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Abstract (General Reader) 

One of the deepest puzzles in modern physics is that galaxies don't behave the way gravity 

predicts. Stars at the edges of spiral galaxies orbit at roughly the same velocity as stars near the 

centre — but if gravity only comes from the matter we can see (stars, gas, dust), those outer stars 

should be flying off into space. The standard explanation is "dark matter": an invisible substance, 

never directly detected, that forms a vast halo around each galaxy and provides the extra 

gravitational pull needed to hold everything together. 

This paper proposes a different explanation rooted in the VERSF (Void Energy-Regulated Space 

Framework) and its Ticks-Per-Bit (TPB) model. In VERSF, when matter undergoes irreversible 

change — a quantum state committing to one outcome — it produces a "bit": a permanent 

addition to the universe's informational record. These commitments are what constitute time. 

Crucially, the structural consequences of each commitment are not confined to the matter that 

produced it; they spread locally outward through the surrounding quantum foam, altering the 

distinguishability structure of nearby space. 

In a disk galaxy, billions of stars and gas clouds all produce bits and project their influence 

outward. Because the sources are arranged in a thin disk, these projections overlap most densely 

in the galactic midplane, forming a thin band of enhanced informational structure. This band is 

effectively two-dimensional — and in two dimensions, gravitational-like forces fall off as 1/R 

rather than the 1/R² of ordinary three-dimensional gravity. A 1/R force is precisely what is 

needed to produce flat rotation curves — the signature phenomenon attributed to dark matter. 
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In short: what we interpret as dark matter may be the geometric fingerprint of overlapping bit 

projections in disk galaxies — not an invisible substance, but an emergent property of how 

matter's irreversible commitments reshape the structure of surrounding space. 
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Abstract (Technical) 

We show that the galactic rotation curve anomaly — conventionally attributed to dark matter 

halos — can arise as a structural consequence of phase-coherent overlap in the Ticks-Per-Bit 

(TPB) framework within VERSF. In TPB, irreversible informational commitments by baryonic 

matter project distinguishability structure into the surrounding substrate; in disk galaxies, 

geometric superposition concentrates this structure into a thin midplane band. Beginning from a 

three-dimensional Landau–Ginzburg energy functional for a TPB overlap order parameter with a 

spatially varying commitment-driven ordering control parameter a(x), we derive (rather than 

assume) the confinement of the massless phase mode to a thin coherence band Σ coinciding with 

the galactic disk. The dimensional reduction to a two-dimensional phase theory on Σ follows 

from the vanishing of phase stiffness outside the ordered region. The resulting 2D Poisson 

equation for the phase field possesses a logarithmic Green's function, yielding 1/R acceleration 

profiles and flat rotation curves over the coherence band. A screening mass from finite coherence 

length provides a natural outer cutoff. We map the effective potential back into the language of 

local Newtonian gravity and recover a ρ_eff ∝ 1/R² profile — the isothermal halo. The 

mechanism is specific to geometries supporting thin ordered bands (disk galaxies); this regime-

specificity is noted and discussed. No new particles are introduced. Throughout, we use natural 

units (c = ℏ = 1) unless otherwise stated, and a (−,+,+,+) metric signature. 

 

1. The Rotation Curve Problem in Local Geometric Gravity 

For the general reader: Einstein's General Relativity tells us that matter curves spacetime, and 

that curvature is what we experience as gravity. For a galaxy, once you move beyond the visible 

matter, you're in "empty" spacetime — and the theory predicts that gravity should weaken as 

1/R², just like for the solar system. But galaxy rotation curves show gravity weakening only as 

1/R out to enormous distances. Something is missing from the standard picture. 

1.1 The Vacuum Exterior Problem 

In General Relativity, the Einstein field equations relate spacetime curvature to the distribution 

of matter and energy: 

G_μν = 8πG T_μν (1) 

where G_μν is the Einstein tensor encoding curvature and T_μν is the stress-energy tensor 

encoding matter content. In the weak-field limit with g₀₀ ≈ −(1 + 2Φ), the field equations reduce 

to a Poisson equation for the Newtonian potential Φ: 

∇²Φ = 4πG ρ (2) 

Outside a compact baryonic distribution (where ρ = 0), this becomes the vacuum Laplace 

equation: 
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∇²Φ = 0 (3) 

For a spherically symmetric mass distribution, the unique exterior solution is the familiar 

Newtonian potential: 

Φ(r) = −GM/r , a(r) = GM/r² (4) 

where a(r) = |∂ᵣΦ| is the gravitational acceleration. 

1.2 Why Flat Rotation Curves Cannot Arise from Vacuum Geometry 

Flat rotation curves require v(r) ≈ v_∞ = constant at large radii. For circular orbits, the centripetal 

condition v²/r = a(r) gives: 

a(r) = v_∞²/r ∝ 1/r (5) 

This 1/r scaling is incompatible with the 1/r² acceleration from Eq. (4). More precisely: no 

solution to the three-dimensional vacuum Laplace equation (3) produces a potential with ∂ᵣΦ ∝ 

1/r at large r. The logarithmic potential Φ ∝ ln r that would yield this acceleration is a solution to 

the two-dimensional Laplace equation, not the three-dimensional one. 

Therefore, within strictly local geometric gravity, matching observed rotation curves requires 

either: 

• (a) an additional, unseen source of stress-energy (dark matter), or 

• (b) a mechanism that introduces an effectively two-dimensional gravitational structure. 

This paper develops option (b) within the VERSF–TPB framework. 

 

2. Time, Bits, and Overlap: The Physical Picture 

This section is written for the general reader and contains no equations. Readers familiar with 

the VERSF–TPB framework may skip to Section 3. 

2.1 Time Is Made of Commitments 

We are accustomed to thinking of time as a river — something that flows whether or not 

anything is in it. VERSF proposes something different: time does not flow on its own. It is 

produced, and only by specific kinds of events. 

When matter — a star, a gas cloud, a particle — undergoes an irreversible change, information 

that was uncertain becomes definite. A quantum state that could have gone several ways 

commits to one outcome. That commitment is a bit: a permanent, irreversible addition to the 
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universe's informational record. It cannot be taken back. And it is these irreversible 

commitments, accumulating one after another, that constitute what we experience as the passage 

of time. 

Where there is mass, there are bits being produced. Where there is no mass, there are no 

irreversible commitments — and time, in the VERSF sense, does not advance. Vacuum 

fluctuations in the quantum foam are reversible and do not produce lasting informational 

commitments; they do not generate bits and therefore do not constitute time advancement in the 

TPB sense. 

2.2 Bits Don't Stay Put 

A crucial feature of bit production is that its effects are not confined to the location where mass 

sits. When a star generates irreversible commitments, the structural consequences of those 

commitments alter the distinguishability structure of the surrounding space, and this alteration 

spreads locally from site to site through the foam — much like a television screen projecting an 

image beyond its own surface. The bit activity at the source reaches into the space around it, 

carrying distinguishability and informational structure outward. 

Every massive object in a galaxy does this. Every star, every gas cloud, every dense 

concentration of matter produces bits and locally reshapes the informational structure of its 

surroundings. 

2.3 The Quantum Foam: Stage, Not Actor 

If bit projections propagate outward, what are they propagating through? 

The answer is the quantum foam — the seething, fluctuating microstructure of space itself. The 

foam is rich with reversible micro-fluctuations: activity that explores possibilities but never 

commits to outcomes. Nothing irreversible happens in the foam on its own. It does not produce 

bits. It does not advance time. It is, in the language of VERSF, temporally sterile. 

But this does not mean the foam is unimportant. It is the medium through which bit projections 

travel. It defines what "nearby" means. It determines the local rules by which projections spread, 

combine, and decay. Just as air is passive with respect to sound — it does not create sound 

waves, but it determines how they propagate, interfere, and decay — the quantum foam is 

passive with respect to bit projections, but it shapes everything about how they behave. 

2.4 Overlap: Where Projections Superimpose 

Now consider a disk galaxy: a vast, flattened collection of hundreds of billions of stars and gas 

clouds, all producing bits, all projecting their influence outward through the foam. 

Imagine each source as a screen projecting its image into the surrounding space. In a random 

scatter of sources, those projections spread in all directions and thin out quickly. But in a disk, 

something geometrically special happens: because the sources are concentrated in a thin plane, 



 7 

every point near the midplane receives overlapping projections from many nearby sources 

simultaneously. The midplane of the disk becomes the zone where the greatest number of 

projections superimpose. This does not require signals to converge from afar; it follows from the 

local spreading of projection influence from many nearby sources whose geometry is already 

disk-shaped. 

This superposition is the overlap. Where projections from many sources pile up in the same 

region, the effective information density — the density of bit influence — increases beyond what 

any single source contributes. The foam does not amplify this effect; it simply allows it to occur. 

The enhancement is purely geometric: it is the shape of the disk that concentrates the 

superposition into a thin band. 

2.5 Why Overlap Changes Gravity 

Ordinary gravity already responds to mass — more mass means stronger gravitational pull. But it 

does so in a way that always produces the same spatial pattern: in three-dimensional space, 

gravitational force falls off as the inverse square of distance. Double the distance, quarter the 

pull. This is true regardless of how much mass is present. 

Overlap produces a qualitatively different effect. Because the superimposed bit projections are 

concentrated into a thin layer — essentially a two-dimensional structure — the additional 

conservative acceleration field that emerges from their collective structure follows two-

dimensional rather than three-dimensional rules. In two dimensions, force falls off as the inverse 

of distance, not the inverse square. Double the distance, halve the pull — a much lesser decline. 

This is precisely the pattern seen in galaxy rotation curves: stars at the outer edges of disk 

galaxies experience a gravitational pull that declines far more gradually than inverse-square 

gravity predicts. The standard explanation invokes an invisible halo of dark matter to provide the 

extra pull. The VERSF explanation is that the pull is real but its source is not a substance — it is 

the geometric consequence of overlapping bit projections in the disk, producing an effectively 

two-dimensional gravitational structure embedded in three-dimensional space. 

2.6 Summary of the Physical Picture 

The mechanism has four layers: 

1. Mass generates irreversible commitments (bits) that advance time and project their 

influence outward. 

2. Bit projections propagate through surrounding space, carrying informational structure 

beyond the matter that produced it. 

3. Quantum foam is the reversible, temporally sterile medium through which 

projections travel. It mediates and constrains propagation but does not create or amplify 

bit activity. 

4. Overlap occurs where projections from different sources superimpose, increasing 

effective information density. In a disk galaxy, geometry concentrates this overlap into a 
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thin band in the midplane — and the two-dimensional character of that band produces a 

gravitational scaling that matches what we observe. 

What dark matter models attribute to an invisible substance, VERSF attributes to the geometry of 

overlapping information. 

A note on energy. The overlap contribution does not create energy; it redistributes existing 

commitment structure. Section 6.6 provides a rigorous energy accounting showing that tracers 

move in a conservative potential derived from a variational principle, with screening preventing 

runaway amplification. 

 

3. TPB Overlap and the Synchronisation Order Parameter 

For the general reader: Section 2 described how bit projections from many sources overlap in 

the disk midplane. To do physics with this picture, we need a mathematical language for "how 

much overlap is happening at each point" and "how aligned is the overlap pattern from place to 

place." That language comes from condensed matter physics — the same mathematics used to 

describe superconductors and superfluids, where large-scale quantum ordering produces 

dramatic macroscopic effects. The key object is a complex order parameter Ψ: its size tells us 

how strong the overlap coherence is, and its phase angle tells us how the pattern is aligned 

relative to its neighbours. 

3.1 The TPB Commitment Scalar 

Let τ(x) denote the TPB commitment scalar: a coarse-grained measure of irreversible 

commitment density at spacetime point x. In regions of high baryonic density, τ is large; in 

intergalactic voids, τ approaches its background value. 

A clarification on status: in the TPB framework, what we call "proper time" is itself emergent — 

it is not a fundamental background parameter but arises from the accumulated commitment 

structure. The scalar τ is therefore an operational quantity: a coarse-grained commitment density 

as registered by subsystems embedded in the local environment. It is not defined against any 

fundamental temporal backdrop. This operational definition is sufficient for the coarse-grained 

Landau–Ginzburg treatment that follows, and no reference to a fundamental time coordinate is 

required. (In subsequent sections, we write τ̄ for τ coarse-grained on the Landau–Ginzburg cell 

scale; the distinction is notational, not physical.) 

3.2 Complex Order Parameter for Overlap Coherence 

At coarse-grained scales, TPB overlap synchronisation is captured by a complex order 

parameter: 

Ψ(x) = f(x) eⁱᶿ⁽ˣ⁾ (6) 
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where f ≥ 0 is the coherence amplitude and θ is the overlap phase. The amplitude measures the 

degree of coherent overlap — the formal counterpart of the constructive superposition of bit 

projections described in Section 2; the phase encodes the relative alignment of the coherent 

overlap pattern across space. 

This representation carries a U(1) symmetry: the physics is invariant under a global shift θ → θ + 

const, reflecting the fact that the absolute alignment of the coherent overlap pattern is not 

physically meaningful — only gradients in the phase (differences in alignment between 

locations) carry physical content. 

The physical identification of this U(1) symmetry is as follows. In standard condensed matter 

systems, U(1) symmetry is associated with a conserved charge (particle number in superfluids, 

Cooper pair number in superconductors). In the TPB framework, the analogous quantity is the 

overlap winding number: the net phase accumulated around a closed loop in the coherent region. 

In the source-free sector, the phase supports topological winding, and single-valuedness of the 

physical state constrains the winding number to integer values. In the presence of sources 

(Section 5), the U(1) is explicitly broken: sources select a preferred phase configuration and can 

permit defect nucleation and annihilation at the boundaries of the coherence band. The winding 

number is therefore a good quantum number only in the approximate symmetry regime, far from 

sources and boundaries. 

 

4. Deriving Coherence Confinement from TPB Physics 

For the general reader: This is the central new result of the paper. We show that TPB overlap 

coherence doesn't fill all of three-dimensional space — it automatically confines itself to a thin 

layer coinciding with the galactic disk, because the raw material for coherence (dense bit-

commitment activity from baryonic matter) only exists there. This is like how a layer of ice 

forms on the surface of a lake: the ordering (crystallisation) only occurs where conditions 

(temperature) cross a threshold, producing a thin ordered sheet embedded in a disordered bulk. 

The rest of the paper's results flow from this confinement. 

The geometric superposition of bit projections described in Section 2 is now formalised through 

a Landau–Ginzburg ordering framework. In this mathematical language, "synchronisation" refers 

to the establishment of a coherent overlap pattern with well-defined phase — the formal 

counterpart of the constructive superposition of bit projections in the physical picture. 

4.1 Three-Dimensional Landau–Ginzburg Functional 

We begin in full three-dimensional space — crucially, we do not assume confinement to any 

surface. The static energy functional for the overlap field is: 

E_LG⁽³⁾ = ∫ d³x [ κ |∇Ψ|² + a(x)|Ψ|² + (b/2)|Ψ|⁴ ] (7) 
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with b > 0 for stability and κ > 0 as the stiffness (rigidity) of the overlap field. The parameter 

a(x) is the effective mass-squared controlling the local ordering tendency. 

The structure of this functional is dictated by symmetry. It is the most general U(1)-invariant 

energy functional containing terms up to quartic order in Ψ and up to two derivatives — the 

standard Landau–Ginzburg construction. The TPB-specific content enters through the spatial 

dependence of the coefficient a(x). 

(Note: we use E for this static energy functional to distinguish it from the Lorentzian action S 

used in later sections when dynamical terms are included.) 

4.2 Spatially Varying Synchronisation Drive 

In the TPB framework, coherence requires sufficient projected commitment density. The 

effective control parameter a(x) therefore depends on the local commitment density τ̄(x). Near 

the ordering threshold, we expand to leading order: 

a(x) = a₀ − η τ̄(x) (8) 

where a₀ > 0 is the bare (incoherent) value and η > 0 is the coupling strength between 

commitment density and coherence drive. The linearity in τ̄ is the leading-order term in a Taylor 

expansion about the critical point, following standard Landau theory practice; higher-order 

corrections are suppressed near threshold. 

The physics is immediate: 

• Where τ̄(x) is small (low commitment density): a(x) > 0, the minimum is at Ψ = 0 (no 

coherence). 

• Where τ̄(x) is large (high commitment density): a(x) < 0, the minimum is at |Ψ|² = |a|/b 

(coherent phase with well-defined θ). 

The phase field θ is not a physical degree of freedom where Ψ = 0. There is no broken-symmetry 

manifold to support it. Phase transport is therefore automatically confined to the region where 

the TPB synchronisation drive pushes a(x) below zero. 

4.3 Disk Geometry Produces a Thin Coherence Band 

In a disk galaxy, the baryonic (and hence TPB commitment) density is strongly concentrated 

near the midplane z = 0 and falls off steeply in the vertical direction. The control parameter 

therefore takes the form: 

a(R, z) ≈ a_bulk + Δa(R) g(z/h) (9) 

where a_bulk > 0 is the incoherent bulk value, Δa(R) < 0 near the disk drives ordering, g is a 

profile function peaked at z = 0 with characteristic width h (the disk scale height), and R is the 

cylindrical radial coordinate. 
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There exists a band |z| < z*(R) around the midplane where a(R,z) < 0. Outside this band, a > 0 

and the vacuum state is Ψ = 0. This band is the coherence manifold Σ — not an assumption, but 

the support of the ordered phase, determined by the baryonic distribution through TPB 

commitment density. 

4.4 Amplitude Profile and Phase Localisation 

To demonstrate mathematically that the phase mode is confined to Σ, we solve for the 

equilibrium amplitude profile. Writing Ψ = f(z)eⁱᶿ where f(z) ≥ 0, and varying the energy 

functional (7) with respect to f at fixed θ, the full equation includes in-plane Laplacian terms ∇∥² 
f. We treat f as depending only on z — justified when the in-plane scale over which f varies (set 

by the radial gradient of Σ_b, typically ~ R_d ~ kpc) is much larger than the vertical scale (set 

by h ~ 100 pc), so that ∇∥² f ≪ ∂_z² f. In this approximation the amplitude equation reduces to: 

−κ ∂z² f + a(z) f + b f³ = 0 (10) 

For a step-like a(z) profile (negative for |z| < h, positive for |z| > h), this equation has a well-

known domain-wall–type solution: 

• Inside the band (|z| ≲ h): f(z) ≈ f₀ = √(|a|/b), the equilibrium coherence amplitude. 

• Outside the band (|z| ≫ h): f(z) → 0 exponentially, with decay governed by the bulk 

healing length ξ_bulk = √(κ/a_bulk). 

The effective band thickness is h_eff ≈ h + ξ_bulk, combining the geometric disk thickness h 

with the exterior healing tail. For typical galactic parameters where the bulk is strongly 

disordered (a_bulk large), ξ_bulk ≪ h, and the band closely tracks the baryonic disk. 

(Note: a distinct interior healing length ξ_in = √(κ/2|a|) governs the scale of amplitude 

disturbances within the ordered band; it appears in the screening analysis of Section 7. The two 

lengths are in general different: ξ_bulk controls exterior decay, ξ_in controls interior coherence.) 

4.5 Dimensional Reduction: From 3D to 2D Phase Theory 

The phase kinetic term in the 3D energy functional is: 

κ|∇Ψ|² = κ f²(z) |∇θ|² + κ |∂_z f|² + 2κ f(∂_z f)(∂_z θ) + … (11) 

The coefficient of the phase gradient term, κf²(z), is the phase stiffness. The cross-term 2κf(∂_z 

f)(∂_z θ) vanishes because θ is taken to be the lowest z-mode in the confined band — 

approximately z-independent across the thin coherence region (justified below, where higher z-

dependent phase modes are gapped by the confinement potential and do not contribute at long 

wavelengths). The pure amplitude gradient term κ|∂_z f|² contributes to the amplitude sector and 

does not affect the phase dynamics. Outside the coherence band, f → 0 and the stiffness 

vanishes: phase gradients cost no energy because the phase is undefined. There is no propagating 

θ degree of freedom in the bulk. 
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For the lowest-energy phase mode, θ is approximately uniform across the thin band (justified 

when h_eff ≪ L_∥, the in-plane wavelength of interest — easily satisfied for galactic-scale 

dynamics where L_∥ ~ kpc and h_eff ~ 100 pc). Higher z-dependent modes are gapped by the 

confinement potential and do not contribute at long wavelengths. We therefore write θ ≈ θ(R, φ) 

and integrate over z: 

S_θ⁽³⁾ ≈ ∫ d²x_∥ ∫ dz [K(z)/2] |∇_∥ θ|² (12) 

where K(z) = 2κf²(z). Performing the z-integration yields the effective 2D phase action: 

S_θ⁽²⁾ = ∫ d²x_∥ [K_Σ/2] |∇_∥ θ|² (13) 

K_Σ := ∫ dz K(z) = 2κ ∫ dz f²(z) (14) 

This is the central result of the derivation: the 2D phase theory on Σ is not assumed but 

obtained by integrating out the localised amplitude profile. In condensed matter language, it 

is a phase mode (Goldstone in the source-free sector; pseudo-Goldstone once sourced, as 

discussed in Section 5.1) living on an ordered film embedded in a disordered bulk. 

4.6 What Prevents Three-Dimensional Propagation? 

The answer, derived above, is physical and sharp: 

1. In the 3D bulk where a > 0, the vacuum state is Ψ = 0. 

2. Where Ψ = 0, there is no broken U(1) symmetry, no phase manifold S¹, and θ is not a 

physical field. 

3. The only excitations in the bulk are massive amplitude modes with correlation length 

ξ_bulk = √(κ/a_bulk), which decay exponentially and cannot mediate long-range forces. 

4. Phase transport — and hence the overlap-induced gravitational effect — is confined to 

the region where TPB commitment density exceeds the ordering threshold. 

This confinement is a consequence of TPB physics (the synchronisation threshold), not of 

geometry. 

Stability. The coherence band is a local minimum of the Landau–Ginzburg energy functional 

(7): amplitude perturbations about f₀ are gapped (with mass ~ 1/ξ_in), and the band boundaries 

are stabilised by the smooth transition of a(z) through zero. Small perturbations to the disk 

structure (e.g., vertical oscillations, spiral density waves) modulate the location of the a = 0 

surface but do not destabilise the band — they shift Σ adiabatically. Large perturbations (e.g., 

mergers destroying disk geometry) can of course disrupt the ordered phase entirely, consistent 

with the framework's prediction that the mechanism operates only in disk-like geometries. 

 

5. Phase Dynamics on the Coherence Manifold 
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For the general reader: Now that we've shown the overlap pattern confines itself to a thin disk, 

we need to understand what drives it. The answer is the baryonic matter itself: stars and gas in 

the disk act as "sources" for the overlap phase, much like electric charges act as sources for the 

electric field. The bit projections from each source (Section 2) collectively shape the phase 

pattern. The equation governing this pattern turns out to be the same equation that governs 

electric fields in two-dimensional systems — and two-dimensional electric fields have a very 

different character from three-dimensional ones. 

5.1 Source Coupling from TPB Commitment 

The baryonic matter in the disk drives the overlap phase through TPB commitment density. We 

introduce a source coupling between the projected TPB commitment density 𝒥 on Σ and the 

phase field: 

S_src = ∫Σ d²x∥ √γ α 𝒥 θ (15) 

where α is the coupling constant and γ is the determinant of the induced 2D metric on Σ. 

Physical motivation for the linear coupling. In standard condensed matter, Goldstone modes 

typically couple to matter through derivatives (∂_a θ), not through θ directly. The linear coupling 

α𝒥θ requires specific justification. In the TPB framework, the physical mechanism is analogous 

to a chemical potential coupling: baryonic commitment density acts as an external field that 

biases the preferred phase value at each location, much as a chemical potential couples linearly 

to the phase in superfluid hydrodynamics (where the superfluid velocity is v_s = ∇θ, but the free 

energy includes a μN ~ μθ̇ term that is linear in the time-derivative of the phase). Here the role of 

the chemical potential is played by the static commitment density 𝒥, which sets a preferred phase 

configuration through the energetics of TPB overlap alignment. The coupling is linear in θ 

because 𝒥 acts as an external source that tilts the free-energy landscape, selecting one phase 

value over others — not because baryons couple to the Goldstone gradient. 

A note on symmetry: This linear coupling explicitly breaks the U(1) symmetry θ → θ + const. 

This is physically appropriate: in the presence of sources, the phase acquires a preferred 

configuration (the sourced solution), just as an external magnetic field breaks the rotational 

symmetry of a ferromagnet. The U(1) is a symmetry of the free overlap field; sources select a 

phase profile. The consequence is that θ is not a true massless Goldstone mode even before the 

screening term of Section 7 is introduced — the source coupling itself generates a preferred 

vacuum. We account for this explicitly in the screened phase equation below. 

Remark on chemical-potential analogy. In relativistic superfluid hydrodynamics, the chemical 

potential couples through a derivative term μ ∂_t θ, reflecting canonical conjugacy between 

number density and phase. In a strictly static equilibrium sector, such a term contributes only 

through time-boundary structure (or through time-variation of μ). The present paper does not 

claim literal equivalence to the superfluid coupling; rather, it adopts α𝒥θ as the minimal static 

bias term: 𝒥 acts as an external field that tilts the free-energy landscape and selects a preferred 

phase configuration. The derivative-vs-static distinction becomes essential in a dynamical 

treatment, which we defer. 
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5.2 Effective Phase Action and Equation of Motion 

Combining the kinetic term (13) with the source term (15), the total effective phase action is: 

S_θ = ∫Σ d²x∥ √γ [ −(K_Σ/2) γᵃᵇ(∂_a θ)(∂_b θ) + α 𝒥 θ ] (16) 

where K_Σ is the integrated phase stiffness from Eq. (14). 

Note that 𝒥 is itself concentrated in the disk, so the z-integration of the source term localises 

naturally: 𝒥 on Σ is the surface-integrated TPB commitment density, which in the static limit is 

proportional to the baryonic surface density Σ_b(R). 

Varying with respect to θ yields the Euler–Lagrange equation. For dynamics, the coherence 

manifold is extended to Σ × ℝ (spatial disk × emergent time, with the emergent time parameter 

defined operationally as in §2.1 and §3.1), carrying a (2+1)-dimensional Lorentzian induced 

metric γ_ab. The kinetic term for the phase is taken to be second-order (Klein–Gordon type, 

giving □_Σ θ), corresponding to a relativistic dispersion relation ω² = k² + μ² for phase 

excitations. A first-order (Schrödinger-type) kinetic term would yield diffusive rather than 

propagating dynamics; we adopt the second-order form as appropriate for a Lorentz-covariant 

effective theory. 

The choice of Klein–Gordon structure implies propagating phase disturbances on Σ with a 

characteristic signal velocity set by the effective metric γ_ab. In the present static analysis this 

does not enter; however, in a full dynamical treatment the phase propagation velocity need not 

coincide with the ambient spacetime light velocity c. If subluminal, the coherence manifold 

would carry its own causal structure embedded within the larger spacetime. Exploring this causal 

sector — including potential observational signatures in time-dependent phenomena such as 

galaxy interactions or bar instabilities — is deferred to future work. 

In the covariant form: 

□_Σ θ = (α/K_Σ) 𝒥 (17) 

where □_Σ is the d'Alembertian on Σ × ℝ. Throughout this paper we work in the static sector, 

dropping the ∂_t² term. The static equation reduces to the 2D spatial Poisson equation: 

∇²₍₂₎ θ(R) = (α/K_Σ) Σ_b(R) (18) 

where ∇²₍₂₎ is the 2D spatial Laplacian in the disk plane and Σ_b(R) is the baryonic surface 

density. 
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6. Logarithmic Green's Function and Flat Rotation Curves 

For the general reader: Here is where the key scaling change appears. In three dimensions, the 

gravitational potential of a point mass goes as 1/r (giving 1/r² gravity). But in two dimensions, 

the potential of a point source is ln R (a logarithm). The gradient of ln R is 1/R — and a 1/R 

gravitational force is exactly what produces flat rotation curves. By confining the overlap phase 

to two dimensions, the TPB framework naturally produces the right kind of force law without 

any fine-tuning and without introducing invisible matter. 

6.1 The 2D Green's Function 

The Green's function G for the 2D Laplacian satisfies: 

∇²₍₂₎ G(R) = δ⁽²⁾(R) (19) 

The standard result, following from the identity: 

∇²₍₂₎ ln R = 2π δ⁽²⁾(R) (20) 

is: 

G(R) = (1/2π) ln R (21) 

6.2 Phase Solution for Localised Sources 

For a source distribution that is localised or that can be treated as approximately point-like at 

large R, the phase solution is: 

θ(R) = (α / 2πK_Σ) M_b ln R + (terms regular at large R) (22) 

where M_b = ∫ d²x_∥ Σ_b is the total baryonic mass (surface-integrated). At radii much larger 

than the source extent but within the coherence band, the logarithmic term dominates. 

For a more realistic extended source profile Σ_b(R), the full solution is obtained by convolution 

with the Green's function. The key property is that for any localised source, the large-R 

behaviour is dominated by the logarithmic monopole term, with corrections from the source's 

multipole structure that fall off with increasing R. 

6.3 Gravitational Coupling: From Phase to Effective Potential 

Interpretation (effective potential). In this paper, θ is introduced as the long-wavelength phase 

mode of the TPB overlap order parameter, and Eq. (18) shows that in the disk plane it satisfies a 

Poisson-type equation sourced by baryonic surface density. We therefore define an overlap-

induced contribution to the weak-field gravitational potential by: 
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Φ_ov := λ θ (23) 

Minimal tracer coupling and equation of motion. In the weak-field static sector, the 

observable content of the overlap mechanism is the additional conservative acceleration 

experienced by baryonic tracers in the disk plane. The most general way to encode such a 

conservative influence is through an effective potential term in the tracer action: 

S_tr = ∫ dt [ (1/2) m v² − m Φ_N(x) − m Φ_ov(x) ] (24) 

We define the overlap-induced potential as Φ_ov := λθ, where θ is the unique long-wavelength 

overlap phase mode satisfying the sourced 2D Poisson equation on Σ (Eq. 18). Varying S_tr 

yields the equation of motion: 

a = −∇Φ_N − ∇Φ_ov = −∇Φ_N − λ ∇θ (25) 

Thus, once θ is determined by baryonic surface density via Eq. (18), the overlap-induced 

acceleration follows immediately. The coefficient λ is an effective coupling converting overlap-

phase units to conventional potential units; deriving λ from the microscopic VERSF gravitational 

sector is deferred to future work. Here λ is treated as a phenomenological calibration parameter 

constrained by rotation curve data and by the requirement that deviations from standard gravity 

at Solar System scales are negligible. 

Crucially, θ is not assumed to source the Einstein equations directly. The effective potential 

Φ_ov is defined operationally via the acceleration it induces on baryonic tracers in the disk 

plane, independent of any specific metric interpretation. It is an emergent auxiliary field whose 

geometric scaling (how it depends on R) is a consequence of 2D Poisson structure alone, while 

the normalisation (how large the effect is) is set by λ. This separation of shape from 

normalisation is standard practice in effective field theory treatments of modified gravity. 

Remark (covariant completion). A full covariant completion would promote Ψ (or θ in the 

phase-only regime) to a dynamical field with stress-energy: 

T_ab⁽ᵒᵛ⁾ = K_Σ [ (∂_a θ)(∂_b θ) − (1/2) γ_ab (∂_c θ)(∂ᶜθ) ] (26) 

and compute its backreaction on the metric through the Einstein equations. That calculation is 

not required to establish the existence and geometric scaling of the 1/R regime, which follows 

from the confined phase Poisson equation alone. The covariant route would in principle 

determine λ from first principles; we defer this to future work within the broader VERSF 

gravitational sector. 

6.4 Flat Rotation Curves 

With Φ_ov ∝ ln R, the overlap-induced acceleration is: 

a_ov(R) = |∂_R Φ_ov| = (λα M_b) / (2πK_Σ) · (1/R) (27) 
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The circular orbital velocity satisfies v²(R) = R·a(R). In the regime where the overlap 

contribution dominates over the Newtonian 1/R² term: 

v²(R) ≈ v_∞² = (λα M_b) / (2πK_Σ) = constant (28) 

This is the flat rotation curve, obtained without dark matter. The asymptotic velocity depends on 

the total baryonic mass M_b and the ratio of coupling constants λα/K_Σ. 

6.5 The Baryonic Tully–Fisher Relation as a Stiffness Scaling Constraint 

The baryonic Tully–Fisher relation (BTFR) is the empirical observation that M_b ∝ v_∞⁴ for 

disk galaxies (McGaugh, Lelli & Schombert 2016), with a universal proportionality constant 

involving a single acceleration scale a₀ ≈ 1.2 × 10⁻¹⁰ m/s². Any framework claiming to address 

rotation curves must confront it. 

Proposition (BTFR Consistency Condition). From Eq. (28), v_∞² ∝ M_b/K_Σ. Therefore 

BTFR (M_b ∝ v_∞⁴) holds if and only if: 

K_Σ ∝ √M_b (equivalently, λα/K_Σ ∝ M_b⁻¹ᐟ²) (29) 

This makes BTFR a constraint on how coherence stiffness scales with baryonic mass and disk 

structure — not an automatic consequence of 2D logarithmic propagation, and not an 

afterthought. 

Emergent acceleration scale. In the BTFR-consistent regime, write K_Σ = k_* √M_b where 

k_* is the proportionality constant. Substituting into Eq. (28): 

v_∞⁴ = (λα / 2πk_*)² M_b 

Define an effective acceleration scale: 

G a_TPB := (λα / 2πk_*)² (30) 

so that: 

v_∞⁴ = G a_TPB M_b (31) 

This has the same algebraic form as the MOND relation v_∞⁴ = G a₀ M_b (Milgrom 1983). The 

acceleration scale a_TPB is not inserted by hand but encodes the stiffness normalisation k_* and 

the coupling product λα. Whether a_TPB matches the observed value a₀ ≈ 1.2 × 10⁻¹⁰ m/s² is a 

quantitative constraint on these parameters — a target for future TPB microphysical modelling, 

not a free tuning. 

TPB-native route to the scaling. The stiffness is K_Σ = 2κ ∫ dz f²(z) ~ f₀² h_eff, with f₀² = |a|/b 

and a = a₀ − ητ̄. In disk galaxies, τ̄ (hence a) is controlled by baryonic surface density and crosses 

the ordering threshold a = 0 at a radius R_* defined by: 
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Σ(R_*) = Σ_crit (32) 

where Σ_crit := a₀/η is a universal coherence threshold surface density (analogous to the Toomre 

threshold in disk stability; Toomre 1964). For an exponential disk Σ(R) = Σ₀ exp(−R/R_d), this 

gives: 

R_* = R_d ln(Σ₀/Σ_crit) (33) 

This threshold geometry ties K_Σ to disk scale length and thickness rather than to baryonic mass 

alone. If disks self-regulate to hover near a universal coherence threshold (so that |a| is 

approximately constant across galaxies and the scaling comes primarily from h_eff and the radial 

extent of the coherent band), then under observed disk size–mass scalings (Shen et al. 2003; van 

der Wel et al. 2014) and weakly varying scale height, K_Σ ∝ √M_b is plausible. 

The physical picture is that K_Σ is not a free parameter but is set by threshold geometry: 

ordering occurs only where τ̄ exceeds a critical value, so the coherent region's size and stiffness 

are determined by where and how deeply the disk crosses threshold. This makes the BTFR a 

statement about disk structure, not a coincidence. 

Falsifiable predictions from stiffness scaling. The BTFR slope is a direct empirical diagnostic 

of how K_Σ scales with M_b: 

• If K_Σ ∝ √M_b, then BTFR holds with slope 4 (the observed value). 

• If K_Σ scales closer to M_b, slope drifts toward 2. 

• If K_Σ is nearly constant across galaxies, slope drifts toward 1. 

The framework further predicts that BTFR scatter should correlate with disk thickness h, central 

surface density Σ₀, and gas fraction — through their influence on K_Σ and R_*. This provides 

concrete observational targets: galaxies with anomalously thick disks or low surface density 

should show systematic deviations from the mean BTFR, in a direction and magnitude 

predictable from the threshold geometry. 

The threshold surface density as an observable. The parameter Σ_crit = a₀/η packages two 

microscopic parameters into a single phenomenological scale. In principle it is directly 

observable: it corresponds to the baryonic surface density at which rotation curves begin to 

deviate systematically from Keplerian behaviour — i.e., the surface density at which TPB 

coherence "turns on." Empirically, disk galaxies exhibit a characteristic central surface 

brightness (Freeman 1970; Σ₀ ≈ 140 M_☉ pc⁻²), suggesting a natural comparison scale. 

Determining whether Σ_crit clusters around the Freeman value, or varies systematically with 

morphology and gas fraction, provides a direct observational test of the TPB coherence threshold 

and constrains the microscopic coupling η. 

6.6 Energy Accounting and Conservation 

Energy is not created; it is redistributed. The overlap mechanism introduces an additional 

conservative acceleration field in the disk plane. Any conservative force admits a potential 
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representation and therefore a conserved mechanical energy for tracers. In the present 

framework, the total effective potential is: 

Φ_tot(x) = Φ_N(x) + Φ_ov(x) , Φ_ov := λθ 

A baryonic tracer of mass m moving in the static potential Φ_tot has conserved energy: 

E = (1/2) m v² + m Φ_tot(x) 

so long as the fields are time-independent (the regime treated in this paper). The overlap 

contribution does not violate energy conservation at the level of test-particle dynamics: it 

modifies the potential landscape but does not inject energy into the tracer system. 

Where the "energy" lives. The phase field θ arises from an ordered overlap mode and carries an 

effective stiffness energy on Σ. From the 2D phase action (Eq. 16), one may define the 

corresponding static free-energy functional (up to a constant): 

F_θ[θ] = ∫ d²x_∥ √γ [ (K_Σ/2) (∇θ)² − α 𝒥 θ ] 

The sourced Poisson equation (Eq. 18) is precisely the Euler–Lagrange condition δF_θ/δθ = 0. 

The θ configuration is the equilibrium profile that minimises the overlap free energy given the 

baryonic source distribution. The overlap contribution is therefore not an extra reservoir of 

energy; it is the macroscopic manifestation of how existing commitments organise the substrate's 

distinguishability structure at minimum free energy. 

No runaway amplification. The screening term (Section 7) adds a positive contribution (K_Σ 

μ²/2)θ² to F_θ, making the free energy strictly convex in the infrared and preventing unbounded 

growth of θ. Beyond the coherence length, further phase deformation is exponentially costly, and 

the overlap potential decays. This ensures that the overlap field does not lead to runaway long-

range amplification. 

Covariant accounting (deferred). A fully covariant completion would treat Ψ (or θ) as part of 

the gravitational sector and specify how its free-energy functional maps into spacetime stress-

energy and lensing potentials. That embedding is deferred. However, within the static disk 

regime studied here, energy conservation is explicit: tracers move in a conservative potential, 

and the overlap phase profile is determined by a variational principle minimising a well-defined 

free-energy functional. 

 

7. Coherence Length, Screening, and the Outer Cutoff 

For the general reader: The flat rotation curve can't extend forever — eventually the overlap 

coherence must fade. The Landau–Ginzburg framework provides a natural length scale, the 

"coherence length," beyond which the overlap effect weakens. This gives the model a built-in 

outer edge without needing to be added by hand. 
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7.1 Coherence (Healing) Length 

Linearising the amplitude equation (10) about the equilibrium value f₀ gives the interior healing 

length: 

ξ_in = √(κ / 2|a|) (34) 

(The factor of 2 arises from the curvature of the Mexican-hat potential at its minimum: V″(f₀) = 

2|a|.) This sets the scale over which amplitude disturbances heal within the ordered band. 

Identifying ξ_in as the in-plane screening scale (μ ≈ 1/ξ_in) assumes isotropic stiffness κ — i.e., 

that the Landau–Ginzburg gradient coefficient is the same in the vertical and in-plane directions. 

Under this assumption, the same parameter that governs vertical amplitude healing also sets the 

in-plane scale at which phase correlations begin to weaken. (Recall from Section 4.4 that the 

distinct bulk healing length ξ_bulk = √(κ/a_bulk) governs exterior decay.) 

7.2 Screened Phase Equation 

At in-plane distances comparable to ξ_in, phase correlations decay. An effective description 

incorporates this through a mass term for the phase: 

S_θ → S_θ − ∫Σ d²x∥ √γ (K_Σ μ²/2) θ² (35) 

The screening mass μ receives contributions from two physically distinct sources: 

• Finite coherence length (Landau–Ginzburg origin): amplitude fluctuations at the edge of 

the coherent band generate an effective mass μ_LG ~ 1/ξ_in for the phase, scaling as 

√(|a|/κ). This is intrinsic to the ordered phase and is present even without sources. 

• Explicit U(1) breaking (source origin): the linear coupling α𝒥θ (Eq. 15) generates a 

preferred phase vacuum, producing an effective mass μ_src that depends on the source 

strength and coupling constant. 

In the galactic context, the Landau–Ginzburg contribution is expected to dominate. The reason is 

that μ_LG is set by the coherence physics of the ordered band — a bulk property of the phase — 

while μ_src is proportional to α𝒥, which is the small perturbative coupling that sources the phase 

in the first place. If the sourcing were strong enough for μ_src to dominate, the linear-response 

(Poisson) treatment of the phase equation would break down. Consistency of the perturbative 

framework therefore requires μ_src ≪ μ_LG, and we identify μ ≈ μ_LG ≈ 1/ξ_in as the leading 

contribution. 

The screened phase equation is: 

(∇²₍₂₎ − μ²) θ(R) = (α/K_Σ) Σ_b(R) (36) 

7.3 Screened Green's Function and Rotation Curve Profile 

The Green's function for the screened 2D equation is the modified Bessel function K₀: 
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G_μ(R) = −(1/2π) K₀(μR) (37) 

The asymptotic behaviour is: 

• μR ≪ 1 (inside the coherence band): K₀(μR) ≈ −ln(μR/2) − γ_E, recovering the 

logarithmic regime and flat rotation curves. 

• μR ≫ 1 (beyond the coherence band): K₀(μR) ≈ √(π/2μR) · exp(−μR), giving exponential 

decay and a return toward Keplerian fall-off. 

The transition occurs at R ~ 1/μ ≈ ξ_in, providing a natural outer boundary for the flat rotation 

curve regime without fine-tuning. 

 

8. Effective Halo Mapping 

For the general reader: If a conventional astronomer tried to explain the overlap-induced 

gravitational effects using only standard physics, they would be forced to invent an invisible halo 

of matter with a very specific density profile — falling off as 1/R². This is precisely the 

"isothermal halo" that dark matter models invoke. In other words, what dark matter models 

describe as a physical substance, VERSF describes as the gravitational shadow of two-

dimensional phase coherence. 

8.1 Rewriting in Local Poisson Form 

If one insists on describing the total gravitational potential through the local 3D Poisson 

equation, one must define an effective source density: 

∇²Φ_total = 4πG (ρ_b + ρ_eff) (38) 

The overlap contribution Φ_ov is defined on the 2D disk Σ. The actual 3D gravitational potential 

generated by a surface distribution is obtained by solving the 3D Laplace equation with boundary 

conditions set by the surface values. The result is smooth off-plane, not distributional: at height z 

above the disk, the logarithmic in-plane behaviour transitions to 3D (1/r) behaviour over a 

vertical scale comparable to the in-plane wavelength. Specifically, for a surface potential 

Φ_ov⁽²ᴰ⁾(R) ∝ ln R on the disk, the 3D continuation satisfies: 

Φ_ov(R, z) → Φ_ov⁽²ᴰ⁾(R) as z → 0 , Φ_ov(R, z) → −GM/√(R² + z²) as |z| → ∞ (39) 

The logarithmic regime and its associated 1/R acceleration hold strictly in the disk plane; off-

plane, the potential smoothly crosses over to standard 3D behaviour. This has direct implications 

for gravitational lensing predictions (since photon trajectories generally do not remain in the disk 

plane) and for dynamical tracers with significant vertical excursions. A full treatment of lensing 

and off-plane dynamics requires solving the 3D boundary-value problem with the surface 

potential as input, which we defer to future work. For the rotation curve analysis (circular orbits 

in the midplane), the 2D treatment is exact. (In the strict thin-disk limit one may approximate the 
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surface source by a δ(z) distribution; however, the physically correct continuation is smooth off-

plane as a solution of the 3D boundary-value problem.) 

8.2 The Isothermal Profile via Spherically Averaged Mass 

The correct route to the effective halo density is not the 3D Laplacian of ln R (which is a 

distributional object with different structure), but the standard spherically averaged mass profile 

interpretation used in observational astronomy. 

In the flat rotation curve regime, a(R) = v_∞²/R. By the Gauss-law / enclosed-mass argument: 

M_eff(R) = (v_∞²/G) R (40) 

The effective mass enclosed within radius R grows linearly. The spherically averaged density 

profile that produces this enclosed mass is: 

ρ_eff(R) = [1/(4πR²)] dM_eff/dR = v_∞² / (4πG R²) (41) 

This is the isothermal halo profile — the standard dark matter density profile used to fit flat 

rotation curves. It is the spherically averaged effective density that a conventional Newtonian 

analysis would attribute to an unseen mass component producing the observed 1/R acceleration. 

The isothermal profile has a well-known pathology: the total enclosed mass M_eff(R) ∝ R 

diverges linearly, so the integrated mass is infinite. In standard CDM, this is resolved by the 

NFW profile's outer fall-off (Navarro, Frenk & White 1997). In the present framework, the 

divergence is resolved by the screening mechanism of Section 7: the screened Green's function 

(Eq. 37) transitions from logarithmic to exponentially decaying at R ~ 1/μ, so the effective 1/R² 

density profile is truncated at the coherence radius, yielding a finite total effective mass. The 

screening thus provides the physical regularisation that the isothermal profile alone lacks. 

The VERSF overlap mechanism reproduces the empirical dark matter halo profile as an effective 

description within the coherence band, with a built-in outer truncation: what conventional gravity 

interprets as a 1/R² density distribution of physical particles, the TPB framework identifies as the 

gravitational signature of two-dimensional phase coherence on the disk. 

 

9. Regime of Validity and Limitations 

For the general reader: Every good theory should be honest about where it works and where it 

doesn't. This mechanism relies on having a thin, ordered layer — which disk galaxies naturally 

provide. But elliptical galaxies and galaxy clusters don't have this structure, so the mechanism 

won't straightforwardly explain their dark matter phenomenology. That's not a fatal flaw — it 

defines the regime where this particular VERSF effect operates, and other mechanisms may be 

relevant elsewhere. 
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9.1 Geometry Dependence 

The derivation in Section 4 relies on two features of disk galaxies: 

1. High midplane commitment density producing a(z) < 0 in a thin band. 

2. Thin-band geometry (h_eff ≪ R) enabling the dimensional reduction to 2D. 

Elliptical galaxies and galaxy clusters do not generically satisfy these conditions. In a roughly 

spherical matter distribution, a(x) may be driven negative throughout a 3D volume, yielding a 3D 

coherent phase with a 3D Green's function (1/r) rather than the 2D logarithmic one. In this case, 

the overlap contribution to the potential would not produce flat rotation curves. 

This is a feature, not a bug: disk galaxies and ellipticals show different dark matter 

phenomenology observationally, and a framework that treats them differently is potentially more 

discriminating than one that invokes a universal dark halo. 

9.2 Additional Observational Constraints 

A complete replacement for dark matter must also address: 

• Galaxy cluster dynamics: Virial masses, X-ray gas profiles, and the Bullet Cluster 

morphology. 

• Gravitational lensing: Strong and weak lensing profiles around galaxies and clusters. 

Because the overlap-induced potential is confined to a thin coherence band, the effective 

gravitational field is anisotropic — concentrated in the disk plane rather than distributed 

in a quasi-spherical halo as in CDM. The framework therefore predicts orientation-

dependent lensing signatures: disk galaxies viewed edge-on should exhibit stronger 

projected lensing asymmetry aligned with the disk plane than face-on systems. A full 

covariant lensing calculation requires solving the Einstein equations with the overlap 

stress-energy included (or, equivalently, the 3D boundary-value problem of §8.1) and lies 

beyond the present scope. However, the geometric anisotropy is a clear qualitative 

discriminator between this mechanism and spherical dark matter halos. 

• Cosmic Microwave Background: The acoustic peak structure, which in ΛCDM is 

sensitive to the dark matter density. 

• Structure formation: The growth of large-scale structure from primordial perturbations. 

The present paper does not address these; its scope is limited to providing an internally 

consistent structural mechanism for flat rotation curves in disk galaxies within the VERSF–TPB 

framework. Extension to the above domains is a programme for future work. 

9.3 Falsifiability 

The framework makes several concrete, testable predictions that distinguish it from standard cold 

dark matter (CDM) models: 
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1. Geometry dependence: The mechanism predicts qualitatively different dark matter 

phenomenology for disk vs. non-disk galaxies, tied to the existence (or absence) of a thin 

coherence band. 

2. Correlation with disk structure: The onset and extent of the flat rotation curve regime 

should correlate with disk scale height h and surface density (through the coherence 

threshold a = 0). 

3. Transition profile: The screened Green's function (Section 7.3) predicts a specific 

functional form for the transition from flat to Keplerian at large R, governed by a single 

parameter μ, which differs from the NFW (Navarro, Frenk & White 1997) or Burkert 

(1995) profiles used in CDM. 

4. Scaling relations: The prediction v_∞² ∝ M_b (before possible mass-dependent 

corrections to K_Σ) differs from the MOND prediction of v_∞⁴ ∝ M_b and from CDM 

predictions that depend on halo concentration. 

Of these, the cleanest near-term discriminator is prediction (3): the transition profile governed by 

the single parameter μ yields a specific functional form (modified Bessel K₀) that differs from 

the NFW (Navarro, Frenk & White 1997), Burkert (1995), and isothermal profiles used in 

standard dark matter fits, and can be tested against high-quality extended rotation curve data. 

9.4 Pre-emptive Clarifications and Scope Boundaries 

This subsection addresses predictable objections and delineates precisely what is and is not 

claimed. 

9.4.1 Scope and status of the mechanism. The present mechanism does not modify Newton's 

law or General Relativity universally. The 1/R regime arises only in geometries that support a 

thin coherence band — specifically, disk galaxies in which a(x) < 0 in a narrow midplane region. 

In approximately spherical systems (e.g., the Solar System), coherence would extend in three 

dimensions, the Green's function reverts to the standard 3D 1/r form, and no deviation from 

tested dynamics is predicted. The mechanism is regime-specific, not universal. No new particle 

species are introduced; the overlap field Ψ is a coarse-grained order parameter, and the phase 

mode θ arises only where the ordering threshold is crossed. The identification Φ_ov := λθ 

(Section 6.3) is an effective description in the static weak-field disk sector: the shape of the 

effect (logarithmic potential, 1/R acceleration) is derived from 2D Poisson structure; the 

normalisation λ is phenomenological. A full covariant derivation promoting Ψ to a dynamical 

field and solving Einstein's equations for backreaction is beyond the present scope. 

9.4.2 Lensing implications. Because the overlap-induced potential is confined to a thin disk-

aligned band, the framework predicts anisotropic gravitational effects contrasting with quasi-

spherical CDM halos. Qualitatively: disk galaxies viewed edge-on should exhibit stronger 

projected deflection aligned with the disk plane; face-on systems should show reduced projected 

asymmetry. A full lensing calculation requires solving the Einstein equations with the overlap 

stress-energy included (cf. the 3D boundary-value problem of §8.1) and lies beyond the present 

scope. However, geometric anisotropy is a robust qualitative discriminator between the TPB 

overlap mechanism and spherical halo models. 
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9.4.3 The role of the coherence threshold Σ_crit. The threshold surface density Σ_crit = a₀/η is 

a phenomenological parameter packaging microscopic constants of the TPB ordering 

mechanism. In principle, Σ_crit is directly measurable: it corresponds to the baryonic surface 

density at which rotation curves begin to deviate from Keplerian behaviour. Its relationship to 

empirical disk surface density scales (e.g., Freeman 1970) provides a direct observational test of 

the framework (see §6.5). 

9.4.4 On the baryonic Tully–Fisher relation. The recovery of the BTFR requires a specific 

scaling of the integrated stiffness K_Σ with baryonic mass. This is not assumed but identified as 

a constraint on the TPB microphysics (§6.5). If disk size–mass and scale-height relations satisfy 

the conditions outlined there, BTFR follows with slope 4. If not, the mechanism predicts 

deviations from slope 4. The BTFR therefore functions as a quantitative diagnostic of how 

coherence stiffness scales with galactic structure. 

9.4.5 Scope of the present work. This paper provides a structural mechanism for flat rotation 

curves in thin disk galaxies within the VERSF–TPB framework. It does not claim: (a) a universal 

replacement for dark matter in all astrophysical contexts, (b) a completed covariant lensing 

solution, or (c) a full cosmological structure-formation model. Those extensions require further 

development of the VERSF gravitational sector. 

Closing remark. The central claim is narrow and testable: in geometries that support a thin TPB 

coherence band, the confined phase mode produces a logarithmic Green's function whose 1/R 

acceleration profile matches flat rotation curves. When interpreted through standard 3D gravity, 

this appears as an isothermal halo. 

 

10. Summary and Conclusions 

We have presented a structural mechanism within the VERSF–TPB framework by which flat 

galactic rotation curves arise from phase-coherent overlap dynamics rather than dark matter 

particles. The argument proceeds through five steps: 

Step 1 (Section 1): Local vacuum geometry in 3D produces 1/r² gravitational acceleration, which 

is incompatible with flat rotation curves. An additional source or an effective dimensional 

reduction is required. 

Step 2 (Sections 2–3): The physical picture of bit projection and overlap is introduced (Section 

2), and TPB overlap synchronisation is formalised through a complex order parameter Ψ with 

U(1) symmetry (Section 3), whose amplitude measures coherence and whose phase θ is the long-

range degree of freedom. 

Step 3 (Section 4): Starting from a 3D Landau–Ginzburg energy functional with a spatially 

varying commitment-driven ordering control parameter a(x), we derive that coherence is 

confined to a thin band Σ coinciding with the galactic disk. The phase mode is a localised surface 

excitation — a Goldstone mode of the free overlap field (pseudo-Goldstone under sourcing) 
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living on an ordered film in a disordered bulk. This gives a 2D effective phase theory without 

assuming 2D. 

Step 4 (Sections 5–6): The sourced 2D phase equation has a logarithmic Green's function, 

yielding Φ_ov ∝ ln R, acceleration ∝ 1/R, and flat rotation curves v ≈ v_∞ = constant. 

Step 5 (Section 7): A screening mass from finite coherence length provides a natural outer 

cutoff, beyond which rotation curves return toward Keplerian fall-off. 

The effective density profile that conventional gravity would attribute to this mechanism is ρ_eff 

∝ 1/R² — the isothermal halo. No new particles are introduced. The mechanism is specific to 

geometries supporting thin ordered bands, which provides falsifiable predictions distinguishing it 

from universal dark matter models. 
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Appendix A: Notation and Conventions 
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Symbol Definition 

G_μν Einstein tensor 

T_μν Stress-energy tensor 

Φ Newtonian gravitational potential 

τ(x) TPB commitment scalar (coarse-grained commitment density) 

Ψ = f · eⁱᶿ Overlap order parameter 

f Coherence amplitude 

θ Overlap phase 

Σ Coherence manifold (support of ordered phase) 

γ_ab Induced metric on Σ 

κ Overlap field stiffness 

a(x) Commitment-driven ordering control parameter 

b Quartic stabilisation coefficient 

K_Σ Integrated phase stiffness on Σ 

α Phase-source coupling constant 

λ Overlap-gravity coupling constant 

μ Screening mass (≈ 1/ξ_in) 

ξ_in Interior coherence (healing) length 

ξ_bulk Bulk (exterior) healing length 

𝒥, Σ_b TPB commitment density, baryonic surface density 

Units: Natural units c = ℏ = 1 unless stated otherwise. Metric signature (−,+,+,+). 

 

Appendix B: Detailed Derivation of the Amplitude Equation 

Starting from the energy functional (7) with Ψ = f(z) eⁱᶿ⁽ᴿ˒ᵠ⁾, and applying the z-only 

approximation for f justified in §4.4 (∇_∥² f ≪ ∂_z² f), the variation δE/δf = 0 gives: 

−2κ ∂z² f + 2a(z) f + 2b f³ = 0 

Dividing by 2: 

−κ ∂z² f + a(z) f + b f³ = 0 (B1) 

For a step-function profile a(z) = −|a| for |z| < h and a(z) = a_bulk for |z| > h: 

Interior (|z| < h): Setting ∂²_z f ≈ 0 (uniform solution), we get −|a|f + bf³ = 0, yielding f₀ = 

√(|a|/b). 
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Exterior (|z| > h): Linearising about f = 0, the equation becomes −κ ∂²_z f + a_bulk f = 0, with 

decaying solution f ∝ e^(−|z|/ξ_bulk) where ξ_bulk = √(κ/a_bulk). 

Matching region (|z| ≈ h): The amplitude interpolates smoothly between f₀ and 0 over a 

characteristic width ξ_in = √(κ/2|a|), the interior healing length (the factor of 2 reflects the 

curvature V″(f₀) = 2|a| of the potential at its minimum, as in Eq. (34)). We use ξ_in as an order-

of-magnitude width for the interface; precise numerical prefactors depend on the detailed smooth 

profile of a(z). The full domain-wall–type interpolating solution can be obtained analytically for 

specific smooth a(z) profiles (e.g., hyperbolic tangent) but the qualitative structure — flat 

interior, exponential exterior, smooth matching — is universal. 

 

Appendix C: Beyond Disk Rotation Curves — Clusters, 

Lensing, CMB, and Structure Formation 

This appendix clarifies how the disk-coherence mechanism developed in the main text interfaces 

with the broader empirical roles commonly attributed to dark matter: galaxy cluster dynamics, 

gravitational lensing, CMB acoustic peaks, and large-scale structure formation. The purpose is 

not to claim completion of these domains, but to (i) state precisely what the present paper does 

and does not imply, (ii) identify the minimal extensions required for coverage, and (iii) define 

falsifiable intermediate targets. 

C.1 Scope of the Main Mechanism 

The main paper establishes a specific result: in geometries supporting a thin TPB coherence band 

(disk galaxies), confinement of the overlap phase mode produces a 2D Poisson equation with 

logarithmic Green's function and thus a 1/R acceleration regime, with a screening cutoff at scale 

R ~ μ⁻¹ (Section 7). 

This mechanism is not claimed to be universal. It is activated only when the ordering condition 

a(x) < 0 occurs in a thin band (Section 4.3). In systems lacking this geometry (e.g., clusters), the 

overlap phase is not expected to be confined in the same way, and the 2D logarithmic regime 

should not be assumed. 

C.2 Cluster Mass Discrepancy: What Must Be Explained 

Galaxy clusters exhibit mass discrepancies inferred from virial equilibrium of member galaxies, 

X-ray temperature and density profiles of intracluster gas, and strong and weak gravitational 

lensing including merging systems (e.g., the Bullet Cluster; Clowe et al. 2006). 

Any full alternative to particle dark matter must provide a gravitational field sufficient to 

reproduce cluster lensing convergence maps, reproduce hydrostatic equilibrium profiles, and 

maintain consistency across dynamical and lensing estimators. The present paper does not 

provide this. 
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However, it does provide a framework for how such effects could arise without new particles: 

through ordered overlap phases supported by the local sign structure of a(x). 

C.3 Cluster Regime Hypothesis: 3D Ordering Rather Than Disk Confinement 

In clusters, baryons are distributed approximately three-dimensionally (gas dominates the 

baryonic mass budget). Within TPB, this suggests a different ordering morphology: 

• In disks: a(x) < 0 in a thin midplane band → 2D confined phase → logarithmic potential 

→ flat rotation curves (this paper). 

• In clusters: a(x) < 0 may occur in an extended 3D volume (or in multiple 

filaments/sheets) → 3D coherent phase → 3D Green's function structure. Whether this 

occurs depends on whether τ̄ sourced by intracluster gas crosses the ordering threshold 

throughout a volume rather than in a sheet — a question determined by the gas density 

profile and the microscopic coupling η. 

Consequence. If a 3D ordered overlap phase forms, the relevant Green's function is no longer 

logarithmic but reverts to the standard 1/r form. The resulting acceleration follows the usual 1/r² 

scaling — the overlap contribution does not change the radial profile but adds to the effective 

gravitational strength, renormalising G_eff upward. This is appropriate to the cluster problem, 

which is fundamentally a magnitude discrepancy (not enough gravitational mass to explain 

observed binding) rather than a scaling discrepancy (wrong radial dependence). The cluster 

regime therefore requires its own analysis: the disk mechanism should not be naively 

extrapolated. This provides a disciplined separation: disks are a 2D band regime where overlap 

changes the force law; clusters are a candidate 3D regime where overlap enhances gravitational 

strength within the standard scaling. 

C.4 Lensing: Minimal Requirements and Qualitative Predictions 

Gravitational lensing depends on the spacetime metric potentials (often denoted Φ and Ψ in 

weak-field cosmology), not only on the Newtonian acceleration inferred from rotation curves. In 

GR, the deflection is sensitive to the lensing potential (Φ + Ψ)/2. 

Implication. Any TPB overlap mechanism must be embedded in a covariant gravitational sector 

to predict lensing robustly. The main text flags this as future work (§6.3, Remark on covariant 

completion). 

Nevertheless, the disk mechanism implies a robust qualitative signature: disk-driven overlap 

contributions should produce orientation-dependent lensing asymmetry aligned with the disk 

plane, unlike spherical CDM halos (see also §9.2 and §9.4.2). This can be tested statistically with 

galaxy–galaxy lensing: stacked lensing around disk galaxies binned by inclination should show 

measurable anisotropy if the overlap component is significant. 

Intermediate falsifier. If lensing around disk galaxies is consistent with quasi-spherical halos 

with no inclination dependence beyond baryonic disk effects, then any disk-confined overlap 

contribution must be subdominant. 
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C.5 CMB Acoustic Peaks: What Any Replacement Must Reproduce 

In ΛCDM, cold dark matter plays two key roles in the CMB: it deepens gravitational potential 

wells without coupling to photons (shifting peak heights and phases), and it supports early 

structure growth prior to recombination. 

A TPB-only disk mechanism does not address this, because it is a late-time, galactic-scale 

ordering phenomenon. Therefore, a programme claiming full replacement must supply either: (a) 

an early-universe overlap sector — perhaps a cosmological-scale ordering of TPB commitment 

structure tied to the approximately homogeneous matter distribution at high redshift, before disk 

formation — that behaves effectively like a pressureless gravitational component at 

recombination, or (b) a modification of the gravitational response at early times (analogous in 

spirit to scalar-tensor extensions of GR) that reproduces equivalent potential evolution without 

particle dark matter. This appendix does not assert which route is correct; it identifies the 

requirement and notes that route (a) would represent a different ordering morphology of the same 

a(x) framework, while route (b) would require a separate gravitational sector within VERSF. 

C.6 Structure Formation: Growth Rate Constraint 

Large-scale structure growth requires enhanced gravitational clustering in the matter-dominated 

era, consistency with observed fσ₈(z), and consistency with the baryon acoustic oscillation 

(BAO) imprint. 

A purely disk-confined late-time overlap mechanism cannot drive early structure formation. 

Therefore, if the TPB overlap programme aims to replace dark matter globally, it must include a 

second mechanism operating in the early universe or at cosmological scales. 

C.7 Two-Mechanism Programme: Local Disk Regime + Cosmological Regime 

A coherent way to unify the programme is to treat TPB overlap as admitting multiple ordered 

morphologies depending on a(x): 

• Regime A (Disk band ordering): thin Σ → 2D Poisson → logarithmic potential → flat 

rotation curves (this paper). 

• Regime B (Cosmological / volumetric ordering): extended 3D ordering or filamentary 

ordering → different Green's function → candidate contributor to cluster and 

cosmological potentials. 

The programme thus becomes: the sign structure and geometry of the ordering parameter a(x) 

determines the morphology of overlap ordering, which determines the effective gravitational 

response. This "morphology-dependence" is a strong discriminator from CDM, which assumes a 

broadly universal halo phenomenology. 

C.8 Observable Intermediate Targets 

Even before a full CMB/structure solution is built, the programme yields intermediate targets: 
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1. Inclination-dependent lensing anisotropy around disk galaxies (as in C.4). 

2. Cluster morphology dependence: if overlap ordering occurs in cluster cores, lensing 

should correlate more strongly with baryonic gas morphology than with galaxy 

distribution alone. 

3. Redshift evolution: if overlap ordering is threshold-driven, the onset and strength of the 

effect should evolve with the cosmic star formation history and disk settling; this predicts 

a redshift trend in disk rotation-curve anomalies at fixed baryonic mass. The expected 

direction is that flat rotation curve signatures should be weaker at high redshift, because 

early disks are thicker and less settled — degrading the thin-band condition h_eff ≪ R on 

which the dimensional reduction depends. Higher gas fractions at early times would 

increase commitment density and partially compensate, but the geometric requirement 

(thin coherence band) is the dominant constraint. Quantitatively, the onset redshift for 

robust flat rotation curves should correlate with the epoch of disk settling. 

Failure of these intermediate tests would constrain or rule out overlap as a dominant contributor. 

C.9 What This Appendix Does Not Claim 

This appendix does not claim that the TPB overlap mechanism presented here already explains 

the Bullet Cluster, the CMB acoustic spectrum, or linear structure growth. It identifies what 

additional ingredients are required and how those ingredients could be framed within the same 

ordering-parameter logic, without introducing new particles. 

C.10 Summary 

The disk-coherence mechanism established in this paper is a controlled, regime-specific account 

of flat rotation curves. Extending the TPB overlap programme to clusters and cosmology 

requires a separate analysis of overlap ordering morphologies in 3D and their covariant 

gravitational embedding. The cleanest near-term discriminators are lensing anisotropy and 

morphology dependence, which provide falsifiable stepping-stones toward broader claims. 
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