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Abstract 

We present the Physical Admissibility Framework (PAF), a constraint-based extension of 

quantum mechanics that formalizes the finite cost of producing physical facts. PAF supplements 

the Hilbert-space, Hamiltonian, and Born-rule formalisms with an admissibility layer governing 

finite distinguishability, irreversible commitment, and time cost. Grounded in the Bit 

Conservation Bound (BCB) and the Ticks-Per-Bit (TPB) constraint, PAF yields no-go theorems 

excluding reversible fact creation, infinite-precision hidden-variable models, and cost-free 

measurement. We introduce the Distinguishability Ledger as a conservation structure for 

irreversible processes, derive lower bounds on measurement, readout, reset, and error correction, 

and show how coarse-grained ledger flows recover effective spacetime geometry. The 

framework makes testable scaling predictions: measurement costs scale as log N for N-

hypothesis discrimination, error correction overhead scales linearly with syndrome count, and 

detector-bias maintenance costs scale linearly with log-asymmetry. PAF reframes quantum 

mechanics as the minimal admissible dynamics for a universe with finite information capacity 

and irreversible facts. 

Plain-language summary: Standard quantum mechanics tells us what states exist and how 

likely various outcomes are, but it doesn't say what it costs to make an outcome happen. In real 

experiments, measurement and readout dominate time and energy budgets. PAF adds the missing 

accounting: distinguishability (the ability to tell things apart) is finite and conserved, and turning 

quantum possibilities into definite facts requires irreversible commitment that cannot be done for 

free. This framework explains why quantum mechanics takes the form it does, why measurement 

is expensive, why error correction has overhead, and potentially why spacetime has geometry. 
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1. Introduction 

Quantum mechanics is built on three mathematical pillars: Hilbert space defines admissible 

states, Hamiltonians generate reversible dynamics, and the Born rule assigns probabilities to 

outcomes. While internally consistent, this triad omits a critical physical ingredient: the 

irreversible cost of turning possibilities into facts. 

For general readers: Imagine quantum mechanics as a recipe book that tells you what dishes 

are possible (states), how ingredients transform during cooking (dynamics), and how likely each 

dish is to turn out a certain way (probabilities). What the recipe book doesn't tell you is how 

much fuel you need, how long cooking takes, or why you can't "uncook" a meal. The Physical 

Admissibility Framework (PAF) adds this missing chapter—it tells you what physical resources 

are required to make quantum possibilities into definite outcomes. 

In real quantum systems, measurement, amplification, readout, reset, and fault tolerance 

dominate time, energy, and entropy budgets. Standard quantum mechanics specifies what can 

evolve and with what probabilities, but not what it costs to make outcomes real. The Physical 

Admissibility Framework (PAF) introduces a fourth layer—an admissibility constraint theory—

that operates prior to dynamics and probability, determining what physical processes are 

possible, impossible, or expensive. 

 

2. Physical Admissibility Postulates 

PAF rests on two universal constraints. 

(BCB) Bit Conservation Bound: Physically realizable distinguishability is finite within any 

bounded region and cannot be created ex nihilo. It may only be redistributed or exported to 

inaccessible degrees of freedom. 

(TPB) Ticks-Per-Bit Constraint: The creation of distinguishability as stable, retrievable fact 

requires irreducible commitment events (ticks). No finite-cost process can realize facts 

reversibly. 

For general readers: Think of BCB like a conservation law for "tellability"—the ability to tell 

things apart. Just as energy cannot be created from nothing, the capacity to distinguish one thing 

from another is finite and conserved. You can move distinguishability around (like transferring 

heat), but you cannot conjure it from nowhere. 

TPB says that recording information as a permanent fact requires irreversible steps—moments of 

no return. Consider writing in ink versus pencil: pencil marks can be erased (reversible), but ink 

commits permanently (irreversible). Quantum measurement is like writing in ink—once an 

outcome is recorded, the alternatives are irreversibly discarded. TPB says this commitment 
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process cannot be done for free; each bit of recorded fact requires at least one irreducible "tick" 

of irreversible action. 

Together, these postulates enforce finite precision, exclude reversible fact creation, and 

underwrite the emergence of quantum structure. BCB and TPB are not additional physical laws 

but admissibility constraints: they formalize the empirical impossibility of creating stable facts 

without irreversible cost. 

Status of the Postulates: BCB and TPB are operational admissibility constraints, not 

metaphysical laws or axioms about the ultimate nature of reality. They are justified empirically: 

laboratories are finite, stable records exist, and no experiment has ever produced distinguishable 

outcomes without irreversible resource expenditure. A universe violating these constraints is 

mathematically definable—one could write down dynamics that create facts for free—but such a 

universe would be physically non-fact-producing in the operational sense. We would have no 

stable records, no persistent outcomes, no basis for science. BCB and TPB thus codify what it 

means for a physical theory to describe a world in which facts can be established and 

communicated. 

 

3. Primitive Resources and Admissible Operations 

We define three primitive resources: 

(i) Accessible distinguishability I: The maximum reliably extractable classical information 

under admissible measurements, defined operationally. 

(ii) Tick count T: The number of irreducible commitment events available to a process. 

(iii) Commitment operations: Physical channels that convert alternatives into stable records 

while irreversibly discarding competing possibilities. 

Operational definition of ticks: A tick is not a Planck-scale discrete event but an operationally 

defined threshold: the minimal irreversible step required to commit one unit of distinguishability 

as stable fact. In practice, ticks are detector-dependent—different measurement apparatuses have 

different commitment granularity. What PAF constrains is the minimum tick count required for 

any apparatus achieving a given discrimination task. The hazard-rate model in Section 11 

provides one concrete realization: a tick corresponds to one first-passage event in the competing-

risk dynamics. More generally, any process that irreversibly selects one outcome and discards 

alternatives constitutes at least one tick. 

Relation to quantum resource theories: The quantum thermodynamics literature (Brandão, 

Horodecki, Oppenheim, and others) has developed sophisticated resource-theoretic frameworks 

for irreversibility. PAF is complementary to these approaches: while thermodynamic resource 

theories typically characterize what state transformations are possible given constraints on free 
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energy, athermality, or coherence, PAF characterizes the cost of creating classical records—the 

commitment step that resource theories often treat as a free classical side-channel. PAF and 

thermodynamic resource theories can be combined: the former prices the act of fact creation, the 

latter prices the thermodynamic work required to implement that creation under equilibrium 

constraints. 

Comparison of resource frameworks: 

Framework What it prices 
What it treats as 

free 
Primary constraint 

Thermodynamic 

resource theories 

Free energy, work, 

athermality 

Classical record-

keeping 
Second law 

Coherence resource 

theories 

Quantum coherence, 

superposition 

Incoherent 

operations 

Monotonicity under 

incoherent ops 

Entanglement resource 

theories 

Entanglement, 

nonlocality 
LOCC operations 

No entanglement 

creation under LOCC 

PAF 
Classical fact creation, 

commitment 

Reversible 

(unitary) evolution 
BCB, TPB 

PAF's distinctive contribution is pricing the transition from quantum to classical—the step that 

other resource theories typically assume is available at no cost. This makes PAF orthogonal to, 

rather than competing with, existing resource-theoretic frameworks. 

Admissible operations are those that respect BCB and TPB. Any operation violating these 

constraints is physically unrealizable, regardless of its mathematical well-definedness. 

 

4. The Distinguishability Ledger 

For general readers: Just as a business tracks income and expenses in a ledger, PAF tracks the 

"information economy" of any physical process. When you make a measurement, you're not just 

learning something—you're spending irreversible resources and generating waste. The 

Distinguishability Ledger is nature's accounting system for these transactions. 

For any physical process Π, PAF assigns a ledger triple: 

L(Π) = (T, ΔI_fact, ΔI_export) 

where: 

• T counts commitment events (the "ticks" or irreversible steps taken) 



 8 

• ΔI_fact measures distinguishability converted to stable fact, defined as the Shannon 

entropy of the classical record produced: ΔI_fact = H(record). This is the minimum 

number of bits required to specify the committed outcome. 

• ΔI_export measures distinguishability irreversibly discarded to environment 

(information "thrown away" to make the record permanent). This is an information-

theoretic lower bound; Landauer's principle converts it into minimum thermodynamic 

entropy production under standard conditions (see Appendix A.7). 

Analogy: Consider taking a photograph (a kind of measurement). T counts the irreversible 

chemical or electronic changes in your camera. ΔI_fact is the information content of the resulting 

image—how many bits you need to store it. ΔI_export is the light and heat dissipated in the 

process, carrying away information about all the photos you didn't take. You cannot create a 

photograph without these costs. 

Ledger Closure Conditions: 

T ≥ κ · ΔI_fact 

ΔI_export ≥ max(0, ΔI_fact − ΔI_recovered) 

where: 

• The first inequality enforces the Ticks-Per-Bit constraint 

• ΔI_recovered represents information that returns to accessible form through 

environmental feedback or error correction (typically negligible for well-isolated records, 

so ΔI_recovered ≈ 0) 

• The max ensures ΔI_export remains non-negative 

In typical measurement scenarios with well-isolated records, the second inequality reduces to 

ΔI_export ≥ ΔI_fact. 

The constant κ governs the fundamental conversion rate between commitment events and 

committed information. Its value may be unity in natural units; determining κ from first 

principles remains an open problem, though it may be constrained experimentally (see Section 

13). While κ is not fixed a priori, PAF's predictions concern scaling and lower bounds; any finite 

κ enforces nonzero cost per committed bit and is therefore physically constraining. More 

precisely, κ sets the unit conversion between logical commitment events and committed bits; 

PAF's scaling claims are invariant under finite rescalings of κ. PAF is thus best understood as a 

scaling theory: it predicts how costs scale with task parameters (logarithmically with hypothesis 

count, linearly with syndrome bits, etc.) rather than absolute values. 

This ledger functions as a conservation structure governing irreversible processes, analogous to 

how energy conservation governs reversible dynamics. 
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Definition (Distinguishability Ledger as a lax resource functor). Let Proc be the category 

whose objects are finite-resource systems and whose morphisms are admissible CPTP maps (or 

admissible CP maps in the algebraic spine), composed sequentially. A ledger is a map 

L : Proc → ℝ₊³, L(Π) = (T(Π), ΔI_fact(Π), ΔI_export(Π)) 

satisfying: 

1. Free reversibles: If Π is reversible (unitary/automorphism), then L(Π) = (0, 0, 0). 

2. Lax additivity: For composition Π₂ ∘ Π₁, L(Π₂ ∘ Π₁) ⪯ L(Π₁) + L(Π₂) + Δ_corr where 

Δ_corr ∈ ℝ₊³ accounts for correlation/initialization costs and ⪯ is componentwise 

inequality. 

3. Closure inequalities (PAF constraints): 

o T(Π) ≥ κ · ΔI_fact(Π) 

o ΔI_export(Π) ≥ max(0, ΔI_fact(Π) − ΔI_recovered(Π)) 

This formalization makes composition rules and "unitaries are free" mathematically automatic 

and connects PAF to categorical quantum mechanics and resource theory frameworks. 

 

5. Composition Rules and Commitment Depth 

Ledger entries compose under physical operations: 

• Sequential composition: L(Π₂ ∘ Π₁) ⪯ L(Π₁) + L(Π₂) + Δ_corr, where Δ_corr ≥ 0 

accounts for correlation and initialization costs, and ⪯ denotes componentwise inequality 

• Parallel composition: Entries add for independent processes 

• Parallel processes share ticks only if commitment bandwidth permits 

Definition (Per-commitment record capacity). Let 𝒞 be the allowed class of elementary 

commitment channels (non-unitary CPTP maps producing stable record updates) in the 

admissible model. Define 

I_max ≡ sup_{C ∈ 𝒞} sup_ρ [H(R_out) − H(R_in)] 

i.e., the maximum increase in stable record entropy achievable in one commitment operation. 

Theorem 5.1 (Commitment Depth Lower Bound). Any implementation of a process Π that 

outputs a stable classical record R with H(R) = ΔI_fact requires 

D_C(Π) ≥ ΔI_fact / I_max 

where D_C(Π) is the minimum number of commitment operations used in any realization of Π. 
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Proof. By definition, unitary/reversible steps do not increase stable record entropy (Lemma 6.2 

below). Each commitment operation can increase record entropy by at most I_max. Therefore 

after d commitment operations, H(R) ≤ d · I_max. To reach H(R) = ΔI_fact, one must have d ≥ 

ΔI_fact / I_max. Minimizing over all realizations gives the stated bound. 

Note on correlations: If commitment operations are correlated (sharing information through 

auxiliary systems), the total record entropy may be less than the sum of individual contributions. 

However, this can only increase the required depth: producing ΔI_fact bits of independent record 

requires at least ΔI_fact / I_max operations regardless of correlations. The bound is therefore 

robust. □ 

Corollary (TPB form). If the admissible architecture enforces I_max = 1/κ bits per commitment 

event, then D_C(Π) ≥ κ · ΔI_fact. 

In plain terms: commitment depth grows at least linearly with the information committed. A 

process that commits n bits requires at least n irreversible stages (up to constant factors). 

 

6. No-Go Theorems of Physical Admissibility 

For general readers: "No-go theorems" are proofs that certain things are impossible—not just 

difficult, but fundamentally ruled out by the laws of physics. PAF establishes three such 

impossibilities, each revealing deep constraints on what physical systems can do. 

6.1 No-Free-Facts Theorem 

Definition (Stable classical record). A record variable R is stable if (i) it takes values in a finite 

alphabet ℛ, (ii) it can be copied by admissible operations into m independent registers R⁽¹⁾, ..., 

R⁽ᵐ⁾ with arbitrarily small degradation (classical fan-out), and (iii) the copies remain readable for 

times long compared to the process duration. 

Assumption (BCB–capacity). Any bounded laboratory domain 𝒟 admits a finite upper bound 

I_max(𝒟) on operationally accessible distinguishability stored in stable classical records within 

𝒟 (measured in bits). This is the operational form of the Bit Conservation Bound. 

Theorem 6.1 (No-Free-Facts). Let Π be a finite-resource process acting within a fixed bounded 

domain 𝒟 that produces a stable classical record R with Shannon entropy H(R) = ΔI_fact > 0. 

Then Π necessarily incurs irreversible commitment cost satisfying 

T(Π) ≥ κ · ΔI_fact 

for some κ > 0 characterizing the minimal ticks-per-bit of the admissible domain. In particular, 

there is no admissible process that produces ΔI_fact bits of stable record with T(Π) = 0. 
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Proof (by iteration and capacity contradiction). Suppose for contradiction that there exists a 

process Π producing H(R) = ΔI_fact > 0 while violating the tick bound, i.e., T(Π) < κ · ΔI_fact 

for some fixed κ > 0. Consider running Π sequentially k times inside the same bounded domain 

𝒟, producing records R₁, ..., Rₖ that are stable and copyable by definition. Since stability allows 

independent storage/copying of these outcomes, the joint record R⁽ᵏ⁾ = (R₁, ..., Rₖ) has entropy 

H(R⁽ᵏ⁾) = Σⱼ H(Rⱼ) = k · ΔI_fact 

up to negligible correlations that can be made arbitrarily small by resetting the apparatus between 

runs. The total tick cost is at most k · T(Π), hence k · T(Π) < κ · k · ΔI_fact. Letting k → ∞, this 

constructs unbounded stable distinguishability inside the fixed bounded domain 𝒟, contradicting 

the BCB–capacity assumption H(stable records in 𝒟) ≤ I_max(𝒟) < ∞. Therefore no such Π 

exists; any stable fact production requires nonzero tick cost proportional to the committed 

information. □ 

Plain English: You cannot learn anything for free. Every bit of definite information that gets 

recorded into the world requires spending irreversible resources—there is no way around this. 

6.2 Reversible Fact Exclusion 

Lemma 6.2 (Reversible maps cannot create classical records). Let Φ be an admissible 

reversible transformation (unitary channel or reversible automorphism in the algebraic spine). 

Then for any classical record register R initially uncorrelated with the system, Φ cannot increase 

the accessible classical information contained in R. In particular, any process that increases H(R) 

from 0 to > 0 must contain at least one non-unitary (commitment) step. 

Proof. Reversible dynamics are information-preserving isometries on the operational state space. 

If a classical record R is produced, that corresponds to a many-to-one mapping from pre-

measurement alternatives to a stable macrostate of R, which is not invertible on the operational 

domain. Equivalently, for any classical-quantum state ρ_XR with X the preparation label, data 

processing gives that I(X; R) cannot increase under local reversible dynamics acting on the 

system alone; producing a nontrivial classical record requires a non-unitary channel coupling to 

an environment and discarding alternatives. □ 

Plain English: Reversible processes cannot make decisions. The quantum world evolves 

reversibly (unitarily), which is precisely why it remains in superposition—because nothing has 

been decided yet. The moment a definite fact emerges, something irreversible has occurred. 

6.3 Infinite Precision Exclusion 

Theorem 6.3 (Infinite Precision Exclusion). Any physical model requiring unbounded state 

resolution to produce finite distinguishable records is inadmissible under PAF. 

Proof. Suppose a model postulates a continuous hidden variable λ ∈ ℝ with physical 

consequences—i.e., different values of λ lead to distinguishable measurement outcomes. To 
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discriminate N distinct values of λ requires ΔI_fact ≥ log₂(N) bits of committed record. By 

Theorem 6.1, this requires T ≥ κ log₂(N) ticks. As N → ∞ (approaching continuous resolution), T 

→ ∞. Any finite-resource process can therefore only access finite precision. Models requiring 

infinite precision for finite physical effects violate BCB. □ 

Plain English: Reality cannot be infinitely detailed. If some theory requires knowing a number 

to infinite decimal places to make predictions, that theory cannot describe physical processes 

achievable with finite resources. 

 

7. Measurement and Decision Lower Bounds 

Resolving N hypotheses with total error probability ε requires: 

ΔI_fact ≥ log₂(N) − h(ε) 

where h(ε) = −ε log₂(ε) − (1−ε) log₂(1−ε) is the binary entropy function. 

Here ΔI_fact denotes the minimum classical information that must be committed as a stable, 

retrievable record to label one of N hypotheses with total error probability ε. The bound follows 

from standard decision-theoretic and information-theoretic inequalities (Fano-type bounds), 

independent of quantum structure. Quantum mechanics constrains which measurements can 

approach this bound; PAF constrains the physical cost of any measurement that does. 

By TPB, any such protocol must satisfy: 

T ≥ κ · [log₂(N) − h(ε)] 

PAF thus prices optimal Helstrom discrimination and explains why measurement and readout 

dominate experimental cost even when unitary evolution is cheap. The irreversible cost of 

deciding is irreducible. 

 

8. Decoherence as Ledger Export 

For general readers: "Decoherence" is the process by which quantum superpositions appear to 

collapse when a quantum system interacts with its environment. Standard physics describes what 

happens (interference patterns disappear), but PAF explains why in terms of information 

accounting: decoherence is the export of "which-branch" information to the environment. 

Imagine a quantum system as a secret that could be one of several possibilities. Decoherence 

occurs when the environment "learns" which possibility is realized—not by anyone looking, but 
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simply through physical interaction. Once the environment contains a record of which branch 

occurred, the other branches become inaccessible. The information isn't destroyed; it's exported 

to degrees of freedom we cannot access. 

Environmental decoherence corresponds to the export of which-branch distinguishability into 

inaccessible degrees of freedom. Consider a system-environment interaction producing 

decoherence in basis {|i⟩}. The reduced system dynamics suppress off-diagonal terms: 

ρ_S → Σᵢ ⟨i|ρ_S|i⟩ · |i⟩⟨i| 

Equivalently, the dephasing channel acts as: 

𝒟(ρ_S) = Σᵢ |i⟩⟨i| ρ_S |i⟩⟨i| 

Technical note: The off-diagonal terms (coherences) that encode quantum interference get 

suppressed. What remains is a classical probability distribution over outcomes. 

The environment gains which-branch information quantified by the mutual information I(S:E). 

This provides a lower bound on ΔI_export. 

Phase information is not destroyed but displaced beyond admissible recovery. PAF reinterprets 

decoherence as a ledger transfer rather than information destruction—the universe's books still 

balance. 

Note on recoverability: In principle, if one had complete access to all environmental degrees of 

freedom, the phase information could be recovered (decoherence is unitary at the 

system+environment level). In practice, environmental degrees of freedom rapidly become 

inaccessible—thermalized, dispersed, or correlated with further degrees of freedom. PAF's 

ΔI_export quantifies this practical irreversibility: the information is not gone, but recovering it 

would require resources exceeding any finite budget. This distinction between in-principle and 

practical recoverability is central to understanding why decoherence appears irreversible despite 

underlying unitary dynamics. 

Key insight: Decoherence is not mysterious "wave function collapse"—it's accounting. 

Information about which outcome occurred gets transferred to the environment. This transfer is 

an irreversible ledger operation with definite cost. The quantum interference patterns don't 

vanish; they become encoded in correlations with environmental degrees of freedom that are 

practically (and often fundamentally) inaccessible. 

 

9. Worked Examples: PAF in Practice 

For general readers: This section shows PAF in action across several real scenarios in quantum 

physics and computing. In each case, we'll see how PAF explains costs and limitations that 
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standard quantum mechanics acknowledges exist but doesn't account for. Think of these 

examples as "mystery solved" stories—phenomena that seemed like engineering inconveniences 

turn out to be fundamental physical constraints. 

This section presents concrete applications of PAF to standard quantum scenarios, demonstrating 

how admissibility constraints explain costs that standard quantum mechanics does not address. 

9.1 Single-Qubit Measurement (Minimal Fact Creation) 

For general readers: This is the simplest possible quantum measurement—a single yes/no 

question asked of a quantum system. Even this minimal case reveals the fundamental cost of 

creating facts. 

Standard QM view: A projective measurement maps a qubit state 

|ψ⟩ = α|0⟩ + β|1⟩ 

to outcome 0 or 1 with Born probabilities |α|² and |β|². 

What QM does not specify: 

• How long this takes 

• What resources are consumed 

• Why the outcome is irreversible 

PAF analysis: Recording one classical bit requires: 

• ΔI_fact = H(P), which equals 1 bit for a balanced outcome (P = 0.5) and drops toward 0 

as outcomes become nearly certain 

• At least one commitment event: T ≥ κ · H(P) 

• Export of at least one bit of distinguishability: ΔI_export ≥ H(P) 

For a maximally uncertain measurement (P = 0.5), these all equal 1. For a nearly certain outcome 

(P → 1), the costs approach zero—but achieving that certainty may itself require resources (see 

Section 11). 

No unitary operation can achieve this. Any physical detector must irreversibly discard the 

orthogonal branch. 

Takeaway: Even the simplest quantum measurement has an irreducible physical cost that 

standard QM does not account for. The superposition doesn't just "decide"—something must pay 

for that decision. 
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9.2 Measurement–Reset Cycle (Why Experiments Slow Down) 

For general readers: Real experiments don't just measure once—they measure thousands or 

millions of times to gather statistics. Each cycle involves measuring, recording the result, and 

then resetting the system to measure again. This "measure-reset-repeat" loop has costs that 

accumulate. PAF explains why these costs are unavoidable and why they double with each 

component of the cycle. 

Scenario: Repeatedly measure a qubit and reset the detector. 

Standard QM view: Measurement followed by re-preparation. No resource accounting. 

PAF ledger accounting: 

Measurement phase: 

• ΔI_fact = H(P), which equals 1 bit for a balanced outcome 

• T ≥ κ · H(P) 

• ΔI_export ≥ H(P) 

Reset phase: 

• Additional ΔI_export ≥ H(P) 

Why reset costs as much as measurement: When you measure, you create a record and export 

entropy (the "discarded" alternative). When you reset, you must erase that record to prepare for 

the next measurement. By Landauer's principle, erasing information is just as costly as creating 

it—you're exporting the same entropy again, just in the opposite direction. 

Total per cycle (for balanced outcomes, H(P) = 1): 

T ≥ 2κ, ΔI_export ≥ 2 

This cost accumulates linearly with repetition. After n cycles: 

T_total ≥ 2nκ, ΔI_export,total ≥ 2n 

Takeaway: There is no such thing as a "free measurement cycle." Resetting reality costs as 

much as reading it. This is why quantum experiments, despite involving tiny quantum systems, 

require significant time and energy budgets—the cost is in the accounting of facts, not the size of 

the systems. 
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9.3 Quantum Error Correction (Why Overhead Explodes) 

For general readers: Quantum computers are incredibly fragile—tiny disturbances cause errors. 

Quantum error correction (QEC) is the technique that allows quantum computers to work despite 

errors, by encoding information redundantly and constantly checking for problems. But this 

checking has a cost that PAF reveals to be fundamental, not merely technical. 

The puzzle: Theoretically, QEC can reduce errors to arbitrarily low levels. In practice, quantum 

computers struggle enormously with error correction overhead. Why is it so hard? PAF provides 

the answer: every error check creates a classical fact, and facts cost irreversible resources. 

Standard QM / QEC theory: Fault tolerance allows arbitrarily low logical error rates via the 

threshold theorem. 

What it hides: The cost of extracting syndromes as classical facts. 

PAF analysis: Consider a stabilizer code with m syndrome bits per correction round. 

Per round: 

• Each syndrome bit is a committed fact: ΔI_fact ≥ m 

• Commitment cost: T ≥ κm 

• Ancilla reset doubles export cost: ΔI_export ≥ 2m 

Scaling: As code distance d increases, syndrome count m grows (typically m ~ n − k for n 

physical qubits encoding k logical qubits). Cumulative irreversible cost therefore scales faster 

than unitary gate count. 

Why this matters: To detect errors, you must measure "syndrome" bits that reveal what errors 

occurred without revealing the protected quantum information. Each syndrome measurement is a 

fact that must be recorded. As you want better protection (larger codes), you need more 

syndrome bits, each carrying its own irreversible cost. The overhead isn't a sign of bad 

engineering—it's the price of creating the classical facts needed to know what errors occurred. 

Takeaway: Fault tolerance overhead is not an engineering artifact—it is the price of repeatedly 

creating classical facts. The threshold theorem guarantees arbitrarily low logical error rates, but 

PAF prices the irreversible resources required to achieve them. This explains why building large-

scale quantum computers is so challenging: the very act of protecting quantum information 

requires creating classical records, and classical records cost irreversibility. 
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9.4 Quantum Metrology (Why Precision Stalls) 

Standard theory: The Heisenberg limit allows phase sensitivity Δθ ~ 1/N for N probe particles, 

beating the standard quantum limit Δθ ~ 1/√N. These bounds derive from the quantum Fisher 

information, which characterizes the information content of a quantum state about the parameter. 

What it ignores: The cost of certifying an estimate as a stable, retrievable fact. The quantum 

Fisher information bounds the precision achievable in principle, but says nothing about the 

irreversible resources required to commit that estimate to a physical record. 

PAF analysis: PAF separates estimation into two stages: 

1. Reversible phase accumulation (unitary, cost-free in principle) 

2. Irreversible commitment of the estimate (costly) 

To resolve θ to precision Δθ requires distinguishing N ≈ 1/Δθ outcome bins. The bound below 

concerns the commitment stage, not the Fisher information. 

PAF bound: 

ΔI_fact ≥ log₂(1/Δθ) 

T ≥ κ · log₂(1/Δθ) 

Even perfect unitary sensitivity (saturating the quantum Fisher information bound) must pay 

irreversible cost at readout. This explains why improvements in raw phase sensitivity do not 

translate linearly into usable metrological advantage: beyond a precision threshold, readout and 

stabilization costs dominate. 

Takeaway: Precision is not only dynamically limited—it is admissibility-limited. This bound 

applies universally, independent of probe state, entanglement structure, or Hamiltonian. 

 

9.5 Hidden Variables with Infinite Precision (Why They Fail) 

Claimed model: A continuous hidden variable (e.g., exact particle position in Bohmian 

mechanics) determines measurement outcomes with infinite precision. 

PAF analysis: The admissibility question is not whether hidden variables can be mathematically 

postulated, but whether they introduce operationally accessible distinguishability beyond 

standard quantum predictions. 

Consider two cases: 
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Case 1: Hidden variables are operationally inaccessible. If the additional variables cannot, even 

in principle, produce distinguishable records beyond Born-rule statistics, they do not violate 

BCB. However, they also do no explanatory work that standard quantum mechanics does not 

already accomplish. 

Case 2: Hidden variables introduce new operational distinguishability. If the hidden variable 

can produce records that distinguish states indistinguishable under standard quantum mechanics, 

then: 

• That distinguishability must be finite (by BCB) 

• Infinite precision would require infinite accessible distinguishability 

• Infinite distinguishability implies infinite ledger cost: T → ∞ 

Conclusion: Such models are admissible under PAF only if the additional variables do not 

introduce new operationally accessible distinguishability beyond the quantum admissibility 

bound. If they require unbounded operational resolution to yield finite differences in observed 

records, they violate BCB. 

Clarification on Bohmian mechanics: Bohmians carefully distinguish ontological precision 

from operational access. The guidance equation may specify particle positions to infinite 

precision, but this precision is never operationally accessible—measurements of Bohmian 

particles yield only Born-rule statistics, with finite precision. Under this reading, Bohmian 

mechanics remains admissible under PAF: the infinite-precision ontology does no operational 

work that would require unbounded ledger cost. PAF neither endorses nor refutes Bohmian 

mechanics; it simply constrains what operational role hidden variables can play. If the hidden 

variables are truly hidden—inaccessible to any measurement—they don't violate BCB. But they 

also cannot explain operational phenomena that standard quantum mechanics cannot. 

Note: The question of what constitutes "operational accessibility" in pilot-wave theories remains 

a subject of active philosophical debate. Some Bohmians argue that position information 

becomes effectively accessible through decoherence and environmental encoding; others 

maintain strict operational inaccessibility. PAF is compatible with either reading, provided the 

chosen interpretation respects finite operational distinguishability. We do not claim PAF settles 

interpretational disputes—it provides constraints that any interpretation must satisfy. 

Takeaway: Infinite precision is not forbidden mathematically—it is forbidden physically 

whenever it has operational consequences. Models may postulate hidden structure, but that 

structure cannot do physical work requiring resources that exceed admissibility limits. 

 

9.6 Summary: What PAF Prices 

Scenario Standard QM Says PAF Adds 

Single 

measurement 

Outcome with probability 

p 
Cost: T ≥ κ, ΔI_export ≥ 1 
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Scenario Standard QM Says PAF Adds 

Measurement + 

reset 
State preparation Total cost doubles per cycle 

Error correction 
Arbitrarily low error 

possible 
Irreversible cost scales with syndrome count 

Metrology 
Heisenberg limit 

achievable 
Readout cost grows as log(1/Δθ) 

Hidden variables Mathematically consistent 
Physically inadmissible if infinite precision 

required 

In each case, PAF does not contradict standard quantum mechanics—it completes it by 

specifying the irreversible cost of making quantum possibilities into physical facts. 

 

10. A Toy Model of Fact Creation and Admissibility Costs 

To make the Physical Admissibility Framework concrete, we present a deliberately minimal toy 

model that captures the core claims of PAF without relying on microscopic detector physics, 

detailed thermodynamics, or specific hardware implementations. The purpose of this model is 

not quantitative prediction but structural demonstration: to show, in the simplest possible setting, 

how finite distinguishability, irreversible commitment, and ledger costs necessarily emerge. 

The toy model implements three ingredients only: 

1. Classical record creation as an irreversible operation 

2. Finite outcome resolution among N hypotheses 

3. A distinction between reversible probability steering and irreversible outcome biasing 

Despite its simplicity, the model reproduces the central scaling claims of PAF. 

10.1 N-Outcome Fact Creation Model 

Consider a physical process whose sole purpose is to produce a stable classical record identifying 

one outcome from a finite set 𝒪 = {1, 2, ..., N}. 

We assume: 

• The record must be stable, copyable, and retrievable (Definition 6.1) 

• The process uses finite resources and operates within a bounded domain 

• The outcome probabilities are given by a distribution {pᵢ}, with Σᵢ pᵢ = 1 



 20 

The committed record is a classical random variable R taking values in 𝒪. The minimum 

information content of this record is its Shannon entropy: 

ΔI_fact = H(R) = −Σᵢ pᵢ log₂ pᵢ 

In the symmetric (worst-case) discrimination task, pᵢ = 1/N, yielding: 

ΔI_fact = log₂ N 

By the Ticks-Per-Bit constraint (TPB), any admissible realization of this process must therefore 

satisfy: 

T ≥ κ log₂ N 

Key point: Even in a single-shot measurement, resolving among N distinct possibilities requires 

commitment resources that scale logarithmically with N. This scaling is purely information-

theoretic and independent of quantum dynamics, detector microphysics, or hardware substrate. 

10.2 Two-Outcome Model and Probability Biasing 

We now specialize to the simplest nontrivial case: a binary outcome R ∈ {0, 1}. 

Let the observed success probability be P = Pr(R = 0). The record entropy is: 

ΔI_fact = H(P) = −P log₂ P − (1−P) log₂(1−P) 

As P → 1, the record entropy H(P) → 0: recording an almost-certain outcome is informationally 

cheap. However, the mechanism by which such bias is achieved matters. 

10.3 Gate Nudges vs Detector Nudges (Toy Implementation) 

To model outcome biasing, we introduce two independent control parameters: 

• Gate (state) bias: modifies the intrinsic probability p via reversible dynamics 

• Detector bias: modifies the commitment rates of outcome channels 

We represent the commitment process as a competing-risk model with effective rates: 

λ₀ = κ₀ · p, λ₁ = κ₁ · (1−p) 

where κ₀, κ₁ > 0 characterize apparatus couplings. 

The resulting outcome probabilities are: 

P(0) = λ₀/(λ₀ + λ₁), P(1) = λ₁/(λ₀ + λ₁) 



 21 

Defining the log-odds Λ(P) ≡ log(P/(1−P)), we obtain the exact factorization: 

Λ(P) = log(p/(1−p)) + log(κ₀/κ₁) ≡ Λ_g + δ 

where: 

• Λ_g is the gate-nudge contribution (reversible) 

• δ = log(κ₀/κ₁) is the detector-nudge contribution (irreversible) 

This decomposition holds for any monotonic first-passage or threshold-crossing commitment 

process; exponential hazards are chosen only for analytic simplicity. 

10.4 Ledger Accounting in the Toy Model 

The ledger costs separate cleanly: 

Gate nudges: 

• Implemented by unitary evolution 

• Do not create records 

• Carry zero ledger cost: (T, ΔI_fact, ΔI_export) = (0, 0, 0) 

Record creation: 

• Regardless of how P is achieved:  

o T ≥ κ · H(P) 

o ΔI_export ≥ H(P) 

• This is the unavoidable cost of committing the outcome as fact 

Detector nudges: 

• To achieve a target P with fixed input state (p = 1/2), the required detector asymmetry is 

δ = log(P/(1−P)) 

• Maintaining δ ≠ 0 corresponds to holding the apparatus in a nonequilibrium asymmetric 

configuration 

• By standard results in stochastic thermodynamics, the minimum control-entropy export 

satisfies:  

o ΔI_ctrl ≥ c|δ| 

o for some apparatus-dependent constant c > 0 

Thus, while H(P) → 0 as P → 1, the control cost diverges logarithmically: |δ| ~ log(1/(1−P)). 

10.5 What the Toy Model Demonstrates 

This minimal construction makes three PAF claims explicit: 
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1. Logarithmic fact cost: Resolving among N possibilities requires Ω(log N) committed 

record bits, and hence Ω(log N) ticks. 

2. Record cost universality: The irreversible cost of recording an outcome depends only on 

the outcome entropy H(P), not on how the probability bias was produced. 

3. Asymmetry is expensive: Biasing outcomes via detector asymmetry requires irreversible 

control resources that scale at least linearly with log-odds |δ|. 

These features arise without invoking quantum dynamics, Hilbert space, or specific detector 

physics. They follow solely from finite distinguishability, irreversible commitment, and the 

existence of stable records. 

10.6 Role of the Toy Model 

This toy model is not intended as a realistic detector simulation. Rather, it serves three purposes: 

1. To instantiate PAF in the simplest possible setting 

2. To demonstrate scaling laws explicitly 

3. To show that PAF's claims do not depend on hidden microscopic assumptions 

More detailed models—incorporating explicit Hamiltonians, noise processes, or device 

architectures—may refine prefactors and identify substrate-specific κ values. They cannot evade 

the structural constraints illustrated here. 

In this sense, the toy model plays the same role for PAF that idealized heat engines play for 

thermodynamics: not realistic, but inescapable. 

 

11. Gate Nudges vs Detector Nudges: Bias–Cost Curves 

For general readers: This section addresses a fundamental question: if you want to bias a 

quantum measurement toward a particular outcome, how should you do it, and what does it cost? 

Imagine you're flipping a coin and want heads to come up more often. You have two strategies: 

1. Bend the coin (analogous to a "gate nudge"): Change the coin itself before flipping, 

making it physically lopsided so it naturally favors heads. In quantum terms, this means 

rotating the quantum state before measurement. 

2. Tilt the table (analogous to a "detector nudge"): Keep the coin fair, but modify the 

landing surface so that even fair flips tend to settle as heads. In quantum terms, this 

means adjusting the measurement apparatus to favor one outcome. 

Standard quantum mechanics treats these as equivalent—both just change probabilities. PAF 

reveals they are fundamentally different: bending the coin is reversible (you can bend it back), 
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while tilting the table requires irreversible effort to maintain. This distinction has profound 

implications for quantum computing, metrology, and our understanding of measurement itself. 

Quantum experiments routinely "nudge" outcomes. In quantum computing, nudging is typically 

performed by applying small unitary gates prior to readout ("gate nudges"). Alternatively, 

measurement apparatus design can bias which outcome becomes a stable fact by changing 

detector couplings and thresholds ("detector nudges"). Standard quantum mechanics treats both 

as implementation details preserving Born statistics, while PAF distinguishes them by where the 

intervention acts: the reversible sector versus the irreversible commitment layer. 

11.1 Two-Outcome Setup 

For general readers: We start with the simplest possible quantum system: a qubit that can be 

measured as either "0" or "1" (like a quantum coin that lands heads or tails). The quantum state 

determines the intrinsic probability of each outcome, but the measurement apparatus determines 

how that probability gets realized as an actual recorded fact. 

Consider a system prepared in state 

|ψ⟩ = α|0⟩ + β|1⟩, p ≡ |α|², 1−p ≡ |β|² 

measured in the {|0⟩, |1⟩} basis. 

Plain English: The qubit is in a superposition—it's "both 0 and 1" until measured. The number p 

(between 0 and 1) is the intrinsic probability of getting outcome 0, determined by the quantum 

state. If p = 0.5, the quantum coin is fair; if p = 0.9, it's heavily biased toward 0. 

In a first-passage / hazard-competition picture (consistent with metastable threshold detection), 

each outcome channel i ∈ {0,1} has an effective commitment rate λᵢ. For concreteness, we model 

commitment as a competing-risk process with exponential hazard rates; the qualitative 

conclusions depend only on monotonic first-passage ordering, not on the specific distribution. 

Any model where higher-rate channels win more often—including Weibull, gamma, or general 

survival processes—yields the same factorization structure; exponential rates simply provide 

clean closed-form expressions. 

Experimental support: Superconducting qubit readout, trapped-ion fluorescence detection, and 

photon counting all exhibit threshold-crossing dynamics consistent with competing first-passage 

processes. The specific distribution details affect quantitative prefactors but not the log-odds 

decomposition central to our analysis. 

The simplest admissible competing-risk model yields: 

P(0) = λ₀/(λ₀ + λ₁), P(1) = λ₁/(λ₀ + λ₁) 

Intuitive explanation: Think of measurement as a race between two possible outcomes. Each 

outcome has a "rate" λ at which it tries to become real. Whichever outcome crosses the finish 
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line first wins and gets recorded. The probability of each outcome equals its rate divided by the 

total rate—faster outcomes win more often. 

Parameterize the rates as: 

λ₀ = κ₀ · p, λ₁ = κ₁ · (1−p) 

What this means: Each outcome's effective rate combines two factors: 

• p or (1−p): The intrinsic quantum probability from the state (what the "coin" wants to 

do) 

• κ₀ or κ₁: The apparatus coupling factor (how responsive the detector is to each outcome) 

If κ₀ = κ₁ (symmetric detector), the measured probabilities equal the Born probabilities. But if κ₀ 

≠ κ₁, the detector itself biases the outcomes. 

Define the bias ratio R ≡ P(0)/P(1) = λ₀/λ₁. Then: 

log R = log(p/(1−p)) + log(κ₀/κ₁) 

This factorization is the key structural result: 

• First term: gate-nudge contribution (state steering)—how much the quantum state 

favors outcome 0 

• Second term: detector-nudge contribution (apparatus steering)—how much the detector 

favors outcome 0 

The crucial insight: These two contributions are additive in log-odds space, but they have 

completely different physical character. Gate nudges operate in the reversible quantum realm; 

detector nudges operate at the irreversible commitment layer. PAF prices these two contributions 

differently. 

Important clarification: In standard quantum mechanics, detector asymmetry (κ₀ ≠ κ₁) 

corresponds to measuring with a different effective POVM or a different coarse-graining of 

outcomes. The model above does not violate Born statistics; it parameterizes how apparatus 

coupling changes the realized outcome distribution by changing the effective measurement 

channel. PAF's point is not that the Born rule fails, but that choosing, implementing, and 

stabilizing a biased measurement channel carries irreversible cost that the Born rule does not 

track. 

11.2 Gate Nudges: Reversible Biasing 

For general readers: A gate nudge is like adjusting the angle of a spinning top before it falls. 

By rotating the quantum state, you change which outcome is more likely—but crucially, you can 

always rotate it back. Nothing irreversible has happened yet. 
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A gate nudge applies a unitary U(θ) before measurement, changing the Born weight p → p(θ). 

For a qubit rotation about a transverse axis: 

p(θ) = cos²(θ/2) 

Example: Start with a fair quantum coin (p = 0.5). Apply a rotation of θ = π/2. Now p(θ) = 

cos²(π/4) = 0.5—still fair. Apply θ = π. Now p(θ) = cos²(π/2) = 0—certain to get outcome 1. The 

rotation is completely reversible; apply -θ and you're back where you started. 

Gate nudges are reversible operations and carry zero ledger cost: 

ΔI_fact = 0, T = 0, ΔI_export = 0 

for the unitary itself. Their cost is engineering (control energy, calibration), not PAF-

fundamental. 

Why zero cost? Because no fact has been created yet. The quantum state has been rotated, but 

it's still in superposition—still "undecided." No alternatives have been discarded. It's like 

repositioning chess pieces before the game starts: you can move them around freely because 

nothing has been committed. 

However, gate nudges cannot eliminate commitment cost. When the outcome is recorded, the 

ledger cost is set by the entropy of the outcome distribution. Let P ≡ P(0). The minimum 

committed information per trial is: 

ΔI_fact ≥ H(P) ≡ −P log₂P − (1−P) log₂(1−P) 

and by TPB: 

T ≥ κ · H(P) 

What H(P) means: H(P) is the Shannon entropy—a measure of "surprise" or "uncertainty" in 

the outcome. If P = 0.5 (fair coin), H = 1 bit: maximum uncertainty, maximum information 

gained by learning the outcome. If P = 0.99 (almost certain), H ≈ 0.08 bits: low uncertainty, little 

information gained. 

Key implication: Gate nudges change P, but the irreversible cost of making the result a fact is 

governed by H(P) regardless of how P was achieved. You can make the quantum coin very 

biased using gate nudges (cheap), but you still have to record the outcome (costly), and 

recording costs at least κ·H(P) ticks. 

11.3 Detector Nudges: Irreversible Biasing 

For general readers: A detector nudge is like weighting a roulette wheel—not by changing the 

ball or the spin, but by modifying the pockets so some outcomes "catch" more easily than others. 
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Unlike gate nudges, this requires maintaining a persistent physical asymmetry in the 

measurement apparatus, which has ongoing costs. 

A detector nudge changes κ₀/κ₁ by modifying apparatus couplings, thresholds, metastability, or 

bandwidth. Define the detector bias parameter: 

δ ≡ log(κ₀/κ₁) 

so that log R = log(p/(1−p)) + δ. 

Example: Suppose your detector is twice as sensitive to outcome 0 as to outcome 1 (κ₀/κ₁ = 2). 

Then δ = log(2) ≈ 0.69. Even with a fair quantum state (p = 0.5), the measured probability 

becomes P(0) = 2/3 instead of 1/2. The detector itself is biasing the results. 

Detector nudges bias outcomes even when the input state is held fixed. They act at the 

commitment layer and require increased irreversibility to maintain bias reliably. PAF captures 

this by assigning additional ledger overhead ΔI_export(nudge) and tick consumption T(nudge). 

Why the extra cost? Maintaining detector asymmetry requires active stabilization. The detector 

must "remember" its bias across trials—this is itself a form of stored information that must be 

preserved against noise, thermal fluctuations, and drift. Holding a system in an asymmetric 

configuration, away from equilibrium, is thermodynamically costly. 

Analogy: Keeping a door propped open requires continuous effort (a doorstop, or someone 

holding it). The symmetric state (door swinging freely) is natural; the asymmetric state (door 

held open) requires maintained intervention. 

PAF prediction: Stronger detector bias requires greater irreversible overhead. 

11.4 Bias–Cost Curve 

For general readers: This subsection derives a universal relationship between how biased you 

want your outcomes and how much it irreversibly costs. The key insight: recording a nearly-

certain outcome is cheap (low surprise), but making an outcome nearly-certain via detector bias 

is expensive (maintaining asymmetry costs resources). 

For target success probability P ∈ (0,1), define log-odds Λ(P) ≡ log(P/(1−P)). From the model: 

Λ(P) = Λ_g + Λ_d 

where Λ_g ≡ log(p/(1−p)) is the gate contribution and Λ_d ≡ δ is the detector contribution. 

Plain English: The total bias (log-odds of success) is the sum of bias from the quantum state and 

bias from the detector. You can reach any target probability P by combining these two sources in 

any proportion. 
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The record entropy is H(P) regardless of how P was achieved, so: 

T_min(P) ≥ κ · H(P) 

With reset doubling for repeated cycles: 

T_cycle(P) ≥ 2κ · H(P) 

The universal record-cost curve: This is perhaps the most important result. No matter how you 

achieved probability P—whether through gate nudges, detector nudges, or any combination—the 

minimum cost to record the outcome is κ·H(P) ticks. This is a floor that no technology can beat. 

As P → 1, outcome entropy H(P) → 0, so recording cost decreases. But achieving P → 1 

requires either: 

• Gate nudges rotating the state close to an eigenstate, or 

• Detector nudges enforcing asymmetry δ ≫ 0, requiring additional irreversible 

stabilization 

The catch: While record cost decreases as outcomes become more certain, the control cost to 

achieve that certainty increases. There's no free lunch. 

11.5 Control-Ledger Extension 

For general readers: To fully account for the cost of biasing outcomes, we need to track not just 

the cost of recording, but the cost of maintaining the bias itself. This subsection introduces a 

"control cost" term that captures this additional overhead. 

To capture the cost of maintaining bias, extend the ledger: 

L(Π) = (T, ΔI_fact, ΔI_export; ΔI_ctrl) 

where ΔI_ctrl measures irreversible resources to maintain bias parameter δ stably (calibration, 

active stabilization, dissipation). 

Theorem 11.1 (Control-Maintenance Cost, scaling form). Consider a biased detector whose 

effective outcome-channel asymmetry is parameterized by δ = log(κ₀/κ₁). Assume the detector is 

maintained in a nonequilibrium steady state against a thermal environment at temperature 

T_bath, with a characteristic relaxation time τ (apparatus-dependent). Then sustaining a nonzero 

|δ| over time requires a nonzero entropy production rate Ṡ_ctrl satisfying a scaling lower bound 

Ṡ_ctrl ≥ c|δ| 

for some c > 0 depending on (T_bath, τ) and detector microphysics. Equivalently, the integrated 

control export over one cycle obeys 
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ΔI_ctrl ≥ c′|δ| 

for an apparatus-dependent constant c′ > 0. 

Proof sketch (stochastic thermodynamics). Model the detector bias as maintaining a stationary 

distribution over two metastable configurations with log-odds δ. The free-energy difference 

associated with enforcing this log-odds against a thermal bath is ΔF ~ k_B T_bath |δ|. 

Maintaining a nonequilibrium steady state with ΔF ≠ 0 requires continuous housekeeping heat 

dissipation (Hatano–Sasa / Seifert framework). For fixed relaxation time τ, the minimum 

housekeeping entropy production rate scales as Ṡ_ctrl ~ ΔF/(T_bath τ) ∝ |δ|/τ, yielding the stated 

linear-in-|δ| scaling with constant c ~ k_B/τ. □ 

What this means: The cost of maintaining detector bias grows at least linearly with the strength 

of the bias. Doubling the bias (in log-odds) at least doubles the control cost. This is a 

fundamental constraint grounded in nonequilibrium thermodynamics, not an engineering 

limitation. 

Combined with record/reset cost: 

T_cycle(P) ≥ 2κH(P) + κc|δ| 

This quantifies the trade-off: 

• Gate-only strategy: Maximize Λ_g by state steering (cheap), leaving δ ≈ 0 

• Detector-assisted strategy: Use δ ≠ 0 to reach target P, paying extra irreversible 

overhead 

Practical implication: This explains why quantum computing emphasizes precise gate control 

rather than detector engineering. Gate nudges are fundamentally cheaper because they operate in 

the reversible domain. Detector nudges seem tempting (just make the detector favor the answer 

you want!) but PAF reveals they carry hidden irreversible costs. 

11.6 Worked Numbers 

For general readers: Let's see what these abstract principles mean in concrete numbers. How 

much detector asymmetry do you need to achieve various success probabilities, starting from a 

fair quantum coin? 

Suppose the input state is unbiased (p = 1/2) and we want target success probability P. Then Λ_g 

= 0 and δ = Λ(P). The required rate asymmetry is: 

κ₀/κ₁ = P/(1−P) 

Target P Rate Asymmetry κ₀/κ₁ Detector Bias δ Record Cost H(P) 

0.50 1 0 1.00 bit 



 29 

Target P Rate Asymmetry κ₀/κ₁ Detector Bias δ Record Cost H(P) 

0.90 9 2.20 0.47 bit 

0.99 99 4.60 0.08 bit 

0.999 999 6.91 0.01 bit 

Figure 2a:  

 

 

Figure 2b: 
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Figure 2(a): Record Cost vs Target Probability 

• The vertical axis shows the minimum record entropy 𝐻(𝑃), which sets the irreducible 

commitment cost 𝑇 ≥ 𝜅𝐻(𝑃). 
• As outcomes become more certain (𝑃 → 1), the information content of the record drops 

rapidly. 

• Recording a near-certain outcome is cheap because little information is learned. 

Interpretation: 

The cost of recording an outcome depends only on its surprise. High certainty means low record 

cost. 

 

Figure 2(b): Detector Asymmetry vs Target Probability 

• The vertical axis shows the required detector asymmetry 𝜅0/𝜅1on a log scale. 

• Achieving modest bias (e.g. 𝑃 = 0.9) already requires order-of-magnitude asymmetry. 

• Pushing toward near determinism (𝑃 → 1) causes the required asymmetry to diverge. 
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Interpretation: 

 

While recording a certain outcome is cheap, forcing that certainty via detector bias is expensive. 

The control effort needed to maintain detector asymmetry grows without bound. 

 

Key takeaway (what the pictures show immediately) 

• Left plot: Record cost 𝐻(𝑃)→ 0 as 𝑃 → 1. 

• Right plot: Detector asymmetry 𝜅0/𝜅1→ ∞ as 𝑃 → 1. 

This visualizes the central PAF message: 

Certainty is cheap to record but expensive to enforce irreversibly. 

Gate nudges achieve high 𝑃in the reversible sector and pay only the left-panel cost. Detector 

nudges pay the right-panel cost as well. 

 

Reading the table: 

• To get 90% success from a fair coin using only detector bias, you need one detector 

channel to be 9× more responsive than the other. 

• To get 99% success, you need 99× asymmetry—an order of magnitude harder. 

• To get 99.9% success, you need 999× asymmetry—another order of magnitude. 

The record cost (H(P)) drops as certainty increases, but the detector bias (δ) grows 

logarithmically. Since control cost scales with |δ|, pushing to ever-higher certainty via detector 

nudges becomes progressively more expensive. 

Contrast with gate nudges: If you instead use gate nudges to achieve P = 0.99, you simply 

rotate the quantum state to p = 0.99. This costs zero ticks (it's reversible). You still pay H(0.99) ≈ 

0.08 bits to record the outcome, but you avoid the δ = 4.60 control overhead entirely. 

11.7 Summary 

PAF clarifies what standard quantum mechanics leaves implicit: 

• Gate nudges change p (Born weights) but do not create facts and do not price 

irreversibility. They're "free" in the PAF sense—like rearranging pieces before the game. 

• Detector nudges change κ (commitment rates), biasing outcome selection at the 

irreversible layer. They require ongoing resources to maintain—like holding a door open. 
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• Probability bias factorizes: log(P/(1−P)) = log(p/(1−p)) + log(κ₀/κ₁). Gate and detector 

contributions add independently. 

• Record cost is unavoidable: ~κH(P) per trial, ~2κH(P) per cycle. This floor exists 

regardless of how P was achieved. 

• Strong detector bias requires irreversible stabilization: captured by ΔI_ctrl ≥ c|δ| 

The bottom line: While reversible control (gate nudges) can steer outcomes efficiently, pushing 

toward near-determinism via irreversible means (detector nudges) encounters hard overheads. 

PAF explains why quantum engineers focus on precise unitary gates rather than trying to "rig" 

detectors: it's not just easier—it's fundamentally cheaper in the currency of irreversibility. 

 

12. Interpretational Admissibility 

For general readers: Physicists have debated for a century what quantum mechanics means—

what it tells us about reality. Different "interpretations" offer different answers: Are there many 

parallel worlds? Are there hidden variables we can't see? Does observation create reality? PAF 

doesn't answer these questions directly, but it constrains what answers are physically possible by 

requiring that any interpretation respect the cost of creating facts. 

PAF functions as a constraint theory that excludes certain interpretations of quantum mechanics 

while remaining neutral among admissible alternatives. 

Inadmissible under PAF: 

• Everettian formulations that posit unlimited, cost-free branch distinguishability 

• Infinite-precision hidden-variable models (e.g., Bohmian mechanics with exact particle 

positions having physical consequences) 

• Classical phase-space realism requiring continuous state resolution 

Why these fail: Each requires either unlimited information capacity (violating BCB) or cost-free 

fact creation (violating TPB). 

Sharpening the Everett critique: PAF distinguishes two versions of many-worlds: 

• Everett with ontologically real branches but operationally costly access — 

ADMISSIBLE. Branches exist, but determining "which branch am I in?" requires a 

physical measurement with ledger cost. Decoherence (Section 8) automatically exports 

the required distinguishability. This version is consistent with PAF. 

• Everett with free operational access to branch information — INADMISSIBLE. If 

observers could freely access branch identity without ledger cost, this would violate TPB. 

The branches would be "facts for free." 
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A committed Everettian might respond: "Decoherence already pays the ledger cost—there's no 

additional branching cost." This is correct, and PAF agrees: the admissible version of Everett is 

one where decoherence is the commitment process, with all its associated costs. What PAF 

excludes is the notion that branching is ontologically "cheap" or that branch counting is 

physically meaningful without operational cost. 

Clarification: PAF is agnostic about ontology; it constrains only the physical cost of accessing 

branch information. Whether branches "really exist" is a question PAF does not address. What 

PAF addresses is whether distinguishing branches—operationally determining "which branch am 

I in?"—can be done for free. It cannot. 

Admissible under PAF: 

• Operational Everett interpretations where branch records require irreversible commitment 

• Relational quantum mechanics with finite observer distinguishability 

• QBist and other epistemic interpretations that treat probabilities as constraints on rational 

agents rather than objective frequencies 

Why these survive: Each can be formulated consistently with finite distinguishability and costly 

fact creation. The branches exist, but distinguishing them requires resources. The hidden 

variables exist, but their precision has physical limits. The probabilities are real, but they 

describe limits on what agents can know given finite resources. 

PAF does not determine interpretation but constrains what any admissible interpretation can 

assume about facts, records, and distinguishability. 

 

13. Experimental Predictions and Testability 

PAF makes specific, testable predictions about how irreversible costs scale with task parameters. 

While the framework does not predict absolute values (which depend on the undetermined 

constant κ), it predicts scaling relationships that can be tested against alternatives. 

13.1 Scaling Predictions 

Theorem 13.1 (κ-independent scaling exponents). Let 𝒞 be any admissible commitment 

architecture with finite κ ∈ (0, ∞). Then the following scaling exponents are universal 

(independent of κ): 

(i) T = Ω(log N) for N-hypothesis discrimination at fixed error; 

(ii) T = Ω(m) for syndrome extraction with m committed bits; 
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(iii) T_ctrl = Ω(|δ|) for maintaining detector log-asymmetry δ. 

The constant κ sets only the multiplicative prefactor. 

Proof. Each bound follows from the corresponding theorem: (i) from Theorem 6.1 applied to 

log₂(N) bits of committed record; (ii) from Theorem 5.1 with ΔI_fact = m; (iii) from Theorem 

11.1. Since each bound has the form T ≥ κ · f(parameters) for some function f independent of κ, 

the scaling exponent of f is universal. □ 

Measurement discrimination: For N-hypothesis discrimination with error probability ε: 

T ≥ κ · [log₂(N) − h(ε)] 

This predicts that minimum measurement time scales logarithmically with hypothesis count. 

Doubling the number of distinguishable states requires one additional tick's worth of 

commitment time, not twice the time. 

Error correction: For stabilizer codes with m syndrome bits per round: 

T_cycle ≥ 2κm 

Overhead scales linearly with syndrome count, not with code block size or with the number of 

correctable errors directly. 

Detector bias maintenance: For detector asymmetry δ = log(κ₀/κ₁): 

ΔI_ctrl ≥ c|δ| 

Maintaining 99% vs 90% success (from a fair state) requires roughly twice the control overhead, 

since δ(0.99) ≈ 2·δ(0.90). 

13.2 Potential Experimental Tests 

Superconducting qubit readout: Modern superconducting qubits achieve single-shot readout in 

~100-500 ns. PAF predicts that readout time cannot be reduced below κ·H(P) for outcome 

probability P. Systematic studies of minimum readout time versus measurement fidelity could 

constrain κ. 

Ion trap detection: Trapped-ion systems achieve near-unit-fidelity readout through fluorescence 

detection. The photon collection time sets a commitment bound. PAF predicts this time scales 

logarithmically with the number of distinguishable states in a multi-level ion. 

Quantum error correction overhead: As experimental QEC improves, PAF predicts that the 

ratio of correction-cycle time to unitary-gate time will grow with code distance, with a specific 

functional form determined by syndrome count. 
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13.3 What Would Falsify PAF? 

PAF would be falsified by: 

• A measurement protocol achieving reliable N-hypothesis discrimination in time sub-

logarithmic in N 

• Error correction with overhead sub-linear in syndrome count 

• A demonstration that detector bias can be maintained at cost sub-linear in log-asymmetry 

• Any process that creates stable classical records without irreversible export 

Concrete thought experiment: Suppose someone builds a "free-fact machine"—a device that 

produces N distinguishable, copyable classical outcomes in constant time T₀ independent of N, 

with no entropy export to the environment. Running this device k times would produce k·log₂(N) 

bits of stable record at cost k·T₀, violating T ≥ κ·ΔI_fact for sufficiently large N. If such a device 

were demonstrated, PAF would be refuted. No such device has ever been constructed or credibly 

proposed. 

These are strong claims. PAF's value lies precisely in making falsifiable predictions that standard 

quantum mechanics does not. 

 

14. Future Directions 

14.1 Emergent Geometry from Ledger Flow 

For general readers: One of physics' deepest mysteries is why space and time have the 

geometric structure described by Einstein's general relativity. PAF suggests a radical possibility: 

spacetime geometry isn't fundamental but emerges from the accounting of irreversible 

processes—the same ledger that tracks fact creation. 

Status: This direction is exploratory and intended to motivate future work rather than claim a 

completed derivation. 

In large composite systems, coarse-grained flows of ΔI_export define effective geometric 

responses. We conjecture that spacetime curvature arises as a statistical bookkeeping of 

irreversible commitment imbalance across regions. 

The intuition: when irreversible processes are spatially distributed, the ledger must track where 

distinguishability is created and where it is exported. Persistent imbalances—regions that 

systematically export more than they commit, or vice versa—manifest as effective geometric 

structure when viewed at scales much larger than individual commitment events. 
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General relativity, in this view, emerges as a hydrodynamic limit of admissibility constraints, not 

a fundamental dynamical law. The detailed derivation of Einstein's equations from ledger flow 

statistics remains an open problem but represents a natural extension of the framework. 

14.2 Interfaces and Holographic Limits 

When bulk distinguishability is suppressed—as in atomic interiors or sub-Planck domains—

irreversible ledger export must occur through boundary-like degrees of freedom. These constitute 

interface regimes: regions where information processing is confined to boundaries rather than 

distributed through volume. 

This explains area-limited information capacity (as in black hole entropy bounds) without 

postulating spacetime microstructure. The holographic scaling S ~ A emerges because 

commitment events are constrained to occur at boundaries when bulk degrees of freedom are 

admissibility-suppressed. 

14.3 Determination of κ 

The constant κ remains undetermined in the present work. This is the paper's most significant 

open question: without κ, PAF makes only ordinal predictions (X costs more than Y) rather than 

cardinal predictions (X costs 3.7 units). However, this is not necessarily a weakness—many 

successful physical theories began as scaling theories before absolute constants were determined 

(thermodynamics before Boltzmann's constant was measured, for instance). 

Possible approaches to constraining κ: 

Experimental measurement: Systematic studies of minimum detection times in well-

characterized quantum systems could constrain κ. For superconducting qubits with ~100-500 ns 

readout times achieving H(P) ≈ 1 bit, one obtains κ ≲ 100-500 ns/bit. More precise bounds 

would require controlled variation of H(P) while measuring minimum achievable readout time. 

Theoretical derivation: If PAF is embedded in a deeper framework, κ might be derivable. One 

candidate approach combines Landauer's principle with quantum speed limits (Margolus-

Levitin): the minimum time to distinguish orthogonal states is τ ≥ πℏ/(2ΔE), while Landauer 

requires energy dissipation W ≥ k_B T ln(2) per bit. Combining these yields a lower bound κ ≥ 

πℏ/(2ΔE) per bit, but this depends on the energy scale ΔE available to the commitment process. 

Substrate dependence: It remains open whether κ is a universal constant (like ℏ or c) or 

substrate-dependent (like thermal relaxation times). The former would suggest κ reflects 

fundamental physics; the latter would suggest it characterizes classes of commitment 

architectures. Current evidence is insufficient to distinguish these possibilities. 

Consistency requirements: Any viable κ must satisfy κ ≥ τ_Landauer for the relevant 

temperature regime, where τ_Landauer is the minimum time to dissipate k_B T ln(2) of heat. 
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14.3.1 A Worked Example: Constraining κ from Published Superconducting-Qubit 

Readout Data 

While PAF is fundamentally a scaling theory, κ can be numerically constrained from published 

experimental readout metrics. The key idea is to relate (i) a reported single-shot assignment error 

in an N-outcome discrimination task to (ii) the minimum number of committed record bits 

required to achieve that error, and then compare this to (iii) the reported readout duration. 

Setup: an operational κ in time units 

PAF's TPB closure inequality states that committing ΔI_fact bits as stable classical record 

requires T ≥ κ · ΔI_fact. Here T is a logical commitment resource (ticks), whereas experiments 

report a physical time τ_r for readout. To connect the two without committing to a microscopic 

detector model, we define an operational (time-valued) effective constant: 

κ_eff ≡ τ_r / ΔI_fact,min 

where ΔI_fact,min is a lower bound on the number of committed bits required to attain the 

reported assignment error. Since τ_r includes all irreversible detection and integration needed to 

produce a stable record, κ_eff provides a conservative upper bound on the physical time required 

per committed bit in that platform: 

κ_phys ≲ κ_eff 

(If additional classical post-processing time not included in τ_r is required for stability, the 

bound tightens further.) 

Information-theoretic lower bound on committed record bits 

Consider an N-class discrimination task with uniform prior over hypotheses and average 

misclassification probability P_e. Fano's inequality gives: 

H(X|Y) ≤ h(P_e) + P_e log₂(N−1) 

so the mutual information satisfies: 

I(X;Y) ≥ log₂(N) − h(P_e) − P_e log₂(N−1) 

In PAF, producing a stable outcome label with error probability P_e requires committing at least 

this many bits: 

ΔI_fact,min ≥ log₂(N) − h(P_e) − P_e log₂(N−1) 

For N = 2, this reduces to ΔI_fact,min ≥ 1 − h(P_e). 

Example dataset: transmon readout at 140 ns 
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Chen et al. [70] report single-shot transmon readout with τ_r = 140 ns and two-state assignment 

fidelity F = 99.5% (and three-state fidelity F = 96.9%) without a quantum-limited amplifier. We 

interpret P_e = 1 − F as the average classification error for the stated discrimination task. 

(i) Two-state discrimination (N = 2) 

Reported: F = 0.995 ⟹ P_e = 0.005, τ_r = 140 ns. 

For N = 2: ΔI_fact,min ≥ 1 − h(0.005) ≈ 0.9546 bits 

Thus: κ_eff = 140 ns / 0.9546 ≈ 1.47 × 10⁻⁷ s/bit ≈ 147 ns/bit 

Interpretation: In this platform and protocol, the experimental record production rate is 

consistent with a bound of order ~10² ns per committed bit (up to constant factors associated 

with the mapping between physical time and the tick resource). 

(ii) Three-state discrimination (N = 3) 

Reported: F = 0.969 ⟹ P_e = 0.031, τ_r = 140 ns. 

Using Fano for N = 3: ΔI_fact,min ≥ log₂(3) − h(0.031) − 0.031·log₂(2) ≈ 1.3546 bits 

Therefore: κ_eff ≈ 140 ns / 1.3546 ≈ 1.03 × 10⁻⁷ s/bit ≈ 103 ns/bit 

Interpretation: The effective time-per-committed-bit is again O(10²) ns/bit for this published 

multi-level discrimination. 

Cross-check: earlier rapid dispersive readout results 

As an independent comparison, Walter et al. [71] report superconducting-qubit dispersive 

readout fidelities of 99.2% in 88 ns (fidelity-optimized) and 98.25% in 48 ns (time-optimized). 

Applying the same N = 2 bound gives ΔI_fact,min = 1 − h(P_e) with P_e ∈ {0.008, 0.0175}, 

yielding κ_eff again on the scale of ~10² ns/bit. 

Scope and caveats (referee-facing clarity): 

• κ vs κ_eff: PAF's κ is defined at the level of admissibility bookkeeping (ticks per 

committed bit). The conversion from ticks to seconds is apparatus-dependent. The 

quantity κ_eff is an operational physical bound ("seconds per committed bit") inferred 

from published readout durations. 

• Uniform prior assumption: If the experimental protocol uses non-uniform priors, log₂(N) 

should be replaced by H(X). The calculation above is conservative for the common 

symmetric benchmarking case. 

• What this demonstrates: Even without a microscopic model of detection, published 

readout time + assignment fidelity suffice to produce quantitative bounds on an 
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operational κ-scale. This shows PAF can be constrained empirically, not merely 

discussed qualitatively. 

14.4 Connection to Quantum Gravity 

PAF's prediction that geometry emerges from ledger flows suggests connections to approaches 

that derive spacetime from entanglement (ER=EPR, tensor networks) or from 

thermodynamic/entropic arguments (Jacobson, Verlinde, Padmanabhan). A systematic 

comparison of these programs is beyond present scope but represents an important direction. 

 

15. The Admissibility–Algebraic Spine 

For general readers: This section reveals something remarkable: the seemingly separate pieces 

of quantum mechanics—states, evolution, measurement, probabilities—are not independent 

ingredients but different views of a single mathematical structure. It's like discovering that 

electricity, magnetism, and light are all aspects of one underlying electromagnetic field. 

This "algebraic spine" is a mathematical framework (C*-algebras) that physicists have known 

about for decades but is not widely taught. PAF fits naturally into this framework as a "resource 

grading"—a way of assigning costs to different operations based on whether they create facts or 

not. 

Why this matters: If quantum mechanics were just a collection of separate postulates, adding 

PAF would seem arbitrary—bolting on an extra rule. But if quantum mechanics is already 

unified in a deeper algebraic structure, then PAF emerges naturally as the accounting system for 

that structure. Reversible operations (automorphisms) have zero cost; irreversible operations (CP 

maps) have nonzero cost. The math was already set up for this distinction—PAF just reads off 

the price tags. 

The preceding sections have treated the formal components of quantum mechanics—Hilbert 

space, Hamiltonian dynamics, probability assignments, and measurement—largely in their 

conventional guises, while introducing an admissibility layer that constrains their physical 

realization. In this section, we show that these elements are not independent structures but 

manifestations of a single underlying mathematical framework: an algebraic theory of states, 

transformations, and irreversible channels equipped with admissibility constraints. 

This formulation is useful because it makes reversible evolution, measurement, and irreversible 

cost different faces of one operational structure: automorphisms versus CP maps, with PAF as a 

resource grading. The framework provides a unifying "spine" from which the Schrödinger 

equation, Hilbert space representation, Hamiltonian generators, Born probabilities, and 

measurement update rules all arise as representational consequences rather than axioms. PAF 

then appears naturally as a resource-theoretic grading on this spine, pricing the irreversible 

creation of facts. 



 40 

15.1 Algebra of Observables as the Primitive Object 

Rather than taking Hilbert space as fundamental, we begin with an abstract algebra of 

observables 𝒜, representing all physically meaningful questions that can be asked of a system. 

Mathematically, 𝒜 is taken to be a C*-algebra (or, in appropriate limits, a von Neumann 

algebra), whose elements encode operationally accessible observables. 

This move shifts the ontology from "states evolving in Hilbert space" to distinguishability 

structure encoded in an algebra. Importantly, the algebra itself does not presuppose probabilities, 

dynamics, or measurement outcomes—it only specifies which distinctions are meaningful in 

principle. 

Finite distinguishability, as required by admissibility, constrains the physically realizable 

subalgebras of 𝒜. Infinite-resolution algebras may exist mathematically, but admissibility 

restricts operational access to finite substructures, consistent with the Bit Conservation Bound. 

15.2 States as Functionals: The Origin of the Born Rule 

In the algebraic framework, a state is defined as a positive, normalized linear functional 

ω : 𝒜 → ℝ 

which assigns expectation values to observables. This definition is purely operational: a state 

encodes all experimentally accessible statistics without reference to an underlying wavefunction. 

Probabilities arise when evaluating the state on effects (positive elements of the algebra 

corresponding to measurement outcomes). The assignment 

p(E) = ω(E) 

is not an additional postulate but the definition of probability in this setting. 

When represented on a Hilbert space (see §15.4), this reduces to the familiar Born rule p(E) = 

Tr(ρE). Thus, the Born rule is not a separate law but the unique way a positive linear functional 

assigns weights to effects. Its uniqueness is enforced by admissibility through operational non-

contextuality and finite distinguishability. 

15.3 Dynamics as Automorphisms: Unitary Evolution Recovered 

Reversible time evolution is represented abstractly as a one-parameter group of automorphisms 

of the algebra, 

αₜ : 𝒜 → 𝒜 

preserving the algebraic structure and all distinguishability relations. 
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Admissibility requires that reversible evolution neither creates nor destroys accessible 

distinguishability; thus, it must act isometrically on the state space. Continuity of αₜ then 

guarantees the existence of a generator. 

When a Hilbert-space representation is chosen, these automorphisms are implemented by unitary 

operators U(t), and Stone's theorem yields a self-adjoint generator H. The Schrödinger equation 

therefore appears as the representational form of algebraic automorphism flow, not as a primitive 

dynamical law. 

In this way, Hilbert space, Hamiltonians, and Schrödinger evolution are unified as consequences 

of a single algebraic dynamical structure constrained by admissibility. 

15.4 Hilbert Space as a Representation, Not a Foundation 

Theorem 15.1 (Gelfand–Naimark–Segal). For any C*-algebra 𝒜 and any state ω : 𝒜 → ℂ, 

there exists a Hilbert space ℋ_ω, a *-representation π_ω : 𝒜 → B(ℋ_ω), and a cyclic vector 

Ω_ω ∈ ℋ_ω such that 

ω(A) = ⟨Ω_ω, π_ω(A) Ω_ω⟩ 

for all A ∈ 𝒜. 

Thus, Hilbert space is not assumed but emerges as a representation of the algebra relative to a 

state. Different states may yield different Hilbert-space representations of the same underlying 

algebra, reinforcing the idea that Hilbert space is a mathematical convenience adapted to 

operational context, not fundamental ontology. 

This perspective aligns naturally with PAF: admissibility constrains which representations are 

physically realizable, while the algebraic spine remains invariant. 

15.5 Measurement and Irreversibility as Completely Positive Maps 

Irreversible processes—including measurement, amplification, readout, and reset—are 

represented in the algebraic framework by completely positive (CP) maps, 

Φ : 𝒜 → 𝒜 

which need not be invertible. CP maps capture exactly the structure required for physical 

irreversibility while remaining compatible with entangled extensions. 

Measurement instruments correspond to families of CP maps indexed by outcomes, and state 

update is simply conditioning of the functional ω on the selected channel. No additional collapse 

postulate is required. 
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Within PAF, these CP maps are precisely the operations that carry ledger cost: they consume 

ticks, convert accessible distinguishability into stable fact, and export competing alternatives to 

inaccessible degrees of freedom. The algebraic framework specifies what transformations are 

allowed; PAF specifies what they cost. 

15.6 The Distinguishability Ledger as a Resource Grading 

Definition (Resource grading on CP maps). A resource grading is a function R : CP(𝒜) → ℝ₊ 

such that: 

(i) R(α) = 0 for any *-automorphism α; 

(ii) R(Φ ∘ Ψ) ≤ R(Φ) + R(Ψ) (subadditivity under composition); 

(iii) R(Φ) > 0 for any Φ that increases stable classical record entropy (fact creation). 

PAF supplies such a grading with R(Φ) = T(Φ) (or equivalently R(Φ) = κ · ΔI_fact(Φ) depending 

on normalization). 

The Distinguishability Ledger introduced earlier, 

L(Π) = (T, ΔI_fact, ΔI_export) 

can now be understood as a vector-valued resource grading on CP maps within the algebraic 

spine: 

• Automorphisms (reversible dynamics) have zero ledger cost: L(α) = (0, 0, 0) 

• CP maps that produce records incur nonzero T and ΔI_export 

• Composition of maps satisfies lax additivity (Section 4) 

This parallels how thermodynamics grades mechanical processes by work and heat without 

altering Newtonian dynamics. PAF similarly grades algebraic quantum processes by 

admissibility cost without modifying their formal structure. 

15.7 A Single Spine, Not Separate Postulates 

From this perspective, the traditional components of quantum mechanics are unified: 

• Hilbert space: a representation of an observable algebra 

• Hamiltonians: generators of algebra automorphisms 

• Schrödinger evolution: representational form of reversible algebraic flow 

• Born rule: evaluation of states on effects 

• Measurement: CP maps with irreversible ledger cost 

All are facets of a single algebraic framework constrained by admissibility. 
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PAF does not introduce new dynamics or probabilities. It completes the theory by specifying 

which algebraic processes are physically admissible and what irreversible resources they 

consume. Quantum mechanics thus appears as the minimal reversible core of a broader 

admissibility-constrained theory of fact production. 

15.8 Conceptual Summary 

The Physical Admissibility Framework does not add a fifth postulate to quantum mechanics. It 

reveals that the familiar postulates already sit inside a larger mathematical structure: an algebraic 

theory of distinguishability, with reversible automorphisms and irreversible CP maps, graded by 

the finite cost of making facts real. 

In this sense, Schrödinger evolution, Hilbert space, Hamiltonians, and the Born rule are not 

separate ingredients to be unified—they are already unified, once one adopts the correct 

mathematical spine and imposes the physical requirement that facts exist and are costly. 

 

16. Conclusions 

For general readers: The Physical Admissibility Framework (PAF) addresses a gap in standard 

quantum mechanics: while QM specifies what states exist and how likely various outcomes are, 

it does not account for the physical cost of making outcomes definite. PAF fills this gap by 

treating fact creation as a resource-consuming process subject to conservation constraints. 

The core insight is simple: facts are not free. Every definite outcome requires irreversible 

physical resources to create. 

PAF accounts for: 

• Why quantum mechanics is unavoidable (it is the minimal dynamics compatible with 

finite distinguishability) 

• Why measurement dominates experimental cost (commitment is irreducibly expensive) 

• Why fault tolerance requires physical overhead (error correction commits information) 

• Why precision has irreversible cost (certification requires commitment) 

• Why geometry emerges only after coarse-graining (spacetime is ledger statistics) 

As shown in Section 15, PAF does not introduce new dynamics or probability rules. The familiar 

postulates of quantum mechanics—Hilbert space, Hamiltonians, the Born rule, and measurement 

update—are already unified within the algebraic spine of C*-algebras, automorphisms, and 

completely positive maps. PAF completes this structure by specifying which processes are 

physically admissible and what irreversible resources they consume. 

Future work should address: (a) experimental tests of scaling predictions (Section 13), (b) 

determination of κ from first principles or experiment (Section 14.3), (c) the emergent geometry 
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program (Section 14.1), and (d) deeper connections to quantum gravity and holography (Section 

14.4). 

PAF provides a unifying admissibility layer for quantum mechanics, thermodynamics, and 

spacetime physics. It does not replace the standard formalism but completes it by specifying 

what that formalism cannot: the cost of making quantum possibilities into physical facts. 

Note: PAF is compatible with and motivated by a broader theoretical program (VERSF) that 

treats finite distinguishability and emergent time as fundamental. The present paper develops 

PAF as an independently motivated constraint framework; connections to the broader program 

will be explored in subsequent work. 

 

Appendix A: Mathematical Formalization 

A.1 Accessible Distinguishability 

Let a physical system be described by a density operator ρ acting on Hilbert space ℋ. Given an 

admissible measurement set 𝓜 (POVMs realizable under finite precision and finite resources), 

define: 

I_acc(ρ) = sup_{M ∈ 𝓜} I(X;Y) 

where I(X;Y) is the classical mutual information between preparation variable X and 

measurement outcome Y. This definition aligns with standard accessible information bounds but 

is explicitly constrained to physically admissible measurement operations. 

A.2 Relation to the Holevo Bound 

For an ensemble {pₓ, ρₓ}, the Holevo quantity χ provides an upper bound: 

I_acc ≤ χ = S(ρ) − Σₓ pₓ S(ρₓ) 

where S(ρ) = −Tr(ρ log₂ ρ) is the von Neumann entropy. 

PAF does not modify the Holevo bound; instead, it constrains the physical realization of χ. Even 

when χ is large, committing this information as stable fact requires irreversible ledger cost. Thus 

χ bounds what may be extracted, while PAF bounds what may be made real. 

This distinction explains why the Holevo bound is not always saturable in practice: achieving it 

requires measurement protocols whose commitment cost may exceed available resources. 
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A.3 Commitment Channels 

A commitment operation is modeled as a CPTP map: 

𝓒(ρ) = Σᵧ Tr(Eᵧ ρ) · |y⟩⟨y| ⊗ ρᵧ 

where: 

• {|y⟩} are orthogonal stable record states (the classical outcomes) 

• {Eᵧ} forms a POVM (the measurement operators) 

• ρᵧ = (√Eᵧ ρ √Eᵧ) / Tr(Eᵧ ρ) is the post-measurement state of the system conditional on 

outcome y (for projective measurements, ρᵧ = Eᵧ ρ Eᵧ / Tr(Eᵧ ρ)) 

Such channels are necessarily non-unitary and involve irreversible discard of alternative 

branches. The tensor product structure explicitly separates the classical record (left factor) from 

the updated quantum state (right factor). 

PAF asserts that any such channel incurs tick cost and entropy export proportional to the 

classical entropy of outcomes: 

T ≥ κ · H(Y) ΔI_export ≥ H(Y) 

where H(Y) = −Σᵧ p(y) log₂ p(y) is the Shannon entropy of the outcome distribution. 

A.4 Commitment Depth and TPB Bound 

Define the commitment depth D_C(Π) of a process Π as the minimum number of non-unitary 

commitment channels required to implement Π. By Theorem 5.1, for any process producing 

ΔI_fact bits of stable classical record: 

D_C(Π) ≥ ΔI_fact / I_max 

where I_max is the per-commitment record capacity. If I_max = 1/κ bits per commitment, then 

D_C(Π) ≥ κ · ΔI_fact. 

This establishes the Ticks-Per-Bit constraint as a depth lower bound analogous to circuit depth in 

computational complexity. The bound is tight: there exist protocols achieving D_C = Θ(ΔI_fact). 

A.5 Ledger Closure Inequalities 

For any admissible process Π, the distinguishability ledger L(Π) = (T, ΔI_fact, ΔI_export) 

satisfies: 

T ≥ κ · ΔI_fact ΔI_export ≥ max(0, ΔI_fact − ΔI_recovered) 



 46 

These inequalities encode the Bit Conservation Bound and ensure that irreversible fact creation 

cannot occur without compensating export of distinguishability. The quantity ΔI_recovered 

represents information that returns to accessible form (e.g., through environmental feedback or 

error correction), which is typically negligible for well-isolated records. The max ensures 

ΔI_export remains non-negative. 

A.6 Decoherence as Information Export 

Consider a system-environment interaction U_SE producing decoherence in pointer basis {|i⟩}: 

U_SE : |i⟩_S ⊗ |0⟩_E → |i⟩_S ⊗ |eᵢ⟩_E 

For an initial superposition |ψ⟩ = Σᵢ cᵢ|i⟩, the reduced system state becomes diagonal: 

ρ_S = Tr_E(U_SE |ψ⟩⟨ψ| U_SE†) → Σᵢ |cᵢ|² |i⟩⟨i| 

The mutual information I(S:E) between system and environment provides a lower bound on 

ΔI_export, making decoherence an explicit ledger transfer rather than information destruction. 

A.7 Relation to Thermodynamic Cost 

By Landauer's principle, erasure of information requires minimum work: 

W ≥ k_B T ln(2) · ΔI_export 

PAF thus links admissibility directly to thermodynamic cost. Time (ticks), entropy (export), and 

energy (work) expenditures are unified consequences of irreversible commitment. Landauer's 

principle emerges as a thermodynamic corollary of the more fundamental admissibility 

constraints. 

A.8 Summary 

This appendix formalizes the mathematical backbone of the Physical Admissibility Framework. 

Standard quantum information quantities (mutual information, Holevo bound, CPTP maps) are 

retained but embedded within an admissibility layer that enforces finite distinguishability, 

irreversible commitment, and ledger-based conservation. PAF therefore extends, rather than 

replaces, the mathematical structure of quantum mechanics. 

 

Appendix B: Frequently Asked Questions 

Q1: Is PAF just Landauer's principle restated? 
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No. Landauer's principle prices the erasure of information in thermodynamic systems. PAF is 

more general: it constrains the creation of physical facts themselves, independent of temperature, 

substrate, or specific thermodynamic models. Landauer's principle is a corollary of PAF applied 

to erasure operations, not its foundation. 

Q2: Does PAF contradict standard quantum mechanics? 

No. PAF leaves Hilbert space, Hamiltonian dynamics, and the Born rule intact. It adds an 

admissibility layer that governs irreversibility and cost—structure that standard QM deliberately 

abstracts away. PAF is to quantum dynamics as thermodynamics is to Newtonian mechanics: a 

constraint theory operating at a different level. 

Q3: Does PAF rule out Many-Worlds? 

PAF rules out Everettian formulations that assume unlimited distinguishability and cost-free 

branching. Operational Everett-style views remain admissible provided that facts, records, and 

observer experiences require irreversible commitment. The question "which branch am I in?" 

must be answered by a physical process with ledger cost. 

Q4: Is PAF just an interpretation of quantum mechanics? 

No. PAF is a constraint theory, not an interpretation. It specifies what is physically possible or 

impossible regardless of one's preferred interpretation, much like no-cloning or Bell inequalities. 

Different interpretations may remain viable under PAF, but all must respect admissibility 

constraints. 

Q5: Does PAF require new physics or modifications to experiments? 

No. PAF explains why existing experiments behave as they do and predicts scaling limits and 

overheads already observed in quantum engineering, fault tolerance, and metrology. It provides 

principled explanations for costs that are currently treated as engineering challenges. 

Q6: Why introduce "ticks" rather than continuous time? 

Ticks represent irreducible commitment events, not microscopic time steps. They formalize the 

empirical fact that irreversible operations cannot be arbitrarily subdivided or parallelized without 

cost. The tick count T is a logical resource measure, not a physical clock reading. 

Q7: What is the value of κ? 

The constant κ governs the conversion between commitment events and committed bits. Its value 

may be unity in appropriately chosen units, or it may depend on physical substrate. Determining 

κ from first principles—or demonstrating its universality—remains an open problem. 

Experimental bounds may be obtainable from precision measurements of minimum detection 

times. 
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Q8: How does PAF relate to holographic bounds? 

PAF provides a mechanism for holographic entropy bounds. When bulk distinguishability is 

suppressed (void-regulated regimes), commitment events are confined to boundary degrees of 

freedom, yielding S ~ A scaling without postulating fundamental discreteness of spacetime. 

 

Figure 1: Layered Structure of Physical Law 

┌─────────────────────────────────────────────────────────────────┐ 

│                  EMERGENT CLASSICAL REALITY                     │ 

│         Stable records, thermodynamics, spacetime geometry      │ 

│                    (coarse-grained ledger flows)                │ 

└─────────────────────────────────────────────────────────────────┘ 

                              ▲ 

                              │ accumulated commitment 

                              │ 

┌─────────────────────────────────────────────────────────────────┐ 

│              PHYSICAL ADMISSIBILITY FRAMEWORK (PAF)             │ 

│                                                                 │ 

│   ┌─────────────────────┐    ┌─────────────────────┐            │ 

│   │ Bit Conservation    │    │ Ticks-Per-Bit       │            │ 

│   │ Bound (BCB)         │    │ Constraint (TPB)    │            │ 

│   │                     │    │                     │            │ 

│   │ Distinguishability  │    │ Facts require       │            │ 

│   │ is finite and       │    │ irreversible        │            │ 

│   │ conserved           │    │ commitment          │            │ 

│   └─────────────────────┘    └─────────────────────┘            │ 

│                                                                 │ 

│   Distinguishability Ledger: L(Π) = (T, ΔI_fact, ΔI_export)     │ 

│   Resource grading on CP maps within the algebraic spine        │ 

└─────────────────────────────────────────────────────────────────┘ 

                              ▲ 

                              │ constrains 

                              │ 

┌─────────────────────────────────────────────────────────────────┐ 

│                 ALGEBRAIC SPINE (C*-ALGEBRA)                    │ 

│                                                                 │ 

│   Observable Algebra 𝒜    Automorphisms αₜ    CP Maps Φ         │ 
│   (distinguishability)    (reversible)        (irreversible)    │ 

│                                                                 │ 

│            ↓ GNS construction ↓                                 │ 

│                                                                 │ 

│   ┌─────────────────────────────────────────────────────────┐   │ 

│   │              QUANTUM MECHANICS (Representation)         │   │ 

│   │                                                         │   │ 

│   │   Hilbert Space ℋ    Unitaries U(t)    Born Rule        │   │ 

│   │   (from GNS)         (from Stone)      p = Tr(ρE)       │   │ 

│   └─────────────────────────────────────────────────────────┘   │ 

└─────────────────────────────────────────────────────────────────┘ 

                              ▲ 

                              │ emerges from 

                              │ 



 49 

┌─────────────────────────────────────────────────────────────────┐ 

│            FINITE DISTINGUISHABILITY FOUNDATION                 │ 

│                                                                 │ 

│      Admissibility-limited information capacity per region      │ 

│            (holographic bounds, area-law constraints)           │ 

└─────────────────────────────────────────────────────────────────┘ 

Caption: The layered architecture of physical law proposed by PAF. The foundation (bottom) is 

finite distinguishability—the requirement that any bounded region supports only finite accessible 

information, consistent with holographic bounds. The algebraic spine—a C*-algebra of 

observables with automorphisms and CP maps—provides the mathematical foundation; standard 

quantum mechanics (Hilbert space, unitaries, Born rule) emerges via GNS construction as a 

representation of this algebra. The Physical Admissibility Framework (PAF layer) constrains 

irreversible commitment through BCB and TPB, with the Distinguishability Ledger grading CP 

maps by their irreversible cost. Classical reality, thermodynamics, and spacetime geometry (top) 

emerge from accumulated ledger flows at macroscopic scales. 

 

Appendix C: Comparison with Standard Frameworks 

Framework What It Describes 
What It Cannot 

Address 
What PAF Adds 

Hilbert Space 
Which states are 

allowed 

Cost of state realization; 

irreversibility 

Admissibility limits on 

realizable 

distinguishability 

Hamiltonian 

Dynamics 

Reversible time 

evolution 

Irreversible fact creation; 

measurement cost 

Separation of unitary 

evolution from 

commitment 

Born Rule 
Outcome 

probabilities 

Physical cost of making 

outcomes real 

Lower bounds on fact 

creation and readout 

Quantum 

Information Theory 

Information 

processing limits 

Irreversible time and 

entropy cost 

Ledger-based accounting 

of commitment and export 

Thermodynamics 
Equilibrium and 

entropy 

Why measurement is 

thermodynamically 

special 

Fact creation as primitive 

irreversible process 

Algebraic QM (C-

algebras)* 

Unified 

mathematical 

structure 

Physical realizability; 

resource costs 

Admissibility grading on 

CP maps 

PAF 

What is physically 

possible and 

affordable 

— 

Prices facts, enforces no-

go constraints, explains 

scaling limits 
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Appendix D: A Heuristic Lower Bound on κ from 

Landauer + Margolus–Levitin 

D.1 Motivation 

In Section 14.3 we note that κ may be constrained by combining (i) thermodynamic 

irreversibility (Landauer) and (ii) quantum speed limits (Margolus–Levitin). This appendix 

makes that connection explicit. The resulting bound is not claimed as a strict theorem of PAF 

(because mapping “ticks” to physical time is architecture-dependent), but it is instructive: it 

shows that any device that commits stable classical facts in a thermal environment faces a joint 

energy–time constraint. 

D.2 Ingredients 

D.2.1 Landauer cost per committed bit (thermodynamic lower bound) 

Landauer’s principle states that erasing one bit of information in contact with a heat bath at 

temperature 𝑇bathrequires dissipating at least 

𝑊L   ≥   𝑘𝐵𝑇bathln⁡ 2. 

 

PAF treats record creation as requiring irreversible export Δ𝐼export, and in steady operation 

record creation is typically paired with reset/erasure. Thus, even if one wishes to interpret 

Landauer strictly as an erasure bound, a repeated measurement–reset cycle implies a per-bit 

dissipation floor of order 𝑘𝐵𝑇ln⁡ 2per committed bit per reset cycle. 

Operational assumption A (Landauer-limited commitment energy). 

For a sustained fact-producing device operating in a bath at temperature 𝑇bath, the irreversible 

commitment pipeline (record creation + stabilization + eventual reset) must dissipate at least 

𝐸diss/bit   ≳   𝑘𝐵𝑇bathln⁡ 2 

 

per reliably committed bit of stable record. 

(If the device is not Landauer-limited, then 𝐸diss/bitis larger and the bounds below strengthen.) 

D.2.2 Margolus–Levitin quantum speed limit (time–energy lower bound) 

The Margolus–Levitin bound states that the minimum time 𝜏required for a quantum system to 

evolve from a state to an orthogonal state is bounded by 
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𝜏   ≥   
𝜋ℏ

2𝐸
, 

 

where 𝐸is the system’s average energy above its ground state during the evolution. 

A stable classical record bit requires distinguishability between at least two reliably separable 

macrostates (e.g., pointer states) which must be physically discriminable. At minimum, 

producing one classical bit corresponds to implementing a transformation that separates two 

alternatives into (effectively) orthogonal record states. 

Operational assumption B (orthogonalization per committed bit). 

Each committed bit corresponds to at least one effective orthogonalization event in the 

record+apparatus degrees of freedom (one “commitment transition” between distinguishable 

record states). This is the minimal operational content of “a tick commits a distinguishable 

alternative.” 

D.3 Combined bound: a time-per-bit lower limit 

Assume a commitment event dissipates energy 𝐸diss/bitinto the bath and that the commitment 

dynamics have access to an energy scale 𝐸of the same order (since maintaining a nonequilibrium 

record transition requires energy throughput). 

Taking 𝐸 ∼ 𝐸diss/bitas a conservative identification, the Margolus–Levitin bound yields 

𝜏bit   ≳   
𝜋ℏ

2𝐸diss/bit
. 

 

Using Assumption A, 

𝜏bit   ≳   
𝜋ℏ

2𝑘𝐵𝑇bathln⁡ 2
. 

 

This provides a heuristic lower bound on a physical “seconds-per-committed-bit” κ-scale: 

𝜅phys(𝑇bath)   ≳   
𝜋ℏ

2𝑘𝐵𝑇bathln⁡ 2
(Landauer + Margolus–Levitin). 

 



 52 

D.4 Numerical illustration 

Define 

𝜅ML+L(𝑇) ≡
𝜋ℏ

2𝑘𝐵𝑇ln⁡ 2
. 

 

• Room temperature (𝑇 = 300 K) 

𝑘𝐵𝑇ln⁡2 ≈ 2.9 × 10−21 J, 𝜅ML+L ≈ 5.8 × 10−14 s  (∼ 60 fs/bit). 

 

• Cryogenic dilution refrigerator (𝑇 = 10 mK) 

𝑘𝐵𝑇ln⁡ 2 ≈ 9.6 × 10−26 J, 𝜅ML+L ≈ 1.7 × 10−9 s  (∼ 1.7 ns/bit). 

 

The cryogenic value is strikingly close to the 𝒪(102 ns/bit)operational κ-scale extracted from 

published superconducting readout data in §14.3.1, given that real devices are not Landauer-

limited and contain additional integration and thresholding overhead. 

D.5 Interpretation and scope (what this does and does not prove) 

1. Not a strict theorem of PAF. 

PAF’s κ is defined as a conversion between logical commitment resources and committed 

record bits. Mapping ticks to seconds depends on architecture. The derivation above 

supplies a physically motivated lower bound on a seconds-per-bit scale in thermal 

environments, not a universal κ in the abstract ledger sense. 

2. Why it is still instructive. 

The bound demonstrates a general principle: fact creation cannot be arbitrarily fast at 

fixed energy throughput, and any fact-producing apparatus that dissipates at least 

𝑘𝐵𝑇ln⁡ 2per bit inherits a corresponding time floor from quantum speed limits. 

3. How the bound strengthens. 

If an implementation dissipates 𝐸diss/bit ≫ 𝑘𝐵𝑇ln⁡ 2, then 

𝜏bit ≳
𝜋ℏ

2𝐸diss/bit
 

 

can be substantially smaller than the Landauer-based estimate. Conversely, if the relevant 

speed limit is set by a smaller effective energy above ground (or by a variance-based 
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limit), the time-per-bit floor can be larger. In either case, the central message remains: 

the measurement interface is constrained by coupled energy–time–irreversibility bounds. 

4. Relation to PAF’s TPB. 

TPB asserts that stable record creation requires irreducible commitment events; the 

present derivation suggests that when such events are implemented physically in thermal 

environments, they naturally inherit a minimal timescale determined jointly by 

dissipation constraints and quantum speed limits. 
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