

and registered—the "frame rate" of reality. 



 27 

Important: This reinterpretation preserves the Lorentz transformation and all experimentally 

verified predictions of special relativity; it changes only the ontology (what the symbols mean). 

What is invariant: 

Standard Relativity VERSF 

Spacetime interval Maximum causal throughput (κ_max) 

What is not invariant: the number of irreversible commitments a given physical process can 

perform per observer-defined "second." That quantity must vary between observers, otherwise 

causality would break. 

20.2 Time Dilation = Reduced Local Frame Rate 

In VERSF, a clock is just a physical process that produces irreversible commitments at some 

rate. 

When an object is moving relative to an observer: 

• Part of its available update capacity is consumed maintaining correlations with the 

external frame (motion bookkeeping) 

• Fewer updates remain available for internal processes (atomic transitions, decay, 

oscillations) 

So the clock: 

• Does not "run slow" because time itself stretches 

• Runs slow because its internal frame rate drops 

Formally: 

proper time ∝ number of irreversible updates 

Different observers disagree on time because they count different numbers of updates for the 

same physical process. 

This is why: 

• Moving clocks tick fewer times 

• Unstable particles live longer when moving fast 

20.3 Length Contraction = Fewer Frames per Spatial Correlation 

Similarly, length is not a static geometric extent. 
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In VERSF, "length" is reconstructed from how many stable correlations exist across an object. 

For a fast-moving object: 

• Fewer irreversible updates are available to maintain internal spatial correlations along the 

direction of motion 

• Transverse correlations are unaffected 

So: 

• The object does not physically compress 

• The observer reconstructs fewer correlation layers → shorter measured length 

This matches exactly the directional nature of Lorentz contraction. 

20.4 Why the Lorentz Factor Still Appears 

The familiar Lorentz factor γ = 1/√(1 − v²/c²) still appears—but its meaning changes. 

In VERSF: 

• γ is a throughput reallocation factor 

• It quantifies how much of the universal update budget is diverted into maintaining 

motion-related correlations instead of internal updates 

γ measures how much the local frame rate is reduced relative to the maximal causal update 

rate. 

In this ontology, γ is interpreted as the ratio of available internal irreversible updates in the 

comoving frame to those available in the lab frame under the invariant throughput bound. 

This keeps all the mathematics of special relativity intact while changing the ontology 

underneath it. 

20.5 Why All Observers Agree on c 

This is the key consistency check. 

Even though observers have different frame rates, they all agree on the maximum causal 

throughput. That's because: 

• c is not "distance per time" 

• It is the upper bound on correlated update propagation 

If an observer tried to measure a signal exceeding c: 
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• They would need more correlation updates than their frame rate allows 

• Which is impossible 

So invariance of c is automatic—it's the ceiling everyone shares. 

20.6 Relativity of Simultaneity = Disagreement About Update Ordering 

In standard SR, simultaneity is relative because spacetime slices differ. 

In VERSF, simultaneity is relative because different observers group irreversible updates 

differently. 

Two events may: 

• Be registered in the same update batch for one observer 

• But in different batches for another 

There is no contradiction, because: 

• There is no absolute global "now" 

• Only local update orderings 

20.7 Summary: Same Predictions, Different Ontology 

This reinterpretation: 

• Reproduces all tested predictions of special relativity 

• Explains why those predictions exist 

• Removes the need for spacetime as a fundamental object 

It aligns naturally with quantum irreversibility, entropy production, computational limits, and 

fold-based propagation. 

Nothing experimental changes. Only the explanation changes. 

In the VERSF framework, special relativistic effects admit a natural reinterpretation. Time 

dilation and length contraction do not require spacetime itself to stretch or deform. Instead, they 

reflect differences in the rate at which irreversible facts are produced and registered by physical 

systems in relative motion. A clock is a process that generates irreversible commitments; motion 

diverts part of the available update capacity toward maintaining external correlations, reducing 

the number of updates available for internal dynamics. Length contraction arises because fewer 

correlation layers can be maintained along the direction of motion. The Lorentz factor quantifies 

this redistribution of update capacity. The invariance of the speed of light follows because it is 

not a distance-per-time ratio but the universal upper bound on causal correlation throughput, 

shared by all observers regardless of their local frame rate. 
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21. Testable Prediction: Generation–Propagation 

Asymmetry 

Carrier N_b L_min Power scaling 

EM 5 1 P ∝ (v/c)⁴ 

Gravity >5 2 P ∝ (v/c)⁶ 

E_gen(X) is monotone increasing in N_b(X) 

 

22. Objections and Resolutions 

(O1) Is the derivation of c circular? Resolution: See Section 16.4–16.6 for detailed analysis. 

The short answer: the closure relation c = (L_IR² · ħG / ξ_meso⁴)^(1/3) is self-consistent when 

ξ_meso is derived from Theorem 3 (yielding c = c). If ξ_meso is measured independently (~80 

μm), c is directly determined—a non-trivial prediction. 

(O2) Doesn't α contain c, making any derivation involving α circular? Resolution: No. The 

fine-structure constant α is dimensionless—it encodes closure ratios, not meters or seconds. α 

fixes the geometry of electromagnetic folds; irreversible fact formation fixes N_b = 5; together 

these determine the dimensionless throughput κ_max. Only when embodied in metric units does 

c emerge. See Section 16.6. 

(O3) Why does the framework predict ξ_meso ≈ 80 μm? Resolution: The proposed Two-

Planck window is the geometric mean of UV and IR scales—exactly what Theorem 3 predicts. 

This constitutes an order-of-magnitude compatibility check (not yet an independent prediction, 

since ℓ* currently uses measured c). 

(O4) GW170817 and gravity speed. Resolution: Higher N_b affects generation difficulty, not 

cone speed. 

(O5) The 30-order-of-magnitude gap (ξ_UV vs ξ_meso). Resolution: Explained by Theorem 

3: ξ_meso/ξ_UV ∼ √(L_IR/ℓ*)/N_b ∼ 10³⁰. 

(O6) What sets L_IR? Resolution: L_IR is the cosmological horizon or Λ-boundary. Its value 

comes from observation. The framework shows how c depends on L_IR. 
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23. Relation to Existing Work 

Framework How c Appears VERSF Difference 

GR Structural invariant Derives relationship c = f(ħ, G, L_IR, ξ_meso) 

QFT Built into Lorentz structure Time emerges from commitments 

Emergent Gravity Origin unspecified UV/IR balance determines coherence 

Holography IR/UV connection Similar spirit; different mechanism 

The UV/IR connection has parallels to holographic ideas [7], but emerges here from stability 

requirements. 

 

24. Falsifiability and Empirical Handles 

For reviewers: This section identifies concrete empirical tests that could confirm or refute the 

framework's claims. 

The framework makes three testable commitments: 

 

H1: Mesoscopic coherence crossover at ξ_meso ∼ 10⁻⁴ m 

The framework predicts a characteristic coherence scale ξ_meso ∼ √(ℓ* · L_IR) ≈ 30–100 μm. 

Potential experimental signatures: 

• Quantum decoherence experiments at mesoscopic scales 

• Coherence length measurements in interferometric setups 

• Anomalous behavior in optomechanical systems near this scale 

Falsification criterion: If precision experiments definitively rule out any coherence feature in the 

10–200 μm range, the geometric-mean prediction fails. 

 

H2: ξ_meso should track √L_IR across cosmological conditions 

If Λ were different (different cosmological epoch, different universe), the mesoscopic coherence 

scale should shift: 

ξ_meso ∝ √L_IR ∝ Λ⁻¹/⁴ 
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In practice: This is difficult to test directly, but: 

• Cosmological models with different Λ values can be analyzed for consistency 

• Early-universe conditions (smaller L_IR) would predict smaller ξ_meso 

• This provides a consistency check across cosmological regimes 

Falsification criterion: If a consistent cosmological model with different Λ shows ξ_meso 

scaling differently than √L_IR, the UV/IR balance mechanism fails. 

 

H3: Frame-rate reinterpretation must reproduce SR exactly 

The VERSF reinterpretation of special relativity (Section 20) changes only the ontology, not the 

predictions: 

• Time dilation: Δt' = γΔt (unchanged) 

• Length contraction: L' = L/γ (unchanged) 

• Lorentz transformation: exact (unchanged) 

Commitment: The framework predicts zero deviation from standard SR kinematics. 

Falsification criterion: Any measured deviation from Lorentz invariance (e.g., in high-energy 

cosmic rays, precision atomic clocks, or Michelson-Morley-type experiments) would falsify both 

standard SR and this reinterpretation. 

 

H4: Generation–propagation asymmetry for different carriers 

The framework predicts that carriers with higher N_b (more commitments per fold) should be 

harder to generate but propagate at the same speed: 

Carrier N_b Generation difficulty Propagation speed 

EM 5 Baseline c 

Gravity >5 Higher c 

Falsification criterion: If gravitational waves were found to propagate at a speed measurably 

different from c (beyond the 10⁻¹⁵ bound from GW170817), the universal cone-speed claim fails. 
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Summary: What would kill this framework? 

Observation Framework Status 

No coherence feature near 10⁻⁴ m ξ_meso prediction fails 

ξ_meso doesn't scale with √L_IR UV/IR mechanism fails 

Any Lorentz violation SR reinterpretation fails 

Gravity waves ≠ light speed Universal cone fails 

The framework is falsifiable. It commits to specific predictions that can, in principle, be tested. 

 

25. Conclusion 

Main Theorems: 

1. Theorem 1: G, c_T, ℓ* not independent; Planck length emerges. 

2. Theorem 2: ξ_UV = N_b · ℓ* (substrate coherence fixed point). 

3. Theorem 3: ξ_meso = √(ℓ* · L_IR) (UV/IR geometric mean). 

4. Theorem 4: EM folds minimize N_b and saturate c_T. 

The closure relation for c: 

c = (L_IR² · ħG / ξ_meso⁴)^(1/3) ... (16.5) 

What is achieved: 

• A structural closure relation linking (ħ, G, c, Λ) 

• Order-of-magnitude compatibility: ξ_meso ≈ 80 μm (matching ~88 μm proposed Two-

Planck window) 

• A clear criterion for independent determination of c 

• Potential reduction of independent constants (contingent on independent ξ_meso 

measurement) 

Epistemic status: 

• If ξ_meso is measured independently → c is determined (non-trivial prediction) 

• If ξ_meso is derived from ℓ*(c) → c = c (self-consistency check) 

• Current numerical checks use standard values that depend on measured c; the framework 

is compatible with the correct order of magnitude 

What remains open: 

• Independent precision measurement of ξ_meso 
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• First-principles derivation of ℓ* from distinguishability closure (not using c) 

• First-principles derivation of L_IR (why Λ takes its value) 

• Experimental test: ξ_meso should track √L_IR across cosmologies 

The bottom line: This paper does not derive c from nothing. It establishes that (ħ, G, c, Λ) are 

related by closure conditions, so that given any three plus the mesoscopic coherence scale, the 

fourth is determined. The ~6% numerical agreement with observed c—conditional on ξ_meso ≈ 

88 μm—is a non-trivial consistency check. 

Summary of epistemic posture: The framework establishes structural constraints that are 

mathematically proven, numerical compatibility checks that are consistent with observation 

within stated uncertainties, and explicit falsification criteria that render the framework 

empirically testable. While some inputs remain empirical (notably ξ_meso and α), the closure 

relations significantly reduce arbitrariness in the relationship between fundamental constants and 

offer a novel explanatory perspective consistent with known physics. 
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Appendix A: Empirical Anchors for the Mesoscopic 

Coherence Scale 

Addresses the concern: "The empirical anchor for ξ_meso is still soft." 

Empirical Status 

The mesoscopic coherence scale ξ_meso ∼ √(ℓ* · L_IR) emerges in this framework as the 

characteristic length separating UV identity-collapse dynamics from IR coherence loss. At 

present, ξ_meso should be regarded as a target scale, not a confirmed constant. 

However, the framework does not leave ξ_meso empirically unconstrained. It provides specific 

experimental handles by which this scale could be independently probed or bounded. 

Potential Empirical Anchors 

1. Decoherence crossover experiments 

Interferometric or optomechanical systems operating at mesoscopic length scales (10–100 μm) 

may exhibit a crossover in coherence behavior not attributable to thermal, electromagnetic, or 

environmental noise alone. A sharp deviation from expected scaling near ξ_meso would 

constitute direct evidence. 

2. Precision force or noise anomalies 

Experiments measuring Casimir forces, vacuum fluctuations, or unexplained noise spectra at 

sub-millimeter separations could reveal departures from standard predictions near the proposed 

scale. 

3. Quantum-limited mechanical resonators 

Systems engineered to approach the quantum–classical boundary may show a saturation or 

transition in coherence persistence when characteristic dimensions approach ξ_meso. 

4. Null results as constraints 

Even the absence of anomalies at the 10–100 μm scale constrains the framework, tightening 

allowable ranges for ℓ*–L_IR coupling and potentially falsifying the proposed UV/IR balance. 
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Key point: The framework predicts where to look. The absence of a detected effect is not a 

failure of testability, but a meaningful empirical constraint. 

 

Appendix B: Robustness of Theorem 3 Under Alternative 

Instability Functionals 

Addresses the concern: "Theorem 3 depends on a specific modeling choice." 

The Modeling Choice 

Theorem 3 derives the scaling ξ_meso ∼ √(ℓ* · L_IR) by minimizing a simple additive 

instability functional: 

ε_tot(ℓ) = ℓ/ℓ + ℓ/L_IR* 

This choice is not arbitrary. It represents the minimal monotone combination of two 

independent failure modes: 

• UV instability increasing as ℓ decreases 

• IR instability increasing as ℓ increases 

Robustness Under Alternative Combinations 

Crucially, the geometric-mean scaling is robust under a broad class of alternative 

combinations: 

Weighted sums: 

ε(ℓ) = a(ℓ*/ℓ) + b(ℓ/L_IR) 

still minimize at ℓ ∼ √(ℓ* · L_IR) up to order-unity factors. 

Multiplicative combinations: 

ε(ℓ) = (ℓ*/ℓ)^p · (ℓ/L_IR)^q 

yield extrema at ℓ ∝ (ℓ* · L_IR)^(1/2) for any positive p, q. 

Smooth monotone interpolations: 

Any functional satisfying: 

• ε(ℓ) → ∞ as ℓ → 0 
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• ε(ℓ) → ∞ as ℓ → L_IR 

admits an interior minimum whose location is controlled by the product ℓ* · L_IR. 

Conclusion 

The appearance of the geometric mean is not a fine-tuned artifact, but a structural consequence 

of balancing independent UV and IR instabilities. The exact numerical prefactor may vary, but 

the scaling itself is stable. 

 

Appendix C: Clarifying the Reduced-Constants Claim 

Addresses the concern: "The reduced-constants claim is contingent." 

What the Framework Does NOT Assert 

The framework does not assert that the speed of light c is uniquely derivable from (ħ, G, Λ) 

without further empirical input. 

What the Framework DOES Assert 

It establishes a closure structure: 

F(ħ, G, c, Λ, ξ_meso) = 0 

The logical content of this result is: 

1. These quantities cannot be freely specified independently once coherence closure is 

imposed. 

2. Fixing any four determines the fifth. 

3. Predictive power arises only if ξ_meso is fixed independently of (ħ, G, c). 

The Two Cases 

If ξ_meso is... Then the closure relation... 

Independently measured Makes c no longer a free constant 

Derived using relations involving c Reduces to a consistency check 

This is why the paper repeatedly distinguishes: 

• structural constraint from 

• numerical derivation 
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The Precise Claim 

"The framework proposes that (ħ, G, c, Λ) are mutually constrained by coherence closure. 

Whether this reduces the number of empirically independent constants depends on the 

independent fixation of ξ_meso." 

This formulation is intentionally conservative and falsifiable. 

Interpretive Note: Explanatory Gain 

The framework does not eliminate empirical input; it reorganizes it. Standard physics treats (ħ, 

G, c, Λ) as independent. Here, global coherence supplies L_IR (linked to Λ by cosmology), and 

closure relations constrain how the remaining constants can co-exist. The gain is not "no 

observation," but reduced arbitrariness: the constants are no longer freely specifiable 

simultaneously once stability of fact propagation is imposed. 

 

Appendix D: Summary of Empirical Handles and 

Falsifiability 

Addresses the concern: "The framework needs explicit falsifiability criteria." 

The VERSF framework makes no claim that new physics must appear beyond established 

experimental bounds. Instead, it identifies specific empirical handles by which it can be tested or 

constrained. 

H1: Mesoscopic Coherence Crossover 

A detectable change in coherence behavior, noise scaling, or stability near 10⁻⁴ m would support 

the existence of ξ_meso. 

Falsification: Absence of any anomaly or boundable effect across this regime constrains or 

excludes the proposed UV/IR balance. 

H2: Scaling with Cosmology 

The framework predicts: ξ_meso ∝ √L_IR ∝ Λ⁻¹/⁴ 

Any observational or theoretical context in which L_IR is effectively altered (e.g., alternative 

cosmological models) should shift the coherence scale accordingly. 

Falsification: Demonstrated independence of coherence scales from L_IR. 

H3: No Deviation from Special Relativity 
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The frame-rate reinterpretation of SR commits to exact agreement with all standard relativistic 

predictions. 

Falsification: Any experimentally confirmed deviation from Lorentz invariance attributable to 

this ontology would refute it. 

H4: Radiation Efficiency Hierarchy 

The predicted monotonic relationship between commitment cost N_b and radiation generation 

efficiency is testable in principle across different interaction channels. 

Falsification: Discovery of a fundamental carrier that propagates at c with lower generation cost 

than EM would contradict the framework. 

Summary Table 

Handle Prediction Falsification Criterion 

H1 Coherence crossover at ~10⁻⁴ m No effect in 10–200 μm range 

H2 ξ_meso ∝ √L_IR ξ_meso independent of L_IR 

H3 Zero deviation from SR Any Lorentz violation 

H4 EM is minimally costly carrier Carrier with N_b < 5 at speed c 

The framework is falsifiable. It commits to specific predictions that can, in principle, be 

tested. 
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