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General Reader Summary 

Black holes are among the most extreme objects in the universe. In the 1970s, physicists Jacob 

Bekenstein and Stephen Hawking made a startling discovery: black holes have entropy—a 

measure of hidden internal disorder—and the amount of that entropy is proportional to the 

surface area of the black hole, not its volume. This was shocking because, for every other object 

in physics, entropy scales with volume. A box twice as big can hold twice as many disordered 

arrangements. Black holes break this rule. 

Even more specifically, Bekenstein and Hawking showed that the entropy is one-quarter of the 

horizon area in Planck units (up to a choice of information units, bits vs nats). The formula is 

simple: S = A / 4ℓₚ². The factor of 1/4 has been confirmed by multiple independent approaches, 

but nobody has been able to explain why it is 1/4 and not, say, 1/3 or 1/6, without inserting some 

adjustable number by hand. 

This paper shows that the factor of 1/4 is not arbitrary—it is an unavoidable consequence of how 

space is built at the smallest scales. If space is made of tiny discrete building blocks (like atomic-

scale tiles), and those tiles follow a specific set of internal consistency rules, then the surface of a 

black hole can only store information in a very particular way. Most of the internal rules of each 

tile become redundant or locked at the surface; only one binary choice—yes or no, on or off—

survives per tile. And the natural size of each tile turns out to be exactly four Planck areas. 

Divide the total surface area by four Planck areas, and you get the number of independent yes/no 

choices. That count is the entropy, measured in bits. The 1/4 was never a free choice—it was 

baked into the structure of space itself. 

Crucially, the rules that determine the tile size and the number of internal constraints were 

established in earlier work that had nothing to do with black holes. This paper applies those pre-

existing rules to a black hole horizon and finds that the famous 1/4 falls out automatically. No 

knobs were turned. No numbers were adjusted to match the known answer. 
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Abstract 

The Bekenstein–Hawking entropy formula S = A / 4ℓₚ² is one of the most robust results in 

theoretical physics, yet the precise numerical coefficient 1/4 has proven notoriously difficult to 

derive from first principles. Most approaches recover the area scaling but require adjustable 

parameters, tuning, or auxiliary assumptions to fix the coefficient. In this paper, we establish the 

following conditional result: if the closure-consistency analysis of companion work fixes the 

constraint count at K = 7 per simplex, and if the decoupling-scale analysis fixes the independence 

threshold at ℓₑ = 2ℓₚ, then the Bekenstein–Hawking area coefficient 1/4 follows from boundary 

constraint reduction on null horizons. Space is modeled as a simplicial foam whose degrees of 

freedom are governed by these closure constraints. We demonstrate that, when restricted to a 

horizon-bounding surface, bulk constraints project out through a mechanism we enumerate 

explicitly: of the seven bulk constraints per simplex, one is frozen by causal structure at the null 

boundary, four are eliminated by closure pairing across adjacent boundary simplices, and one is 

removed by gauge redundancy, leaving exactly one independent binary commitment per 

effective boundary cell. The fundamental boundary cell area is shown to be 4ℓₚ², arising from the 

two-Planck independence threshold—the minimal simplex separation at which boundary 

commitments decouple given shared-face matching constraints. The framework therefore fixes 

the geometric cell count N = A / 4ℓₚ², establishing the 1/4 coefficient. In natural units (nats), S = 

N ln 2; in bits, Sᵦᵢₜₛ = N. The coefficient is fixed independently of logarithm base. The present 

paper provides a self-contained derivation of the boundary reduction and area-coefficient 

implication; independent validation of the inputs K = 7 and ℓₑ = 2ℓₚ is addressed in companion 

papers. This conditional derivation places the Bekenstein–Hawking coefficient on the same 

axiomatic footing as the cosmological constant within this framework. 
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1. Introduction 

For the general reader. When you drop a book into a black hole, all the information about that 

book—its words, its pages, its atoms—seems to vanish behind the event horizon. But physics 

says information cannot be destroyed. So where does it go? Bekenstein and Hawking showed 

that the black hole's surface keeps a record: every bit of swallowed information is encoded on 

the horizon, like writing on the skin of a balloon. The amount of information the surface can hold 

is measured by entropy, and their formula says it equals exactly one-quarter of the surface area in 

Planck units. This paper explains where that "one-quarter" comes from. 

The discovery that black hole entropy scales with horizon area rather than volume was a 

profound shift in our understanding of gravitational thermodynamics [1]. The Bekenstein–

Hawking result, 

S = A/4ℓₚ², 

has since been confirmed across semiclassical gravity [2,3], Euclidean path integrals [4], string 

theory microstate counting [5], and loop quantum gravity [6,7]. The Wald entropy formula 

further generalizes the result to arbitrary diffeomorphism-invariant theories via Noether charge 

methods [16]. Despite this success, a persistent foundational issue remains: while the 

proportionality S ∝ A is generic, the numerical coefficient 1/4 is not [25]. 

In most approaches, the coefficient emerges only after the introduction of auxiliary 

assumptions—such as a choice of ultraviolet cutoff [8,9], an adjustable Immirzi parameter [7], or 

an implicit normalization of microscopic degrees of freedom [10]. This raises the question of 

whether the coefficient is truly fundamental, or merely an artifact of model-dependent 

bookkeeping. 

In this paper, we establish the following conditional result: 

Theorem (Conditional). If the closure-consistency analysis of [20] fixes the constraint count at 

K = 7 per simplex, and if the decoupling-scale analysis of [21] fixes the independence threshold 

at ℓₑ = 2ℓₚ, then the Bekenstein–Hawking area coefficient 1/4 follows from boundary constraint 

reduction on null horizons. 

The derivation assumes a discrete admissibility framework in which: 
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1. The microscopic structure of space is simplicial. 

2. The number of independent constraints per simplex is K = 7 (taken as input from [20]). 

3. Entropy is identified with the count of admissible configurations. 

4. Horizons are treated as constraint-bounding surfaces rather than dynamical objects. 

No holographic postulate [10,13,14], entanglement entropy ansatz [8,9], or parameter tuning is 

assumed. The coefficient 1/4 arises purely from boundary constraint reduction and the two-

Planck independence threshold. 

Status. The present paper provides a self-contained derivation of the boundary reduction and the 

area-coefficient implication. The independent validation of the inputs K = 7 and ℓₑ = 2ℓₚ is 

addressed in companion papers [20,21]. The strength of the present result is therefore conditional 

on those inputs; readers who accept the companion derivations obtain a parameter-free 

prediction, while those who do not can treat this paper as establishing a precise logical 

dependence. 

 

2. Discrete Structure and Constraint Admissibility 

We begin by summarizing the minimal structural elements required for the derivation. 

For the general reader. This section introduces the idea that space is not smooth and continuous 

at the smallest scales, but instead built from tiny, indivisible building blocks—like how a mosaic 

is made of individual tiles. Each tile has to follow certain rules to fit properly with its neighbors. 

The number of rules per tile turns out to be exactly seven, determined by pure logic rather than 

measurement. This section explains what those rules are and why there must be exactly seven. 

2.1 Simplicial Foam and Constraint Closure 

Space is modeled as a simplicial foam composed of elementary cells (simplices) [17,18,19]. 

Each simplex carries a fixed number of internal constraints governing its admissible 

configurations. These constraints encode closure, compatibility with neighboring simplices, and 

internal consistency of distinguishable states. 

For the general reader. A "simplex" is the simplest possible shape in a given number of 

dimensions: a triangle in 2D, a tetrahedron in 3D. A "simplicial foam" means space is tiled 

entirely by these simple shapes, packed together like bubbles. Each tile must satisfy internal rules 

("constraints") to be a valid piece of space—just as a jigsaw puzzle piece must have the right 

shape to fit its neighbors. 

Previous work [20,23,24] has shown that closure consistency uniquely fixes the number of 

independent constraints per simplex to 

K = 7, 
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with no free parameters. This number is not postulated but follows from internal admissibility 

requirements: fewer constraints lead to underdetermined configurations, while additional 

constraints over-restrict the system and prevent consistent gluing. 

2.2 Summary of Constraint Closure and the Origin of K = 7 

Because the derivation of K = 7 is the foundation on which the present result rests, we provide an 

explicit summary of its logic. The full derivation appears in [20]; here we enumerate the 

constraint types and the argument that fixes their count. 

Each simplex in the foam must satisfy the following independent constraints for admissible 

participation in a global tiling: 

# Constraint type Role 

1 Local closure Ensures internal geometric consistency of the simplex 

2 
Neighbor compatibility 

(face 1) 
Matching conditions on the first shared face 

3 
Neighbor compatibility 

(face 2) 
Matching conditions on the second shared face 

4 
Neighbor compatibility 

(face 3) 
Matching conditions on the third shared face 

5 
Orientation / chirality 

consistency 
Fixes handedness relative to the global tiling 

6 
Distinguishability 

commitment 
Ensures the simplex contributes an independent microstate 

7 
Bulk redundancy 

elimination 

Removes one spurious degree of freedom from the bulk closure 

set, yielding 7 independent constraints per simplex 

For the general reader. Think of each tile as having a checklist of seven rules it must pass: (1) 

its own internal shape must be self-consistent; (2–4) it must match properly with each of its three 

neighboring tiles; (5) it must agree on which way is "left" and which is "right" relative to the 

global pattern; (6) it must be distinguishable from its neighbors—it has to represent a genuinely 

different piece of information; and (7) one apparent rule is actually redundant and gets removed, 

like realizing two items on a to-do list are really the same task. 

The count K = 7 is fixed by an exhaustive consistency argument: 

• K < 7: The constraint set is incomplete. Configurations admit non-unique extensions, 

meaning the same macroscopic boundary data corresponds to multiple incompatible bulk 

completions. The theory is underdetermined. 

• K = 7: The constraint set is complete and consistent. Every admissible boundary 

configuration extends to a unique bulk completion, and simplices can be glued into 

arbitrary global tilings without contradiction. 
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• K > 7: The constraint set is overdetermined. No admissible configurations survive for 

generic boundary data, and global tilings are forbidden. 

For the general reader. Fewer than seven rules and the tiles are too loosely constrained—

multiple incompatible arrangements could all claim to be valid, like a jigsaw with pieces that fit 

in more than one place. Exactly seven and everything fits perfectly. More than seven and the 

rules are so strict that no valid arrangement exists at all—the puzzle becomes unsolvable. 

The present paper does not re-derive K = 7; it uses this as an established structural input and tests 

whether black hole entropy follows as a consequence. 

2.3 Entropy as State Count 

Entropy is defined in the standard statistical sense: 

S = ln Ω, 

where Ω is the number of admissible microscopic configurations consistent with macroscopic 

boundary conditions. 

Crucially, entropy is not introduced as an emergent thermodynamic quantity but as a primary 

measure of distinguishability capacity. Geometry and dynamics arise from the admissibility 

structure, not the other way around. 

For the general reader. Entropy counts the number of different microscopic arrangements that 

all look the same from the outside. A shuffled deck of cards has high entropy because there are 

trillions of possible orderings that all look like "a deck of 52 cards." A sorted deck has low 

entropy—there's essentially only one arrangement. Here, entropy counts the number of different 

ways the tiny tiles of space could be arranged while producing the same large-scale black hole. 

2.4 Clarification: Folds, Boundary Tiles, and Dimensional Projection 

Because the present derivation combines concepts introduced in earlier work with new 

boundary-specific constructions, we clarify here the relationship between folds, boundary 

commitments, and effective boundary cells ("tiles"), and address a common potential 

misunderstanding. 

For the general reader. In earlier papers we introduced "folds" as the most basic stable 

information-bearing units in the framework: each fold can ultimately be forced into a definite 

yes/no outcome, becoming one irreversible bit. Folds are not assumed to be little chunks of area. 

By contrast, "tiles" in this paper are geometric patches on a horizon surface: each tile is the 

smallest boundary region that still carries one independent yes/no outcome after the horizon 

removes (or locks) most of the internal freedom. This section explains why the paper 

distinguishes those two ideas. 

2.4.1 Folds as Stable Binary Commitments with Irreversible Potential 
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In the underlying framework and in prior work [23,24], a fold is a minimal stable unit capable of 

supporting a binary commitment. In operational terms, a fold carries a binary orientation variable 

s ∈ {+1, -1}, 

whose collective phase contributions generate ordinary quantum amplitudes in the continuum 

limit. 

Crucially, a fold should be understood as a unit of stable distinguishability capacity: under 

reversible dynamics it can participate coherently (without generating entropy), while under 

appropriate constraints it can undergo an irreversible binary commitment (creating one unit of 

classical distinguishability). Thus, it is correct to say that one fold corresponds to one binary 

capacity for commitment, but it is not necessary to identify a fold with any fixed geometric area. 

2.4.2 Boundary Projection and Loss of Independent Degrees of Freedom 

When a bulk region is bounded by a null horizon, the external observer loses access to bulk 

distinguishability. The horizon acts as a projection on admissible configurations: 

• Normal (radial) degrees of freedom are frozen by null degeneracy. 

• Tangential closure and compatibility constraints pair across adjacent boundary simplices. 

• Gauge redundancies remove additional apparent degrees of freedom. 

As a result, many fold-level commitments that can be treated as independent in the bulk become 

correlated, paired, or redundant when viewed from the boundary. Although folds retain their 

binary orientation internally, these orientations can no longer be specified independently at the 

horizon. 

In this sense, the horizon "collapses" bulk information—not by physically compressing space, 

but by eliminating independent distinguishability through causal and constraint-based projection. 

2.4.3 Boundary Tiles as Emergent Geometric Cells 

After projection, the entropy relevant to an external observer is governed not by the number of 

folds, but by the number of independent irreversible boundary commitments that remain 

distinguishable. These surviving commitments are supported on emergent geometric patches of 

the horizon, which we call effective boundary cells or tiles. 

A tile is therefore defined as: 

The minimal horizon patch that supports one independent boundary commitment after constraint 

projection and redundancy elimination. 

Tiles are geometric objects; folds are not assumed to be geometric area elements. A tile typically 

corresponds to many correlated folds, with only one independent commitment surviving at the 

boundary. 
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2.4.4 Correlation Length and Effective Cell Area 

Independence of boundary commitments occurs only once correlations between candidate 

commitments decay. Prior work [21] establishes that the minimal separation at which boundary 

commitments decouple is the two-Planck independence threshold, 

ℓₑ = 2ℓₚ. 

On a two-dimensional boundary this implies an effective cell area 

Aᶜᵉˡˡ = ℓₑ² = 4ℓₚ². 

This area characterizes the size of an independent boundary tile, not the size of a fold. The 

appearance of 4ℓₚ² therefore reflects constraint-adjacency coarse-graining and boundary 

projection, rather than an intrinsic geometric size assigned to folds. 

2.4.5 Summary of the Distinction 

To summarize: 

• Folds are minimal stable units capable of becoming irreversible binary commitments. 

• Tiles are emergent geometric boundary cells on a horizon. 

• One tile supports exactly one independent boundary commitment. 

• Many folds contribute to each tile through correlation and constraint sharing. 

• The area 4ℓₚ² characterizes tiles, not folds. 

With this clarification, the entropy derivation can be read unambiguously: the Bekenstein–

Hawking coefficient arises from counting independent boundary tiles, each carrying a single 

surviving binary commitment, rather than from assigning geometric size to individual folds. 

 

3. Horizons as Boundary Constraint Surfaces 

The central step in the derivation is recognizing that a black hole horizon functions as a 

constraint-bounding surface, not a bulk region. 

For the general reader. This section is the heart of the paper. Imagine the black hole's surface 

as a wall. You cannot see or access anything behind the wall, so only the tiles on the wall itself 

can contribute to the information you can detect. The question becomes: of the seven rules each 

tile normally follows, how many still matter when the tile sits on this wall? The answer turns out 

to be just one. This section shows exactly how the other six rules become irrelevant at the 

surface—frozen, paired off with neighboring tiles, or redundant. 

3.1 Projection of Bulk Constraints 
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Consider a spacetime region bounded by a horizon surface ℋ. Bulk simplices interior to ℋ are 

causally inaccessible to an external observer. As a result: 

• Bulk constraints do not contribute to externally distinguishable configurations. 

• Only constraints residing on, or intersecting, the boundary remain relevant. 

This projection eliminates volumetric degrees of freedom and leaves a purely boundary-

supported entropy, in agreement with the area law [10,13,14]. 

3.2 Explicit Boundary Constraint Reduction 

Each boundary simplex inherits all seven bulk constraints from the underlying simplicial foam. 

However, not all inherited constraints remain independent on a horizon. Before tracing the fate 

of each constraint type, we introduce minimal notation to make "pairing" and "gauge 

redundancy" precise. 

3.2.1 Schematic Constraint Definitions 

Let σ be a boundary simplex with faces f. We define: 

Face data. Each face f carries admissible data Xf ∈ 𝒳, where 𝒳 is the space of admissible face 

assignments (e.g., induced metric data, connection holonomy, or closure flux—the specific 

interpretation is not required for the counting argument). 

Orientation sign. Each face has an orientation εσf ∈ {+1, -1} encoding whether f is outward or 

inward oriented relative to σ. 

Closure constraint. The closure constraint on σ is 

Cσ := Σf⊂σ εσf Xf = 0. 

On a null boundary, this splits into normal and tangential components: 

Cσ = Cσ⊥ + Cσ∥. 

Matching constraint. On a shared boundary face f = σ ∩ σ', the matching constraint is 

Mf(σ, σ') := Xf⁽σ⁾ - Xf⁽σ'⁾ = 0, 

with the identification Xf⁽σ'⁾ = -Xf⁽σ⁾ when opposite orientations are used. This is the precise 

statement that the "conjugate/opposite-side" constraints are not independent: they are the same 

constraint written from two perspectives. 

Gauge redundancy. Let G act on face data by Xf ↦ g · Xf, leaving physical equivalence classes 

[Xf]. For the binary fold orientation s ∈ {+1, -1}, the minimal relabeling symmetry is ℤ₂: 
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Xf ∼ -Xf (ℤ₂ relabeling). 

This sign redundancy is consistent with the fold orientation variable introduced in Section 2.4. 

With these definitions, "pairing" means double-counting of Mf across shared faces, and "gauge 

removal" means quotienting by G. 

3.2.2 Constraint Fate on Null Boundaries 

We now trace the fate of each constraint type explicitly. 

Normal closure (1 constraint). The local closure constraint involves components both 

tangential and normal to the boundary. On a null horizon, the normal direction is degenerate: the 

outgoing null generator is fixed by the causal structure, and no independent normal degree of 

freedom remains. In the notation above, Xf⊥ is determined by tangential data and the horizon 

generator, so Cσ⊥ = 0 is automatically satisfied given admissible boundary conditions. The 

normal component of the closure constraint is therefore frozen—it contributes no distinguishable 

state. 

Why null boundaries freeze the normal constraint: A null surface is generated by null geodesics 

whose tangent vectors are simultaneously tangent to and normal to the surface (the null normal is 

contained in the tangent plane). This degeneracy means the normal closure component carries no 

independent information; it is determined entirely by the tangential data. On a spacelike 

boundary, by contrast, the normal direction is independent and the constraint would not freeze. 

For the general reader. One of the seven rules governs how the tile relates to the direction 

pointing "inward" (toward the black hole's center). But a black hole horizon is special: light there 

is trapped at the boundary, moving along the surface rather than away from it. The inward 

direction collapses into the surface itself. So the rule governing that direction is automatically 

satisfied—it contains no choice, no information. That is one rule eliminated. 

Tangential closure (2 constraints). The two tangential components of closure pair across 

adjacent boundary simplices. In the notation above, each tangential closure constraint Cσ∥ on 

simplex σ and the corresponding constraint Cσ'∥ on adjacent simplex σ' are related by the 

matching constraint Mf = 0 on their shared face. They encode the same shared-face matching 

condition from opposite sides. This pairing eliminates both as independent degrees of freedom: 

knowing one determines the other. 

Pairing mechanism: Two adjacent boundary simplices share a codimension-1 face f = σ ∩ σ'. 

The tangential closure condition on each side of this face is the same geometric requirement 

(matching of induced metric data) viewed from opposite simplices: Xf⁽σ⁾ = Xf⁽σ'⁾ via Mf = 0. 

These are not independent constraints but a single constraint counted twice. 

For the general reader. Two of the rules describe how each tile lines up with its neighbors 

along the surface. But each such rule is shared between two tiles—tile A's "match my right 

neighbor" rule is the same as tile B's "match my left neighbor" rule, just seen from the other side. 
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They look like two rules, but they are really one rule counted twice. Both get eliminated as 

independent choices. 

Neighbor compatibility (3 constraints). Of the three neighbor compatibility constraints, one 

involves the normal direction and is subsumed by the frozen normal closure (Xf⊥ already 

determined). The remaining two tangential compatibility constraints pair across shared boundary 

faces by the same mechanism as tangential closure: each encodes a shared-face matching 

condition Mf = 0 that is a single constraint counted from both sides. 

Gauge redundancy (1 constraint). The orientation/chirality constraint and the distinguishability 

commitment together contain one gauge redundancy: the ℤ₂ relabeling symmetry Xf ∼ -Xf that 

does not change the physical configuration. Removing this redundancy eliminates one constraint. 

This is consistent with the fold orientation s ∈ {+1, -1}: the sign of s can be globally flipped 

without changing physical predictions. 

For the general reader. The handedness rule and the distinguishability rule overlap: they share 

a symmetry, like the fact that labeling tiles "A, B, C" contains the same information as labeling 

them "1, 2, 3." Renaming the labels does not change the physics. Removing this redundancy 

eliminates one more rule. 

Surviving commitment (1 constraint). After all reductions, exactly one independent binary 

commitment remains per boundary cell: the distinguishability commitment, which records 

whether the cell is in one admissible state or the other. 

The full accounting is summarized below: 

Constraint type Bulk count Boundary fate Surviving 

Normal closure 1 Frozen (null degeneracy) 0 

Tangential closure 2 Paired across shared faces 0 

Neighbor compatibility (normal) 1 Subsumed by frozen normal 0 

Neighbor compatibility (tangential) 2 Paired across shared faces 0 

Orientation + distinguishability 2 One removed by gauge redundancy 1 

Total 7  1 

This reduction—from seven bulk constraints to one boundary commitment—is the structural 

origin of the area law. It is not assumed but derived from the causal and geometric properties of 

null boundaries acting on the admissibility constraint set. 

For the general reader. Of the seven rules each tile follows, six become locked, paired, or 

redundant when the tile sits on a black hole's surface. Only one survives: a single binary choice, 

like a coin flip—heads or tails, yes or no, 0 or 1. Each surface tile contributes exactly one bit of 

information. This is the deep reason why black hole entropy is proportional to surface area: the 

surface is tiled by these minimal one-bit cells. 

3.3 Worked Example: Toy Boundary Patch 
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To illustrate the constraint reduction concretely, consider a minimal boundary patch consisting of 

four triangular simplices sharing edges on a null surface ℋ. 

Label the simplices σ₁, σ₂, σ₃, σ₄, arranged so that σ₁ shares an edge with σ₂ and σ₃, while σ₄ 

shares edges with σ₂ and σ₃. 

Naive counting: Each simplex carries 7 constraints, so the patch begins with 4 × 7 = 28 

constraint slots. 

Normal freezing: Each simplex loses 1 normal closure constraint to null degeneracy. This 

removes 4 constraints, leaving 24. 

Tangential pairing: The patch contains 4 internal shared edges. Each shared edge eliminates 2 

tangential constraints (one closure, one compatibility) that are double-counted across the edge. 

This removes 4 × 2 = 8 constraints, leaving 16. 

Normal compatibility: Each simplex has 1 normal compatibility constraint subsumed by the 

frozen normal closure, removing 4 more. This leaves 12. 

Tangential compatibility pairing: The same 4 internal edges each eliminate 1 additional 

tangential compatibility constraint by pairing, removing 4 more. This leaves 8. 

Gauge redundancy: Each simplex has 1 gauge redundancy among its orientation and 

distinguishability constraints, removing 4 more. This leaves 4. 

Result: The 4-simplex patch supports exactly 4 independent binary commitments—one per 

cell—confirming the general reduction. 

The eliminations above are organized by constraint type to avoid double counting; each pairing 

removal corresponds to a single shared-face constraint counted twice in the naive per-simplex 

tally. More generally, for a boundary tiling with N boundary simplices and E internal shared 

edges, the paired constraints scale with E, leaving a net of one independent commitment per 

simplex in the null limit. 

Note that naive bulk counting would assign 2²⁸ configurations to this patch. The boundary 

reduction yields 2⁴ = 16 admissible configurations, demonstrating that the constraint machinery 

does substantial non-trivial work. 

For the general reader. To make this concrete: take four tiny triangular tiles on the black hole's 

surface. Naively, with seven rules each, they could have 2²⁸—over 268 million—possible 

configurations. But after accounting for frozen, paired, and redundant rules, only 2⁴ = 16 

configurations survive. The rules do enormous work, stripping away almost all of the apparent 

freedom. What remains is exactly one binary choice per tile. 
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The toy example serves as a consistency check of the general reduction rules. Appendix C 

provides an explicit constraint matrix whose null-space dimension reproduces this boundary 

degree-of-freedom count for the minimal horizon patch. 

 

4. Fundamental Boundary Cell Area 

The effective boundary cell area is not set by the Planck length ℓₚ alone, but by the intrinsic two-

Planck independence threshold of the framework. 

For the general reader. We now know that each surface tile carries one bit of information. But 

how big is each tile? If tiles were the size of a single Planck area (the smallest meaningful length 

in physics, squared), the entropy would be S = A / ℓₚ²—four times too large. This section shows 

why the tiles are actually four Planck areas in size, which gives the correct factor of 1/4. The 

reason is that neighboring tiles share rules, so tiles right next to each other are not truly 

independent. You have to space them out by twice the Planck length before they carry 

independent information—making each effective tile four Planck areas. 

4.1 The Two-Planck Independence Threshold 

The fundamental length scale governing independent boundary commitments is 

ℓₑ = 2ℓₚ. 

This scale arises not as a geometric edge length, simplex face size, or thermal correlation length, 

but as the minimal graph distance at which boundary commitments become independent given 

shared-face constraints. 

4.1.1 Independence as a Graph-Distance Criterion 

Define an "independent boundary commitment" as a degree of freedom not fixed by face-sharing 

constraints. Two boundary simplices σ and σ' share a face f = σ ∩ σ', and the matching constraint 

Mf = 0 couples their admissible states. Consequently: 

• A single ℓₚ-separated patch (one adjacency step) shares at least one constraint with its 

neighbor. The two patches are therefore not independent: their boundary commitments 

are correlated through Mf. 

• Independence first occurs at the smallest separation where there is no shared constraint 

path—i.e., no shared face and no shared closure coupling. 

On a nearest-neighbor simplicial tiling, this occurs at two adjacency steps. The minimal graph 

distance for independence is therefore 

dᵢₙᵈ = 2 (adjacency steps). 
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Each adjacency step corresponds to one Planck length in the simplicial lattice, so the 

independence threshold is 

ℓₑ = 2ℓₚ. 

4.1.2 Why Not √2ℓₚ or 3ℓₚ? 

A common objection is that Euclidean distance on a triangular lattice might introduce factors like 

√2 or √3. However, ℓₑ is not a Euclidean distance; it is an adjacency distance in the constraint 

graph. The relevant measure is the number of shared-face hops required to reach a given 

simplex, not the embedding geometry of the lattice. Euclidean factors arise from embedding; the 

constraint structure depends only on adjacency. 

The answer to "why not 3ℓₚ?" is equally direct: at three adjacency steps, the simplices are still 

independent (no shared constraint path), but independence already holds at two steps. The 

independence threshold is the minimum graph distance for decoupling, which is two. 

For the general reader. Think of tiles connected by shared rules as nodes in a network, with an 

edge between any two tiles that share a rule. Two tiles directly connected by an edge are 

correlated—they cannot make independent choices. To find two tiles that are truly independent, 

you need to step two edges away: the minimum "network distance" at which no shared rule 

connects them. That network distance of 2 corresponds to a physical separation of 2ℓₚ. This 

means each independent "pixel" of the black hole's surface is 2ℓₚ × 2ℓₚ = 4ℓₚ² in area. 

The two-Planck scale was derived independently in [21] from admissibility and 

distinguishability limits, prior to and without reference to black hole entropy. Its appearance here 

is a consequence of the constraint structure, not a parameter tuned to match the known answer. 

4.2 Boundary Area Quantization 

The area associated with a single effective boundary cell is therefore 

Aᶜᵉˡˡ = ℓₑ² = (2ℓₚ)² = 4ℓₚ². 

Each such cell supports exactly one independent binary commitment. 

 

5. Derivation of the Bekenstein–Hawking Entropy 

For the general reader. All the pieces are now in place. Each independent surface tile is 4ℓₚ² in 

area and carries one binary choice. To find the total entropy, we simply count the tiles: divide the 

total surface area by the tile size. This gives N = A / 4ℓₚ² tiles, each contributing one bit of 

information. When entropy is measured in bits, S = N = A / 4ℓₚ²—exactly the Bekenstein–

Hawking formula. The factor of 1/4 was never put in by hand; it is the ratio of the Planck area to 

the tile area, which was determined by the structure of space itself. 
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Let A be the total horizon area. The number of effective boundary cells is 

N = A/Aᶜᵉˡˡ = A/4ℓₚ². 

Each cell supports one independent binary commitment, so the total number of admissible 

configurations is 

Ω = 2ᴺ. 

The entropy is 

S = ln Ω = N ln 2 = A/4ℓₚ² ln 2. 

5.1 On Entropy Units and the Role of ln 2 

The derivation fixes the number of independent boundary commitments: 

N = A/4ℓₚ², 

which is the origin of the 1/4 coefficient. The numerical value of entropy depends only on the 

conventional choice of logarithm base. 

If entropy is defined in nats, S ≡ ln Ω, then with binary commitments Ω = 2ᴺ gives S = N ln 2. If 

entropy is defined in bits, Sᵦᵢₜₛ ≡ log₂ Ω, then Sᵦᵢₜₛ = N. 

Thus the framework determines the geometric density of degrees of freedom on the horizon: one 

independent commitment per 4ℓₚ². Converting between nats and bits is a unit choice analogous to 

converting temperatures between Kelvin and Rankine. The 1/4 coefficient is entirely geometric 

and independent of this convention. 

This situation is not unique to the present framework. Bekenstein's original information-theoretic 

argument [1], Strominger and Vafa's string microstate counting [5], and the loop quantum 

gravity derivation [6,7] all face the same unit-choice step. The physical content of any such 

derivation is the count of independent degrees of freedom per unit area; the rest is convention. 

For the general reader. A brief technical aside: when physicists report black hole entropy, they 

have to choose an information unit—like choosing between miles and kilometers. In "bits," each 

yes/no choice counts as 1, so the formula reads S = A / 4ℓₚ². In "nats" (the unit preferred in 

statistical mechanics), a yes/no choice counts as about 0.693, so the formula picks up that factor. 

This is purely a unit conversion—the underlying physics is identical. The important result is that 

each 4ℓₚ² patch carries exactly one binary degree of freedom. That geometric fact is what the 

framework derives, and it is independent of which unit you use to report the answer. 

 

6. Comparison with Existing Approaches 
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The present derivation differs from established approaches to black hole entropy in both 

mechanism and assumptions. A brief comparison clarifies the structural distinctions. 

For the general reader. Several other theoretical frameworks have also derived the Bekenstein–

Hawking formula, each using very different ideas. This section compares them to the present 

approach. The key difference: many previous methods either require adjusting a free parameter 

to get the right answer, or only work for special types of black holes. The present approach has 

no adjustable parameters and works for all black holes. 

String theory microstate counting (Strominger–Vafa) [5]. The entropy is computed by 

counting BPS microstates of a dual weakly-coupled system. The area scaling and the coefficient 

1/4 emerge for specific extremal and near-extremal black holes. The mechanism is interior 

microstate counting in a dual description. The present approach requires no duality, no 

supersymmetry, and applies to generic horizons. 

Loop quantum gravity (Rovelli–Smolin, Ashtekar–Baez–Corichi–Krasnov) [6,7]. The area 

spectrum of the horizon is quantized, and entropy is computed by counting spin-network 

punctures consistent with a given total area. The coefficient 1/4 is obtained only by fixing the 

Immirzi parameter γ to a specific value (γ = ln 2 / π√3 in the original counting). The Immirzi 

parameter is a free parameter of the quantization, analogous to a θ-angle, and its value is not 

determined by internal consistency alone. In contrast, the present framework has no free 

parameters: K and ℓₑ are both fixed by closure consistency. We note that subsequent work by 

Engle, Noui, and Perez [29] has argued that the dependence on the Immirzi parameter can be 

removed when the appropriate quantum group structure is imposed at the horizon. While this 

development strengthens the internal consistency of loop quantum gravity, it also underscores 

that the origin of the 1/4 coefficient remains subtle even within that framework, motivating 

approaches—such as the present one—in which the coefficient follows directly from boundary 

constraint structure. 

Entanglement entropy (Bombelli–Koul–Lee–Sorkin; Srednicki) [8,9,27]. Entropy is identified 

with the entanglement between degrees of freedom inside and outside the horizon. The area 

scaling is generic, but the coefficient depends on a UV cutoff that must be matched to the 

gravitational coupling. The present approach requires no UV regularization: the discreteness of 

the simplicial foam provides a natural cutoff, and the coefficient follows without matching. 

Euclidean path integral (Gibbons–Hawking) [4]. The entropy is computed from the on-shell 

Euclidean action. The coefficient 1/4 follows from the Einstein–Hilbert action with the standard 

normalization 1/16π G. This is closest in spirit to the present approach, in that the coefficient 

traces to a structural feature of the theory (the action normalization), but it operates within the 

continuum and does not explain why the action has that normalization. 

In each case, the coefficient 1/4 either requires an adjustable parameter, depends on a specific 

class of black holes, or traces to an unexplained normalization. The present framework fixes the 

coefficient from the constraint structure of spacetime itself, with no parameters to adjust. 
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7. Discussion and Implications 

The derivation shows that the Bekenstein–Hawking entropy coefficient is not an arbitrary 

numerical artifact but a structural consequence of three elements: 

• Fixed constraint count (K = 7) per bulk simplex, 

• Boundary projection of admissibility at null surfaces, 

• The intrinsic two-Planck independence threshold. 

Each of these is determined independently of black hole physics. Their combination yields N = A 

/ 4ℓₚ² independent boundary commitments—i.e., the 1/4 geometric coefficient—without tuning. 

Because the same admissibility framework independently fixes the cosmological constant Λ 

[22], the appearance of the same fundamental scales (K = 7, ℓₑ = 2ℓₚ) in both results is 

structurally significant. The entropy coefficient and Λ arise from the same microscopic axioms, 

placing black hole thermodynamics and vacuum energy on a unified footing. A framework that 

produces two widely separated physical predictions—one at the Planck scale (black hole 

entropy) and one at the cosmological scale (Λ)—from the same parameter-free inputs is highly 

constrained and offers concrete targets for falsification. 

For the general reader. The same set of rules that explains black hole entropy also, in separate 

work, predicts the value of the cosmological constant—the mysterious energy that drives the 

accelerating expansion of the universe. These are two of the most important unsolved problems 

in physics, operating at completely opposite scales (the tiniest versus the largest structures in the 

universe). The fact that a single framework with no adjustable parameters addresses both is 

either a remarkable coincidence or a sign that the framework is capturing something real about 

how space works. 

7.1 Predictions and Testability 

The framework makes several predictions that distinguish it from parameter-dependent 

approaches: 

1. Universality of the coefficient. Within the framework, the 1/4 coefficient holds for all 

null horizons—Schwarzschild, Kerr, charged, cosmological—because the boundary 

constraint reduction depends only on the null character of the surface, not on the details 

of the black hole interior. 

2. No logarithmic corrections from the constraint structure. The constraint reduction 

fixes the leading area term with no free parameters. Subleading corrections, if present, 

must arise from additional dynamics not captured by kinematic admissibility counting—

such as horizon fluctuations, matter content, or effective field theory loops [28]. 

3. Quantized horizon area. The area is quantized in units of 4ℓₚ². The minimum horizon 

area increment is Δ A = 4ℓₚ², corresponding to the addition of one boundary cell. Note 

that in the present framework, this quantization arises from the graph-distance structure 

of independent commitments—it is an effective cell size set by constraint sharing, not an 
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eigenvalue spectrum derived from a Hamiltonian. Whether the same scale appears as a 

hard spectral gap in a full dynamical theory remains an open question. 

For the general reader. The framework makes testable predictions. First, the 1/4 factor should 

be the same for every type of black hole—spinning, charged, or otherwise. Second, the surface 

area of a black hole should come in discrete steps, like a staircase rather than a ramp. The 

smallest possible increase in surface area is exactly four Planck areas. These predictions are 

beyond current experimental reach, but they are precise and falsifiable, which is what separates a 

scientific theory from speculation. 

 

8. Conclusion 

We have established that the Bekenstein–Hawking entropy coefficient follows from boundary 

constraint counting in a discrete admissibility framework, conditional on two inputs: the 

constraint count K = 7 per simplex and the independence threshold ℓₑ = 2ℓₚ. The factor 1/4 arises 

inevitably from the combination of a single independent boundary commitment per effective cell 

and a fundamental cell area of 4ℓₚ². Given these inputs, the derivation requires no additional 

tuning, no free parameters, and no holographic postulate. 

The derivation proceeds by explicitly reducing the seven bulk constraints per simplex to one 

surviving boundary commitment through null degeneracy, constraint pairing, and gauge 

redundancy—a reduction that can be verified constraint by constraint. The two-Planck graph-

distance threshold that sets the cell area arises from shared-face constraints between adjacent 

simplices, not from reverse-engineering the known answer. 

The logical structure is: companion papers [20,21] establish K = 7 and ℓₑ = 2ℓₚ from closure 

consistency and decoupling analysis; the present paper shows that these inputs, combined with 

boundary constraint reduction on null horizons, yield the 1/4 coefficient. Readers who accept the 

companion derivations obtain a parameter-free prediction; those who do not can treat this paper 

as establishing the precise conditional dependence. 

A framework that simultaneously addresses the cosmological constant and the black hole entropy 

coefficient from related axioms is highly constrained, produces concrete predictions, and merits 

continued scrutiny. 

For the general reader. The 1/4 in the black hole entropy formula is not a number someone 

chose—it is a number that space itself demands, given certain rules about how space is built. 

When you tile a black hole's surface with the smallest independent building blocks allowed by 

those rules, each block is exactly four Planck areas in size and carries exactly one bit of 

information. Count the blocks, and you get the entropy. The rules that determine the block size 

were established in separate work that had nothing to do with black holes. The fact that they 

reproduce this famous result—with no adjustment—suggests that the rules may be telling us 

something true about the fabric of space. 
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Appendix A: Closure Consistency and the Constraint Count 

K = 7 

A.1 Summary 

The derivation of black hole entropy in the main text relies on the fact that each simplicial cell 

carries exactly K = 7 independent admissibility constraints. This appendix summarizes the origin 

and uniqueness of this count. 

Each simplex σ carries face-associated variables Xf and a binary orientation label s ∈ {+1, -1}. 

The seven admissibility constraints—local closure, three neighbor compatibility conditions, 

orientation consistency, distinguishability capacity, and bulk redundancy elimination—are 

enumerated explicitly in Section 2.2. 

A.2 Uniqueness of K = 7 

The closure-consistency argument establishing the uniqueness of K = 7 proceeds by exhaustion: 

• If K < 7, the constraint set is incomplete: multiple inequivalent bulk completions exist for 

the same boundary data (non-uniqueness). 

• If K = 7, the constraint set is complete and consistent: generic boundary data admits a 

unique admissible bulk completion. 

• If K > 7, the constraint set is overdetermined: no admissible configurations survive for 

generic boundary data. 

Requiring both local admissibility and global extensibility therefore fixes K = 7 uniquely. The 

full derivation is given in Ref. [20] and is not reproduced here. 

A.3 Role in the Present Paper 

The present paper does not re-derive K = 7; it uses this as a foundational input and tests whether 

black hole entropy follows as a consequence. The boundary constraint reduction (Appendix B) 

and explicit rank calculation (Appendix C) demonstrate that the 7 → 1 reduction on null 

horizons is enforced algebraically given this input. 

 

Appendix B: Boundary Constraint Reduction on a Null 

Horizon 

B.1 Objective 



 22 

This appendix provides a formal account of how the seven bulk admissibility constraints per 

simplex reduce to a single independent boundary commitment on a null horizon. 

B.2 Boundary Variables and Constraint Decomposition 

Let σ be a simplex intersecting a null horizon ℋ. The closure constraint decomposes as 

Cσ = Cσ⊥ + Cσ∥, 

where ⊥ and ∥ denote components normal and tangential to ℋ. 

Structural assumptions on constraint space. The counting arguments in this appendix assume 

only that the admissibility constraints are equality constraints with well-defined rank, and that 

the face variables Xf ∈ 𝒳 admit a linear (or linearizable) decomposition into normal and 

tangential components relative to a null hypersurface. In particular, the argument requires that 

matching constraints identify face data by equality and that the relevant gauge redundancy is 

discrete (here ℤ₂). The specific realization of 𝒳—whether vector-valued fluxes, group-valued 

holonomies linearized near admissible configurations, or other simplicial data—does not affect 

the constraint count so long as these structural conditions hold. 

B.3 Freezing of the Normal Closure Constraint 

On a null hypersurface, the normal vector lies in the tangent space of ℋ. Consequently, the 

normal component of the closure constraint carries no independent degree of freedom: 

Cσ⊥ = 0 

is automatically satisfied for admissible boundary data. 

One constraint is therefore frozen by null geometry. 

B.4 Pairing of Tangential Closure Constraints 

For two adjacent boundary simplices σ and σ' sharing a face f, both impose a tangential closure 

condition involving Xf. The matching constraint 

Mf(σ, σ') = 0 

identifies these two conditions as the same physical requirement. 

The remaining face of a boundary simplex is shared with the causally inaccessible interior; this is 

precisely the face whose associated constraint lies in the normal direction and is already 

eliminated by null degeneracy (Section B.3). Consequently, only faces shared with other 

boundary simplices contribute tangential closure constraints subject to pairing. 
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Thus, two tangential closure constraints are paired and eliminated as independent degrees 

of freedom. 

B.5 Reduction of Neighbor Compatibility Constraints 

Of the three neighbor compatibility constraints: 

• One involves the normal direction and is subsumed by the frozen normal closure, 

• The remaining two tangential constraints are again paired across shared faces via the 

same matching equations. 

This removes three additional constraints. 

B.6 Gauge Redundancy and Binary Quotient 

The gauge redundancy removed at the boundary is distinct from the bulk redundancy eliminated 

in defining the independent constraint count K = 7. The latter ensures independence of bulk 

constraints; the former arises only after restriction to the boundary and corresponds to a residual 

ℤ₂ relabeling symmetry of the surviving boundary commitment. 

The orientation and distinguishability labels admit a minimal relabeling symmetry 

s ↦ -s, 

corresponding to a global ℤ₂ transformation that leaves all closure and matching equations 

invariant. 

Quotienting by this symmetry removes one redundant binary label, leaving a single 

physical equivalence class. 

B.7 Surviving Boundary Commitment 

After all reductions: 

• 1 constraint is frozen, 

• 4 constraints are eliminated by pairing, 

• 1 constraint is removed by gauge redundancy, 

leaving exactly 

7 - (1 + 4 + 1) = 1 

independent boundary constraint per effective cell. 

This surviving constraint corresponds to one irreversible binary commitment, i.e., one unit of 

classical distinguishability contributing to entropy. 
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B.8 Independence Scale and Effective Cell Area 

Boundary commitments associated with adjacent simplices share matching constraints and are 

therefore not independent. Independence occurs at the minimal adjacency distance where no 

shared constraint path exists. 

In the simplicial adjacency graph, this distance corresponds to two adjacency steps, fixing the 

independence length 

ℓₑ = 2ℓₚ. 

On a two-dimensional boundary, this implies an effective independent area 

Aᶜᵉˡˡ = ℓₑ² = 4ℓₚ². 

This area characterizes boundary tiles, not folds. 

B.9 Boundary Reduction Result 

Boundary Reduction Result. Admissibility and null boundary geometry reduce the bulk 

constraint system to exactly one independent irreversible binary commitment per boundary area 

4ℓₚ². 

This result supplies the structural basis for the Bekenstein–Hawking area coefficient derived in 

the main text. 

 

Appendix C: Explicit Constraint Matrix for a Four-Simplex 

Boundary Patch 

C.1 Purpose of This Appendix 

Sections 3.2–3.3 argue that seven bulk admissibility constraints per simplex reduce to a single 

independent boundary commitment on a null horizon. Section 3.3 presents a toy boundary patch 

illustrating this reduction. The purpose of this appendix is to make that example fully explicit, 

by: 

• defining concrete boundary variables, 

• writing all constraint equations explicitly, 

• exhibiting the associated constraint matrix, and 

• computing its rank directly. 

This eliminates any ambiguity about whether the reduction follows from the structure of the 

constraints or from a particular choice of variables. 
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C.2 Geometry and Boundary Variables 

Consider a minimal boundary patch consisting of four triangular simplices σ₁, σ₂, σ₃, σ₄ arranged 

as in Section 3.3: 

• σ₁ shares faces with σ₂ and σ₃, 

• σ₄ shares faces with σ₂ and σ₃, 

• σ₂ and σ₃ do not share a face, 

• each simplex has one face oriented toward the bulk interior. 

After null reduction (Section 3.2), each simplex contributes two independent tangential face 

variables. Denote these by 

(x₁ₐ, x₁ᵦ, x₂ₐ, x₂ᵦ, x₃ₐ, x₃ᵦ, x₄ₐ, x₄ᵦ) ∈ ℝ⁸. 

No assumptions are made about the physical interpretation of these variables beyond linearity 

and equality matching. 

C.3 Matching Constraints 

Each shared boundary face imposes a matching constraint identifying the corresponding 

tangential variables. For the chosen patch, these are: 

x₁ₐ − x₂ₐ = 0 x₁ᵦ − x₃ₐ = 0 x₄ₐ − x₂ᵦ = 0 x₄ᵦ − x₃ᵦ = 0 

These four equations encode all tangential compatibility conditions between boundary simplices. 

The interior-facing faces are normal-direction faces and have already been eliminated by null 

degeneracy via the closure constraints. 

C.4 Constraint Matrix 

The matching constraints may be written compactly as a linear system 

Mx = 0, 

where x ∈ ℝ⁸ is the vector of tangential variables ordered as 

x = (x₁ₐ, x₁ᵦ, x₂ₐ, x₂ᵦ, x₃ₐ, x₃ᵦ, x₄ₐ, x₄ᵦ)ᵀ. 

The constraint matrix M is then 

    x₁ₐ x₁ᵦ x₂ₐ x₂ᵦ x₃ₐ x₃ᵦ x₄ₐ x₄ᵦ 

M = [ 1   0  −1   0   0   0   0   0 ] 

    [ 0   1   0   0  −1   0   0   0 ] 

    [ 0   0   0  −1   0   0   1   0 ] 

    [ 0   0   0   0   0  −1   0   1 ] 
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C.5 Rank and Null Space 

The sparsity pattern of M is fixed by the adjacency graph of the patch: each row corresponds to a 

shared-face matching constraint, and each nonzero entry occurs only where a given simplex 

carries the corresponding face variable. The matrix is not chosen; it is implied by the patch 

topology. 

The four rows of M are linearly independent. Therefore, 

rank(M) = 4. 

Since the total number of variables is 8, the dimension of the null space is 

dim(ker M) = 8 - 4 = 4. 

Thus the solution space of admissible boundary configurations is four-dimensional. 

C.6 Interpretation 

Each of the four independent directions in the null space corresponds to one independent 

boundary degree of freedom, one per boundary simplex. The four-dimensional null space 

parameterizes continuous boundary configurations; in the full framework, each independent 

degree of freedom corresponds to a stable fold-capacity that is realized as a binary commitment 

upon irreversibility (Section 2.4). The four independent boundary degrees therefore yield 2⁴ = 16 

admissible committed configurations for the patch. When irreversibility is imposed (e.g., by 

coarse-graining or measurement), each such degree of freedom yields a single binary 

commitment. 

This confirms explicitly that, for the four-simplex patch, 

4 × 7 bulk constraints → 4 × 1 independent boundary commitments. 

The result follows from the rank of the constraint matrix and does not rely on narrative pairing 

arguments. 

C.7 Why the Result Is Not "Built In" 

Although the counting result appears simple, it is not imposed by construction. The dimension of 

the null space depends on: 

• the existence of matching constraints as equality conditions, 

• the fact that interior-facing faces are eliminated by null degeneracy, 

• the topology of the boundary patch (which determines the number of matching 

constraints). 
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A different adjacency structure, or the absence of null freezing, would change the rank of M. The 

present calculation shows that given the admissibility constraints and null boundary structure 

defined in the main text, the reduction to one independent boundary commitment per simplex is 

enforced algebraically. 

For d-dimensional face data (Xf ∈ ℝᵈ), the constraint structure scales uniformly: the null space 

becomes 4d-dimensional, but the closure-consistency count K = 7 constrains the total per-

simplex admissible freedom to a single binary commitment regardless of d, as the additional 

dimensions are absorbed by correspondingly higher-dimensional closure and matching 

constraints. 

C.8 Conclusion 

This appendix provides a concrete linear-algebraic verification of the boundary constraint 

reduction for a minimal four-simplex patch. The explicit constraint matrix has rank 4, leaving a 

four-dimensional null space corresponding to one independent boundary commitment per 

simplex. 

This removes any ambiguity about whether the 7→1 reduction is merely restated in words: for 

this patch, it follows directly from the structure and rank of the constraint system. 
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