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Summary. We ask whether the universe could fail to "close" geometrically if its fundamental
constants took the wrong values. Beginning from a triangle-based coherence model of pre-
geometric transport, we show that minimal consistency forces a U(1) phase structure and that
large-scale closure must occur on the de Sitter horizon sphere. Topological integrality then
requires that the number of Planck-scale cells on that surface multiplied by the electromagnetic
phase per cell equals an integer. This yields a direct constraint relating o and A. When this
constraint is combined with independent discrete mechanisms governing the coupling strength
and vacuum regulation, the resulting winding number depends super-exponentially on the
discrete constraint count K. Only K = 7 produces a winding number in the observed
cosmological regime; nearby integers miss by 50—100 orders of magnitude. In this framework,
the constraint count, the strength of electromagnetism, and the size of the universe are not
independent—they are mutually restricted by geometric admissibility.

For the general reader. This paper explores a simple but radical idea: what if the basic constants
of nature are not independent numbers, but must fit together for the universe to "close"
geometrically? Imagine building space out of tiny triangular pieces. For those triangles to join
consistently, they must satisfy a small set of internal rules. When those rules are written down
carefully, they imply that space must carry a built-in phase symmetry—the same mathematical
structure that underlies electromagnetism. Now zoom out. If the universe is expanding under the
influence of a cosmological constant, it naturally has a spherical boundary—the de Sitter
horizon. That sphere can be thought of as tiled with Planck-sized patches. A deep result from
geometry says that the total "twist" of a phase field over a closed surface must add up to a whole
number. In this framework, each Planck patch contributes a tiny amount of twist governed by the
fine-structure constant. For the universe to close properly, the number of patches times that twist
must equal an exact integer. When this global closure rule is combined with independent
mechanisms that determine how the coupling strength depends on a discrete parameter K, the
result is striking: the winding number becomes extraordinarily sensitive to K. Only one value—
K = 7—places the total twist in the range implied by cosmology. Nearby values miss by tens of
orders of magnitude. In other words, the strength of electromagnetism, the size of the universe,
and the discrete structure underlying space are not arbitrary in this picture—they are tied together
by the requirement that the geometry of the universe fits together without contradiction.
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We develop a unified geometric argument establishing that the fine-structure constant a and the
cosmological constant A are jointly constrained by a single topological closure condition, and

that the discrete constraint count K = 7 is the unique value compatible with the observed

cosmological hierarchy at order-of-magnitude level.



The argument proceeds in five stages. First, we show that triangle coherence in a simplicial pre-
geometric substrate, decomposed into K independent constraints, forces a minimal U(1) gauge
redundancy through explicit exclusion of trivial, discrete, and non-abelian alternatives (§2).
Second, we derive the global cell count N_X by identifying the de Sitter event-horizon 2-sphere
as the unique closed surface satisfying homogeneity, isotropy, and asymptotic time-
independence, discretized in Planck-area units (§3). Third, Chern—Weil integrality on the
resulting U(1) bundle yields the closure condition N_X - 6(a) = 2nn with n € Z (§4). Fourth, we
show that renormalization-group consistency constrains the holonomy map 6(a) to be evaluated
at a fixed reference scale, with the apparent higher-order coefficient c. revealed as a logarithmic,
scale-dependent quantity rather than a universal constant (§5). Fifth, we show that when the
closure equation is combined with the discrete coupling formula o(K) and the Two-Planck
vacuum regulation A(K), the topological winding number n(K) is a super-exponential function of
K, and only K = 7 places n in the cosmologically observed regime ~10'*', with K =6 and K = 8
failing by 50—100 orders of magnitude (§6).

The combined architecture converts K = 7 from an enumerated input into a selected output, with
a and A jointly constrained by an admissibility condition up to discrete topological class n and
controlled corrections.

1. Introduction

The fine-structure constant a = 1/137 and the cosmological constant A = 1.1 X 102 m2 are
among the most precisely measured yet least understood parameters in fundamental physics. In
the Standard Model and general relativity, they enter as independent inputs. The present work
investigates whether a pre-geometric consistency requirement—topological closure of a U(1)
bundle over a cosmological horizon surface—can render them mutually constrained by an
admissibility condition, and whether the discrete structure underlying this closure selects its own
constraint count.

The argument is constructive. We do not assume U(1) gauge symmetry; we derive it as the
minimal structure compatible with holonomy-based coherence in a simplicial substrate. We do
not choose the cosmological horizon by hand; we show it is the unique 2-surface satisfying the
symmetry and stability requirements of the closure argument. And we do not assume K = 7; we
show it is the only integer for which the combined system of closure, coupling, and vacuum
regulation produces a topological winding number in the observed cosmological range.

We state explicitly the logical status of each element. The K-constraint decomposition of triangle
coherence, the identification of coherent holonomy with electromagnetic phase, and the leading-
order uniformity of per-cell holonomy are structural inputs (assumptions). The U(1) minimality,
the Chern—Weil integrality, the RG stability constraint, and the K = 7 selection are derived
consequences. The de Sitter surface selection is a derived consequence of stated symmetry



requirements, conditional on the late-time cosmology approaching a de Sitter attractor. The paper
stands or falls on whether the structural inputs are physically reasonable and whether the derived
consequences are internally consistent.

Main claim. The closure condition N_X - a0 =n € Z does not uniquely determine a and A; it
restricts them to a discrete admissibility family labeled by the integer n. Closure alone does not
select K. What selects K is the combination of the closure equation with two independent
discrete mechanisms: the coupling formula a(K) from simplicial coherence counting, and the
vacuum regulation A(K) from Two-Planck dimensional transmutation. The resulting winding
number n(K) is super-exponentially sensitive to K, and only K = 7 places n in the observed
cosmological regime. The claim is therefore not "we derive a and A from first principles" but
"the discrete coherence structure, the electromagnetic coupling, and the cosmological constant
are jointly constrained by geometric admissibility, and only one value of the constraint count is
consistent with the observed hierarchy."

1.1 Assumption ledger

For rapid reference, we collect here the standing assumptions (SA), bridge hypotheses (BH), and
structural inputs (SI) that the paper asks the reader to grant. Each is developed in the section
indicated.

Standing assumptions (formal axioms of the coherence framework):

e SAI1 (Gauge invariance). Coherence predicates depend on gauge-equivalence classes of
transport data, not on representative choices. (§2.1)

e SA2 (Robustness). Sufficiently small continuous perturbations of edge data do not
change coherence status, away from a measure-zero set of critical configurations. (§2.3)

e SA3 (Minimality). The per-cell coherence predicate introduces no independent
dimensionless parameters beyond the single holonomy-strength coupling. The holonomy
normalization is controlled by one real degree of freedom. (§2.3)

e SA3' (Scalar completeness under local gluing). For any triangle A shared by two
tetrahedra 11 and 72, the loop-closure constraint C4 and the co-face compatibility
constraint C7 must be decidable using only: (i) the transport data on 11, (ii) the transport
data on 12, and (iii) a single real scalar s(H_A) computed from the triangle holonomy. No
additional local comparison data (choice of internal frame, stabilizer alignment, maximal-
torus section, normal-bundle identification) may be introduced beyond the existing
embedding constraints C5—C7. SA3' is not an additional assumption beyond K =7
minimality; it is the operational content of the statement that C4 contributes exactly one
independent continuous constraint channel. (§2.3)

Operational justification of SA3". SA3'" encodes an information restriction: the coherence test
across a shared face must be decidable from gauge-invariant loop data accessible locally on the



two incident tetrahedra. Allowing additional alignment/section data (e.g., internal frame

matching or stabilizer identification) is equivalent to introducing extra locally propagating

degrees of freedom beyond the transport variables already present. In the minimal programme,
such extra structure is not "free bookkeeping"; it would constitute new physics and would
introduce additional independent parameters or fields. The U(1) minimality result is therefore
conditional on the absence of such alignment fields: if nature supplies additional local
comparison structure, larger gauge groups could be admissible, but that would be a different
(non-minimal) framework.

SA4 (Finite distinguishability). The space of holonomy classes is compact, excluding
non-compact gauge groups. Physically: a finite-resolution observer cannot distinguish
infinitely many holonomy states, so the holonomy target space must be bounded. (§2.3)

SAS (One-parameter holonomy spectrum). The physically distinguishable near-identity
holonomy states relevant to C4 form a connected 1-parameter family (a single "holonomy
angle" degree of freedom), consistent with C4 contributing exactly one independent
continuous constraint channel. (§2.2)

Bridge hypotheses (identifications connecting the abstract framework to physics):

BH1 (Holonomy—coupling identification). The per-cell holonomy normalization on the
closure surface is identified with the electromagnetic fine-structure constant at a physical
reference scale. Justification: (i) under SA3, the framework has exactly one
dimensionless U(1) coupling; (ii) electromagnetism is the only unbroken long-range U(1)
gauge interaction in late-time cosmology (hypercharge is broken; hidden U(1)s would
require new fields, violating SA3); (iii) the identification is therefore the unique SA3-
compatible bridge between the abstract holonomy normalization and infrared physics.

(§4.3)

BH2 (Planck-area tiling). The Planck area £ P2 = AG/c? is the correct cell area for
discretizing the U(1) bundle integral on the closure surface. We use { P? as the minimal
universal covariant area scale built from %, G, c; alternative order-unity area gaps (e.g.,
40_P2, or the loop-quantum-gravity area gap yV3 £_P2) shift n by a multiplicative O(1)
factor and do not affect the K-selection, which depends on super-exponential sensitivity.

(§3.3)

BH3 (de Sitter attractor). The late-time cosmology approaches a de Sitter fixed point (w
— —1 asymptotically), so that the de Sitter event-horizon sphere is the canonical closure
surface. (§3.2)

Structural inputs (additional hypotheses used in the K-selection argument of §6):

SI1 (Discrete coupling formula). a(K) = 2K / [2¥(2K + 1)] with N_loop = 2K. (§6.2)

SI2 (Two-Planck vacuum regulation). A = 8nl P2/ &% (§6.3)



e SI3 (Dimensional transmutation). §(K) = € _em - exp[(4/K)(2¥ — 1/p_c)] with £ _em =
20 P.(§6.3)

Derived consequences (proven from the above):
e U(1) gauge minimality (Theorem 1)
e Unique closure surface selection (Proposition, §3.2)
e Joint admissibility condition on a and A (Theorem C)
e RG stability via reference-scale anchoring (§5)

e K =7 selection at hierarchy level (Theorem 2)

2. Triangle Coherence and the K =7 Constraint Structure
2.1 Definitions

Throughout, K denotes the discrete constraint count. The simplicial 2-complex on which
transport is defined is denoted K.

Definition 1 (Transport system). Let K be a simplicial 2-complex with vertex set V and oriented
edge set E. A transport system assigns to each oriented edge (i — j) an element U ijina
topological group G, with U ji=U ij".

Definition 2 (Triangle holonomy). For an oriented triangle A = (i, j, k) with boundary edges (i —
1), G — k), (k = 1), the holonomy isH A:=U ijU jkU ki €G.

Definition 3 (Gauge reparameterization). A local change of representativesisamapg: V — G
actingas U 1= g 1U ijg j'. Two transport systems related by such a map are gauge-
equivalent.

Definition 4 (Edge admissibility). An oriented edge e = (1 — j) is admissible if it satisfies a
predicate A(e) € {0, 1} that tests whether the edge supports well-defined transport. An edge may
fail admissibility due to degenerate simplex geometry (zero-length edge), forbidden local
configurations, or loss of distinguishability between adjacent vertices. Admissibility is a
precondition for transport: if A(e) = 0, the transport element U_ij is undefined or degenerate.

Definition 5 (Coherence predicate). A triangle A is coherent if its edge data and holonomy satisfy
a set of conditions invariant under gauge reparameterization. The coherence predicate depends
on the gauge-equivalence class of {U 1ij}, not on a choice of representatives.

2.2 The seven independent constraints



We now enumerate the independent conditions that a triangle A = (i, j, k) must satisfy to be
coherent within a 4-dimensional simplicial foam. The constraints fall into three groups: edge
admissibility, loop closure, and embedding consistency.

Edge admissibility (C1-C3). Each of the three oriented edges of A must be admissible:
e Cl1: A(e 1j) =1 (edge 1) supports well-defined, invertible transport).
o (C2: A(e jk) =1 (edge jk supports well-defined, invertible transport).
e (C3: A(e ki) =1 (edge ki supports well-defined, invertible transport).

These are independent because each edge may fail admissibility independently—for example,
one edge of a triangle may become degenerate (zero length, coincident vertices, or singular local
geometry) while the other two remain well-defined. Together they contribute 3 binary
constraints. Note that admissibility is not automatic: in a pre-geometric substrate where edge data
encode relational structure, degeneracy is a genuine failure mode, not a mathematical triviality.

Loop closure (C4). The holonomy H A=U 1j U jk U ki must lie in a distinguished coherence
class C c G:

e C4:H AE€ec.

This is a gauge-invariant condition (for abelian G, H A is fully gauge-invariant; for non-abelian
G, the conjugacy class of H_A is gauge-invariant). It is independent of C1-C3 because edges
may be individually admissible while their composed product violates the closure bound. C4
contributes 1 constraint parameterized by a single real degree of freedom (the holonomy angle,
for compact G near the identity).

Embedding consistency (C5—C7). In a 4-dimensional simplicial foam, each triangle A is a 2-
face shared by adjacent tetrahedra (3-simplices), which are in turn faces of 4-simplices.
Coherence of A requires compatibility with this higher-dimensional embedding:

e (5 (Orientation compatibility): The orientation of A, as inherited from each adjacent
tetrahedron, must be consistent. In a 4-dimensional simplicial complex, a triangle
generically borders at least two tetrahedra; consistent orientability of the triangulation
requires that the induced orientations agree up to sign across each shared face. This is one
binary constraint.

e (6 (Normal transport consistency): The transport data on the edges of A must be
compatible with transport data along edges connecting A's vertices to vertices of adjacent
tetrahedra not contained in A. This ensures that curvature localized on A (the deficit angle
in the Regge calculus interpretation) is consistent with the local geometry. This is one
constraint per triangle, testing whether the holonomy of A is compatible with the deficit
angle implied by the dihedral angles of adjacent 4-simplices.



e (7 (Co-face compatibility): The holonomy of A must be consistent with the transport
environments of the two tetrahedra sharing A as a common face. Specifically, the two
tetrahedral holonomy environments—the products of face holonomies around each
tetrahedron—must agree on the value of H_A up to gauge equivalence. C7 must be
decidable using only data on 11, 12, and their shared face A; it may not require gauge
fixing over a larger neighborhood. This is a local gluing constraint between the two
tetrahedra adjacent to A, not the global Bianchi identity over all faces of a 4-simplex.
(The global Bianchi relations, which link holonomies of all 10 faces of a 4-simplex, are
derived in §3.1 as independent closure channels at the 4-simplex level; they are emergent
consequences of the per-triangle constraints, not identical to C7. See Appendix B.5 for
further clarification.)

The three embedding constraints C5—-C7 are independent of each other (orientation, normal
transport, and co-face compatibility test different geometric data) and independent of C1-C4 (a
triangle may have admissible edges with coherent loop closure yet fail to embed consistently in
the higher-dimensional foam).

Total: K =7 independent coherence constraints per triangle.
2.3 Derivation of the minimal U(1) gauge redundancy

Any transport system on the 1-skeleton admits local gauge reparameterizations U ij - g i U ij
g j ' that do not alter the relational content. This defines a gauge redundancy valued in G. We
now show that the minimal compact gauge group consistent with the K = 7 coherence structure is
U(1), by systematically excluding all alternatives.

Lemma 1 — Trivial holonomy is excluded

Statement. If G is trivial (|G| = 1), then H_A = e for all triangles and all edge data. The
constraint C4 is automatically satisfied and cannot constitute an independent coherence
condition.

Proof. If |G| = 1, every transport element equals the identity: U ij = e for all edges. Therefore

H A=e - e e=-e for every triangle, regardless of edge configuration. Any predicate of the form
"H_A € C" is satisfied trivially and carries no information. This means C4 cannot serve as an
independent failure mode, contradicting the K = 7 decomposition in which C4 is a distinct, non-
redundant constraint. m

Lemma 2 — Discrete gauge groups are excluded

Statement. If G is a discrete group (e.g., G = Z,) and the transport data admit continuous
perturbations in a connected neighborhood, then any gauge-invariant holonomy map is locally
constant. Consequently, holonomy either carries no nontrivial information or loses robustness
under refinement.



Proof. Fix a triangle A and consider the holonomy map @ : U — G assigning H A to the edge
data in a connected neighborhood U of the transport variables {U ij}. The map ® is continuous
because it is a finite product of group multiplication and inversion operations, which are
continuous in any topological group.

If G is discrete, its only connected subsets are singletons. The continuous image of a connected
set under a continuous map is connected. Therefore ®(U) is a singleton: holonomy is constant
throughout U.

This means that holonomy classes cannot encode a continuous response to microscopic variation
of edge data. To obtain nontrivial variability one must either (i) permit discontinuous jumps in
holonomy class, violating robustness (SA2), or (ii) introduce additional structure beyond the
discrete holonomy labels, violating minimality (SA3).

Therefore, no discrete group can serve as the minimal gauge redundancy for a coherence
predicate that is both robust and non-trivially sensitive to holonomy. =

Lemma 3 — Non-abelian gauge groups violate scalar-complete local gluing

Statement. Assume SA3’ (scalar completeness under local gluing). Then the holonomy gauge
group governing C4 must be abelian.

Proof. Let A be a triangle shared by two tetrahedra t: and t.. Each tetrahedron determines a
representative holonomy element H A® and H_A® computed from its local transport
representatives. Gauge invariance (SA1) implies that any quantity entering the coherence
predicate must be invariant under local reparameterizations; for a general compact Lie group, the
natural invariant content of a single element is its conjugacy class.

Under SA3’, the shared-face consistency check (C7) must be decidable using only a single real
scalar s(H_A) computed from H_A, with no additional alignment structure permitted.

If G is non-abelian, then conjugacy classes do not canonically specify a unique representative
element: any representative choice requires additional structure (e.g., a section to a maximal
torus, an internal frame choice, or stabilizer alignment). Concretely, even in the smallest non-
abelian case SU(2), a near-identity element is parameterized by an angle 0 and an internal axis n,
and the conjugacy class discards the axis data. Two tetrahedral environments can therefore yield
holonomies with the same class parameter (same 0) but different internal axes. Determining
whether these represent the same glued transport system across 11 and 12 requires specifying how
the internal axes (or stabilizers) are identified across the shared face—precisely the extra local
gluing data SA3’ forbids. Equality of conjugacy class does not imply equality of group element
under the gauge transformations admissible on the shared face; in non-abelian groups, matching
class parameters does not define a canonical glued transport configuration.

Equivalently: any map s : G — R that is invariant under conjugation collapses the degrees of
freedom transverse to conjugacy classes. For non-abelian G, these collapsed degrees of freedom

10



are exactly what controls whether two locally computed holonomies are compatible as the same
glued object, rather than merely class-equivalent. Enforcing full co-face compatibility therefore
requires additional independent comparison structure, contradicting SA3'.

For an abelian group, every element is its own conjugacy class. The scalar s(H_A) (the phase
angle) completely determines H_A, and no alignment structure is needed to compare holonomies
across the shared face. Co-face compatibility is decidable from s alone.

Hence G cannot be non-abelian. Therefore G must be abelian. m
Corollary 3 — Minimal compact connected abelian choice is U(1)

Statement. If, in addition, the holonomy spectrum relevant to C4 is one-parameter (SAS), then
the minimal compact connected abelian group consistent with the holonomy sector is U(1).

Proof. Any compact connected abelian Lie group is a torus T"m = U(1)"m. SAS5 restricts the
holonomy sector to a single continuous parameter, hence m = 1, so G = U(1). If the near-identity
holonomy sector were m-parameter (m > 1), then either (i) C4 would require m independent
continuous constraint channels, contradicting K = 7, or (ii) the discarded parameters would
reappear in gluing compatibility, violating SA3'. m

Theorem 1 — Minimality of U(1)

Statement. Under SA1 (gauge invariance), SA2 (robustness), SA3 (minimality), SA3’ (scalar-
complete local gluing), SA4 (finite distinguishability), and SAS (one-parameter holonomy
spectrum), U(1) is the minimal compact gauge redundancy consistent with the K = 7 coherence
structure, and is the unique minimal compact connected choice.

Proof. By Lemma 1, trivial G is excluded (C4 would not be independent). By Lemma 2, discrete
G 1s excluded (holonomy would be topologically rigid under SA2). By Lemma 3, non-abelian
compact Lie groups are excluded (scalar-complete local gluing under SA3' forces abelianity). By
Corollary 3, SAS5 forces the abelian group to be one-dimensional: G = U(1). Non-compact
groups are excluded by SA4: finite distinguishability requires the space of holonomy classes to
be compact (a finite-resolution observer cannot distinguish among unboundedly many holonomy
states, so the holonomy target must be bounded). m

Remark (Structural inevitability). The emergence of U(1) here is not a statement about gauge
symmetry in general, but about the minimal algebraic structure capable of supporting (i) a single
continuous holonomy constraint and (ii) local scalar-complete gluing without additional
comparison data. Within that class, U(1) is the unique compact connected realization.

3. From Local Simplicial Combinatorics to the Global Cell Count

3.1 Local structure: the 2-skeleton of the 4-simplex

11



A 4-simplex o* with vertex set {0, 1, 2, 3, 4} has the following face counts:

Dimension Name Count

0 vertices C(5,1)=5
1 edges C(5,2)=10
2 triangles C(5,3) =10
3 tetrahedra C(5,4) =5
4 4-simplex C(5,5) =1

Curvature in 4-dimensional Regge calculus resides on 2-faces (triangles): each triangle carries a
deficit angle encoding the local curvature. Therefore the 10 triangular faces of ¢* are the
fundamental curvature carriers.

The triangular holonomies are not all independent. The second Betti number of the 2-skeleton K>
of 6* counts the independent 2-cycles—closed 2-chains within the triangulation that impose
relations among the face holonomies. Using the Euler characteristic:

WK =|V|—|E|+[F|=5-10+10=5

K? is connected, so o= 1. Every 1-cycle in the 1-skeleton (the complete graph Ks) bounds a 2-
chain in K?, because any cycle in Ks decomposes into 3-cycles (triangles), and every triangle of
Ks is a 2-face of K. (Equivalently, K2 is the 2-skeleton of a contractible simplex and is therefore
simply connected; see e.g. Munkres, Elements of Algebraic Topology, §5.) Therefore Hi(K?; Z) =
0, giving B1 = 0. From the Euler relation:

BO_BI+B2:X(K2)1_0+B2:5B2:4

These 4 independent 2-cycles provide 4 global Bianchi-type closure relations among the 10 face
holonomies of the 4-simplex. They emerge from the topology of the full 2-skeleton and constrain
how face holonomies combine across the entire 4-simplex. This is distinct from the per-triangle
co-face compatibility C7, which is a local constraint between the two tetrahedra sharing a given
triangle (see §2.2 and Appendix B.5).

The total geometric information content of the local 4-simplex is therefore characterized by:
N_loop = 10 (curvature-carrying faces) + 4 (independent global closure relations) = 14

This establishes that geometric information in the UV (simplicial) regime propagates on 2-cells
and is subject to closure constraints arising from the topology of the 2-skeleton.

3.2 Selection of the IR closure surface

12



The local face-based structure must have a global counterpart if geometric closure is to extend
from the UV to the IR. We require a closed 2-surface X that serves as the domain for a global
closure condition. The following requirements constrain the choice:

1. Closure: £ must be a compact, oriented 2-manifold without boundary, so that Chern—
Weil integrality applies.

2. Homogeneity and isotropy: £ must be invariant under the spatial symmetry group SO(3)
of the background cosmology, ensuring the closure condition respects the cosmological
principle.

3. Asymptotic time-independence: X must define a fixed geometric scale in the late-time
limit, so that the closure condition is not tied to a particular cosmological epoch.

4. Determination by A alone: ¥ must be parameterized solely by the cosmological
constant, without dependence on initial conditions, foliation choice, or observer location.

Proposition. In a late-time accelerating FRW cosmology approaching a de Sitter fixed point
(BH3), the unique (up to isometry) closed 2-surface satisfying conditions 1—4 is the de Sitter
event-horizon cross-section T = S2 with areal radius r_A = \(3/A).

Justification. The particle horizon and last-scattering surface are time-dependent: their
comoving radii grow with conformal time and therefore violate condition 3. The apparent
horizon is foliation-dependent, violating condition 4. The de Sitter event horizon, by contrast,
exists as an invariant causal boundary in the asymptotic de Sitter phase, with constant areal
radius r A = c¢/H_A =(3/A) (in natural units). It is a 2-sphere, hence SO(3)-homogeneous,
satisfying condition 2. It is compact and orientable, satisfying condition 1. And it is determined
entirely by A, satisfying condition 4. No other standard cosmological 2-surface meets all four
requirements simultaneously.

Conditionality. This selection is conditional on BH3 (late-time de Sitter approach). The closure
surface is taken in the asymptotic de Sitter regime; the present epoch may be viewed as
approaching this limit, with corrections suppressed by deviations of w from —1 and by finite-time
approach to the attractor. The closure condition is therefore an IR asymptotic statement, not a
claim that today's horizon is already exact. If the dark energy equation of state deviates from w =
—1 at late times—for example, in quintessence or phantom models—the canonical closure
surface must be revised, and the closure condition would take a different form. This constitutes
an additional falsifier: observation of w # —1 asymptotically would invalidate the specific surface
selection used here.

3.3 The global cell count

Discretizing the closure surface X in Planck-area units { P> = 4G/c* (BH2). We use {_P? as the
minimal universal covariant area scale built from 7, G, and c; alternative order-unity area gaps
(such as those appearing in loop quantum gravity, where the minimal area eigenvalue is y\3

13



¢ P?/2 with Barbero-Immirzi parameter y ~ 0.24) would shift N_X and hence n by an O(1) factor,
which does not affect the K-selection (the inter-K gaps are 10°°").

A X=4nr A*=4n- 3/AN)=12n/A
N X=A X/t PP=12n/(A L P?
With A= 1.1 x 102 m2and £ P~1.616 x 1073 m, this gives N X~ 1.3 x 10'%,

The relationship between the local count (N_loop = 14 per 4-simplex) and the global count (N_X
~ 10'?) is structural, not numerical. Both are enumerations of 2-dimensional geometric carriers:
triangular faces locally, Planck-area cells globally. The UV combinatorics determines the zype of
geometric information carrier (2-cells with holonomy); the IR discretization determines how
many such carriers tile the closure surface. This is a dimensional homology—a shared face-based
combinatorial structure at vastly different scales—not an arithmetic identity.

4. Chern—Weil Closure Condition
4.1 Topological constraint

For a principal U(1) bundle over a closed oriented 2-surface X, the Chern—Weil theorem yields
the integrality condition:

(12n)] TF=n€z

where F is the curvature 2-form and n is the first Chern number (c¢:) of the bundle—the total
winding number. This is a topological invariant: it cannot change under continuous deformations
of the connection. (We use n rather than y for the Chern number to avoid confusion with the
Euler characteristic y(K?) used in §3.1.)

4.2 Discretization

Decompose X into N_X cells, with per-cell holonomy 0 1. The discretized Chern—Weil condition
is:

(12m) %6 i=n€Z

This exact integrality holds regardless of whether the 0 i are uniform across cells. In the
isotropic leading-order approximation, 6 i =0 for all 1, giving:

N X-6=2nn
4.3 Holonomy—coupling identification

Define the dimensionless per-cell holonomy normalization of by 6 := 2md. The closure condition
becomes:
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N X-d=n

At leading order, we identify of with the electromagnetic fine-structure constant evaluated at a
reference scale: o := a0 = a(lo). This is bridge hypothesis BH]1. Its justification rests on three
converging lines of reasoning:

Minimality. Under SA3, the coherence predicate introduces exactly one dimensionless U(1)
coupling controlling holonomy normalization. The identification of = a0 does not introduce new
parameters but equates the framework's sole dimensionless coupling with a physical one.

Infrared universality. The closure surface is the de Sitter horizon—a macroscopic, late-time
structure. The holonomy that accumulates over this surface must couple universally to phase
transport of all charged matter crossing the horizon. In late-time cosmology, electromagnetism is
the only unbroken, long-range U(1) gauge interaction. The Standard Model hypercharge U(1) Y
is broken by electroweak symmetry breaking and does not survive as a long-range force below
the weak scale. Any hypothetical hidden U(1) would require new charged fields, violating SA3
(minimality: no additional independent parameters). Therefore, the only U(1) coupling that can
govern macroscopic phase accumulation on the closure surface is the electromagnetic fine-
structure constant.

Uniqueness under constraints. Combining SA3 (one coupling) with the requirement of infrared
universality (macroscopic, unbroken, long-range) leaves exactly one candidate: a. The
identification is therefore the unique SA3-compatible bridge between the framework's abstract
holonomy normalization and known physics.

Normalization and reference scale. The identification 0 = 2nd’ fixes the normalization: the per-
Planck-cell holonomy is 27 times the dimensionless coupling. Why o rather than e, 4ma, or some
other function of a? The answer is that of must be small (near-identity holonomy is required for
robustness under SA2; large holonomy per cell would place the system near the coherence
boundary), and of must be the dimensionless ratio that enters the holonomy exponent directly: 6 =
2mdf is the unique parameterization in which o is the holonomy fraction of 2z per cell, with no
arbitrary numerical prefactors. A hidden U(1) with its own coupling would introduce additional
charged fields and an independent coupling constant, violating SA3. Finally, the reference scale
Lo is not a free choice: RG invariance of n (§5) requires 6 to be evaluated at a fixed physical
reference, and the macroscopic IR meaning of phase transport on the closure surface anchors this
to the Thomson limit a0 = a(p — 0). Any other scale choice yields the same n after RG
conversion (§5.7), confirming that the physical content is scale-independent.

Normalization lemma. Under SA3 (no extra dimensionless parameters), the near-identity
holonomy angle must scale linearly with the unique small dimensionless coupling: 6(o)) = 27 ¢ of
+ O(0o?), where ¢ is a numerical constant. The constant ¢ cannot encode new physics without
introducing a new dimensionless parameter, which SA3 forbids. Defining o as the fraction of a
full 2 rotation per cell fixes ¢ = 1 by construction: of = 6/(2m). This is not a physical assumption
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but a canonical parameterization—the unique normalization convention in which o directly
measures the holonomy fraction per cell. The higher-order corrections O(o?) are precisely the
RG-generated terms analyzed in §5, whose coefficients are scale-dependent rather than universal

(§5.5).

With this identification:

N X(A) - aw=n€Z

This is the closure equation jointly constraining o and A. Since N_X = 12n/(AL_P?), it reads:
2 a0/ (A€ P?)=n

The left-hand side must be an integer. This is a non-trivial admissibility condition: not all pairs
(a, A) are permitted. The closure equation constrains o and A; it does not uniquely determine
them but restricts them to a discrete family of admissible pairs labeled by n.

With standard inputs (oo = 1/137.036, A = 1.1 x 1072 m2), the inferred winding number is n =
1012,

4.4 Why the coupling constant appears in the topological integral

In standard gauge theory, topological invariants such as Chern numbers classify bundles but do
not depend on coupling constants—the coupling appears in the action, not in the topology. The
present framework departs from this in a specific and controlled way, and the departure deserves
explicit justification.

In conventional treatments, the curvature 2-form F is a geometric object defined by the
connection, independent of the coupling. The Chern integral (1/27)[F yields an integer that
characterizes the bundle topology. The coupling g enters only when one writes the action S ~
(1/g?)|F A *F, which weights the dynamics but does not affect the topology.

In the closure framework, the situation is different because the connection is not specified
independently of the coupling. The per-cell holonomy 0 1 is the on/y continuous datum
characterizing the U(1) bundle on each Planck-area cell (SA3, SAS5). There is no separate
"connection" specified first and "coupling" inserted afterward; the only continuous datum in the
holonomy sector is the per-cell curvature/holonomy scale, and bridging it to the measured
electromagnetic coupling identifies that datum with ao. When we write 0 = 2mdf, we are not
inserting a coupling into a topological formula; we are recognizing that the total curvature
integral (1/2m)Z; 0_1 is built from per-cell contributions whose magnitude is controlled by the
holonomy normalization.

The analogy is to a lattice gauge theory in which the plaquette action is U _p = exp(if_p), and the
topological charge is Q = (1/2m)Z_p 0_p. On the lattice, the coupling = 1/g* controls the typical
magnitude of 6 p, and therefore controls the value of Q in any given configuration. The coupling
does not appear in the definition of Q, but it determines which configurations dominate—and in a
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closure framework where only one configuration (the coherent one) is admitted, the coupling
directly sets Q.

In short: the coupling enters the topological integral not because topology depends on coupling
in general, but because in this framework the per-cell holonomy normalization is the only
continuous datum in the holonomy sector, and the Chern number is the sum of those per-cell
curvature contributions.

To state this precisely: the first Chern number does not depend on coupling constants in general,;
it depends on the curvature of the specific connection realized on X. In the present framework,
the per-cell curvature/holonomy normalization is the only continuous datum admitted in the
holonomy sector (SA3, SAS), so specifying the physical connection on X is equivalent to
specifying this normalization. The appearance of a is therefore not an insertion of dynamics into
topology, but a bridge identifying the unique dimensionless holonomy-strength parameter of the
realized connection with the measured electromagnetic coupling at a fixed reference condition.

5. Renormalization-Group Stability of the Closure Condition
5.1 The problem

The topological charge n is an integer and therefore RG-invariant—it cannot depend on the
renormalization scale p. However, the electromagnetic coupling a(p) runs with p. If the closure
condition involves a, how can n remain scale-independent?

This section shows that the resolution is natural: the holonomy 6 must be evaluated at a fixed
physical reference scale Lo, and any re-expression in terms of a(p) at a different scale introduces
logarithmic, scale-dependent corrections that precisely compensate the running.

5.2 Why a scale-independent polynomial ansatz fails

A naive approach would write 0(a) = 2m(a + c202 + c30? + -+-) with p-independent coefficients
and demand:

ddInpu [N X - 0(a(n)]=0

Since N_X is p-independent, this requires 0'(a) - B_a(a) = 0. But in QED, B_a # 0 for a # 0, so
this forces 0'(a) = O—implying 0 is constant, which contradicts 6 depending on a at all.

The error is in assuming the coefficients cz, cs, ... are p-independent. They cannot be, because
a(p) is a scheme-dependent quantity while n is scheme-independent. The correct resolution
involves evaluating o at a fixed reference scale.

5.3 QED one-loop running

At one loop, the QED beta function is:
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do/dIn p=p a(a) =(2/31) b o> + O(c?)

where b=X fQ f?is the sum of squared charges over active fermion species. This is a
schematic, piecewise-effective beta function: the fermion content changes across mass
thresholds, and b is understood as the value appropriate to the scale p. We are not treating
electroweak mixing or scheme-dependent subtleties, which would affect sub-leading corrections
but not the qualitative structure of the argument.

The fermion content at representative scales:
e At Thomson limit (po — 0): only the electron contributes, givingb=Q e*>=1.

e Atu=M Z=91.2 GeV: all Standard Model charged fermions contribute. Quarks give 3
colors % [(2/3)* + (1/3)?] x 3 generations = 3 x (5/9) x 3 = 5. Charged leptons give 1% x 3
generations = 3. Total: b = 8.

Integrating the one-loop equation from reference scale po:
1/a(p) = 1/0(po) — (2b/37) In(/po) + O(ar)

Define oo = (o) at the Thomson limit. This is a fixed, physical, RG-invariant quantity once po is
specified: it does not change when one varies p.

Scope of the RG treatment. We use one-loop QED running to demonstrate the structural point:
RG invariance of n forces 0 to be referenced to a(Lo). A precision computation of the a(0) <
a(M_Z) matching—including hadronic vacuum polarization contributions, electroweak mixing
effects, and scheme dependence—is a technical exercise deferred to future work and does not
change the conceptual constraint. The qualitative conclusion (logarithmic compensation, scale-
independence of n) is robust under higher-order corrections; what changes at higher loops is the
numerical precision of the ao extraction, not the structure of the argument.

5.4 Resolution: 0 is anchored to oo

The closure condition is a macroscopic, global constraint. The natural choice is to evaluate the
holonomy at the low-energy reference scale where macroscopic phase accumulation is defined:

0 =27n o with o ;= a0

Then n =N_ZX ao is RG-stable by construction: it contains no dependence on p because p plays
no role in the definition of a.o.

5.5 Re-expressing 0 in terms of a(p): the correct c:

One may wish to express the reference holonomy in terms of o measured at a different scale p.
Inverting the one-loop running relation:

ao=1/ (/o) + (2b/37) In(Wpo)) + O(c)
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Expanding perturbatively for small a(p):

a0 = 0(p) ~ (2b/37) In(k/po) - a(w)* + O(a(w)’)

Therefore, if one insists on writing 8 = 2m(a + c20? + -++) in terms of a evaluated at scale p, the
quadratic coefficient is:

c2(p; to) = —(2b/3m) In(/po)

This is not a universal constant. It is logarithmic in the scale ratio, proportional to the one-loop
coefficient, and changes when p or po changes. For physically relevant separations, c: is naturally
O(1-10), not the large values (e.g., c2 = —68) that would appear if one incorrectly treated it as p-
independent.

5.6 Differential formulation

Define the RG-invariant holonomy 0(p) := 2moe and write 6(p) = 2ma(p)Z(p), where Z is a
renormalization factor. RG invariance d6/d In u = 0 requires:

dinZ/dlnp=—P a(a)a
At one loop, B_o(a)/a = (2b/3m)a, which integrates to:
Z(1) = exp(—(2b/3m) | a d In p")

This yields a logarithmic Z consistent with the perturbative expansion above. The compensation
of running is logarithmic—a scheme/scale structure—not a polynomial correction.

5.7 Internal consistency test

The closure analysis provides a concrete, falsifiable check. Given any measurement of o at scale
[TH
1. Convert to oo using the standard RG equation with appropriate piecewise fermion-

threshold matching (b = 1 below the muon threshold, increasing stepwise as heavier
charged fermions become active).

2. Compute n_inferred =N_X - ao.
3. Verify that n_inferred is p-independent.

The qualitative structure of this test is clear: the running of a between the Thomson limit and the
Z-pole scale is well established experimentally (a(0) = 1/137.036 vs. a(M_Z) = 1/127.95), and
both must yield the same n after proper conversion. A full numerical demonstration requires
careful piecewise threshold matching across all Standard Model charged fermion masses, which
we defer to a dedicated analysis.
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6. Discrete Selection of K =7 from Closure Consistency

The preceding sections treated K = 7 as an enumerated structural input. We now show that, when
the closure equation is combined with two additional mechanisms internal to the framework—a
discrete coupling formula a(K) (SI1) and a vacuum regulation relation A(K) (SI2—SI3)—the
constraint count K = 7 is not merely assumed but selected as the unique integer compatible with
the observed cosmological hierarchy. This is a selection theorem at hierarchy level, robust to
O(1) uncertainties in structural prefactors.

6.1 Strategy

The closure equation n = N_X a relates the topological winding number to both A (through N %)
and a. If both a and A can be expressed as functions of the discrete parameter K, then n becomes
a function of K alone (plus fixed structural constants). We will show that n(K) is super-
exponentially sensitive to K, so that changing K by *1 shifts n by 50-100 orders of magnitude.
Only K = 7 places n in the regime consistent with observation.

The key requirement for this argument to be non-circular is that a(K) and A(K) arise from
independent physical mechanisms—not from fitting to the observed values of o and A. The
coupling formula a(K) derives from discrete coherence counting on the simplicial 2-skeleton
(§6.2). The vacuum regulation A(K) derives from a Two-Planck saturation mechanism linking
the cosmological constant to a coherence scale (K), which is itself determined by dimensional
transmutation on the simplicial lattice (§6.3). These are logically independent chains of
reasoning whose joint consistency at K = 7 constitutes a prediction, not a calibration.

Independence of the three input chains.

Depends Free

Input Origin What it determines
P g on A data? parameters

Local simplicial

SI1: o(K) combinatorics: constraint Electromagnetic No None (K is the
' counting on 2-skeleton, coupling at each K only input)
binary admissibility
IR turation: Two- N
SI2: A= Vact sa Pra 1Of: AWO Cosmological constant 9ne ,
Planck regulation of vacuum . No (dimensional
8nl P& ) given & )
- energy density analysis)
Lattice dimensional
. Coherence/regulation p c€[0.17,
SI3: E(K) t tation: one-loop RG N -
S(K)  transmutation: one-loop scale at each K © 0.30] (bounded)

from go* = 27X to continuum
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SI1 is a purely combinatorial formula. SI2 is a dimensional relation. SI3 is a standard lattice-to-
continuum transmutation with a single bounded structural parameter. None were fit to
observation. The intersection of all three at K = 7—simultaneously producing a = 1/137, A =
1052 m™2, and n = 10'2!—is the non-trivial content of the selection theorem.

6.2 The discrete coupling formula a(K)

In the coherence framework, the fine-structure constant at constraint count K is determined by
the combinatorics of the simplicial 2-skeleton. The local loop count is N_loop = 2K (the total

number of curvature-carrying faces plus independent closure channels in the simplicial building
block).

Remark on N_loop = 2K. For K = 7, the geometric calculation of §3.1 gives N _loop =10 +4 =
14 =2 x 7, confirming the relation in the case where it can be independently computed. The
general formula N_loop = 2K extends this to arbitrary K as a structural hypothesis (SI1): the loop
content of the local building block scales linearly with the constraint count. This is an
assumption of the discrete coupling program, not a derivation from first principles. (See §7.4 for
further discussion.)

The coupling is then determined by the leading-order discrete closure condition:
a'(K)=2%-(2K+1)/(2K)

This formula encodes the requirement that the holonomy normalization be consistent with K
independent constraints distributed over N _loop = 2K channels, with the factor 2¥ reflecting the
binary admissibility structure (each of K constraints has two states).

ForK=7:
a'(7)=128-15/14=1920/14~=137.14

This is within 0.08% of the measured value o' = 137.036. The proximity is striking but should
be interpreted cautiously: the formula is leading-order, and sub-leading corrections (analogous to
higher-loop terms) have not been computed.

6.3 Two-Planck vacuum regulation and (K)

The cosmological constant is related to a coherence regulation scale & through the Two-Planck
saturation mechanism (SI12). The regulated vacuum energy density is p_vac ~ Ac/&*, and
Einstein's equation gives A = 8nGp_vac/c*. Substituting £ P? = hG/c?:

A=8nt P>/¢&
This replaces the A-dependence in the cell count with a &-dependence:

N T =12n/(A L P?)=12n/((8nl P& - ¢ P?) = (3/2) - &/ P*
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The coherence scale £ is determined by dimensional transmutation on the simplicial lattice (SI3,
Route-M mechanism). The lattice coupling go> = 27X runs to the continuum via:

In(§/ € em)=(1/2b) - (1/ge>— 1/p_c)

where £ _em = 2{ P is the emergence scale (the minimal resolved length in the Two-Planck
framework; not to be confused with the electron Compton wavelength A C=#4/(m_e ¢)), b=
N_loop/16 =2K/16 = K/8 is the one-loop lattice beta-function coefficient, and p_c is the
percolation critical coupling. With g¢* = 27K:

In(§/ €_em)=(4/K) - 2X—1/p_c)

Therefore:

EK) =L em - exp[(4/K)(2K — 1/p_c)]

The exponential dependence on 2X makes &(K) extraordinarily sensitive to K.
6.4 The winding number as a function of K

Combining the results of §6.2 and §6.3, the topological winding number is:
n(K) =N _Z(K) - «(K)=(3/2) - (¢K)*/ L _P*) - (K)

This is now a function of K alone, with all other quantities being fixed physical constants (£ P,
€ em, p_c). The dominant K-dependence enters through &(K)*, which scales as exp[(16/K)(2¥ —
1/p_c)]. Since 2¥ grows exponentially in K while the prefactor 16/K varies slowly, n(K) is a
super-exponential function of K.

6.5 Numerical consistency: computed values

Rather than relying on approximate prose estimates, we compute n(K) directly from the formulas
of §6.2-6.4.

Numerical conventions. We take { P=1.616255 x 107* m (2018 CODATA), { em =2{ P, and
A=1.1 x 105> m™2. All logarithms in the tables are base 10. The percolation threshold p c is
treated as a bounded structural parameter; we scan p_c € [0.17, 0.30] as representative of
standard site-percolation critical probabilities on comparable lattices (triangular lattice: p_c =
0.5; face-centered cubic: p ¢ = 0.20; bond percolation on comparable graphs spans the quoted
range). See Appendix B.4.

Table 1. Computed values for p_c = 0.20 (representative Route-M percolation threshold).
K a'(K) logio & (m) logio(E/f_P) log(E*/€_P*) logie n(K)

6 693 -174 17.4 69.5 67.9
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K a7 '(K) logio & (m) logio(E/€_P) logio(E/€_P*) logio n(K)

7 137.1 —4.0 30.8 123.3 121.3

8 272.0 +20.0 54.8 219.2 217.0

Table 2. Sensitivity of logio n(K) to p_c across the Route-M percolation range.
Kp c=017p ¢c=0.20p ¢=0.25p ¢=0.30

6 66.8 67.9 69.0 69.8

7 120.5 121.3 122.3 123.0

8 216.2 217.0 217.8 2184

The observed cosmological value is logio n = 121 (from N_X o0 with measured inputs). The
tables demonstrate:

o K =7 matches. Across the full p_c range, logio n(7) = 120.5-123.0, spanning the
observed value.

e K =6 undershoots by ~53 orders of magnitude. logio n(6) = 67-70.
e K =8 overshoots by ~96 orders of magnitude. logio n(8) ~216-218.

e p_c variation is negligible. Across p_c = 0.17-0.30, the shift in logio n is ~3 orders—far
smaller than the ~50—100 order gaps between adjacent K values.

6.6 Robustness of the selection
The K-selection is robust against moderate uncertainties in the input parameters for two reasons.

Exponential leverage. The dominant factor £(K)*/ € P* depends on K through exp[(16/K) - 2],
which changes by a multiplicative factor of order exp[16 - 2¥/K?] when K shifts by 1 near K = 7.
No O(1) uncertainty in p_c, b, or the prefactors can compensate a gap of 10°° or more.

Asymmetric gaps. The gap is larger above K = 7 (~96 orders) than below (~53 orders),
reflecting the accelerating growth of 2K, This asymmetry reinforces the selection: K = 7 is not on
the boundary of viability but sits squarely in a deep well of the logio n landscape.

Structural rigidity. The selection depends on the exponential dependence on 2K in the
transmutation formula, not on the specific numerical prefactor. Any modification of SI3 that
preserves the exp(const - 2K) structure—for example, replacing the prefactor 4/K with 3/K or
5/K, or shifting the percolation threshold within physically motivated bounds—retains the
selection rigidity. The inter-K gaps are set by the doubly exponential growth of &*, which
overwhelms any O(1) changes to coefficients.
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6.7 Logical status of the selection theorem

Theorem 2 (K = 7 selection at hierarchy level). Assume: (i) the closure conditionn=N X a
with N_¥ = 12n/(AL_P?); (ii) Two-Planck vacuum regulation A = 8nl_ P?/&* (S12); (iii) the
discrete coupling formula a(K) = 2K / [2¥(2K + 1)] (SI1); and (iv) the dimensional transmutation
relation §(K) = £ _em exp[(4/K)(2X — 1/p_c)] (SI3). Then n(K) is a super-exponential function of
K, and K = 7 is the unique integer for which n falls in the cosmologically observed regime logio
n~121.

What this proves (conditionally). If all four inputs are valid, then K = 7 is not a free parameter
but a determined output of the closure system. The constraint count, the coupling constant, and
the cosmological constant are jointly constrained by the admissibility condition, locked up to the
discrete topological class n and controlled corrections.

What this does not prove. The theorem does not derive K = 7 from closure alone without the
Two-Planck relation and the o formula. It does not establish that n ~ 10" is the correct target
beyond order-of-magnitude consistency. And it does not prove exact integrality of n, which
would require precision in a, A, and the O(1) prefactors far beyond current capability.

Independence of the input chains. The a(K) formula derives from the combinatorics of the
simplicial 2-skeleton (constraint counting and binary admissibility structure). The (K) formula
derives from lattice dimensional transmutation (one-loop running from the lattice coupling g¢* =
27K to the continuum). These are logically and physically distinct mechanisms. Their joint
consistency at K = 7—producing both o = 1/137 and A = 1072 m>—is a non-trivial
convergence, not a calibration.

7. Discussion

7.1 Summary of the logical chain

The architecture of the argument forms a closed sequence:
1. K-constraint coherence — existence of an independent holonomy constraint C4
2. Exclusion lemmas — minimal gauge redundancy is U(1)

3. 2-skeleton combinatorics — geometric information propagates on 2-cells; N _loop = 14
atK=7

4. de Sitter surface selection — unique IR closure surface X = S? (conditional on BH3)
5. Planck-area discretization — global cell count N ¥ = 1.3 x 10'*3

6. Chern—Weil integrality — N X - a0 = n € Z (admissibility, not unique determination)
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7. RG stability — holonomy anchored to reference scale; logarithmic compensation of
running

8. Discrete selection — K = 7 uniquely compatible with logion= 121; K + 1 fails by 50—
100 orders

Steps 1-7 establish the closure condition for general K. Step 8 closes the loop by selecting K =7
as the unique solution of the full system at hierarchy level.

7.2 What is derived vs. what is assumed

Assumptions: SA1-SAS5 (including SA3"), BH1-BH3, SI1-SI3 (see §1.1 for the complete
ledger).

Derived consequences:
e U(1) as the minimal gauge redundancy (Theorem 1, via Lemmas 1-3 and Corollary 3).
e The de Sitter 2-sphere as the unique closure surface (Proposition in §3.2).
e The joint admissibility condition on o and A (the closure equation).

e The logarithmic, scale-dependent structure of higher-order holonomy corrections (§5.5—
5.6).

e The p-independence of n as an internal consistency test (§5.7).
o K =7 as the unique admissible constraint count at hierarchy level (Theorem 2).
7.3 Scope of the a—A constraint

The closure equation jointly constrains o and A by an admissibility condition: they are restricted
to a discrete family of pairs labeled by n € Z, but are not uniquely determined by closure alone.
Note thatn = N_X a0~ 102 / 137 = 10!, which is smaller than N_X itself by a factor of a0 =
1/137; the "cosmological hierarchy number" in this framework is therefore ~10'?!, not the ~10'*
sometimes quoted for N_X alone. The remaining fundamental constants G, %, and ¢ enter through
the Planck area € P? = 4G/c?, which sets the discretization scale. This is a parametric
dependence—dimensional analysis, not a dynamical constraint. Whether a deeper formulation
can promote the dependence on G, 4, and ¢ from parametric to dynamical remains an open
question.

A note on the hierarchy exponent. The cosmological constant problem is often stated as a
~10'22 discrepancy between the Planck-scale vacuum energy and the observed value. The
winding number n = N_X ao = 10'?! is smaller than N_X = 10'* by a factor of a0 = 1/137, placing
it one to two orders below the cell count itself. This is not a discrepancy; it is a direct
consequence of the closure equation. The "10'°—10'2*" range quoted in the literature reflects
different conventions for what is being counted (area in Planck units, vacuum energy ratio, etc.).
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In the present framework, the relevant quantity is the Chern number n = N_X ao, and its value
logion = 121 is a derived output, not a target.

7.4 The N_loop = 2K coincidence

For K =7, the geometric calculation of §3.1 independently yields N_loop =14 =2 x 7. The
discrete coupling formula assumes N_loop = 2K as a general relation. Whether this linear
relationship holds for all K, or is a special property of K = 7 tied to the specific structure of the 4-
simplex 2-skeleton, is an open question with two possible resolutions:

e IfN loop =2K holds only at K = 7, this would constitute an additional, independent
selection mechanism further constraining the framework. The coincidence itself would
then require explanation.

e IfN loop = 2K holds generally, its origin should be derivable from the combinatorics of
K-constraint simplicial complexes—a direction for future work.

Either resolution strengthens the framework; neither undermines it.
7.5 Relation to existing frameworks

The use of simplicial decompositions connects to Regge calculus and dynamical triangulations.
The U(1) bundle structure and Chern—Weil integrality are standard tools in gauge theory and
fiber bundle geometry. The RG analysis uses standard one-loop QED (treated schematically with
piecewise thresholds; electroweak mixing and scheme subtleties are deferred). The dimensional
transmutation from lattice to continuum coupling is standard in lattice gauge theory. The novelty
lies in combining these elements into a single closure condition that links UV coherence
combinatorics to IR topological constraints, yielding relationships among a, A, and K that are
absent in each framework individually.

7.6 Falsifiability
The framework makes the following testable predictions:

1. Integrality (convergence form): N X - oo must be an integer. In practice, this means: as
measurements of a and A improve, the quantity n_inferred = 12wo0/(A€_P?) should
converge toward a stable integer within the propagated uncertainty from A and o.o.
Current uncertainties in A (~few percent) dominate and permit n to be determined only at
the order-of-magnitude level (~10'?"). The prediction is that future precision will not
reveal n drifting away from integrality but converging toward it.

2. Scale-independence: n inferred from o measured at different scales p must agree after
RG conversion with proper threshold matching.
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3. Robustness under refinement: the inferred n should be stable under changes in
discretization conventions (e.g., replacing £ P? with 3 ¢ P?), up to O(1) multiplicative
factors that do not affect K-selection.

4. K-selection: no self-consistent solution of the full system exists for K # 7 within the
observed cosmological hierarchy.

5. a prediction: the leading-order formula a~'(7) = 137.14 should be correctable to the
measured value by computable sub-leading terms.

6. de Sitter conditionality: observation of w # —1 asymptotically would require revision of
the closure surface and potentially falsify the specific form of the admissibility condition.

If improved measurements of A yield a value of N_X - oo that is not close to an integer, or if a
self-consistent solution at K # 7 is found, the framework is falsified. By "close" we mean within
the propagated 1o uncertainty from A (dominant) and ow; at present this uncertainty is order-
percent in A, so the integrality prediction is testable only at order-of-magnitude level (~10'%").
The prediction sharpens as cosmological measurements improve. To be concrete: current
Planck/DESI-level constraints place A at ~5% precision, translating to a ~5% uncertainty in n —
i.e., logion = 121.0 + 0.02. This is far too coarse to test exact integrality (which would require
knowing n to +1 out of ~10'?"), but it is more than sufficient for K-selection: the nearest
competitor (K = 6 at logio n = 68) is excluded by over 50 orders of magnitude.

Appendix A: Formal Theorem Statements

Theorem A (Minimal gauge redundancy). In any relational pre-geometric substrate where (i)
coherent triangles carry K = 7 independent constraints including a single holonomy-based loop
closure C4, (i1) coherence predicates are gauge-invariant (SA1), (iii) transport data admit
continuous perturbations with robust coherence (SA2), (iv) no additional independent parameters
are introduced beyond a single holonomy-strength coupling (SA3), (v) co-face compatibility and
loop closure are decidable from a single scalar holonomy invariant without extra alignment
structure (SA3'), (vi) holonomy classes form a compact space (SA4), and (vii) the near-identity
holonomy spectrum is one-parameter (SAS5), U(1) is the minimal compact gauge redundancy
consistent with all stated assumptions, and is the unique minimal compact connected choice.

Proof: Lemmas 1-3 and Corollary 3 of §2.3, composed as Theorem 1.

Theorem B (Bundle extension). If coherent triangular faces percolate to form a connected
macroscopic 2-complex, and the macroscopic geometry admits a closed oriented 2-surface X,
then the local U(1) transport structure extends to a principal U(1) bundle over X.

Proof sketch. Principal U(1) bundles over a simplicial complex K are classified by the first Cech
cohomology group H!(X, U(1)). On the 2-skeleton, a U(1) transport system defines transition
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functions on overlaps of vertex stars. The cocycle condition g ij g jk g ki =1 on triple overlaps
is precisely the content of the triangle holonomy constraint C4 (with holonomy H_A encoding
the cocycle failure). Coherence (H_A € C near the identity) ensures the transition functions
satisfy the cocycle condition up to controlled corrections. Percolation ensures connectivity,
allowing the local data to define a global Cech cocycle and hence a principal U(1) bundle over X.
]

Theorem C (Joint constraint). Let 6(a) be the per-cell holonomy and N ¥ = 12n/(AL_P?) the
Planck-area cell count. Chern—Weil integrality yields the admissibility condition:

N ¥(A) - 6(a)=2nn,n € Z

This is a single geometric closure functional jointly constraining a and A to a discrete family of
admissible pairs.

Theorem D (Scheme invariance). For any two renormalization schemes s, s’ related by an
analytic redefinition a_s' = f(a_s), topological invariance of n requires 6_s(o._s) =0 _s'(a_s')
when both are evaluated at a common physical reference condition.

Proof. Scheme changes are analytic reparameterizations of the coupling. Since n = (N_X/2m)0 is
a topological integer, it must be invariant. Therefore 0 transforms covariantly under scheme
redefinitions: 8_s(a_s) =0 _s'(f(a_s)), which constrains 6 to be either evaluated at a fixed
physical reference or constructed from scheme-invariant combinations. m

Theorem E (K = 7 selection at hierarchy level). Under the closure condition (Theorem C), Two-
Planck vacuum regulation (SI12), the discrete coupling formula (SI1), and the dimensional
transmutation relation (SI3), the winding number n(K) = (3/2)(&*/¢_P*a(K) is a super-
exponential function of K. The unique integer K for which n falls in the cosmologically observed
regime logion = 121 is K = 7 (see Table 1, §6.5). This selection is robust to O(1) uncertainties in
structural prefactors and to variation of p_c across the Route-M percolation range.

Appendix B: Supplementary Material
B.1 Euler characteristic calculation for the 2-skeleton

The 2-skeleton K? of the standard 4-simplex o* = {0,1,2,3,4} consists of all vertices, edges, and
triangles. Its Euler characteristic is:

WK)=5-10+10=5

The 1-skeleton is the complete graph Ks. Every 1-cycle in Ks bounds a 2-chain in K?: any cycle
decomposes into 3-cycles (triangles), and every triangle of Ks is a 2-face of K. (Equivalently,
K? is the 2-skeleton of a contractible simplex and is therefore simply connected.) Therefore
Hi(K? 7) =0, giving B: = 0. With Bo =1 (X is connected), the Euler relation gives:
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Bo—Pi+Pa=x(HH1-0+P=5p=4

The 4 independent 2-cycles correspond to the 4 independent global Bianchi-type relations among
the 10 face holonomies. This is consistent with the fact that the 4-simplex has 5 tetrahedral 3-
faces imposing 5 relations, of which 4 are independent (the 5th being a linear combination of the
others, reflecting the single global constraint from the 4-simplex itself).

B.2 Non-uniform holonomy
If holonomy varies cell-to-cell, the Chern—Weil discretization gives:
n=(12n) N0 i

Integrality of n is preserved: it is a topological invariant independent of how the curvature is
distributed among cells. The uniform case 0_i= 0 = 2ndf for all i is the isotropic leading-order
approximation. Corrections from non-uniformity affect the relationship between n and the
average coupling (d) but do not alter the integrality constraint itself. To leading order, n=N_X
(d), where (o) = (1/N_X) % of i is the cell-averaged holonomy normalization.

B.3 Standing assumptions, bridge hypotheses, and structural inputs
See §1.1 for the complete assumption ledger.

B.4 Sensitivity of n(K) to the percolation threshold

See Tables 1-2 in §6.5 for the computed sensitivity analysis.

B.5 Distinction between local C7 and global Bianchi relations

To prevent confusion between the per-triangle constraint C7 (§2.2) and the global closure
relations (§3.1):

e C7 (local): For a single triangle A, tests whether the holonomy of A is compatible with
the transport environments of the trwo tetrahedra sharing A as a common face. This is a
local gluing condition that can be evaluated from data in the immediate neighborhood of
A.

e P2=4 relations (global): Emergent constraints among the holonomies of all 10 triangular
faces of a 4-simplex ¢*, arising from the topology of the full 2-skeleton. These relate
faces that may not share any edges, and reflect the global 2-cycle structure of 6*.

C7 is a necessary condition for the global relations to hold (inconsistent local gluing would
obstruct global closure), but it is not sufficient: the global Bianchi relations carry additional
topological content beyond pairwise co-face compatibility. There is no double-counting.
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