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For the General Reader 

Physics depends on a handful of fundamental constants — numbers like the speed of light, the 

strength of gravity, and the fine structure constant that governs how light interacts with matter. 

For over a century, these constants have been treated as separate, unexplained inputs: we 

measure them, plug them into our equations, and move on. Nobody knows why they have the 

values they do, or whether those values are connected to each other. 

This paper argues that they are connected — tightly. The central idea is that the universe must be 

geometrically self-consistent. Imagine tiling the entire observable universe with the smallest 

possible units of area (each roughly 10⁻⁷⁰ square metres, known as the Planck area). There are 

approximately 10¹²² such tiles. Each tile contributes a tiny amount of geometric "twist" — a 

phase rotation governed by the fine structure constant α. For the universe to close properly — for 

all those tiny local twists to add up to a coherent whole — the constants cannot take arbitrary 

values. They are locked together by a single equation. 

The paper derives that equation, shows what it predicts numerically, and identifies how it can be 

tested. If correct, it means the fundamental constants are not free parameters. They are 

consequences of the universe being geometrically possible at all. 

A note on "geometric closure": when we say the universe is "closed," we do not necessarily 

mean it curves back on itself like the surface of a sphere (though that is one possibility). We 

mean something more general — that the total geometry is internally consistent, that local 

structure and global structure are compatible, and that the mathematical description of the 

universe does not leave loose ends. Think of it like a jigsaw puzzle: every piece must fit with its 

neighbours, and the completed puzzle must form a coherent picture with no gaps and no 

overlaps. The closure condition in this paper is the mathematical statement of that requirement, 

applied to the geometry of spacetime itself. 

Another way to think about it — perhaps more intuitive for a modern audience — is as a 

software programme. The closure condition is the compiler check: it tests whether a given set of 

constants produces a valid, executable universe. If the check fails, the programme does not run 

— there is no universe. The constants themselves are like dependencies in the code: they must all 

resolve against each other, and you cannot swap one out without breaking the build. The winding 

number χ — the large integer the paper predicts — functions as a checksum: a single integrity 

test that validates the whole structure. And the timeless geometric condition itself is the source 
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code — static, complete, and non-temporal. What we experience as time, change, and physical 

evolution is the runtime: what it looks like from inside the execution. 

 

So What? 

Physics currently treats its fundamental constants — the speed of light, the strength of gravity, 

the fine structure constant, the cosmological constant — as independent, unexplained inputs. 

They are measured with extraordinary precision but fed into the equations by hand, with no 

account of whether they are mutually compatible. Worse, when we try to calculate some of them 

from first principles — particularly the cosmological constant — the answers are wrong by 120 

orders of magnitude. This is not a small discrepancy. It is the worst prediction in the history of 

science. 

The standard response has been to treat these constants as arbitrary: perhaps they vary across a 

vast multiverse, and we observe these particular values because they happen to permit our 

existence. This is the anthropic argument. It may be correct, but it explains nothing. It replaces 

"why these values?" with "why not?" and calls that progress. 

The broader VERSF programme has developed independent structural derivations and 

constraints for α, Λ, c, and G individually. But deriving each constant separately is not enough. 

A set of individually valid constants could still be globally inconsistent — they could fail to fit 

together within a single coherent geometry, in the same way that individually well-made jigsaw 

pieces might not belong to the same puzzle. 

This paper addresses that gap. It establishes a geometric admissibility condition: a single 

equation that the constants must jointly satisfy if they are to coexist within a closed, self-

consistent spacetime. The equation produces a specific, falsifiable number — a topological 

winding number of approximately 10¹²⁰ that must be an exact integer. That number can be 

checked against improving cosmological measurements. If it converges toward an integer, 

geometric closure is real and the constants are not merely individually constrained but 

collectively locked. If it does not, the framework is wrong — even if the individual derivations 

remain internally valid. 

The stakes are straightforward. If the admissibility condition holds, physics is not modular. 

Gravity, electromagnetism, quantum mechanics, and cosmology are not separate sectors that 

happen to coexist in the same universe — they are structurally entangled. You cannot alter one 

constant without breaking all of them. The universe is not assembled from independent parts; it 

is a single geometric object whose local and global properties must be mutually consistent. That 

is a fundamentally different picture from the one modern physics operates with, where each force 

and each constant belongs to its own theoretical silo and the question of their mutual 

compatibility is never formally asked. 

The deeper consequence is that if mutual consistency fully determines the constants, the universe 

is not contingent. It is not one configuration selected from a landscape of possibilities. It is the 
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only configuration that closes. The values of the constants are not chosen, tuned, or anthropically 

filtered — they are geometrically necessary. This removes the need for a multiverse, for 

selection effects, and for any external principle that picks "this universe" over other possible 

ones. If closure plus the independent derivations fully fix the constants, there may be no other 

geometrically admissible configurations within this framework. 

This paper establishes mutual constraint (admissibility), not uniqueness; demonstrating 

uniqueness would require deriving α and Λ within the same closure system with no remaining 

discrete freedom. What follows here is the admissibility condition and its consequences. 

In plain terms: the universe is not a lucky accident. It is not one roll of the dice among countless 

others that happened to come up right for stars, chemistry, and life. It is the only way the 

geometry works. Everything that exists — every atom, every force, every scale from the 

subatomic to the cosmological — is locked in place by a single requirement: that the whole thing 

fits together. If this is correct, the question "why is there something rather than nothing?" gets a 

surprisingly concrete answer: because nothing else was geometrically possible. 

And that includes you. If the constants could not have been otherwise, then stars were inevitable, 

chemistry was inevitable, and the conditions for life were not a coincidence to be explained away 

— they were built into the only geometry that works. If closure strongly constrains admissible 

constants, then life-permitting structure may be far less contingent than standard anthropic 

framing suggests. 

A note on what this does and does not imply. The picture described here — a universe where 

nothing is arbitrary, where every part fits every other part, where the whole structure is 

determined by a single self-consistency requirement — has every characteristic we normally 

associate with design: coherence, necessity, parsimony, and the absence of free parameters. It is 

worth being honest about that resemblance. But the mechanism is not an external designer. It is 

internal geometric necessity. The universe does not look designed by something; it looks the way 

it does because no other configuration was geometrically possible. The coherence is self-

imposed. Whether one finds that more or less remarkable than an external design is a 

philosophical question this paper does not attempt to answer — but it would be dishonest not to 

acknowledge that the question arises. 

Once that question is asked — and answered with a specific equation — the consequences 

follow. The cosmological constant problem — the 120-order-of-magnitude embarrassment — is 

not a problem at all. It is a category error: the result of treating a geometric boundary condition 

as if it were a vacuum energy. On this interpretation, Λ does not correspond to a substance-like 

dark energy component. The constants are not arbitrary. No multiverse is required by this 

framework to explain the constants' mutual consistency. And the familiar cosmological hierarchy 

— the vast ratio between the smallest and largest scales in physics — is revealed not as a fine-

tuning coincidence but as a topological invariant: the winding number of a geometrically closed 

universe. 
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Abstract 

We present a geometric consistency relation linking the fine structure constant (α), the 

gravitational constant (G), the cosmological constant (Λ), the speed of light (c), and the reduced 

Planck constant (ℏ). These constants are shown to be jointly constrained by a single, timeless 

closure condition: the requirement that local U(1) gauge holonomy and global geometric closure 

are mutually compatible across the full tiling of cosmological-scale spacetime by Planck-area 

cells. Time is not treated as a fundamental dimension. All relations are formulated in purely 

geometric and topological terms, with apparent temporal evolution understood as an emergent 

ordering of irreversible geometric commitments rather than as a primitive coordinate. 

The closure condition identifies the topological winding number χ — a first Chern number — as 

the bridge between local gauge structure and global geometry. The form of the equation and the 

integrality of χ are derived from the Chern-Weil integrality theorem applied to the geometric 

U(1) bundle, with homogeneity following from de Sitter maximal symmetry. Under the leading-

order holonomy function θ(α) = 2πα — derived from gauge invariance, analyticity, and the 

absence of additional cell-scale structure — the framework yields a specific numerical 
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prediction: χ ≈ 9.52 × 10¹²⁰, an integer whose exact value is constrained by improving 

cosmological constraints on Λ and the associated horizon-scale inference. The framework is 

falsifiable, predicts correlated variation of constants, and connects directly to de Sitter horizon 

entropy. 

 

Scope and Claims 

What is derived in this paper: 

• The geometric closure condition N_Σ · θ(α) = 2πχ from the Chern-Weil integrality 

theorem, via discretisation of the U(1) flux integral over the closure surface 

• The integrality of χ as a mathematical theorem (not a physical assumption) 

• The homogeneity of per-cell holonomy from de Sitter maximal symmetry 

• The leading-order holonomy function θ(α) = 2πα from gauge invariance, analyticity, and 

geometric parsimony 

• The bridge hypothesis connecting geometric phase bookkeeping to the electromagnetic 

coupling 

• The numerical prediction χ ≈ 9.52 × 10¹²⁰ and the correlated variation constraint on 

constants 

• The RG scheme-invariance test as a probe of the closure condition itself 

• The Casimir-weighted non-abelian extension (exploratory, Appendix A) 

What is assumed: 

• The existence of a geometric U(1) bundle over the closure surface (VERSF substrate 

postulate) 

• The coupling identification θ = 2πα (argued in Section 3, not derived from first 

principles) 

• The geometric identification N = N_Σ = 4πN_Λ (Planck-area cells on the de Sitter 

horizon sphere) 

What is not claimed: 

• Derivation of the numerical values of α, G, Λ, c, or ℏ (these exist elsewhere in the 

VERSF programme) 

• A non-abelian topological theorem (the extension is exploratory) 

• An alternative cosmological model (this is a consistency test, not a replacement for 

ΛCDM phenomenology) 

• A complete microscopic derivation of the geometric U(1) bundle (a roadmap is provided) 
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1. Dimensionless Structure and the Role of ℏ 

Any fundamental relationship between constants must be expressible in dimensionless form. Of 

the constants considered, α ≈ 1/137.036 is already dimensionless. The remaining constants G, Λ, 

and c cannot form a dimensionless combination among themselves: direct dimensional analysis 

in SI units shows that no product of powers of G (L³ M⁻¹ T⁻²), Λ (L⁻²), and c (L T⁻¹) eliminates 

both mass and length dimensions simultaneously. The minimal additional constant required is ℏ 

(L² M T⁻¹), which enters through the Planck length: 

ℓ_P² = ℏG / c³ 

The combination Λ ℓ_P² is dimensionless, and the quantity N_Λ = 3/(Λ ℓ_P²) is therefore a pure 

number. The closure condition presented here constrains five constants — α, G, Λ, c, and ℏ — 

not four. 

 

2. Cosmological Closure Scale 

The cosmological constant defines a global curvature scale: 

r_Λ = √(3 / Λ) 

This scale characterises global geometric closure — the scale at which the universe's geometry 

closes upon itself — rather than evolution in time. Combining this with the Planck area, we 

define a purely geometric, dimensionless quantity: 

N_Λ = 3 / (Λ ℓ_P²) 

N_Λ represents the ratio of the cosmological closure scale to the Planck area. The physical cell 

count on the de Sitter horizon 2-sphere (area A_Σ = 4πr_Λ²) is: 

N_Σ ≡ A_Σ / ℓ_P² = 4πr_Λ² / ℓ_P² = 12π / (Λ ℓ_P²) = 4π N_Λ 

N_Σ is the total number of Planck-area cells tiling the closure surface — the global, timeless 

geometric invariant that enters the Chern-Weil derivation of the closure condition (Section 4). 

2.1 Relation to de Sitter Horizon Entropy 

The quantity N_Λ is directly related to the entropy of the de Sitter horizon. The Bekenstein-

Hawking entropy of the cosmological horizon is: 

S_dS = A / (4ℓ_P²) = 4πr_Λ² / (4ℓ_P²) = π · 3 / (Λ ℓ_P²) 

and therefore: 
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N_Λ = S_dS / π 

and therefore: 

N_Σ = 4π N_Λ = 4 S_dS 

The closure condition therefore relates global horizon entropy to total gauge holonomy. The 

quantity S_dS ≈ 3.3 × 10¹²² is itself well established in the de Sitter entropy literature; the cell 

count N_Σ = 4S_dS is not a new number. What is new is the interpretation: the proposal that this 

count of Planck-area cells participates in a topological closure condition linking it to gauge 

holonomy. The familiar cosmological hierarchy (~10¹²⁰) appears not as a fine-tuning problem but 

as the entropy-scaled topological charge required for closure. This anchors the framework in 

established gravitational thermodynamics. 

 

3. The Fine Structure Constant as U(1) Gauge Holonomy 

The fine structure constant admits a direct geometric interpretation through gauge holonomy. In 

U(1) gauge theory, the physically meaningful object associated with a closed loop is the Wilson 

loop holonomy: 

W(C) = exp(i (q/ℏ) ∮_C A_μ dx^μ) 

where the physically meaningful quantity is the accumulated phase around a closed loop. The 

fundamental phase quantum is 2π; all gauge-invariant holonomies are defined modulo this value. 

The fine structure constant, 

α = e² / (4πε₀ ℏc) 

is precisely the dimensionless quantity that sets the scale of phase accumulation per elementary 

electromagnetic interaction. It is therefore natural to interpret α as the fundamental phase 

strength — the holonomy per elementary interaction loop. 

To eliminate the free-function ambiguity, we define θ operationally as the U(1) Wilson-loop 

phase on an elementary cell loop: W(C) = exp(iθ) with θ = (q/ℏ) ∮ A · dx. For weak coupling, 

gauge invariance and analyticity at α = 0 (no interaction implies no phase) require: 

θ(α) = 2π(c₁α + c₂α² + c₃α³ + ⋯) 

The expansion is in powers of α because α is the unique dimensionless coupling governing U(1) 

phase strength, and the factor of 2π ensures θ is measured in units of the fundamental phase 

quantum. Under the principle that no additional dimensionless structure exists at the cell scale, 

the leading coefficient c₁ cannot be a complicated number — any value other than unity would 

constitute an unexplained new parameter. This fixes c₁ = 1, yielding: 
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θ(α) = 2πα + O(α²) 

In the present work we adopt the leading-order form θ(α) = 2πα. This is not an arbitrary ansatz: 

linearity at leading order is forced by gauge invariance, analyticity, and the absence of additional 

cell-scale structure. The coefficient is fixed by minimality. Any deviation from linearity 

corresponds to higher-order geometric structure at the Planck scale and would shift the inferred 

integer χ, providing an explicit falsifiability channel: if the framework's predictions fail at 

leading order, the first diagnostic is whether O(α²) corrections are required. 

Normalisation and What Is (Not) Derived 

The Chern-Weil and discretisation steps (Section 4) derive the form N_Σ · θ = 2πχ and the 

integrality of χ, but they do not fix the numerical mapping between the empirical U(1) coupling 

and the geometric per-cell holonomy scale. We therefore treat: 

θ(α) = 2π c₁ α + O(α²) 

as the most general leading-order relation. The choice c₁ = 1 is a normalisation convention 

consistent with minimality, not a theorem. The framework becomes more predictive to the extent 

that c₁ can be fixed by independent structure (e.g., representation or transport normalisation on 

the substrate) or constrained by scheme-invariance tests (Section 10.1). All numerical predictions 

in this paper assume c₁ = 1; departures from this value rescale χ linearly and are therefore 

directly testable. 

Within the broader VERSF programme, this identification is further supported by the 

independent derivation of α as a dimensionless closure ratio controlling U(1) phase 

normalisation. If α is the per-loop closure fraction for U(1) phase — as derived in that context — 

then the per-cell phase increment entering the global winding closure is exactly 2πα. The 

mapping θ(α) = 2πα is therefore not an extra postulate but the translation of an independently 

derived interpretation of α into holonomy units. 

3.1 Scale Dependence of α 

The fine structure constant is known to run with energy scale under renormalisation. In the 

present framework, α is interpreted as the effective infrared U(1) coupling relevant to global 

closure — the renormalisation-group invariant value governing large-scale holonomy 

accumulation. Operationally, α is taken to be the low-energy (Thomson-limit) electromagnetic 

coupling relevant to macroscopic phase accumulation. Because the closure condition is 

formulated as a macroscopic global consistency constraint on the effective long-distance 

geometry, the low-energy α is the appropriate normalisation; any UV completion must reproduce 

this IR value while satisfying the closure constraint. 

Alternatively, one may ask whether the closure condition is scheme-invariant: the topological 

class χ = (1/2π)∫_Σ F is a geometric invariant independent of renormalisation scale. What 

depends on μ is the mapping θ(α(μ)). Scheme-invariance therefore requires that the inferred 
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topological class be unchanged when α is evaluated at different scales — a condition that 

constrains the allowed O(α²) terms in θ(α). This is explored further in Section 10.1. 

3.2 Bridge Hypothesis: Phase Bookkeeping on the Coherence Substrate 

The closure condition requires that α — the electromagnetic coupling constant — appears in a 

geometric context. This subsection makes explicit the physical bridge between the two domains. 

Bridge Hypothesis (Phase Bookkeeping Connection). The U(1) connection appearing in the 

closure condition is not the macroscopic electromagnetic field. It is an effective phase-holonomy 

bookkeeping connection defined on the pre-geometric coherence substrate that governs relational 

transport at the Planck scale. 

In any relational or simplicial pre-geometry, the fundamental observable associated with 

transport is parallelism: the comparison of relational states across neighbouring cells. Parallel 

transport necessarily introduces a gauge redundancy. The minimal such redundancy is U(1) 

phase. 

The normalisation of this phase response must be set by the unique dimensionless coupling 

controlling U(1) phase accumulation in nature, namely the fine structure constant α. The 

appearance of α in the geometric closure condition therefore reflects the empirical normalisation 

of phase holonomy inherited by the electromagnetic sector from the underlying geometric 

substrate. 

In this sense, the closure condition does not assume that electromagnetic fields live on Planck 

cells. It assumes that the same U(1) phase normalisation observed in electromagnetism originates 

in, and constrains, the deeper geometric phase bookkeeping structure. 

Minimal two-parameter bridge (geometric U(1) vs electromagnetic U(1)). A priori, the 

geometric U(1) connection could carry its own dimensionless normalisation α_g, distinct from 

the low-energy electromagnetic coupling α_EM. The most general minimal relation is: 

α_EM = κ α_g 

where κ is an embedding/renormalisation factor encoding how the emergent electromagnetic 

sector inherits the substrate phase normalisation. The closure condition constrains α_g through 

θ(α_g), and therefore constrains κ indirectly. The identification α_g = α_EM corresponds to κ = 

1. This is the simplest bridge hypothesis, but the framework does not require it: allowing κ ≠ 1 

preserves the closure form while rescaling the inferred χ. In this way the bridge is not a mere 

assertion; it is a quantitatively constrainable embedding whose value can in principle be fixed by 

independent structure or by consistency with the inferred topological class. 

 

4. Geometric Closure Condition 
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4.1 Derivation from Chern-Weil Integrality 

The mathematical foundation is the Chern-Weil integrality theorem for U(1) principal bundles. 

For any U(1) connection on a principal bundle over a closed, oriented 2-manifold Σ: 

c₁ = (1/2π) ∫_Σ F ∈ ℤ 

This is a theorem — it follows from the classification of principal U(1) bundles over closed 

surfaces by their first Chern class. The total U(1) flux through any closed surface is necessarily 

quantised in units of 2π. This is the same mathematical content as Dirac's magnetic monopole 

quantisation condition, and it requires no physical assumptions beyond the existence of the 

bundle and the closedness of the surface. 

Discretisation. Decompose Σ into N cells {C_i}. By additivity of the integral: 

∫Σ F = Σ_i ∫{C_i} F = Σ_i φ_i 

where φ_i is the flux through cell i. By Stokes' theorem, φ_i equals the holonomy around the 

boundary of cell i: φ_i = ∮_{∂C_i} A = θ_i. Therefore: 

Σ_i θ_i = 2π c₁ 

This is exact — no approximation is involved in the discretisation step. The total holonomy over 

all cells equals 2π times an integer, regardless of how the cells are shaped or sized. 

Homogeneity. If every cell carries the same holonomy θ_i = θ, the sum reduces to: 

N · θ = 2πχ 

where χ = c₁. The homogeneity assumption is not arbitrary — it follows from the symmetry of 

the background geometry. De Sitter space has maximal isometry group SO(4,1). Any spatial 2-

sphere cross-section inherits an SO(3) rotational symmetry. If the geometric U(1) bundle 

respects this symmetry — i.e., if the geometric substrate does not spontaneously break spatial 

isotropy — then the connection is SO(3)-invariant on Σ, which forces the flux per unit area to be 

constant across the surface. Combined with a uniform cell decomposition, this gives θ_i = θ for 

all i. Homogeneity is therefore not an additional assumption but a consequence of the 

cosmological principle applied to the geometric substrate. 

Coupling identification. The per-cell holonomy is θ(α) = 2πα, as argued in Section 3 from 

gauge invariance, analyticity, and the absence of additional cell-scale structure. Substituting: 

N · 2πα = 2πχ 

The factor of 2π cancels: 

N · α = χ ∈ ℤ 
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4.2 Geometric Identification 

The natural closed 2-surface in de Sitter space is the cosmological horizon 2-sphere, with area 

A_Σ = 4πr_Λ² = 12π/Λ. Tiled by Planck-area cells (area ℓ_P² each), the cell count is: 

N_Σ = A_Σ / ℓ_P² = 12π / (Λ ℓ_P²) = 4π N_Λ 

as defined in Section 2. The Chern-Weil derivation therefore gives the closure condition: 

N_Σ · α = χ ∈ ℤ 

where χ ≡ c₁ is the first Chern number. This is the exact integrality condition with no unresolved 

normalisation factors — the cell count matches the physical area of the closure surface, and χ is 

the standard topological invariant. 

4.3 What Is Derived vs. What Is Assumed 

The Chern-Weil derivation substantially reduces the postulate content of the closure condition. 

Here is the accounting: 

Now derived (previously postulated): 

• The integrality of χ. This is a theorem — it follows from the topology of U(1) bundles 

over closed surfaces via Chern-Weil. It requires no physical assumption beyond the 

existence of the bundle and the closedness of Σ. 

• The form of the equation, N · θ = 2πχ. This follows from discretising the Chern-Weil 

integral. It is exact, not approximate. 

• The homogeneity of per-cell holonomy. This follows from the maximal symmetry of de 

Sitter space, provided the geometric U(1) bundle respects spatial isotropy. 

Still assumed (but now explicitly isolated): 

• The existence of a geometric U(1) bundle over the closure surface. This is the VERSF 

substrate postulate — that a U(1) phase structure exists at the Planck scale, from which 

the electromagnetic interaction inherits its coupling (see Section 3.2). 

• The coupling identification θ = 2πα. Already argued in Section 3; the derivation does not 

change its status. 

• The geometric identification N = N_Σ = 4πN_Λ (the physical Planck-area cell count on 

the de Sitter horizon sphere). 

Given the existence of a geometric U(1) bundle over the closure surface, Chern-Weil integrality 

and exact discretisation imply the form N_Σ · θ(α) = 2πχ. The remaining physical content is the 

substrate-bundle postulate and the identification of θ with the α-normalised holonomy per cell. 

Physical Content of the Substrate Postulate. The central physical assumption of the 

framework is the existence of a U(1) phase bookkeeping structure on the coherence substrate. 
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This is not an exotic addition: any relational theory of transport requires a notion of parallelism, 

and parallelism generically introduces a gauge redundancy. The minimal such redundancy is 

U(1). The present work explores the consequences of this assumption; its ultimate validity must 

be decided by whether the resulting closure condition survives empirical and theoretical 

consistency tests. 

4.4 Minimality and Uniqueness 

Proposition (Minimality of the Closure Form). Among dimensionless global constraints 

linking (i) the total number of Planck-area cells N_Σ, (ii) a local U(1) holonomy normalisation 

θ(α), and (iii) a topological quantisation condition, the form N_Σ · θ(α) = 2πχ is essentially 

unique under the following minimal requirements: 

Dimensionlessness: the constraint involves no dimensionful scales beyond those already 

appearing in N_Σ. 

Topological protection: the right-hand side is quantised and invariant under smooth 

deformations. 

Coarse-graining stability: the condition is preserved under aggregation of microscopic cells. 

No additional structure: no new dimensionless parameters are introduced. 

Any alternative functional form of comparable simplicity either introduces extra dimensionless 

coefficients, breaks topological protection, or fails to be stable under coarse-graining. In this 

sense, the closure condition is not an arbitrary choice but the simplest admissibility criterion 

consistent with these requirements. 

4.5 Properties of χ and the Nature of the U(1) Bundle 

The U(1) bundle in question is not identified with the physical photon field. A literal 

electromagnetic Chern number χ ~ 10¹²⁰ would require an enormous net magnetic flux through 

the cosmological horizon — equivalently, an enormous net magnetic charge inside — which is 

not observed. Here χ is computed for an effective U(1) connection describing phase-holonomy 

bookkeeping on the pre-geometric coherence substrate — the same structure from which the 

electromagnetic U(1) emerges in the VERSF programme — not for a macroscopic Maxwell field 

configuration. The fact that α appears in both the electromagnetic and geometric contexts is not a 

coincidence to be explained but a consequence of their common origin: the geometric U(1) 

structure of the substrate is the structure from which the electromagnetic interaction inherits its 

coupling. Operationally, this effective U(1) connection represents the phase-holonomy 

bookkeeping associated with relational transport on the coherence substrate; α enters because it 

is the empirically observed normalisation of U(1) phase coupling inherited by the 

electromagnetic sector. 

χ counts the total number of U(1) holonomy quanta required for global closure. It is an integer by 

the Chern-Weil theorem (topological quantisation of the first Chern class) and is not identified 
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with the Euler characteristic of a simple manifold. The value χ ~ 10¹²⁰ is large by comparison 

with Chern numbers encountered in condensed matter or string compactifications, where the 

base manifolds have areas of order unity in natural units. Here the base surface has area ~10¹²² 

Planck areas; a large total winding number is the expected consequence of integrating a small 

holonomy per cell over an enormous surface, just as a large total curvature results from 

integrating small local curvature over a large manifold. 

This equation is a static consistency condition. It expresses the requirement that local interaction 

geometry and global spacetime geometry close coherently, without reference to temporal 

evolution. 

Under the leading-order form θ(α) = 2πα derived in Section 3, the closure condition yields the 

definite prediction: 

N_Σ · α = χ ∈ ℤ 

This removes all free functions from the framework and yields a specific numerical value for the 

topological charge given measured constants. 

 

5. Relationship Between Constants 

Substituting the definition of N_Σ into the closure condition yields: 

(12π / (Λ ℓ_P²)) · θ(α) = 2πχ 

or equivalently, 

Λ = (6 / χ) · (θ(α) / ℓ_P²) 

Since ℓ_P² = ℏG / c³, this relation explicitly links: 

• α — local U(1) gauge holonomy strength, 

• G — minimal geometric resolution (Planck area), 

• Λ — global geometric closure scale, 

• c — causal adjacency constant governing the structure of permitted causal connections, 

• ℏ — minimum quantum of geometric commitment. 

The speed of light appears here not as a temporal velocity but as a structural constant governing 

causal connectivity in the geometric substrate. Similarly, ℏ enters not as a dynamical action 

quantum but as the minimum scale of irreversible geometric commitment. 
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6. Numerical Consistency Check 

The closure condition yields a concrete numerical prediction. Using current measured values: 

Constant Value 

Λ 1.1056 × 10⁻⁵² m⁻² 

ℓ_P 1.616255 × 10⁻³⁵ m 

ℓ_P² 2.611 × 10⁻⁷⁰ m² 

α 1/137.036 

The number of Planck cells tiling the closure surface is: 

N_Σ = 12π / (Λ ℓ_P²) ≈ 1.31 × 10¹²³ 

Under the leading-order form θ(α) = 2πα, the implied topological winding number is: 

χ = N_Σ · α ≈ 9.52 × 10¹²⁰ 

The magnitude of χ is not problematic — it reflects the cosmological hierarchy expressed as a 

topological count. The same order of magnitude (~10¹²⁰) appears independently in the 

Bekenstein-Hawking entropy of the cosmological horizon (as shown in Section 2.1) and in the 

ratio of the Hubble scale to the Planck scale squared. The closure condition reinterprets this 

hierarchy: it is the total winding number required for the universe's local holonomy to close 

globally. 

6.1 Uncertainty and Integrality Test 

The closure condition does not require exact integrality of χ at finite experimental precision, but 

convergence toward integrality within observational uncertainty. 

From 

χ = N_Σ · α = 12πα / (Λ ℓ_P²) 

the fractional uncertainty is dominated by the uncertainty in Λ: 

σ_χ / χ ≈ σ_Λ / Λ 

Current measurements constrain Λ at the few-percent level, implying an uncertainty of order 

10¹¹⁸ in χ — a window that admits an enormous number of candidate integers. Even heroic 

improvements in Λ only shrink the integer window linearly; therefore χ-integrality is primarily a 

structural requirement of the framework, while correlated-variation constraints (Section 10) are 

the practical observational handle. 
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Exact integrality is therefore an in-principle constraint, not a near-term experimental test. The 

correlated variation of constants (Section 10) is the framework's primary near-term falsifiable 

prediction. 

 

7. The Status of Time 

Time does not appear as a fundamental dimension in this framework. At the foundational level, 

geometry is static and the closure condition is timeless. What is conventionally described as time 

emerges only when geometric commitments become irreversible — producing an ordered, 

monotonically increasing record of distinguishable states. 

Accordingly, cosmological expansion and interaction dynamics are interpreted as emergent, 

coarse-grained descriptions of underlying geometric commitment processes rather than as 

primitive features of reality. The cosmological constant, in particular, is not an energy density 

driving accelerated expansion; it is a geometric boundary condition specifying the closure scale. 

The appearance of acceleration is an artefact of projecting a static geometric constraint into a 

time-dependent cosmological framework. 

A note on observational access: the measured value of Λ used in this paper is extracted from 

dynamical cosmological observations — supernova luminosity distances, baryon acoustic 

oscillations, and CMB power spectra — all of which are interpreted within the standard ΛCDM 

framework, which treats time as fundamental. This creates an apparent tension: the paper uses 

outputs of a dynamical theory while reinterpreting Λ as a static geometric quantity. The 

resolution is that the numerical value of Λ is an empirical datum independent of its 

interpretation. ΛCDM provides the measurement; the closure condition provides a different 

reading of what is measured. The same number is extracted regardless of whether one interprets 

it as a vacuum energy density or as a geometric closure scale, because the observable 

consequences (luminosity distances, angular diameter distances) are identical at the level of the 

background geometry. What changes is the ontology, not the phenomenology. 

Within the Void Energy-Regulated Space Framework (VERSF), the closure condition presented 

here can be understood as arising from the requirement that entropy gradients on a zero-entropy 

substrate produce a globally consistent geometric structure. The zero-entropy substrate admits no 

temporal coordinate; the closure condition is the mathematical expression of global consistency 

on that substrate. Temporal emergence, and with it all apparent dynamics, follows from the 

irreversibility of local entropy production within the closed geometry. 

 

8. Relation to Prior Work 

The scale 1/(Λ ℓ_P²) and its relation to horizon entropy have been extensively studied. 

Bekenstein (1973) and Hawking (1975) established that black hole entropy scales as A/(4ℓ_P²); 
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the extension to de Sitter horizons yields S_dS ~ 1/(Λ ℓ_P²), the same quantity that appears as 

N_Λ in this paper. Banks and Fischler (2000, 2001) argued that the Hilbert space of de Sitter 

space is finite-dimensional, with dimension set by the horizon entropy — a conclusion 

structurally adjacent to the present framework's identification of N_Λ as the total count of 

geometric degrees of freedom. Bousso's covariant entropy bound (1999) provides a rigorous 

holographic constraint linking areas to entropy across general spacetimes. The Cohen-Kaplan-

Nelson bound (1999) relates UV and IR cutoffs in a way that produces Λ ~ ℓ_P⁻² × L⁻², where L 

is a cosmological scale — remarkably similar in structure to the relation N_Λ = 3/(Λ ℓ_P²) used 

here. Separately, large-number hypotheses dating to Dirac (1937, 1938) noted numerical 

coincidences among cosmological and microphysical scales, and gauge theories employ 

holonomy, winding numbers, and topological quantisation to enforce global consistency. 

The quantity N_Λ ≈ S_dS/π ≈ 10¹²² is therefore not new — it is well established in the de Sitter 

entropy literature. What is new is the closure interpretation: the proposal that N_Λ is not merely 

an entropy count but participates in a global topological constraint linking gauge holonomy to 

cosmological geometry. 

The present work differs from these predecessors in that it imposes a single closure condition 

connecting gauge structure to cosmological geometry. Unlike large-number hypotheses or 

numerological relations, the closure condition is dimensionless, topological, and falsifiable. It 

does not attempt to compute constants from microphysics but constrains them through global 

admissibility. The identification of χ as a first Chern number, rather than an empirical ratio, gives 

the large number a standard topological interpretation. 

The present work does not attempt to derive the numerical values of the fundamental constants. 

Independent derivations or structural constraints for α, Λ, c, and G exist within the broader 

VERSF programme. The role of this paper is different: it establishes a global geometric 

admissibility condition that must be satisfied if those independently constrained constants are to 

coexist within a single closed, self-consistent geometry. Failure of this condition would falsify 

the framework even if the individual derivations remained internally consistent. 

The present paper should therefore be read neither as a derivation of constants nor as an 

alternative cosmological model, but as a global consistency test that any viable theory of 

fundamental constants must satisfy. 

 

9. Implications and Extensions 

If the closure condition is correct, several consequences follow. 

The constants α, G, Λ, c, and ℏ are not independent parameters requiring separate explanation. 

They are jointly fixed by a single geometric requirement. The number of truly free parameters in 

fundamental physics is reduced, and the question "why these values?" is replaced by "what does 

geometric closure require?" 
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The cosmological constant problem — the ~120 order-of-magnitude discrepancy between the 

quantum field theory vacuum energy prediction and the observed Λ — is reframed as a category 

error. Λ is not a vacuum energy to be calculated from particle physics; it is a geometric closure 

scale. The apparent fine-tuning is an artefact of treating a geometric boundary condition as a 

dynamical energy density. 

The framework naturally suggests extension to non-abelian gauge holonomy. If α enters the 

closure condition as the U(1) phase coupling, then the strong and weak coupling constants (α_s 

and α_w) may enter through SU(3) and SU(2) holonomy contributions to a generalised closure 

condition. A brief exploratory non-abelian extension — including the derivation of Casimir 

weights k₂ = 3/4 (SU(2)) and k₃ = 4/3 (SU(3)) from small-loop Wilson holonomy expansion — is 

provided in Appendix A. This material is not used in the main argument; the core closure 

condition of this paper involves only α and the U(1) sector. 

 

10. Falsifiability 

10.1 Scheme-Invariance of the Closure Class 

The closure condition is formulated using the low-energy (Thomson-limit) normalisation of α 

relevant to macroscopic phase accumulation. RG running of α(μ) is not a violation of closure; it 

reflects the scale dependence of the effective coupling in a particular renormalisation scheme. A 

UV completion must reproduce the IR value while remaining compatible with closure. 

However, the topological class χ = (1/2π)∫_Σ F is a geometric invariant that does not depend on 

renormalisation conventions. What depends on the scale μ is the mapping θ(α(μ)). Scheme-

invariance of the closure condition therefore requires that the inferred topological class be 

unchanged when α is evaluated at different renormalisation scales: 

χ_inferred(μ₁) = χ_inferred(μ₂) 

This constrains the allowed O(α²) terms in θ(α): if θ = 2π(α + c₂α² + ⋯), then changing μ shifts α 

→ α(μ), and the inferred χ must remain the same integer. At leading order (θ = 2πα), the 

constraint is automatically satisfied if one commits to a single reference scale (the Thomson 

limit). Beyond leading order, scheme-invariance provides a nontrivial test: do there exist O(α²) 

corrections to θ that maintain a consistent topological class across scales? 

This tests the geometry-phase bridge itself: if no choice of higher-order corrections yields 

scheme-invariant closure compatible with the known running of α, the closure hypothesis fails 

even if its low-energy consequences appear consistent. 

10.2 Observational Predictions 

The framework makes the following testable predictions, ordered by near-term observational 

accessibility: 
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Correlated variation of constants (primary near-term test). Holding χ fixed implies a 

correlated variation constraint: 

δΛ/Λ = δα/α + 3(δc/c) − δℏ/ℏ − δG/G 

This assumes χ is topologically protected — as a first Chern number, it cannot vary continuously 

but can in principle jump between integers under sufficiently extreme topological transitions 

(analogous to phase transitions in condensed matter). If such jumps are possible, the constraint 

changes character: small continuous variations of constants must still satisfy the equation above, 

but discrete jumps in χ would permit discontinuous shifts in the constant relationships. The 

possibility of topological phase transitions in the cosmological geometry is not addressed here 

but would have observable signatures distinct from smooth variation. 

Any observed smooth variation of one constant must be accompanied by compensating variation 

in the others. Independent variation of α alone — as suggested by some quasar absorption 

spectra — would violate closure. This prediction is testable with existing and near-future 

astrophysical data without requiring extreme precision. 

Distinguishability from alternative varying-constant frameworks. Many theories that allow 

varying constants (e.g., Bekenstein-type varying-α models or dilaton/runaway scalar scenarios) 

predict correlations among variations, but the structure differs: typically a single scalar field 

controls multiple couplings with model-dependent relative coefficients. In the present 

framework, by contrast, the constraint is anchored to a topological class χ, which admits two 

distinctive features: 

Quantised-class protection: small continuous variations must lie on a constrained manifold in 

constant-space; large changes may occur only via discrete class changes (topological transitions), 

which would produce non-smooth signatures. 

Fixed coefficient structure: the relative coefficients (+1, +3, −1, −1) in the correlated variation 

equation are not fit parameters but follow from the dimensional structure of the closure relation 

once χ is held fixed. 

Framework Variation driver 
Discrete 

transitions? 
Coefficients predicted? 

Bekenstein varying-α 
Scalar field coupled to 

F² 
No Model-dependent 

Dilaton/runaway 
Scalar field in string 

moduli 
No Moduli-dependent 

Geometric closure (this 

work) 
Topological class χ Yes (class jumps) 

Yes (from dimensional 

structure) 

A detailed phenomenological comparison with specific scalar-field models is deferred; the key 

point is that the present framework predicts either strict constancy (if χ is rigid) or correlated 
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variation punctuated by discrete transitions — a pattern not generic in smooth scalar-field 

models. 

Geometric Λ vs substance-like dark energy. Within this framework Λ is interpreted as a 

geometric boundary condition, not as a dynamical fluid component. This does not by itself rule 

out additional light fields in nature. What it does imply is that late-time acceleration should be 

consistent with an exactly constant Λ (w = −1) except possibly for discrete transition-like 

departures if the topological class changes. Smooth quintessence-like evolution of w(a) would 

therefore falsify the geometric closure interpretation. Detection of time-varying w(a) consistent 

with smooth scalar-field dynamics would be direct evidence against this framework. 

Λ is exactly constant. Because the closure condition is topological and static, it selects a 

constant Λ. A time-varying Λ would imply a changing N_Σ, and hence either a changing χ or 

compensating variation in α, G, or ℏ. Evidence for w(a) ≠ −1 would falsify the framework unless 

correlated variation preserves integer χ. Independent dynamical dark energy is incompatible with 

geometric closure. 

Integer winding number (structural constraint). The quantity N_Σ · α must be an exact 

integer. Current uncertainties on Λ permit a window of ~10¹¹⁸ candidate integers, making this an 

in-principle rather than near-term test. Its primary role is structural: once Λ and α are constrained 

sufficiently, the framework requires N_Σ · α to lie within observational uncertainty of an integer. 

Persistent failure of that convergence would falsify the closure hypothesis. 

10.3 Falsification Logic and Derivation Roadmap 

On Falsification. As with other global consistency principles in physics, the closure condition is 

not tested by direct measurement of its quantised integer, but by the web of constraints it 

imposes. The framework is falsified if: 

• Scheme-invariance of the closure class cannot be maintained (Section 10.1), 

• correlated variation relations fail observationally, 

• or the closure condition proves incompatible with independently derived values of α or Λ 

without introducing new parameters. 

Roadmap to a Complete Derivation. The Chern-Weil derivation in Section 4.1 completes steps 

2 and 3 below, conditional on the substrate postulate. Elevating the full framework to a derived 

theorem would require: 

1. A microscopic model of the coherence substrate admitting a natural U(1) transport 

redundancy. (Open — the central remaining gap.) 

2. A proof that the coarse-grained closure surface carries a quantised U(1) bundle class. 

(Completed — Chern-Weil integrality theorem, Section 4.1.) 

3. A derivation showing that the total bundle class equals the sum of per-cell holonomies. 

(Completed — exact discretisation via Stokes' theorem, Section 4.1.) 
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4. A demonstration that alternative closure functionals either violate RG stability or 

introduce additional dimensionless structure. (Partially addressed — Section 4.4 

establishes minimality; full proof requires step 1.) 

The present work establishes the admissibility principle and its consequences; deriving it from a 

complete microscopic theory remains a goal for future work within the VERSF programme. 

 

11. Conclusion 

The constants α, G, Λ, c, and ℏ are best understood as projections of a single underlying 

geometric closure requirement. Their observed values reflect the unique configuration in which 

local U(1) holonomy, geometric resolution, causal structure, quantum commitment scale, and 

global closure are mutually compatible. The closure condition N_Σ · θ(α) = 2πχ is derived from 

the Chern-Weil integrality theorem for U(1) bundles over closed surfaces, with homogeneity 

following from de Sitter symmetry. The holonomy function θ(α) = 2πα is derived at leading 

order from gauge invariance, analyticity, and the absence of additional cell-scale structure. The 

remaining physical assumptions — the existence of the geometric U(1) bundle and the coupling 

identification — are explicitly enumerated and individually falsifiable. 

Under this framework, the closure condition yields a specific, falsifiable prediction: χ ≈ 9.52 × 

10¹²⁰, an integer constrained by improving measurements of Λ. The framework removes the need 

to treat fundamental constants as independent inputs, reframes the cosmological constant as a 

geometric boundary condition, dissolves the cosmological constant problem as a category error, 

and identifies the cosmological hierarchy (~10¹²⁰) as a topological invariant rather than a fine-

tuning coincidence. 

The framework is falsifiable, connects to established gravitational thermodynamics through the 

de Sitter entropy relation, is extensible to non-abelian gauge structure, and is grounded in the 

timeless geometric consistency of the VERSF programme. 

 

Appendix A: Exploratory Non-Abelian Extension 

This appendix is an exploratory sensitivity check, not part of the main claim. The core 

closure condition of this paper involves only α and the U(1) sector. 

To incorporate non-abelian sectors in a scalar closure functional, we define the effective per-cell 

holonomy contribution as the gauge-invariant size of small-loop Wilson holonomy in the matter 

representation. For a non-abelian group SU(N), the Wilson loop in representation R is: 

W_R(C) = (1/d_R) Tr_R [P exp(ig ∮_C A_μ^a T^a dx^μ)] 
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For a small loop bounding area Σ, expanding to leading non-trivial order, the gauge-invariant 

deviation from identity scales as: 

W_R(C) ≈ 1 − (g² C₂(R) / 2) Σ² ⟨F^a F^a⟩ + ⋯ 

where C₂(R) is the quadratic Casimir. For the fundamental representations at low energies: 

C_F(SU(2)) = 3/4, C_F(SU(3)) = 4/3 

The choice of fundamental representation is motivated by Standard Model matter content; 

adjoint Casimirs (2, 3) would yield different weights. A geometric derivation of the relevant 

representation remains open. 

The generalised closure condition takes the form: 

N_Σ · [α + (3/4)α_w + (4/3)α_s] = χ 

where α_w ≡ g_w²/(4π) and α_s ≡ g_s²/(4π). Couplings must be evaluated at a common 

renormalisation scale. 

Mathematical caveat: The U(1) closure uses the phase directly (θ = 2πα), whereas the non-

abelian Wilson loop gives deviation from identity scaling as g²C₂(R). The additive combination 

assumes linearity of the closure functional — a simplifying assumption, not a derived result. 

Topological caveat: U(1) winding uses the first Chern number; SU(2) and SU(3) topology 

naturally involves the second Chern class (instanton number). A full treatment incorporating 

appropriate Chern classes for each gauge sector is deferred to future work. 
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