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Summary. We ask whether the universe could fail to "close" geometrically if its fundamental 

constants took the wrong values. Beginning from a triangle-based coherence model of pre-

geometric transport, we show that minimal consistency forces a U(1) phase structure and that 

large-scale closure must occur on the de Sitter horizon sphere. Topological integrality then 

requires that the number of Planck-scale cells on that surface multiplied by the electromagnetic 

phase per cell equals an integer. This yields a direct constraint relating α and Λ. When this 

constraint is combined with independent discrete mechanisms governing the coupling strength 

and vacuum regulation, the resulting winding number depends super-exponentially on the 

discrete constraint count K. Only K = 7 produces a winding number in the observed 

cosmological regime; nearby integers miss by 50–100 orders of magnitude. In this framework, 

the constraint count, the strength of electromagnetism, and the size of the universe are not 

independent—they are mutually restricted by geometric admissibility. 

For the general reader. This paper explores a simple but radical idea: what if the basic constants 

of nature are not independent numbers, but must fit together for the universe to "close" 

geometrically? Imagine building space out of tiny triangular pieces. For those triangles to join 

consistently, they must satisfy a small set of internal rules. When those rules are written down 

carefully, they imply that space must carry a built-in phase symmetry—the same mathematical 

structure that underlies electromagnetism. Now zoom out. If the universe is expanding under the 

influence of a cosmological constant, it naturally has a spherical boundary—the de Sitter 

horizon. That sphere can be thought of as tiled with Planck-sized patches. A deep result from 

geometry says that the total "twist" of a phase field over a closed surface must add up to a whole 

number. In this framework, each Planck patch contributes a tiny amount of twist governed by the 

fine-structure constant. For the universe to close properly, the number of patches times that twist 

must equal an exact integer. When this global closure rule is combined with independent 

mechanisms that determine how the coupling strength depends on a discrete parameter K, the 

result is striking: the winding number becomes extraordinarily sensitive to K. Only one value—

K = 7—places the total twist in the range implied by cosmology. Nearby values miss by tens of 

orders of magnitude. In other words, the strength of electromagnetism, the size of the universe, 

and the discrete structure underlying space are not arbitrary in this picture—they are tied together 

by the requirement that the geometry of the universe fits together without contradiction. 
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Abstract 

We develop a unified geometric argument establishing that the fine-structure constant α and the 

cosmological constant Λ are jointly constrained by a single topological closure condition, and 

that the discrete constraint count K = 7 is the unique value compatible with the observed 

cosmological hierarchy at order-of-magnitude level. 
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The argument proceeds in five stages. First, we show that triangle coherence in a simplicial pre-

geometric substrate, decomposed into K independent constraints, forces a minimal U(1) gauge 

redundancy through explicit exclusion of trivial, discrete, and non-abelian alternatives (§2). 

Second, we derive the global cell count N_Σ by identifying the de Sitter event-horizon 2-sphere 

as the unique closed surface satisfying homogeneity, isotropy, and asymptotic time-

independence, discretized in Planck-area units (§3). Third, Chern–Weil integrality on the 

resulting U(1) bundle yields the closure condition N_Σ · θ(α) = 2πn with n ∈ ℤ (§4). Fourth, we 

show that renormalization-group consistency constrains the holonomy map θ(α) to be evaluated 

at a fixed reference scale, with the apparent higher-order coefficient c₂ revealed as a logarithmic, 

scale-dependent quantity rather than a universal constant (§5). Fifth, we show that when the 

closure equation is combined with the discrete coupling formula α(K) and the Two-Planck 

vacuum regulation Λ(K), the topological winding number n(K) is a super-exponential function of 

K, and only K = 7 places n in the cosmologically observed regime ~10¹²¹, with K = 6 and K = 8 

failing by 50–100 orders of magnitude (§6). 

The combined architecture converts K = 7 from an enumerated input into a selected output, with 

α and Λ jointly constrained by an admissibility condition up to discrete topological class n and 

controlled corrections. 

 

1. Introduction 

The fine-structure constant α ≈ 1/137 and the cosmological constant Λ ≈ 1.1 × 10⁻⁵² m⁻² are 

among the most precisely measured yet least understood parameters in fundamental physics. In 

the Standard Model and general relativity, they enter as independent inputs. The present work 

investigates whether a pre-geometric consistency requirement—topological closure of a U(1) 

bundle over a cosmological horizon surface—can render them mutually constrained by an 

admissibility condition, and whether the discrete structure underlying this closure selects its own 

constraint count. 

The argument is constructive. We do not assume U(1) gauge symmetry; we derive it as the 

minimal structure compatible with holonomy-based coherence in a simplicial substrate. We do 

not choose the cosmological horizon by hand; we show it is the unique 2-surface satisfying the 

symmetry and stability requirements of the closure argument. And we do not assume K = 7; we 

show it is the only integer for which the combined system of closure, coupling, and vacuum 

regulation produces a topological winding number in the observed cosmological range. 

We state explicitly the logical status of each element. The K-constraint decomposition of triangle 

coherence, the identification of coherent holonomy with electromagnetic phase, and the leading-

order uniformity of per-cell holonomy are structural inputs (assumptions). The U(1) minimality, 

the Chern–Weil integrality, the RG stability constraint, and the K = 7 selection are derived 

consequences. The de Sitter surface selection is a derived consequence of stated symmetry 
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requirements, conditional on the late-time cosmology approaching a de Sitter attractor. The paper 

stands or falls on whether the structural inputs are physically reasonable and whether the derived 

consequences are internally consistent. 

Main claim. The closure condition N_Σ · α₀ = n ∈ ℤ does not uniquely determine α and Λ; it 

restricts them to a discrete admissibility family labeled by the integer n. Closure alone does not 

select K. What selects K is the combination of the closure equation with two independent 

discrete mechanisms: the coupling formula α(K) from simplicial coherence counting, and the 

vacuum regulation Λ(K) from Two-Planck dimensional transmutation. The resulting winding 

number n(K) is super-exponentially sensitive to K, and only K = 7 places n in the observed 

cosmological regime. The claim is therefore not "we derive α and Λ from first principles" but 

"the discrete coherence structure, the electromagnetic coupling, and the cosmological constant 

are jointly constrained by geometric admissibility, and only one value of the constraint count is 

consistent with the observed hierarchy." 

1.1 Assumption ledger 

For rapid reference, we collect here the standing assumptions (SA), bridge hypotheses (BH), and 

structural inputs (SI) that the paper asks the reader to grant. Each is developed in the section 

indicated. 

Standing assumptions (formal axioms of the coherence framework): 

• SA1 (Gauge invariance). Coherence predicates depend on gauge-equivalence classes of 

transport data, not on representative choices. (§2.1) 

• SA2 (Robustness). Sufficiently small continuous perturbations of edge data do not 

change coherence status, away from a measure-zero set of critical configurations. (§2.3) 

• SA3 (Minimality). The per-cell coherence predicate introduces no independent 

dimensionless parameters beyond the single holonomy-strength coupling. The holonomy 

normalization is controlled by one real degree of freedom. (§2.3) 

• SA3′ (Scalar completeness under local gluing). For any triangle Δ shared by two 

tetrahedra τ₁ and τ₂, the loop-closure constraint C4 and the co-face compatibility 

constraint C7 must be decidable using only: (i) the transport data on τ₁, (ii) the transport 

data on τ₂, and (iii) a single real scalar s(H_Δ) computed from the triangle holonomy. No 

additional local comparison data (choice of internal frame, stabilizer alignment, maximal-

torus section, normal-bundle identification) may be introduced beyond the existing 

embedding constraints C5–C7. SA3′ is not an additional assumption beyond K = 7 

minimality; it is the operational content of the statement that C4 contributes exactly one 

independent continuous constraint channel. (§2.3) 

Operational justification of SA3′. SA3′ encodes an information restriction: the coherence test 

across a shared face must be decidable from gauge-invariant loop data accessible locally on the 
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two incident tetrahedra. Allowing additional alignment/section data (e.g., internal frame 

matching or stabilizer identification) is equivalent to introducing extra locally propagating 

degrees of freedom beyond the transport variables already present. In the minimal programme, 

such extra structure is not "free bookkeeping"; it would constitute new physics and would 

introduce additional independent parameters or fields. The U(1) minimality result is therefore 

conditional on the absence of such alignment fields: if nature supplies additional local 

comparison structure, larger gauge groups could be admissible, but that would be a different 

(non-minimal) framework. 

• SA4 (Finite distinguishability). The space of holonomy classes is compact, excluding 

non-compact gauge groups. Physically: a finite-resolution observer cannot distinguish 

infinitely many holonomy states, so the holonomy target space must be bounded. (§2.3) 

• SA5 (One-parameter holonomy spectrum). The physically distinguishable near-identity 

holonomy states relevant to C4 form a connected 1-parameter family (a single "holonomy 

angle" degree of freedom), consistent with C4 contributing exactly one independent 

continuous constraint channel. (§2.2) 

Bridge hypotheses (identifications connecting the abstract framework to physics): 

• BH1 (Holonomy–coupling identification). The per-cell holonomy normalization on the 

closure surface is identified with the electromagnetic fine-structure constant at a physical 

reference scale. Justification: (i) under SA3, the framework has exactly one 

dimensionless U(1) coupling; (ii) electromagnetism is the only unbroken long-range U(1) 

gauge interaction in late-time cosmology (hypercharge is broken; hidden U(1)s would 

require new fields, violating SA3); (iii) the identification is therefore the unique SA3-

compatible bridge between the abstract holonomy normalization and infrared physics. 

(§4.3) 

• BH2 (Planck-area tiling). The Planck area ℓ_P² = ℏG/c³ is the correct cell area for 

discretizing the U(1) bundle integral on the closure surface. We use ℓ_P² as the minimal 

universal covariant area scale built from ℏ, G, c; alternative order-unity area gaps (e.g., 

4ℓ_P², or the loop-quantum-gravity area gap γ√3 ℓ_P²) shift n by a multiplicative O(1) 

factor and do not affect the K-selection, which depends on super-exponential sensitivity. 

(§3.3) 

• BH3 (de Sitter attractor). The late-time cosmology approaches a de Sitter fixed point (w 

→ −1 asymptotically), so that the de Sitter event-horizon sphere is the canonical closure 

surface. (§3.2) 

Structural inputs (additional hypotheses used in the K-selection argument of §6): 

• SI1 (Discrete coupling formula). α(K) = 2K / [2ᴷ(2K + 1)] with N_loop = 2K. (§6.2) 

• SI2 (Two-Planck vacuum regulation). Λ = 8πℓ_P² / ξ⁴. (§6.3) 
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• SI3 (Dimensional transmutation). ξ(K) = ℓ_em · exp[(4/K)(2ᴷ − 1/p_c)] with ℓ_em = 

2ℓ_P. (§6.3) 

Derived consequences (proven from the above): 

• U(1) gauge minimality (Theorem 1) 

• Unique closure surface selection (Proposition, §3.2) 

• Joint admissibility condition on α and Λ (Theorem C) 

• RG stability via reference-scale anchoring (§5) 

• K = 7 selection at hierarchy level (Theorem 2) 

 

2. Triangle Coherence and the K = 7 Constraint Structure 

2.1 Definitions 

Throughout, K denotes the discrete constraint count. The simplicial 2-complex on which 

transport is defined is denoted 𝒦. 

Definition 1 (Transport system). Let 𝒦 be a simplicial 2-complex with vertex set V and oriented 

edge set E. A transport system assigns to each oriented edge (i → j) an element U_ij in a 

topological group G, with U_ji = U_ij⁻¹. 

Definition 2 (Triangle holonomy). For an oriented triangle Δ = (i, j, k) with boundary edges (i → 

j), (j → k), (k → i), the holonomy is H_Δ := U_ij U_jk U_ki ∈ G. 

Definition 3 (Gauge reparameterization). A local change of representatives is a map g : V → G 

acting as U_ij ↦ g_i U_ij g_j⁻¹. Two transport systems related by such a map are gauge-

equivalent. 

Definition 4 (Edge admissibility). An oriented edge e = (i → j) is admissible if it satisfies a 

predicate 𝒜(e) ∈ {0, 1} that tests whether the edge supports well-defined transport. An edge may 

fail admissibility due to degenerate simplex geometry (zero-length edge), forbidden local 

configurations, or loss of distinguishability between adjacent vertices. Admissibility is a 

precondition for transport: if 𝒜(e) = 0, the transport element U_ij is undefined or degenerate. 

Definition 5 (Coherence predicate). A triangle Δ is coherent if its edge data and holonomy satisfy 

a set of conditions invariant under gauge reparameterization. The coherence predicate depends 

on the gauge-equivalence class of {U_ij}, not on a choice of representatives. 

2.2 The seven independent constraints 



 8 

We now enumerate the independent conditions that a triangle Δ = (i, j, k) must satisfy to be 

coherent within a 4-dimensional simplicial foam. The constraints fall into three groups: edge 

admissibility, loop closure, and embedding consistency. 

Edge admissibility (C1–C3). Each of the three oriented edges of Δ must be admissible: 

• C1: 𝒜(e_ij) = 1 (edge ij supports well-defined, invertible transport). 

• C2: 𝒜(e_jk) = 1 (edge jk supports well-defined, invertible transport). 

• C3: 𝒜(e_ki) = 1 (edge ki supports well-defined, invertible transport). 

These are independent because each edge may fail admissibility independently—for example, 

one edge of a triangle may become degenerate (zero length, coincident vertices, or singular local 

geometry) while the other two remain well-defined. Together they contribute 3 binary 

constraints. Note that admissibility is not automatic: in a pre-geometric substrate where edge data 

encode relational structure, degeneracy is a genuine failure mode, not a mathematical triviality. 

Loop closure (C4). The holonomy H_Δ = U_ij U_jk U_ki must lie in a distinguished coherence 

class 𝒞 ⊂ G: 

• C4: H_Δ ∈ 𝒞. 

This is a gauge-invariant condition (for abelian G, H_Δ is fully gauge-invariant; for non-abelian 

G, the conjugacy class of H_Δ is gauge-invariant). It is independent of C1–C3 because edges 

may be individually admissible while their composed product violates the closure bound. C4 

contributes 1 constraint parameterized by a single real degree of freedom (the holonomy angle, 

for compact G near the identity). 

Embedding consistency (C5–C7). In a 4-dimensional simplicial foam, each triangle Δ is a 2-

face shared by adjacent tetrahedra (3-simplices), which are in turn faces of 4-simplices. 

Coherence of Δ requires compatibility with this higher-dimensional embedding: 

• C5 (Orientation compatibility): The orientation of Δ, as inherited from each adjacent 

tetrahedron, must be consistent. In a 4-dimensional simplicial complex, a triangle 

generically borders at least two tetrahedra; consistent orientability of the triangulation 

requires that the induced orientations agree up to sign across each shared face. This is one 

binary constraint. 

• C6 (Normal transport consistency): The transport data on the edges of Δ must be 

compatible with transport data along edges connecting Δ's vertices to vertices of adjacent 

tetrahedra not contained in Δ. This ensures that curvature localized on Δ (the deficit angle 

in the Regge calculus interpretation) is consistent with the local geometry. This is one 

constraint per triangle, testing whether the holonomy of Δ is compatible with the deficit 

angle implied by the dihedral angles of adjacent 4-simplices. 
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• C7 (Co-face compatibility): The holonomy of Δ must be consistent with the transport 

environments of the two tetrahedra sharing Δ as a common face. Specifically, the two 

tetrahedral holonomy environments—the products of face holonomies around each 

tetrahedron—must agree on the value of H_Δ up to gauge equivalence. C7 must be 

decidable using only data on τ₁, τ₂, and their shared face Δ; it may not require gauge 

fixing over a larger neighborhood. This is a local gluing constraint between the two 

tetrahedra adjacent to Δ, not the global Bianchi identity over all faces of a 4-simplex. 

(The global Bianchi relations, which link holonomies of all 10 faces of a 4-simplex, are 

derived in §3.1 as independent closure channels at the 4-simplex level; they are emergent 

consequences of the per-triangle constraints, not identical to C7. See Appendix B.5 for 

further clarification.) 

The three embedding constraints C5–C7 are independent of each other (orientation, normal 

transport, and co-face compatibility test different geometric data) and independent of C1–C4 (a 

triangle may have admissible edges with coherent loop closure yet fail to embed consistently in 

the higher-dimensional foam). 

Total: K = 7 independent coherence constraints per triangle. 

2.3 Derivation of the minimal U(1) gauge redundancy 

Any transport system on the 1-skeleton admits local gauge reparameterizations U_ij ↦ g_i U_ij 

g_j⁻¹ that do not alter the relational content. This defines a gauge redundancy valued in G. We 

now show that the minimal compact gauge group consistent with the K = 7 coherence structure is 

U(1), by systematically excluding all alternatives. 

Lemma 1 — Trivial holonomy is excluded 

Statement. If G is trivial (|G| = 1), then H_Δ = e for all triangles and all edge data. The 

constraint C4 is automatically satisfied and cannot constitute an independent coherence 

condition. 

Proof. If |G| = 1, every transport element equals the identity: U_ij = e for all edges. Therefore 

H_Δ = e · e · e = e for every triangle, regardless of edge configuration. Any predicate of the form 

"H_Δ ∈ 𝒞" is satisfied trivially and carries no information. This means C4 cannot serve as an 

independent failure mode, contradicting the K = 7 decomposition in which C4 is a distinct, non-

redundant constraint. ∎ 

Lemma 2 — Discrete gauge groups are excluded 

Statement. If G is a discrete group (e.g., G = ℤₙ) and the transport data admit continuous 

perturbations in a connected neighborhood, then any gauge-invariant holonomy map is locally 

constant. Consequently, holonomy either carries no nontrivial information or loses robustness 

under refinement. 
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Proof. Fix a triangle Δ and consider the holonomy map Φ : 𝒰 → G assigning H_Δ to the edge 

data in a connected neighborhood 𝒰 of the transport variables {U_ij}. The map Φ is continuous 

because it is a finite product of group multiplication and inversion operations, which are 

continuous in any topological group. 

If G is discrete, its only connected subsets are singletons. The continuous image of a connected 

set under a continuous map is connected. Therefore Φ(𝒰) is a singleton: holonomy is constant 

throughout 𝒰. 

This means that holonomy classes cannot encode a continuous response to microscopic variation 

of edge data. To obtain nontrivial variability one must either (i) permit discontinuous jumps in 

holonomy class, violating robustness (SA2), or (ii) introduce additional structure beyond the 

discrete holonomy labels, violating minimality (SA3). 

Therefore, no discrete group can serve as the minimal gauge redundancy for a coherence 

predicate that is both robust and non-trivially sensitive to holonomy. ∎ 

Lemma 3 — Non-abelian gauge groups violate scalar-complete local gluing 

Statement. Assume SA3′ (scalar completeness under local gluing). Then the holonomy gauge 

group governing C4 must be abelian. 

Proof. Let Δ be a triangle shared by two tetrahedra τ₁ and τ₂. Each tetrahedron determines a 

representative holonomy element H_Δ⁽¹⁾ and H_Δ⁽²⁾ computed from its local transport 

representatives. Gauge invariance (SA1) implies that any quantity entering the coherence 

predicate must be invariant under local reparameterizations; for a general compact Lie group, the 

natural invariant content of a single element is its conjugacy class. 

Under SA3′, the shared-face consistency check (C7) must be decidable using only a single real 

scalar s(H_Δ) computed from H_Δ, with no additional alignment structure permitted. 

If G is non-abelian, then conjugacy classes do not canonically specify a unique representative 

element: any representative choice requires additional structure (e.g., a section to a maximal 

torus, an internal frame choice, or stabilizer alignment). Concretely, even in the smallest non-

abelian case SU(2), a near-identity element is parameterized by an angle θ and an internal axis n̂, 

and the conjugacy class discards the axis data. Two tetrahedral environments can therefore yield 

holonomies with the same class parameter (same θ) but different internal axes. Determining 

whether these represent the same glued transport system across τ₁ and τ₂ requires specifying how 

the internal axes (or stabilizers) are identified across the shared face—precisely the extra local 

gluing data SA3′ forbids. Equality of conjugacy class does not imply equality of group element 

under the gauge transformations admissible on the shared face; in non-abelian groups, matching 

class parameters does not define a canonical glued transport configuration. 

Equivalently: any map s : G → ℝ that is invariant under conjugation collapses the degrees of 

freedom transverse to conjugacy classes. For non-abelian G, these collapsed degrees of freedom 
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are exactly what controls whether two locally computed holonomies are compatible as the same 

glued object, rather than merely class-equivalent. Enforcing full co-face compatibility therefore 

requires additional independent comparison structure, contradicting SA3′. 

For an abelian group, every element is its own conjugacy class. The scalar s(H_Δ) (the phase 

angle) completely determines H_Δ, and no alignment structure is needed to compare holonomies 

across the shared face. Co-face compatibility is decidable from s alone. 

Hence G cannot be non-abelian. Therefore G must be abelian. ∎ 

Corollary 3 — Minimal compact connected abelian choice is U(1) 

Statement. If, in addition, the holonomy spectrum relevant to C4 is one-parameter (SA5), then 

the minimal compact connected abelian group consistent with the holonomy sector is U(1). 

Proof. Any compact connected abelian Lie group is a torus T^m ≅ U(1)^m. SA5 restricts the 

holonomy sector to a single continuous parameter, hence m = 1, so G ≅ U(1). If the near-identity 

holonomy sector were m-parameter (m > 1), then either (i) C4 would require m independent 

continuous constraint channels, contradicting K = 7, or (ii) the discarded parameters would 

reappear in gluing compatibility, violating SA3′. ∎ 

Theorem 1 — Minimality of U(1) 

Statement. Under SA1 (gauge invariance), SA2 (robustness), SA3 (minimality), SA3′ (scalar-

complete local gluing), SA4 (finite distinguishability), and SA5 (one-parameter holonomy 

spectrum), U(1) is the minimal compact gauge redundancy consistent with the K = 7 coherence 

structure, and is the unique minimal compact connected choice. 

Proof. By Lemma 1, trivial G is excluded (C4 would not be independent). By Lemma 2, discrete 

G is excluded (holonomy would be topologically rigid under SA2). By Lemma 3, non-abelian 

compact Lie groups are excluded (scalar-complete local gluing under SA3′ forces abelianity). By 

Corollary 3, SA5 forces the abelian group to be one-dimensional: G ≅ U(1). Non-compact 

groups are excluded by SA4: finite distinguishability requires the space of holonomy classes to 

be compact (a finite-resolution observer cannot distinguish among unboundedly many holonomy 

states, so the holonomy target must be bounded). ∎ 

Remark (Structural inevitability). The emergence of U(1) here is not a statement about gauge 

symmetry in general, but about the minimal algebraic structure capable of supporting (i) a single 

continuous holonomy constraint and (ii) local scalar-complete gluing without additional 

comparison data. Within that class, U(1) is the unique compact connected realization. 

 

3. From Local Simplicial Combinatorics to the Global Cell Count 

3.1 Local structure: the 2-skeleton of the 4-simplex 
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A 4-simplex σ⁴ with vertex set {0, 1, 2, 3, 4} has the following face counts: 

Dimension Name Count 

0 vertices C(5,1) = 5 

1 edges C(5,2) = 10 

2 triangles C(5,3) = 10 

3 tetrahedra C(5,4) = 5 

4 4-simplex C(5,5) = 1 

Curvature in 4-dimensional Regge calculus resides on 2-faces (triangles): each triangle carries a 

deficit angle encoding the local curvature. Therefore the 10 triangular faces of σ⁴ are the 

fundamental curvature carriers. 

The triangular holonomies are not all independent. The second Betti number of the 2-skeleton 𝒦² 

of σ⁴ counts the independent 2-cycles—closed 2-chains within the triangulation that impose 

relations among the face holonomies. Using the Euler characteristic: 

χ(𝒦²) = |V| − |E| + |F| = 5 − 10 + 10 = 5 

𝒦² is connected, so β₀ = 1. Every 1-cycle in the 1-skeleton (the complete graph K₅) bounds a 2-

chain in 𝒦², because any cycle in K₅ decomposes into 3-cycles (triangles), and every triangle of 

K₅ is a 2-face of 𝒦². (Equivalently, 𝒦² is the 2-skeleton of a contractible simplex and is therefore 

simply connected; see e.g. Munkres, Elements of Algebraic Topology, §5.) Therefore H₁(𝒦²; ℤ) = 

0, giving β₁ = 0. From the Euler relation: 

β₀ − β₁ + β₂ = χ(𝒦²) 1 − 0 + β₂ = 5 β₂ = 4 

These 4 independent 2-cycles provide 4 global Bianchi-type closure relations among the 10 face 

holonomies of the 4-simplex. They emerge from the topology of the full 2-skeleton and constrain 

how face holonomies combine across the entire 4-simplex. This is distinct from the per-triangle 

co-face compatibility C7, which is a local constraint between the two tetrahedra sharing a given 

triangle (see §2.2 and Appendix B.5). 

The total geometric information content of the local 4-simplex is therefore characterized by: 

N_loop = 10 (curvature-carrying faces) + 4 (independent global closure relations) = 14 

This establishes that geometric information in the UV (simplicial) regime propagates on 2-cells 

and is subject to closure constraints arising from the topology of the 2-skeleton. 

3.2 Selection of the IR closure surface 
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The local face-based structure must have a global counterpart if geometric closure is to extend 

from the UV to the IR. We require a closed 2-surface Σ that serves as the domain for a global 

closure condition. The following requirements constrain the choice: 

1. Closure: Σ must be a compact, oriented 2-manifold without boundary, so that Chern–

Weil integrality applies. 

2. Homogeneity and isotropy: Σ must be invariant under the spatial symmetry group SO(3) 

of the background cosmology, ensuring the closure condition respects the cosmological 

principle. 

3. Asymptotic time-independence: Σ must define a fixed geometric scale in the late-time 

limit, so that the closure condition is not tied to a particular cosmological epoch. 

4. Determination by Λ alone: Σ must be parameterized solely by the cosmological 

constant, without dependence on initial conditions, foliation choice, or observer location. 

Proposition. In a late-time accelerating FRW cosmology approaching a de Sitter fixed point 

(BH3), the unique (up to isometry) closed 2-surface satisfying conditions 1–4 is the de Sitter 

event-horizon cross-section Σ ≅ S² with areal radius r_Λ = √(3/Λ). 

Justification. The particle horizon and last-scattering surface are time-dependent: their 

comoving radii grow with conformal time and therefore violate condition 3. The apparent 

horizon is foliation-dependent, violating condition 4. The de Sitter event horizon, by contrast, 

exists as an invariant causal boundary in the asymptotic de Sitter phase, with constant areal 

radius r_Λ = c/H_Λ = √(3/Λ) (in natural units). It is a 2-sphere, hence SO(3)-homogeneous, 

satisfying condition 2. It is compact and orientable, satisfying condition 1. And it is determined 

entirely by Λ, satisfying condition 4. No other standard cosmological 2-surface meets all four 

requirements simultaneously. 

Conditionality. This selection is conditional on BH3 (late-time de Sitter approach). The closure 

surface is taken in the asymptotic de Sitter regime; the present epoch may be viewed as 

approaching this limit, with corrections suppressed by deviations of w from −1 and by finite-time 

approach to the attractor. The closure condition is therefore an IR asymptotic statement, not a 

claim that today's horizon is already exact. If the dark energy equation of state deviates from w = 

−1 at late times—for example, in quintessence or phantom models—the canonical closure 

surface must be revised, and the closure condition would take a different form. This constitutes 

an additional falsifier: observation of w ≠ −1 asymptotically would invalidate the specific surface 

selection used here. 

3.3 The global cell count 

Discretizing the closure surface Σ in Planck-area units ℓ_P² = ℏG/c³ (BH2). We use ℓ_P² as the 

minimal universal covariant area scale built from ℏ, G, and c; alternative order-unity area gaps 

(such as those appearing in loop quantum gravity, where the minimal area eigenvalue is γ√3 
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ℓ_P²/2 with Barbero-Immirzi parameter γ ~ 0.24) would shift N_Σ and hence n by an O(1) factor, 

which does not affect the K-selection (the inter-K gaps are 10⁵⁰⁺). 

A_Σ = 4π r_Λ² = 4π · (3/Λ) = 12π / Λ 

N_Σ = A_Σ / ℓ_P² = 12π / (Λ ℓ_P²) 

With Λ ≈ 1.1 × 10⁻⁵² m⁻² and ℓ_P ≈ 1.616 × 10⁻³⁵ m, this gives N_Σ ≈ 1.3 × 10¹²³. 

The relationship between the local count (N_loop = 14 per 4-simplex) and the global count (N_Σ 

~ 10¹²³) is structural, not numerical. Both are enumerations of 2-dimensional geometric carriers: 

triangular faces locally, Planck-area cells globally. The UV combinatorics determines the type of 

geometric information carrier (2-cells with holonomy); the IR discretization determines how 

many such carriers tile the closure surface. This is a dimensional homology—a shared face-based 

combinatorial structure at vastly different scales—not an arithmetic identity. 

 

4. Chern–Weil Closure Condition 

4.1 Topological constraint 

For a principal U(1) bundle over a closed oriented 2-surface Σ, the Chern–Weil theorem yields 

the integrality condition: 

(1/2π) ∫_Σ F = n ∈ ℤ 

where F is the curvature 2-form and n is the first Chern number (c₁) of the bundle—the total 

winding number. This is a topological invariant: it cannot change under continuous deformations 

of the connection. (We use n rather than χ for the Chern number to avoid confusion with the 

Euler characteristic χ(𝒦²) used in §3.1.) 

4.2 Discretization 

Decompose Σ into N_Σ cells, with per-cell holonomy θ_i. The discretized Chern–Weil condition 

is: 

(1/2π) Σᵢ θ_i = n ∈ ℤ 

This exact integrality holds regardless of whether the θ_i are uniform across cells. In the 

isotropic leading-order approximation, θ_i = θ for all i, giving: 

N_Σ · θ = 2πn 

4.3 Holonomy–coupling identification 

Define the dimensionless per-cell holonomy normalization α̂ by θ := 2πα̂. The closure condition 

becomes: 
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N_Σ · α̂ = n 

At leading order, we identify α̂ with the electromagnetic fine-structure constant evaluated at a 

reference scale: α̂ := α₀ ≡ α(μ₀). This is bridge hypothesis BH1. Its justification rests on three 

converging lines of reasoning: 

Minimality. Under SA3, the coherence predicate introduces exactly one dimensionless U(1) 

coupling controlling holonomy normalization. The identification α̂ = α₀ does not introduce new 

parameters but equates the framework's sole dimensionless coupling with a physical one. 

Infrared universality. The closure surface is the de Sitter horizon—a macroscopic, late-time 

structure. The holonomy that accumulates over this surface must couple universally to phase 

transport of all charged matter crossing the horizon. In late-time cosmology, electromagnetism is 

the only unbroken, long-range U(1) gauge interaction. The Standard Model hypercharge U(1)_Y 

is broken by electroweak symmetry breaking and does not survive as a long-range force below 

the weak scale. Any hypothetical hidden U(1) would require new charged fields, violating SA3 

(minimality: no additional independent parameters). Therefore, the only U(1) coupling that can 

govern macroscopic phase accumulation on the closure surface is the electromagnetic fine-

structure constant. 

Uniqueness under constraints. Combining SA3 (one coupling) with the requirement of infrared 

universality (macroscopic, unbroken, long-range) leaves exactly one candidate: α. The 

identification is therefore the unique SA3-compatible bridge between the framework's abstract 

holonomy normalization and known physics. 

Normalization and reference scale. The identification θ = 2πα̂ fixes the normalization: the per-

Planck-cell holonomy is 2π times the dimensionless coupling. Why α̂ rather than e, 4πα, or some 

other function of α? The answer is that α̂ must be small (near-identity holonomy is required for 

robustness under SA2; large holonomy per cell would place the system near the coherence 

boundary), and α̂ must be the dimensionless ratio that enters the holonomy exponent directly: θ = 

2πα̂ is the unique parameterization in which α̂ is the holonomy fraction of 2π per cell, with no 

arbitrary numerical prefactors. A hidden U(1) with its own coupling would introduce additional 

charged fields and an independent coupling constant, violating SA3. Finally, the reference scale 

μ₀ is not a free choice: RG invariance of n (§5) requires θ to be evaluated at a fixed physical 

reference, and the macroscopic IR meaning of phase transport on the closure surface anchors this 

to the Thomson limit α₀ ≡ α(μ → 0). Any other scale choice yields the same n after RG 

conversion (§5.7), confirming that the physical content is scale-independent. 

Normalization lemma. Under SA3 (no extra dimensionless parameters), the near-identity 

holonomy angle must scale linearly with the unique small dimensionless coupling: θ(α̂) = 2π c α̂ 

+ O(α̂²), where c is a numerical constant. The constant c cannot encode new physics without 

introducing a new dimensionless parameter, which SA3 forbids. Defining α̂ as the fraction of a 

full 2π rotation per cell fixes c = 1 by construction: α̂ = θ/(2π). This is not a physical assumption 
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but a canonical parameterization—the unique normalization convention in which α̂ directly 

measures the holonomy fraction per cell. The higher-order corrections O(α̂²) are precisely the 

RG-generated terms analyzed in §5, whose coefficients are scale-dependent rather than universal 

(§5.5). 

With this identification: 

N_Σ(Λ) · α₀ = n ∈ ℤ 

This is the closure equation jointly constraining α and Λ. Since N_Σ = 12π/(Λℓ_P²), it reads: 

12π α₀ / (Λ ℓ_P²) = n 

The left-hand side must be an integer. This is a non-trivial admissibility condition: not all pairs 

(α, Λ) are permitted. The closure equation constrains α and Λ; it does not uniquely determine 

them but restricts them to a discrete family of admissible pairs labeled by n. 

With standard inputs (α₀ ≈ 1/137.036, Λ ≈ 1.1 × 10⁻⁵² m⁻²), the inferred winding number is n ≈ 

10¹²¹. 

4.4 Why the coupling constant appears in the topological integral 

In standard gauge theory, topological invariants such as Chern numbers classify bundles but do 

not depend on coupling constants—the coupling appears in the action, not in the topology. The 

present framework departs from this in a specific and controlled way, and the departure deserves 

explicit justification. 

In conventional treatments, the curvature 2-form F is a geometric object defined by the 

connection, independent of the coupling. The Chern integral (1/2π)∫F yields an integer that 

characterizes the bundle topology. The coupling g enters only when one writes the action S ~ 

(1/g²)∫F ∧ ⋆F, which weights the dynamics but does not affect the topology. 

In the closure framework, the situation is different because the connection is not specified 

independently of the coupling. The per-cell holonomy θ_i is the only continuous datum 

characterizing the U(1) bundle on each Planck-area cell (SA3, SA5). There is no separate 

"connection" specified first and "coupling" inserted afterward; the only continuous datum in the 

holonomy sector is the per-cell curvature/holonomy scale, and bridging it to the measured 

electromagnetic coupling identifies that datum with α₀. When we write θ = 2πα̂, we are not 

inserting a coupling into a topological formula; we are recognizing that the total curvature 

integral (1/2π)Σᵢ θ_i is built from per-cell contributions whose magnitude is controlled by the 

holonomy normalization. 

The analogy is to a lattice gauge theory in which the plaquette action is U_p = exp(iθ_p), and the 

topological charge is Q = (1/2π)Σ_p θ_p. On the lattice, the coupling β = 1/g² controls the typical 

magnitude of θ_p, and therefore controls the value of Q in any given configuration. The coupling 

does not appear in the definition of Q, but it determines which configurations dominate—and in a 



 17 

closure framework where only one configuration (the coherent one) is admitted, the coupling 

directly sets Q. 

In short: the coupling enters the topological integral not because topology depends on coupling 

in general, but because in this framework the per-cell holonomy normalization is the only 

continuous datum in the holonomy sector, and the Chern number is the sum of those per-cell 

curvature contributions. 

To state this precisely: the first Chern number does not depend on coupling constants in general; 

it depends on the curvature of the specific connection realized on Σ. In the present framework, 

the per-cell curvature/holonomy normalization is the only continuous datum admitted in the 

holonomy sector (SA3, SA5), so specifying the physical connection on Σ is equivalent to 

specifying this normalization. The appearance of α is therefore not an insertion of dynamics into 

topology, but a bridge identifying the unique dimensionless holonomy-strength parameter of the 

realized connection with the measured electromagnetic coupling at a fixed reference condition. 

 

5. Renormalization-Group Stability of the Closure Condition 

5.1 The problem 

The topological charge n is an integer and therefore RG-invariant—it cannot depend on the 

renormalization scale μ. However, the electromagnetic coupling α(μ) runs with μ. If the closure 

condition involves α, how can n remain scale-independent? 

This section shows that the resolution is natural: the holonomy θ must be evaluated at a fixed 

physical reference scale μ₀, and any re-expression in terms of α(μ) at a different scale introduces 

logarithmic, scale-dependent corrections that precisely compensate the running. 

5.2 Why a scale-independent polynomial ansatz fails 

A naive approach would write θ(α) = 2π(α + c₂α² + c₃α³ + ⋯) with μ-independent coefficients 

and demand: 

d/d ln μ [N_Σ · θ(α(μ))] = 0 

Since N_Σ is μ-independent, this requires θ'(α) · β_α(α) = 0. But in QED, β_α ≠ 0 for α ≠ 0, so 

this forces θ'(α) = 0—implying θ is constant, which contradicts θ depending on α at all. 

The error is in assuming the coefficients c₂, c₃, … are μ-independent. They cannot be, because 

α(μ) is a scheme-dependent quantity while n is scheme-independent. The correct resolution 

involves evaluating α at a fixed reference scale. 

5.3 QED one-loop running 

At one loop, the QED beta function is: 
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dα/d ln μ = β_α(α) = (2/3π) b α² + O(α³) 

where b = Σ_f Q_f² is the sum of squared charges over active fermion species. This is a 

schematic, piecewise-effective beta function: the fermion content changes across mass 

thresholds, and b is understood as the value appropriate to the scale μ. We are not treating 

electroweak mixing or scheme-dependent subtleties, which would affect sub-leading corrections 

but not the qualitative structure of the argument. 

The fermion content at representative scales: 

• At Thomson limit (μ₀ → 0): only the electron contributes, giving b = Q_e² = 1. 

• At μ ≈ M_Z ≈ 91.2 GeV: all Standard Model charged fermions contribute. Quarks give 3 

colors × [(2/3)² + (1/3)²] × 3 generations = 3 × (5/9) × 3 = 5. Charged leptons give 1² × 3 

generations = 3. Total: b = 8. 

Integrating the one-loop equation from reference scale μ₀: 

1/α(μ) = 1/α(μ₀) − (2b/3π) ln(μ/μ₀) + O(α) 

Define α₀ ≡ α(μ₀) at the Thomson limit. This is a fixed, physical, RG-invariant quantity once μ₀ is 

specified: it does not change when one varies μ. 

Scope of the RG treatment. We use one-loop QED running to demonstrate the structural point: 

RG invariance of n forces θ to be referenced to α(μ₀). A precision computation of the α(0) ↔ 

α(M_Z) matching—including hadronic vacuum polarization contributions, electroweak mixing 

effects, and scheme dependence—is a technical exercise deferred to future work and does not 

change the conceptual constraint. The qualitative conclusion (logarithmic compensation, scale-

independence of n) is robust under higher-order corrections; what changes at higher loops is the 

numerical precision of the α₀ extraction, not the structure of the argument. 

5.4 Resolution: θ is anchored to α₀ 

The closure condition is a macroscopic, global constraint. The natural choice is to evaluate the 

holonomy at the low-energy reference scale where macroscopic phase accumulation is defined: 

θ = 2π α̂ with α̂ := α₀ 

Then n = N_Σ α₀ is RG-stable by construction: it contains no dependence on μ because μ plays 

no role in the definition of α₀. 

5.5 Re-expressing θ in terms of α(μ): the correct c₂ 

One may wish to express the reference holonomy in terms of α measured at a different scale μ. 

Inverting the one-loop running relation: 

α₀ = 1 / (1/α(μ) + (2b/3π) ln(μ/μ₀)) + O(α³) 
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Expanding perturbatively for small α(μ): 

α₀ = α(μ) − (2b/3π) ln(μ/μ₀) · α(μ)² + O(α(μ)³) 

Therefore, if one insists on writing θ = 2π(α + c₂α² + ⋯) in terms of α evaluated at scale μ, the 

quadratic coefficient is: 

c₂(μ; μ₀) = −(2b/3π) ln(μ/μ₀) 

This is not a universal constant. It is logarithmic in the scale ratio, proportional to the one-loop 

coefficient, and changes when μ or μ₀ changes. For physically relevant separations, c₂ is naturally 

O(1–10), not the large values (e.g., c₂ ≈ −68) that would appear if one incorrectly treated it as μ-

independent. 

5.6 Differential formulation 

Define the RG-invariant holonomy θ(μ) := 2πα₀ and write θ(μ) = 2πα(μ)Z(μ), where Z is a 

renormalization factor. RG invariance dθ/d ln μ = 0 requires: 

d ln Z / d ln μ = −β_α(α)/α 

At one loop, β_α(α)/α = (2b/3π)α, which integrates to: 

Z(μ) = exp(−(2b/3π) ∫ α d ln μ') 

This yields a logarithmic Z consistent with the perturbative expansion above. The compensation 

of running is logarithmic—a scheme/scale structure—not a polynomial correction. 

5.7 Internal consistency test 

The closure analysis provides a concrete, falsifiable check. Given any measurement of α at scale 

μ: 

1. Convert to α₀ using the standard RG equation with appropriate piecewise fermion-

threshold matching (b = 1 below the muon threshold, increasing stepwise as heavier 

charged fermions become active). 

2. Compute n_inferred = N_Σ · α₀. 

3. Verify that n_inferred is μ-independent. 

The qualitative structure of this test is clear: the running of α between the Thomson limit and the 

Z-pole scale is well established experimentally (α(0) ≈ 1/137.036 vs. α(M_Z) ≈ 1/127.95), and 

both must yield the same n after proper conversion. A full numerical demonstration requires 

careful piecewise threshold matching across all Standard Model charged fermion masses, which 

we defer to a dedicated analysis. 
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6. Discrete Selection of K = 7 from Closure Consistency 

The preceding sections treated K = 7 as an enumerated structural input. We now show that, when 

the closure equation is combined with two additional mechanisms internal to the framework—a 

discrete coupling formula α(K) (SI1) and a vacuum regulation relation Λ(K) (SI2–SI3)—the 

constraint count K = 7 is not merely assumed but selected as the unique integer compatible with 

the observed cosmological hierarchy. This is a selection theorem at hierarchy level, robust to 

O(1) uncertainties in structural prefactors. 

6.1 Strategy 

The closure equation n = N_Σ α relates the topological winding number to both Λ (through N_Σ) 

and α. If both α and Λ can be expressed as functions of the discrete parameter K, then n becomes 

a function of K alone (plus fixed structural constants). We will show that n(K) is super-

exponentially sensitive to K, so that changing K by ±1 shifts n by 50–100 orders of magnitude. 

Only K = 7 places n in the regime consistent with observation. 

The key requirement for this argument to be non-circular is that α(K) and Λ(K) arise from 

independent physical mechanisms—not from fitting to the observed values of α and Λ. The 

coupling formula α(K) derives from discrete coherence counting on the simplicial 2-skeleton 

(§6.2). The vacuum regulation Λ(K) derives from a Two-Planck saturation mechanism linking 

the cosmological constant to a coherence scale ξ(K), which is itself determined by dimensional 

transmutation on the simplicial lattice (§6.3). These are logically independent chains of 

reasoning whose joint consistency at K = 7 constitutes a prediction, not a calibration. 

Independence of the three input chains. 

Input Origin What it determines 
Depends 

on Λ data? 

Free 

parameters 

SI1: α(K) 

Local simplicial 

combinatorics: constraint 

counting on 2-skeleton, 

binary admissibility 

Electromagnetic 

coupling at each K 
No 

None (K is the 

only input) 

SI2: Λ = 

8πℓ_P²/ξ⁴ 

IR vacuum saturation: Two-

Planck regulation of vacuum 

energy density 

Cosmological constant 

given ξ 
No 

None 

(dimensional 

analysis) 

SI3: ξ(K) 

Lattice dimensional 

transmutation: one-loop RG 

from g₀² = 2⁻ᴷ to continuum 

Coherence/regulation 

scale at each K 
No 

p_c ∈ [0.17, 

0.30] (bounded) 
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SI1 is a purely combinatorial formula. SI2 is a dimensional relation. SI3 is a standard lattice-to-

continuum transmutation with a single bounded structural parameter. None were fit to 

observation. The intersection of all three at K = 7—simultaneously producing α ≈ 1/137, Λ ≈ 

10⁻⁵² m⁻², and n ≈ 10¹²¹—is the non-trivial content of the selection theorem. 

6.2 The discrete coupling formula α(K) 

In the coherence framework, the fine-structure constant at constraint count K is determined by 

the combinatorics of the simplicial 2-skeleton. The local loop count is N_loop = 2K (the total 

number of curvature-carrying faces plus independent closure channels in the simplicial building 

block). 

Remark on N_loop = 2K. For K = 7, the geometric calculation of §3.1 gives N_loop = 10 + 4 = 

14 = 2 × 7, confirming the relation in the case where it can be independently computed. The 

general formula N_loop = 2K extends this to arbitrary K as a structural hypothesis (SI1): the loop 

content of the local building block scales linearly with the constraint count. This is an 

assumption of the discrete coupling program, not a derivation from first principles. (See §7.4 for 

further discussion.) 

The coupling is then determined by the leading-order discrete closure condition: 

α⁻¹(K) = 2ᴷ · (2K + 1) / (2K) 

This formula encodes the requirement that the holonomy normalization be consistent with K 

independent constraints distributed over N_loop = 2K channels, with the factor 2ᴷ reflecting the 

binary admissibility structure (each of K constraints has two states). 

For K = 7: 

α⁻¹(7) = 128 · 15 / 14 = 1920 / 14 ≈ 137.14 

This is within 0.08% of the measured value α⁻¹ ≈ 137.036. The proximity is striking but should 

be interpreted cautiously: the formula is leading-order, and sub-leading corrections (analogous to 

higher-loop terms) have not been computed. 

6.3 Two-Planck vacuum regulation and ξ(K) 

The cosmological constant is related to a coherence regulation scale ξ through the Two-Planck 

saturation mechanism (SI2). The regulated vacuum energy density is ρ_vac ~ ℏc/ξ⁴, and 

Einstein's equation gives Λ = 8πGρ_vac/c⁴. Substituting ℓ_P² = ℏG/c³: 

Λ = 8π ℓ_P² / ξ⁴ 

This replaces the Λ-dependence in the cell count with a ξ-dependence: 

N_Σ = 12π / (Λ ℓ_P²) = 12π / ((8πℓ_P²/ξ⁴) · ℓ_P²) = (3/2) · ξ⁴ / ℓ_P⁴ 
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The coherence scale ξ is determined by dimensional transmutation on the simplicial lattice (SI3, 

Route-M mechanism). The lattice coupling g₀² = 2⁻ᴷ runs to the continuum via: 

ln(ξ / ℓ_em) = (1 / 2b) · (1/g₀² − 1/p_c) 

where ℓ_em = 2ℓ_P is the emergence scale (the minimal resolved length in the Two-Planck 

framework; not to be confused with the electron Compton wavelength λ_C = ℏ/(m_e c)), b = 

N_loop/16 = 2K/16 = K/8 is the one-loop lattice beta-function coefficient, and p_c is the 

percolation critical coupling. With g₀² = 2⁻ᴷ: 

ln(ξ / ℓ_em) = (4/K) · (2ᴷ − 1/p_c) 

Therefore: 

ξ(K) = ℓ_em · exp[(4/K)(2ᴷ − 1/p_c)] 

The exponential dependence on 2ᴷ makes ξ(K) extraordinarily sensitive to K. 

6.4 The winding number as a function of K 

Combining the results of §6.2 and §6.3, the topological winding number is: 

n(K) = N_Σ(K) · α(K) = (3/2) · (ξ(K)⁴ / ℓ_P⁴) · α(K) 

This is now a function of K alone, with all other quantities being fixed physical constants (ℓ_P, 

ℓ_em, p_c). The dominant K-dependence enters through ξ(K)⁴, which scales as exp[(16/K)(2ᴷ − 

1/p_c)]. Since 2ᴷ grows exponentially in K while the prefactor 16/K varies slowly, n(K) is a 

super-exponential function of K. 

6.5 Numerical consistency: computed values 

Rather than relying on approximate prose estimates, we compute n(K) directly from the formulas 

of §6.2–6.4. 

Numerical conventions. We take ℓ_P = 1.616255 × 10⁻³⁵ m (2018 CODATA), ℓ_em = 2ℓ_P, and 

Λ = 1.1 × 10⁻⁵² m⁻². All logarithms in the tables are base 10. The percolation threshold p_c is 

treated as a bounded structural parameter; we scan p_c ∈ [0.17, 0.30] as representative of 

standard site-percolation critical probabilities on comparable lattices (triangular lattice: p_c ≈ 

0.5; face-centered cubic: p_c ≈ 0.20; bond percolation on comparable graphs spans the quoted 

range). See Appendix B.4. 

Table 1. Computed values for p_c = 0.20 (representative Route-M percolation threshold). 

K α⁻¹(K) log₁₀ ξ (m) log₁₀(ξ/ℓ_P) log₁₀(ξ⁴/ℓ_P⁴) log₁₀ n(K) 

6 69.3 −17.4 17.4 69.5 67.9 
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K α⁻¹(K) log₁₀ ξ (m) log₁₀(ξ/ℓ_P) log₁₀(ξ⁴/ℓ_P⁴) log₁₀ n(K) 

7 137.1 −4.0 30.8 123.3 121.3 

8 272.0 +20.0 54.8 219.2 217.0 

Table 2. Sensitivity of log₁₀ n(K) to p_c across the Route-M percolation range. 

K p_c = 0.17 p_c = 0.20 p_c = 0.25 p_c = 0.30 

6 66.8 67.9 69.0 69.8 

7 120.5 121.3 122.3 123.0 

8 216.2 217.0 217.8 218.4 

The observed cosmological value is log₁₀ n ≈ 121 (from N_Σ α₀ with measured inputs). The 

tables demonstrate: 

• K = 7 matches. Across the full p_c range, log₁₀ n(7) = 120.5–123.0, spanning the 

observed value. 

• K = 6 undershoots by ~53 orders of magnitude. log₁₀ n(6) ≈ 67–70. 

• K = 8 overshoots by ~96 orders of magnitude. log₁₀ n(8) ≈ 216–218. 

• p_c variation is negligible. Across p_c = 0.17–0.30, the shift in log₁₀ n is ~3 orders—far 

smaller than the ~50–100 order gaps between adjacent K values. 

6.6 Robustness of the selection 

The K-selection is robust against moderate uncertainties in the input parameters for two reasons. 

Exponential leverage. The dominant factor ξ(K)⁴/ℓ_P⁴ depends on K through exp[(16/K) · 2ᴷ], 

which changes by a multiplicative factor of order exp[16 · 2ᴷ/K²] when K shifts by 1 near K = 7. 

No O(1) uncertainty in p_c, b, or the prefactors can compensate a gap of 10⁵⁰ or more. 

Asymmetric gaps. The gap is larger above K = 7 (~96 orders) than below (~53 orders), 

reflecting the accelerating growth of 2ᴷ. This asymmetry reinforces the selection: K = 7 is not on 

the boundary of viability but sits squarely in a deep well of the log₁₀ n landscape. 

Structural rigidity. The selection depends on the exponential dependence on 2ᴷ in the 

transmutation formula, not on the specific numerical prefactor. Any modification of SI3 that 

preserves the exp(const · 2ᴷ) structure—for example, replacing the prefactor 4/K with 3/K or 

5/K, or shifting the percolation threshold within physically motivated bounds—retains the 

selection rigidity. The inter-K gaps are set by the doubly exponential growth of ξ⁴, which 

overwhelms any O(1) changes to coefficients. 
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6.7 Logical status of the selection theorem 

Theorem 2 (K = 7 selection at hierarchy level). Assume: (i) the closure condition n = N_Σ α 

with N_Σ = 12π/(Λℓ_P²); (ii) Two-Planck vacuum regulation Λ = 8πℓ_P²/ξ⁴ (SI2); (iii) the 

discrete coupling formula α(K) = 2K / [2ᴷ(2K + 1)] (SI1); and (iv) the dimensional transmutation 

relation ξ(K) = ℓ_em exp[(4/K)(2ᴷ − 1/p_c)] (SI3). Then n(K) is a super-exponential function of 

K, and K = 7 is the unique integer for which n falls in the cosmologically observed regime log₁₀ 

n ≈ 121. 

What this proves (conditionally). If all four inputs are valid, then K = 7 is not a free parameter 

but a determined output of the closure system. The constraint count, the coupling constant, and 

the cosmological constant are jointly constrained by the admissibility condition, locked up to the 

discrete topological class n and controlled corrections. 

What this does not prove. The theorem does not derive K = 7 from closure alone without the 

Two-Planck relation and the α formula. It does not establish that n ~ 10¹²¹ is the correct target 

beyond order-of-magnitude consistency. And it does not prove exact integrality of n, which 

would require precision in α, Λ, and the O(1) prefactors far beyond current capability. 

Independence of the input chains. The α(K) formula derives from the combinatorics of the 

simplicial 2-skeleton (constraint counting and binary admissibility structure). The ξ(K) formula 

derives from lattice dimensional transmutation (one-loop running from the lattice coupling g₀² = 

2⁻ᴷ to the continuum). These are logically and physically distinct mechanisms. Their joint 

consistency at K = 7—producing both α ≈ 1/137 and Λ ≈ 10⁻⁵² m⁻²—is a non-trivial 

convergence, not a calibration. 

 

7. Discussion 

7.1 Summary of the logical chain 

The architecture of the argument forms a closed sequence: 

1. K-constraint coherence → existence of an independent holonomy constraint C4 

2. Exclusion lemmas → minimal gauge redundancy is U(1) 

3. 2-skeleton combinatorics → geometric information propagates on 2-cells; N_loop = 14 

at K = 7 

4. de Sitter surface selection → unique IR closure surface Σ ≅ S² (conditional on BH3) 

5. Planck-area discretization → global cell count N_Σ ≈ 1.3 × 10¹²³ 

6. Chern–Weil integrality → N_Σ · α₀ = n ∈ ℤ (admissibility, not unique determination) 
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7. RG stability → holonomy anchored to reference scale; logarithmic compensation of 

running 

8. Discrete selection → K = 7 uniquely compatible with log₁₀ n ≈ 121; K ± 1 fails by 50–

100 orders 

Steps 1–7 establish the closure condition for general K. Step 8 closes the loop by selecting K = 7 

as the unique solution of the full system at hierarchy level. 

7.2 What is derived vs. what is assumed 

Assumptions: SA1–SA5 (including SA3′), BH1–BH3, SI1–SI3 (see §1.1 for the complete 

ledger). 

Derived consequences: 

• U(1) as the minimal gauge redundancy (Theorem 1, via Lemmas 1–3 and Corollary 3). 

• The de Sitter 2-sphere as the unique closure surface (Proposition in §3.2). 

• The joint admissibility condition on α and Λ (the closure equation). 

• The logarithmic, scale-dependent structure of higher-order holonomy corrections (§5.5–

5.6). 

• The μ-independence of n as an internal consistency test (§5.7). 

• K = 7 as the unique admissible constraint count at hierarchy level (Theorem 2). 

7.3 Scope of the α–Λ constraint 

The closure equation jointly constrains α and Λ by an admissibility condition: they are restricted 

to a discrete family of pairs labeled by n ∈ ℤ, but are not uniquely determined by closure alone. 

Note that n ≈ N_Σ α₀ ≈ 10¹²³ / 137 ≈ 10¹²¹, which is smaller than N_Σ itself by a factor of α₀ ≈ 

1/137; the "cosmological hierarchy number" in this framework is therefore ~10¹²¹, not the ~10¹²² 

sometimes quoted for N_Σ alone. The remaining fundamental constants G, ℏ, and c enter through 

the Planck area ℓ_P² = ℏG/c³, which sets the discretization scale. This is a parametric 

dependence—dimensional analysis, not a dynamical constraint. Whether a deeper formulation 

can promote the dependence on G, ℏ, and c from parametric to dynamical remains an open 

question. 

A note on the hierarchy exponent. The cosmological constant problem is often stated as a 

~10¹²² discrepancy between the Planck-scale vacuum energy and the observed value. The 

winding number n ≈ N_Σ α₀ ≈ 10¹²¹ is smaller than N_Σ ≈ 10¹²³ by a factor of α₀ ≈ 1/137, placing 

it one to two orders below the cell count itself. This is not a discrepancy; it is a direct 

consequence of the closure equation. The "10¹²⁰–10¹²²" range quoted in the literature reflects 

different conventions for what is being counted (area in Planck units, vacuum energy ratio, etc.). 
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In the present framework, the relevant quantity is the Chern number n = N_Σ α₀, and its value 

log₁₀ n ≈ 121 is a derived output, not a target. 

7.4 The N_loop = 2K coincidence 

For K = 7, the geometric calculation of §3.1 independently yields N_loop = 14 = 2 × 7. The 

discrete coupling formula assumes N_loop = 2K as a general relation. Whether this linear 

relationship holds for all K, or is a special property of K = 7 tied to the specific structure of the 4-

simplex 2-skeleton, is an open question with two possible resolutions: 

• If N_loop = 2K holds only at K = 7, this would constitute an additional, independent 

selection mechanism further constraining the framework. The coincidence itself would 

then require explanation. 

• If N_loop = 2K holds generally, its origin should be derivable from the combinatorics of 

K-constraint simplicial complexes—a direction for future work. 

Either resolution strengthens the framework; neither undermines it. 

7.5 Relation to existing frameworks 

The use of simplicial decompositions connects to Regge calculus and dynamical triangulations. 

The U(1) bundle structure and Chern–Weil integrality are standard tools in gauge theory and 

fiber bundle geometry. The RG analysis uses standard one-loop QED (treated schematically with 

piecewise thresholds; electroweak mixing and scheme subtleties are deferred). The dimensional 

transmutation from lattice to continuum coupling is standard in lattice gauge theory. The novelty 

lies in combining these elements into a single closure condition that links UV coherence 

combinatorics to IR topological constraints, yielding relationships among α, Λ, and K that are 

absent in each framework individually. 

7.6 Falsifiability 

The framework makes the following testable predictions: 

1. Integrality (convergence form): N_Σ · α₀ must be an integer. In practice, this means: as 

measurements of α and Λ improve, the quantity n_inferred = 12πα₀/(Λℓ_P²) should 

converge toward a stable integer within the propagated uncertainty from Λ and α₀. 

Current uncertainties in Λ (~few percent) dominate and permit n to be determined only at 

the order-of-magnitude level (~10¹²¹). The prediction is that future precision will not 

reveal n drifting away from integrality but converging toward it. 

2. Scale-independence: n inferred from α measured at different scales μ must agree after 

RG conversion with proper threshold matching. 



 27 

3. Robustness under refinement: the inferred n should be stable under changes in 

discretization conventions (e.g., replacing ℓ_P² with γ√3 ℓ_P²), up to O(1) multiplicative 

factors that do not affect K-selection. 

4. K-selection: no self-consistent solution of the full system exists for K ≠ 7 within the 

observed cosmological hierarchy. 

5. α prediction: the leading-order formula α⁻¹(7) ≈ 137.14 should be correctable to the 

measured value by computable sub-leading terms. 

6. de Sitter conditionality: observation of w ≠ −1 asymptotically would require revision of 

the closure surface and potentially falsify the specific form of the admissibility condition. 

If improved measurements of Λ yield a value of N_Σ · α₀ that is not close to an integer, or if a 

self-consistent solution at K ≠ 7 is found, the framework is falsified. By "close" we mean within 

the propagated 1σ uncertainty from Λ (dominant) and α₀; at present this uncertainty is order-

percent in Λ, so the integrality prediction is testable only at order-of-magnitude level (~10¹²¹). 

The prediction sharpens as cosmological measurements improve. To be concrete: current 

Planck/DESI-level constraints place Λ at ~5% precision, translating to a ~5% uncertainty in n — 

i.e., log₁₀ n ≈ 121.0 ± 0.02. This is far too coarse to test exact integrality (which would require 

knowing n to ±1 out of ~10¹²¹), but it is more than sufficient for K-selection: the nearest 

competitor (K = 6 at log₁₀ n ≈ 68) is excluded by over 50 orders of magnitude. 

 

Appendix A: Formal Theorem Statements 

Theorem A (Minimal gauge redundancy). In any relational pre-geometric substrate where (i) 

coherent triangles carry K = 7 independent constraints including a single holonomy-based loop 

closure C4, (ii) coherence predicates are gauge-invariant (SA1), (iii) transport data admit 

continuous perturbations with robust coherence (SA2), (iv) no additional independent parameters 

are introduced beyond a single holonomy-strength coupling (SA3), (v) co-face compatibility and 

loop closure are decidable from a single scalar holonomy invariant without extra alignment 

structure (SA3′), (vi) holonomy classes form a compact space (SA4), and (vii) the near-identity 

holonomy spectrum is one-parameter (SA5), U(1) is the minimal compact gauge redundancy 

consistent with all stated assumptions, and is the unique minimal compact connected choice. 

Proof: Lemmas 1–3 and Corollary 3 of §2.3, composed as Theorem 1. 

Theorem B (Bundle extension). If coherent triangular faces percolate to form a connected 

macroscopic 2-complex, and the macroscopic geometry admits a closed oriented 2-surface Σ, 

then the local U(1) transport structure extends to a principal U(1) bundle over Σ. 

Proof sketch. Principal U(1) bundles over a simplicial complex 𝒦 are classified by the first Čech 

cohomology group Ȟ¹(𝒦, U(1)). On the 2-skeleton, a U(1) transport system defines transition 



 28 

functions on overlaps of vertex stars. The cocycle condition g_ij g_jk g_ki = 1 on triple overlaps 

is precisely the content of the triangle holonomy constraint C4 (with holonomy H_Δ encoding 

the cocycle failure). Coherence (H_Δ ∈ 𝒞 near the identity) ensures the transition functions 

satisfy the cocycle condition up to controlled corrections. Percolation ensures connectivity, 

allowing the local data to define a global Čech cocycle and hence a principal U(1) bundle over Σ. 

∎ 

Theorem C (Joint constraint). Let θ(α) be the per-cell holonomy and N_Σ = 12π/(Λℓ_P²) the 

Planck-area cell count. Chern–Weil integrality yields the admissibility condition: 

N_Σ(Λ) · θ(α) = 2πn, n ∈ ℤ 

This is a single geometric closure functional jointly constraining α and Λ to a discrete family of 

admissible pairs. 

Theorem D (Scheme invariance). For any two renormalization schemes s, s′ related by an 

analytic redefinition α_s' = f(α_s), topological invariance of n requires θ_s(α_s) = θ_s'(α_s') 

when both are evaluated at a common physical reference condition. 

Proof. Scheme changes are analytic reparameterizations of the coupling. Since n = (N_Σ/2π)θ is 

a topological integer, it must be invariant. Therefore θ transforms covariantly under scheme 

redefinitions: θ_s(α_s) = θ_s'(f(α_s)), which constrains θ to be either evaluated at a fixed 

physical reference or constructed from scheme-invariant combinations. ∎ 

Theorem E (K = 7 selection at hierarchy level). Under the closure condition (Theorem C), Two-

Planck vacuum regulation (SI2), the discrete coupling formula (SI1), and the dimensional 

transmutation relation (SI3), the winding number n(K) = (3/2)(ξ⁴/ℓ_P⁴)α(K) is a super-

exponential function of K. The unique integer K for which n falls in the cosmologically observed 

regime log₁₀ n ≈ 121 is K = 7 (see Table 1, §6.5). This selection is robust to O(1) uncertainties in 

structural prefactors and to variation of p_c across the Route-M percolation range. 

 

Appendix B: Supplementary Material 

B.1 Euler characteristic calculation for the 2-skeleton 

The 2-skeleton 𝒦² of the standard 4-simplex σ⁴ = {0,1,2,3,4} consists of all vertices, edges, and 

triangles. Its Euler characteristic is: 

χ(𝒦²) = 5 − 10 + 10 = 5 

The 1-skeleton is the complete graph K₅. Every 1-cycle in K₅ bounds a 2-chain in 𝒦²: any cycle 

decomposes into 3-cycles (triangles), and every triangle of K₅ is a 2-face of 𝒦². (Equivalently, 

𝒦² is the 2-skeleton of a contractible simplex and is therefore simply connected.) Therefore 

H₁(𝒦²; ℤ) = 0, giving β₁ = 0. With β₀ = 1 (𝒦² is connected), the Euler relation gives: 
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β₀ − β₁ + β₂ = χ(𝒦²) 1 − 0 + β₂ = 5 β₂ = 4 

The 4 independent 2-cycles correspond to the 4 independent global Bianchi-type relations among 

the 10 face holonomies. This is consistent with the fact that the 4-simplex has 5 tetrahedral 3-

faces imposing 5 relations, of which 4 are independent (the 5th being a linear combination of the 

others, reflecting the single global constraint from the 4-simplex itself). 

B.2 Non-uniform holonomy 

If holonomy varies cell-to-cell, the Chern–Weil discretization gives: 

n = (1/2π) Σᵢ₌₁ᴺ θ_i 

Integrality of n is preserved: it is a topological invariant independent of how the curvature is 

distributed among cells. The uniform case θ_i = θ = 2πα̂ for all i is the isotropic leading-order 

approximation. Corrections from non-uniformity affect the relationship between n and the 

average coupling ⟨α̂⟩ but do not alter the integrality constraint itself. To leading order, n = N_Σ 

⟨α̂⟩, where ⟨α̂⟩ = (1/N_Σ) Σᵢ α̂_i is the cell-averaged holonomy normalization. 

B.3 Standing assumptions, bridge hypotheses, and structural inputs 

See §1.1 for the complete assumption ledger. 

B.4 Sensitivity of n(K) to the percolation threshold 

See Tables 1–2 in §6.5 for the computed sensitivity analysis. 

B.5 Distinction between local C7 and global Bianchi relations 

To prevent confusion between the per-triangle constraint C7 (§2.2) and the global closure 

relations (§3.1): 

• C7 (local): For a single triangle Δ, tests whether the holonomy of Δ is compatible with 

the transport environments of the two tetrahedra sharing Δ as a common face. This is a 

local gluing condition that can be evaluated from data in the immediate neighborhood of 

Δ. 

• β₂ = 4 relations (global): Emergent constraints among the holonomies of all 10 triangular 

faces of a 4-simplex σ⁴, arising from the topology of the full 2-skeleton. These relate 

faces that may not share any edges, and reflect the global 2-cycle structure of σ⁴. 

C7 is a necessary condition for the global relations to hold (inconsistent local gluing would 

obstruct global closure), but it is not sufficient: the global Bianchi relations carry additional 

topological content beyond pairwise co-face compatibility. There is no double-counting. 
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