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Abstract (General Reader)

One of the deepest puzzles in modern physics is that galaxies don't behave the way gravity
predicts. Stars at the edges of spiral galaxies orbit at roughly the same velocity as stars near the
centre — but if gravity only comes from the matter we can see (stars, gas, dust), those outer stars
should be flying off into space. The standard explanation is "dark matter": an invisible substance,
never directly detected, that forms a vast halo around each galaxy and provides the extra
gravitational pull needed to hold everything together.

This paper proposes a different explanation rooted in the VERSF (Void Energy-Regulated Space
Framework) and its Ticks-Per-Bit (TPB) model. In VERSF, when matter undergoes irreversible
change — a quantum state committing to one outcome — it produces a "bit": a permanent
addition to the universe's informational record. These commitments are what constitute time.
Crucially, the structural consequences of each commitment are not confined to the matter that
produced it; they spread locally outward through the surrounding quantum foam, altering the
distinguishability structure of nearby space.

In a disk galaxy, billions of stars and gas clouds all produce bits and project their influence
outward. Because the sources are arranged in a thin disk, these projections overlap most densely
in the galactic midplane, forming a thin band of enhanced informational structure. This band is
effectively two-dimensional — and in two dimensions, gravitational-like forces fall off as 1/R
rather than the 1/R? of ordinary three-dimensional gravity. A 1/R force is precisely what is
needed to produce flat rotation curves — the signature phenomenon attributed to dark matter.



In short: what we interpret as dark matter may be the geometric fingerprint of overlapping bit
projections in disk galaxies — not an invisible substance, but an emergent property of how
matter's irreversible commitments reshape the structure of surrounding space.

Overlapping Gravitational Influence of Stars

-

In a disk galaxy, every star generates information commitment
that project outward, forming overlapping influence zones.
These overlapping zones create a two-dimensional band

of coherence in the galactic midplane.

Two-dimensional
coherence bandin
galactic midplane °




Abstract (Technical)

We show that the galactic rotation curve anomaly — conventionally attributed to dark matter
halos — can arise as a structural consequence of phase-coherent overlap in the Ticks-Per-Bit
(TPB) framework within VERSF. In TPB, irreversible informational commitments by baryonic
matter project distinguishability structure into the surrounding substrate; in disk galaxies,
geometric superposition concentrates this structure into a thin midplane band. Beginning from a
three-dimensional Landau—Ginzburg energy functional for a TPB overlap order parameter with a
spatially varying commitment-driven ordering control parameter a(x), we derive (rather than
assume) the confinement of the massless phase mode to a thin coherence band X coinciding with
the galactic disk. The dimensional reduction to a two-dimensional phase theory on X follows
from the vanishing of phase stiffness outside the ordered region. The resulting 2D Poisson
equation for the phase field possesses a logarithmic Green's function, yielding 1/R acceleration
profiles and flat rotation curves over the coherence band. A screening mass from finite coherence
length provides a natural outer cutoff. We map the effective potential back into the language of
local Newtonian gravity and recover a p_eft o« 1/R? profile — the isothermal halo. The
mechanism is specific to geometries supporting thin ordered bands (disk galaxies); this regime-
specificity is noted and discussed. No new particles are introduced. Throughout, we use natural
units (c = 2 = 1) unless otherwise stated, and a (—,+,+,*) metric signature.

1. The Rotation Curve Problem in Local Geometric Gravity

For the general reader: Einstein's General Relativity tells us that matter curves spacetime, and
that curvature is what we experience as gravity. For a galaxy, once you move beyond the visible
matter, you're in "empty" spacetime — and the theory predicts that gravity should weaken as
1/R?, just like for the solar system. But galaxy rotation curves show gravity weakening only as
1/R out to enormous distances. Something is missing from the standard picture.

1.1 The Vacuum Exterior Problem

In General Relativity, the Einstein field equations relate spacetime curvature to the distribution
of matter and energy:

G pv=8nGT pv(l)
where G_pv is the Einstein tensor encoding curvature and T pv is the stress-energy tensor

encoding matter content. In the weak-field limit with goo = —(1 + 2®), the field equations reduce
to a Poisson equation for the Newtonian potential ®:

V20 = 47G p (2)

Outside a compact baryonic distribution (where p = 0), this becomes the vacuum Laplace
equation:



V20 =0 (3)

For a spherically symmetric mass distribution, the unique exterior solution is the familiar
Newtonian potential:

®(r) =—GM/r, a(r) = GM/1? (4)
where a(r) = |0:®D| is the gravitational acceleration.
1.2 Why Flat Rotation Curves Cannot Arise from Vacuum Geometry

Flat rotation curves require v(r) = v_oco = constant at large radii. For circular orbits, the centripetal
condition v¥r = a(r) gives:

a(r) =v_oo?/r « 1/r (5)
This 1/r scaling is incompatible with the 1/r* acceleration from Eq. (4). More precisely: no
solution to the three-dimensional vacuum Laplace equation (3) produces a potential with 0,0

1/r at large r. The logarithmic potential @ o In r that would yield this acceleration is a solution to
the two-dimensional Laplace equation, not the three-dimensional one.

Therefore, within strictly local geometric gravity, matching observed rotation curves requires
either:

e (@) an additional, unseen source of stress-energy (dark matter), or
e (b) a mechanism that introduces an effectively two-dimensional gravitational structure.

This paper develops option (b) within the VERSF-TPB framework.

2. Time, Bits, and Overlap: The Physical Picture

This section is written for the general reader and contains no equations. Readers familiar with
the VERSF—TPB framework may skip to Section 3.

2.1 Time Is Made of Commitments

We are accustomed to thinking of time as a river — something that flows whether or not
anything is in it. VERSF proposes something different: time does not flow on its own. It is
produced, and only by specific kinds of events.

When matter — a star, a gas cloud, a particle — undergoes an irreversible change, information
that was uncertain becomes definite. A quantum state that could have gone several ways
commits to one outcome. That commitment is a bit: a permanent, irreversible addition to the



universe's informational record. It cannot be taken back. And it is these irreversible
commitments, accumulating one after another, that constitute what we experience as the passage
of time.

Where there is mass, there are bits being produced. Where there is no mass, there are no
irreversible commitments — and time, in the VERSF sense, does not advance. Vacuum
fluctuations in the quantum foam are reversible and do not produce lasting informational
commitments; they do not generate bits and therefore do not constitute time advancement in the
TPB sense.

2.2 Bits Don't Stay Put

A crucial feature of bit production is that its effects are not confined to the location where mass
sits. When a star generates irreversible commitments, the structural consequences of those
commitments alter the distinguishability structure of the surrounding space, and this alteration
spreads locally from site to site through the foam — much like a television screen projecting an
image beyond its own surface. The bit activity at the source reaches into the space around it,
carrying distinguishability and informational structure outward.

Every massive object in a galaxy does this. Every star, every gas cloud, every dense
concentration of matter produces bits and locally reshapes the informational structure of its
surroundings.

2.3 The Quantum Foam: Stage, Not Actor

If bit projections propagate outward, what are they propagating through?

The answer is the quantum foam — the seething, fluctuating microstructure of space itself. The
foam is rich with reversible micro-fluctuations: activity that explores possibilities but never
commits to outcomes. Nothing irreversible happens in the foam on its own. It does not produce
bits. It does not advance time. It is, in the language of VERSF, temporally sterile.

But this does not mean the foam is unimportant. It is the medium through which bit projections
travel. It defines what "nearby" means. It determines the local rules by which projections spread,
combine, and decay. Just as air is passive with respect to sound — it does not create sound
waves, but it determines how they propagate, interfere, and decay — the quantum foam is
passive with respect to bit projections, but it shapes everything about how they behave.

2.4 Overlap: Where Projections Superimpose

Now consider a disk galaxy: a vast, flattened collection of hundreds of billions of stars and gas
clouds, all producing bits, all projecting their influence outward through the foam.

Imagine each source as a screen projecting its image into the surrounding space. In a random
scatter of sources, those projections spread in all directions and thin out quickly. But in a disk,
something geometrically special happens: because the sources are concentrated in a thin plane,



every point near the midplane receives overlapping projections from many nearby sources
simultaneously. The midplane of the disk becomes the zone where the greatest number of
projections superimpose. This does not require signals to converge from afar; it follows from the
local spreading of projection influence from many nearby sources whose geometry is already
disk-shaped.

This superposition is the overlap. Where projections from many sources pile up in the same
region, the effective information density — the density of bit influence — increases beyond what
any single source contributes. The foam does not amplify this effect; it simply allows it to occur.
The enhancement is purely geometric: it is the shape of the disk that concentrates the
superposition into a thin band.

2.5 Why Overlap Changes Gravity

Ordinary gravity already responds to mass — more mass means stronger gravitational pull. But it
does so in a way that always produces the same spatial pattern: in three-dimensional space,
gravitational force falls off as the inverse square of distance. Double the distance, quarter the
pull. This is true regardless of how much mass is present.

Overlap produces a qualitatively different effect. Because the superimposed bit projections are
concentrated into a thin layer — essentially a two-dimensional structure — the additional
conservative acceleration field that emerges from their collective structure follows two-
dimensional rather than three-dimensional rules. In two dimensions, force falls off as the inverse
of distance, not the inverse square. Double the distance, halve the pull — a much lesser decline.

This is precisely the pattern seen in galaxy rotation curves: stars at the outer edges of disk
galaxies experience a gravitational pull that declines far more gradually than inverse-square
gravity predicts. The standard explanation invokes an invisible halo of dark matter to provide the
extra pull. The VERSF explanation is that the pull is real but its source is not a substance — it is
the geometric consequence of overlapping bit projections in the disk, producing an effectively
two-dimensional gravitational structure embedded in three-dimensional space.

2.6 Summary of the Physical Picture
The mechanism has four layers:

1. Mass generates irreversible commitments (bits) that advance time and project their
influence outward.

2. Bit projections propagate through surrounding space, carrying informational structure
beyond the matter that produced it.

3. Quantum foam is the reversible, temporally sterile medium through which
projections travel. It mediates and constrains propagation but does not create or amplify
bit activity.

4. Overlap occurs where projections from different sources superimpose, increasing
effective information density. In a disk galaxy, geometry concentrates this overlap into a



thin band in the midplane — and the two-dimensional character of that band produces a
gravitational scaling that matches what we observe.

What dark matter models attribute to an invisible substance, VERSF attributes to the geometry of
overlapping information.

A note on energy. The overlap contribution does not create energys; it redistributes existing
commitment structure. Section 6.6 provides a rigorous energy accounting showing that tracers
move in a conservative potential derived from a variational principle, with screening preventing
runaway amplification.

3. TPB Overlap and the Synchronisation Order Parameter

For the general reader: Section 2 described how bit projections from many sources overlap in
the disk midplane. To do physics with this picture, we need a mathematical language for "how
much overlap is happening at each point" and "how aligned is the overlap pattern from place to
place." That language comes from condensed matter physics — the same mathematics used to
describe superconductors and superfluids, where large-scale quantum ordering produces
dramatic macroscopic effects. The key object is a complex order parameter \¥: its size tells us
how strong the overlap coherence is, and its phase angle tells us how the pattern is aligned
relative to its neighbours.

3.1 The TPB Commitment Scalar

Let t(x) denote the TPB commitment scalar: a coarse-grained measure of irreversible
commitment density at spacetime point x. In regions of high baryonic density, t is large; in
intergalactic voids, T approaches its background value.

A clarification on status: in the TPB framework, what we call "proper time" is itself emergent —
it is not a fundamental background parameter but arises from the accumulated commitment
structure. The scalar 1 is therefore an operational quantity: a coarse-grained commitment density
as registered by subsystems embedded in the local environment. It is not defined against any
fundamental temporal backdrop. This operational definition is sufficient for the coarse-grained
Landau—Ginzburg treatment that follows, and no reference to a fundamental time coordinate is
required. (In subsequent sections, we write T for T coarse-grained on the Landau—Ginzburg cell
scale; the distinction is notational, not physical.)

3.2 Complex Order Parameter for Overlap Coherence

At coarse-grained scales, TPB overlap synchronisation is captured by a complex order
parameter:

Y(x) = f(x) ™ (6)



where f > 0 is the coherence amplitude and 0 is the overlap phase. The amplitude measures the
degree of coherent overlap — the formal counterpart of the constructive superposition of bit
projections described in Section 2; the phase encodes the relative alignment of the coherent
overlap pattern across space.

This representation carries a U(1) symmetry: the physics is invariant under a global shift 6 — 0 +
const, reflecting the fact that the absolute alignment of the coherent overlap pattern is not
physically meaningful — only gradients in the phase (differences in alignment between
locations) carry physical content.

The physical identification of this U(1) symmetry is as follows. In standard condensed matter
systems, U(1) symmetry is associated with a conserved charge (particle number in superfluids,
Cooper pair number in superconductors). In the TPB framework, the analogous quantity is the
overlap winding number: the net phase accumulated around a closed loop in the coherent region.
In the source-free sector, the phase supports topological winding, and single-valuedness of the
physical state constrains the winding number to integer values. In the presence of sources
(Section 5), the U(1) is explicitly broken: sources select a preferred phase configuration and can
permit defect nucleation and annihilation at the boundaries of the coherence band. The winding
number is therefore a good quantum number only in the approximate symmetry regime, far from
sources and boundaries.

4. Deriving Coherence Confinement from TPB Physics

For the general reader: This is the central new result of the paper. We show that TPB overlap
coherence doesn't fill all of three-dimensional space — it automatically confines itself to a thin
layer coinciding with the galactic disk, because the raw material for coherence (dense bit-
commitment activity from baryonic matter) only exists there. This is like how a layer of ice
forms on the surface of a lake: the ordering (crystallisation) only occurs where conditions
(temperature) cross a threshold, producing a thin ordered sheet embedded in a disordered bulk.
The rest of the paper's results flow from this confinement.

The geometric superposition of bit projections described in Section 2 is now formalised through
a Landau—Ginzburg ordering framework. In this mathematical language, "synchronisation" refers

to the establishment of a coherent overlap pattern with well-defined phase — the formal
counterpart of the constructive superposition of bit projections in the physical picture.

4.1 Three-Dimensional Landau—Ginzburg Functional

We begin in full three-dimensional space — crucially, we do not assume confinement to any
surface. The static energy functional for the overlap field is:

E_LG® =[d [ « [V + a(x)|¥P + (b/2)[}* ] (7)



with b > 0 for stability and k > 0 as the stiffness (rigidity) of the overlap field. The parameter
a(x) 1s the effective mass-squared controlling the local ordering tendency.

The structure of this functional is dictated by symmetry. It is the most general U(1)-invariant
energy functional containing terms up to quartic order in ¥ and up to two derivatives — the
standard Landau—Ginzburg construction. The TPB-specific content enters through the spatial
dependence of the coefficient a(x).

(Note: we use E for this static energy functional to distinguish it from the Lorentzian action S
used in later sections when dynamical terms are included.)

4.2 Spatially Varying Synchronisation Drive

In the TPB framework, coherence requires sufficient projected commitment density. The
effective control parameter a(x) therefore depends on the local commitment density T(x). Near
the ordering threshold, we expand to leading order:

a(x) = a0 —1 1x) (8)

where ao > 0 is the bare (incoherent) value and 1 > 0 is the coupling strength between
commitment density and coherence drive. The linearity in t is the leading-order term in a Taylor
expansion about the critical point, following standard Landau theory practice; higher-order
corrections are suppressed near threshold.

The physics is immediate:

e Where 1(x) is small (low commitment density): a(x) > 0, the minimum is at ¥ = 0 (no
coherence).

e Where 1(x) is large (high commitment density): a(x) < 0, the minimum is at |'\¥'|> = |a|/b
(coherent phase with well-defined 0).

The phase field 0 is not a physical degree of freedom where W = 0. There is no broken-symmetry

manifold to support it. Phase transport is therefore automatically confined to the region where
the TPB synchronisation drive pushes a(x) below zero.

4.3 Disk Geometry Produces a Thin Coherence Band

In a disk galaxy, the baryonic (and hence TPB commitment) density is strongly concentrated
near the midplane z = 0 and falls off steeply in the vertical direction. The control parameter
therefore takes the form:

a(R, z) a bulk + Aa(R) g(z/h) (9)

where a_bulk > 0 is the incoherent bulk value, Aa(R) < 0 near the disk drives ordering, g is a

profile function peaked at z = 0 with characteristic width h (the disk scale height), and R is the
cylindrical radial coordinate.

10



There exists a band |z| < z*(R) around the midplane where a(R,z) < 0. Outside this band, a > 0
and the vacuum state is ¥ = 0. This band is the coherence manifold £ — not an assumption, but
the support of the ordered phase, determined by the baryonic distribution through TPB
commitment density.

4.4 Amplitude Profile and Phase Localisation

To demonstrate mathematically that the phase mode is confined to X, we solve for the
equilibrium amplitude profile. Writing ¥ = f(z)e® where f(z) > 0, and varying the energy
functional (7) with respect to f at fixed 6, the full equation includes in-plane Laplacian terms V /
f- We treat f as depending only on z — justified when the in-plane scale over which fvaries (set
by the radial gradient of 2 b, typically ~ R _d ~ kpc) is much larger than the vertical scale (set
by h ~ 100 pc), so that N> f < 0_z* f. In this approximation the amplitude equation reduces to:

02 f+a(z) f+bf=0/(10)

For a step-like a(z) profile (negative for |z| < h, positive for |z| > h), this equation has a well-
known domain-wall-type solution:

« Inside the band (z| < h): f(z) = fo = V([a|/b), the equilibrium coherence amplitude.
e OQOutside the band (|z| > h): f(z) — 0 exponentially, with decay governed by the bulk
healing length & bulk = («/a_bulk).

The effective band thickness is h_eff =~h + £ bulk, combining the geometric disk thickness h
with the exterior healing tail. For typical galactic parameters where the bulk is strongly
disordered (a_bulk large), & bulk « h, and the band closely tracks the baryonic disk.

(Note: a distinct interior healing length & in = V(k/2|a) governs the scale of amplitude
disturbances within the ordered band; it appears in the screening analysis of Section 7. The two
lengths are in general different: £ bulk controls exterior decay, & in controls interior coherence.)

4.5 Dimensional Reduction: From 3D to 2D Phase Theory
The phase kinetic term in the 3D energy functional is:
KV =« f2(2) |VOP + « |0_z f? + 2« (8 z )@ z0) + ... (11)

The coefficient of the phase gradient term, kf*(z), is the phase stiffness. The cross-term 2kf(0_z
)(0_z 0) vanishes because 0 is taken to be the lowest z-mode in the confined band —
approximately z-independent across the thin coherence region (justified below, where higher z-
dependent phase modes are gapped by the confinement potential and do not contribute at long
wavelengths). The pure amplitude gradient term k|0 z f]* contributes to the amplitude sector and
does not affect the phase dynamics. Outside the coherence band, f — 0 and the stiffness
vanishes: phase gradients cost no energy because the phase is undefined. There is no propagating
0 degree of freedom in the bulk.
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For the lowest-energy phase mode, 0 is approximately uniform across the thin band (justified
when h_eff < L_||, the in-plane wavelength of interest — easily satisfied for galactic-scale
dynamics where L_|| ~ kpc and h_eff ~ 100 pc). Higher z-dependent modes are gapped by the
confinement potential and do not contribute at long wavelengths. We therefore write 6 =~ 6(R, ¢)
and integrate over z:

S 00 = [ d_|I [ dz [K(z)/2] |V_Il ]2 (12)

where K(z) = 2«xf*(z). Performing the z-integration yields the effective 2D phase action:
S 0™ =[d>x_|l [K_X/2] [V_Il O] (13)

K X :=[dzK(z) =2« ] dz fA(z) (14)

This is the central result of the derivation: the 2D phase theory on X is not assumed but
obtained by integrating out the localised amplitude profile. In condensed matter language, it
is a phase mode (Goldstone in the source-free sector; pseudo-Goldstone once sourced, as
discussed in Section 5.1) living on an ordered film embedded in a disordered bulk.

4.6 What Prevents Three-Dimensional Propagation?
The answer, derived above, is physical and sharp:

1. In the 3D bulk where a > 0, the vacuum state is ¥ = 0.

2. Where ¥ = 0, there is no broken U(1) symmetry, no phase manifold S', and 0 is not a
physical field.

3. The only excitations in the bulk are massive amplitude modes with correlation length
& bulk = V(k/a_bulk), which decay exponentially and cannot mediate long-range forces.

4. Phase transport — and hence the overlap-induced gravitational effect — is confined to
the region where TPB commitment density exceeds the ordering threshold.

This confinement is a consequence of TPB physics (the synchronisation threshold), not of
geometry.

Stability. The coherence band is a local minimum of the Landau—Ginzburg energy functional
(7): amplitude perturbations about fo are gapped (with mass ~ 1/§_in), and the band boundaries
are stabilised by the smooth transition of a(z) through zero. Small perturbations to the disk
structure (e.g., vertical oscillations, spiral density waves) modulate the location of the a=0
surface but do not destabilise the band — they shift X adiabatically. Large perturbations (e.g.,
mergers destroying disk geometry) can of course disrupt the ordered phase entirely, consistent
with the framework's prediction that the mechanism operates only in disk-like geometries.

5. Phase Dynamics on the Coherence Manifold
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For the general reader: Now that we've shown the overlap pattern confines itself to a thin disk,
we need to understand what drives it. The answer is the baryonic matter itself: stars and gas in
the disk act as "sources" for the overlap phase, much like electric charges act as sources for the
electric field. The bit projections from each source (Section 2) collectively shape the phase
pattern. The equation governing this pattern turns out to be the same equation that governs
electric fields in two-dimensional systems — and two-dimensional electric fields have a very
different character from three-dimensional ones.

5.1 Source Coupling from TPB Commitment

The baryonic matter in the disk drives the overlap phase through TPB commitment density. We
introduce a source coupling between the projected TPB commitment density J on X and the
phase field:

S src=[X d*| Vy o J 0 (15)
where a is the coupling constant and vy is the determinant of the induced 2D metric on X.

Physical motivation for the linear coupling. In standard condensed matter, Goldstone modes
typically couple to matter through derivatives (0 _a 0), not through 6 directly. The linear coupling
aJ0 requires specific justification. In the TPB framework, the physical mechanism is analogous
to a chemical potential coupling: baryonic commitment density acts as an external field that
biases the preferred phase value at each location, much as a chemical potential couples linearly
to the phase in superfluid hydrodynamics (where the superfluid velocity is v_s = V0, but the free
energy includes a uN ~ puf term that is linear in the time-derivative of the phase). Here the role of
the chemical potential is played by the static commitment density (J, which sets a preferred phase
configuration through the energetics of TPB overlap alignment. The coupling is linear in 6
because J acts as an external source that tilts the free-energy landscape, selecting one phase
value over others — not because baryons couple to the Goldstone gradient.

A note on symmetry: This linear coupling explicitly breaks the U(1) symmetry 8 — 6 + const.
This is physically appropriate: in the presence of sources, the phase acquires a preferred
configuration (the sourced solution), just as an external magnetic field breaks the rotational
symmetry of a ferromagnet. The U(1) is a symmetry of the free overlap field; sources select a
phase profile. The consequence is that 0 is not a true massless Goldstone mode even before the
screening term of Section 7 is introduced — the source coupling itself generates a preferred
vacuum. We account for this explicitly in the screened phase equation below.

Remark on chemical-potential analogy. In relativistic superfluid hydrodynamics, the chemical
potential couples through a derivative term p 0 t 0, reflecting canonical conjugacy between
number density and phase. In a strictly static equilibrium sector, such a term contributes only
through time-boundary structure (or through time-variation of p). The present paper does not
claim literal equivalence to the superfluid coupling; rather, it adopts aJ0 as the minimal static
bias term: J acts as an external field that tilts the free-energy landscape and selects a preferred
phase configuration. The derivative-vs-static distinction becomes essential in a dynamical
treatment, which we defer.

13



5.2 Effective Phase Action and Equation of Motion

Combining the kinetic term (13) with the source term (15), the total effective phase action is:
S 0=[>dxll Vy [ ~(K_Z/2) y**(0_a 0)(@ b0)+0aJ0](16)

where K X is the integrated phase stiffness from Eq. (14).

Note that 7 is itself concentrated in the disk, so the z-integration of the source term localises
naturally: J on X is the surface-integrated TPB commitment density, which in the static limit is
proportional to the baryonic surface density £ b(R).

Varying with respect to 0 yields the Euler—Lagrange equation. For dynamics, the coherence
manifold is extended to X x R (spatial disk x emergent time, with the emergent time parameter
defined operationally as in §2.1 and §3.1), carrying a (2+1)-dimensional Lorentzian induced
metric y_ab. The kinetic term for the phase is taken to be second-order (Klein—Gordon type,
giving 0_X 0), corresponding to a relativistic dispersion relation w? = k* + p? for phase
excitations. A first-order (Schrodinger-type) kinetic term would yield diffusive rather than
propagating dynamics; we adopt the second-order form as appropriate for a Lorentz-covariant
effective theory.

The choice of Klein—Gordon structure implies propagating phase disturbances on X with a
characteristic signal velocity set by the effective metric y_ab. In the present static analysis this
does not enter; however, in a full dynamical treatment the phase propagation velocity need not
coincide with the ambient spacetime light velocity c. If subluminal, the coherence manifold
would carry its own causal structure embedded within the larger spacetime. Exploring this causal
sector — including potential observational signatures in time-dependent phenomena such as
galaxy interactions or bar instabilities — is deferred to future work.

In the covariant form:
oX0=(K X)J(17)

where o_X is the d'Alembertian on £ x R. Throughout this paper we work in the static sector,
dropping the 0 t* term. The static equation reduces to the 2D spatial Poisson equation:

V2 O(R) = (/K_X) =_b(R) (18)

where V?) is the 2D spatial Laplacian in the disk plane and X _b(R) is the baryonic surface
density.

14



6. Logarithmic Green's Function and Flat Rotation Curves

For the general reader: Here is where the key scaling change appears. In three dimensions, the
gravitational potential of a point mass goes as 1/r (giving 1/r* gravity). But in two dimensions,
the potential of a point source is In R (a logarithm). The gradient of In R is I/R — and a 1/R
gravitational force is exactly what produces flat rotation curves. By confining the overlap phase
to two dimensions, the TPB framework naturally produces the right kind of force law without
any fine-tuning and without introducing invisible matter.

6.1 The 2D Green's Function

The Green's function G for the 2D Laplacian satisfies:
V2 G(R) = *(R) (19)

The standard result, following from the identity:

V%2 In R = 21 6@(R) (20)

is:

G(R)=(12n) InR (21)

6.2 Phase Solution for Localised Sources

For a source distribution that is localised or that can be treated as approximately point-like at
large R, the phase solution is:

O(R) = (a/2nK _¥) M b In R + (terms regular at large R) (22)

where M_b =] dx_|| b is the total baryonic mass (surface-integrated). At radii much larger
than the source extent but within the coherence band, the logarithmic term dominates.

For a more realistic extended source profile X_b(R), the full solution is obtained by convolution
with the Green's function. The key property is that for any localised source, the large-R
behaviour is dominated by the logarithmic monopole term, with corrections from the source's
multipole structure that fall off with increasing R.

6.3 Gravitational Coupling: From Phase to Effective Potential
Interpretation (effective potential). In this paper, 0 is introduced as the long-wavelength phase
mode of the TPB overlap order parameter, and Eq. (18) shows that in the disk plane it satisfies a

Poisson-type equation sourced by baryonic surface density. We therefore define an overlap-
induced contribution to the weak-field gravitational potential by:
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® ov:=A10(23)

Minimal tracer coupling and equation of motion. In the weak-field static sector, the
observable content of the overlap mechanism is the additional conservative acceleration
experienced by baryonic tracers in the disk plane. The most general way to encode such a
conservative influence is through an effective potential term in the tracer action:

S tr=[dt[(1/2)mv2—m® N(x)—m® ov(x)] (24)

We define the overlap-induced potential as @ ov := A0, where 0 is the unique long-wavelength
overlap phase mode satisfying the sourced 2D Poisson equation on X (Eq. 18). Varying S_tr
yields the equation of motion:

a=-V®d N-V® ov=-VO N-1V0(25)

Thus, once 0 is determined by baryonic surface density via Eq. (18), the overlap-induced
acceleration follows immediately. The coefficient A is an effective coupling converting overlap-
phase units to conventional potential units; deriving A from the microscopic VERSF gravitational
sector is deferred to future work. Here A is treated as a phenomenological calibration parameter
constrained by rotation curve data and by the requirement that deviations from standard gravity
at Solar System scales are negligible.

Crucially, 0 is not assumed to source the Einstein equations directly. The effective potential

® ov is defined operationally via the acceleration it induces on baryonic tracers in the disk
plane, independent of any specific metric interpretation. It is an emergent auxiliary field whose
geometric scaling (how it depends on R) is a consequence of 2D Poisson structure alone, while
the normalisation (how large the effect is) is set by A. This separation of shape from
normalisation is standard practice in effective field theory treatments of modified gravity.

Remark (covariant completion). A full covariant completion would promote ¥ (or 0 in the
phase-only regime) to a dynamical field with stress-energy:

T abem=K X[ (0_a0)@ b6)—(1/2)y _ab (0_c 0)(0)](26)

and compute its backreaction on the metric through the Einstein equations. That calculation is
not required to establish the existence and geometric scaling of the 1/R regime, which follows
from the confined phase Poisson equation alone. The covariant route would in principle

determine A from first principles; we defer this to future work within the broader VERSF
gravitational sector.

6.4 Flat Rotation Curves
With @ ov « In R, the overlap-induced acceleration is:

a ov(R)=10 R® ov|=(haM_b)/(2aK %) - (1/R) (27)
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The circular orbital velocity satisfies v?(R) = R-a(R). In the regime where the overlap
contribution dominates over the Newtonian 1/R? term:

VZ(R) = v_oo? = (ha M_b) / 2nK_X) = constant (28)

This is the flat rotation curve, obtained without dark matter. The asymptotic velocity depends on
the total baryonic mass M_b and the ratio of coupling constants Aa/K_X.

6.5 The Baryonic Tully—Fisher Relation as a Stiffness Scaling Constraint

The baryonic Tully—Fisher relation (BTFR) is the empirical observation that M_b o v_oo* for
disk galaxies (McGaugh, Lelli & Schombert 2016), with a universal proportionality constant
involving a single acceleration scale ao = 1.2 x 107'° m/s%. Any framework claiming to address
rotation curves must confront it.

Proposition (BTFR Consistency Condition). From Eq. (28), v.o* x M_b/K_X. Therefore
BTFR (M_b « v_o*) holds if and only if:

K_X o« VM_b (equivalently, ho/K_X o< M_b"2) (29)

This makes BTFR a constraint on how coherence stiffness scales with baryonic mass and disk
structure — not an automatic consequence of 2D logarithmic propagation, and not an
afterthought.

Emergent acceleration scale. In the BTFR-consistent regime, write K =k * YM_b where
k_* is the proportionality constant. Substituting into Eq. (28):

v_oo*= (Ao /2nk *)*M b

Define an effective acceleration scale:
Ga TPB := (Ao /2nk *)*(30)

so that:

v o*=Ga TPBM b (31)

This has the same algebraic form as the MOND relation v_co* = G ao M_b (Milgrom 1983). The
acceleration scale a TPB is not inserted by hand but encodes the stiffness normalisation k_* and
the coupling product Ao. Whether a_ TPB matches the observed value a0 = 1.2 x 10 m/s* is a
quantitative constraint on these parameters — a target for future TPB microphysical modelling,
not a free tuning.

TPB-native route to the scaling. The stiffness is K X =2« [ dz f(z) ~ fo? h_eff, with fo®> = |a|/b

and a = a0 — nt. In disk galaxies, 7 (hence a) is controlled by baryonic surface density and crosses
the ordering threshold a = 0 at a radius R_* defined by:
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SR *)=X crit (32)

where X _crit := ao/n is a universal coherence threshold surface density (analogous to the Toomre
threshold in disk stability; Toomre 1964). For an exponential disk X(R) = X0 exp(—R/R_d), this
gives:

R_* =R dIn(Zo/E _crit) (33)

This threshold geometry ties K X to disk scale length and thickness rather than to baryonic mass
alone. If disks self-regulate to hover near a universal coherence threshold (so that |a] is
approximately constant across galaxies and the scaling comes primarily from h_eff and the radial
extent of the coherent band), then under observed disk size—mass scalings (Shen et al. 2003; van
der Wel et al. 2014) and weakly varying scale height, K_X o YM_b is plausible.

The physical picture is that K X is not a free parameter but is set by threshold geometry:
ordering occurs only where T exceeds a critical value, so the coherent region's size and stiffness
are determined by where and how deeply the disk crosses threshold. This makes the BTFR a
statement about disk structure, not a coincidence.

Falsifiable predictions from stiffness scaling. The BTFR slope is a direct empirical diagnostic
of how K ¥ scales with M_b:

e IfK ¥ VM b, then BTFR holds with slope 4 (the observed value).
e IfK X scales closer to M b, slope drifts toward 2.
o IfK X isnearly constant across galaxies, slope drifts toward 1.

The framework further predicts that BTFR scatter should correlate with disk thickness h, central
surface density Zo, and gas fraction — through their influence on K_X and R_*. This provides
concrete observational targets: galaxies with anomalously thick disks or low surface density
should show systematic deviations from the mean BTFR, in a direction and magnitude
predictable from the threshold geometry.

The threshold surface density as an observable. The parameter X_crit = ao/n packages two
microscopic parameters into a single phenomenological scale. In principle it is directly
observable: it corresponds to the baryonic surface density at which rotation curves begin to
deviate systematically from Keplerian behaviour — i.e., the surface density at which TPB
coherence "turns on." Empirically, disk galaxies exhibit a characteristic central surface
brightness (Freeman 1970; o = 140 M_ © pc?), suggesting a natural comparison scale.
Determining whether X _crit clusters around the Freeman value, or varies systematically with
morphology and gas fraction, provides a direct observational test of the TPB coherence threshold
and constrains the microscopic coupling 1.

6.6 Energy Accounting and Conservation

Energy is not created; it is redistributed. The overlap mechanism introduces an additional
conservative acceleration field in the disk plane. Any conservative force admits a potential
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representation and therefore a conserved mechanical energy for tracers. In the present
framework, the total effective potential is:

@ tot(x) =Dd N(x) +® ov(x), D ov:=20
A baryonic tracer of mass m moving in the static potential ®_tot has conserved energy:
E=(1/2) mv>+m ®_tot(x)

so long as the fields are time-independent (the regime treated in this paper). The overlap
contribution does not violate energy conservation at the level of test-particle dynamics: it
modifies the potential landscape but does not inject energy into the tracer system.

Where the "energy" lives. The phase field 0 arises from an ordered overlap mode and carries an
effective stiffness energy on X. From the 2D phase action (Eq. 16), one may define the
corresponding static free-energy functional (up to a constant):

F_0[0] = [ d>x_Il Vy [ (K_%/2) (V0)* ~ . J 0]

The sourced Poisson equation (Eq. 18) is precisely the Euler—Lagrange condition dF 6/66 = 0.
The 0 configuration is the equilibrium profile that minimises the overlap free energy given the
baryonic source distribution. The overlap contribution is therefore not an extra reservoir of
energy; it is the macroscopic manifestation of how existing commitments organise the substrate's
distinguishability structure at minimum free energy.

No runaway amplification. The screening term (Section 7) adds a positive contribution (K X
u%/2)0% to F_0, making the free energy strictly convex in the infrared and preventing unbounded
growth of 0. Beyond the coherence length, further phase deformation is exponentially costly, and
the overlap potential decays. This ensures that the overlap field does not lead to runaway long-
range amplification.

Covariant accounting (deferred). A fully covariant completion would treat ¥ (or 0) as part of
the gravitational sector and specify how its free-energy functional maps into spacetime stress-
energy and lensing potentials. That embedding is deferred. However, within the static disk
regime studied here, energy conservation is explicit: tracers move in a conservative potential,
and the overlap phase profile is determined by a variational principle minimising a well-defined
free-energy functional.

7. Coherence Length, Screening, and the Outer Cutoff

For the general reader: The flat rotation curve can't extend forever — eventually the overlap
coherence must fade. The Landau—Ginzburg framework provides a natural length scale, the
"coherence length," beyond which the overlap effect weakens. This gives the model a built-in
outer edge without needing to be added by hand.
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7.1 Coherence (Healing) Length

Linearising the amplitude equation (10) about the equilibrium value fo gives the interior healing
length:

& in=(k/2|a]) (34)

(The factor of 2 arises from the curvature of the Mexican-hat potential at its minimum: V" (fo) =
2|al.) This sets the scale over which amplitude disturbances heal within the ordered band.
Identifying £ in as the in-plane screening scale (u = 1/£_in) assumes isotropic stiffness k — i.e.,
that the Landau—Ginzburg gradient coefficient is the same in the vertical and in-plane directions.
Under this assumption, the same parameter that governs vertical amplitude healing also sets the
in-plane scale at which phase correlations begin to weaken. (Recall from Section 4.4 that the
distinct bulk healing length & bulk = (k/a_bulk) governs exterior decay.)

7.2 Screened Phase Equation

At in-plane distances comparable to &_in, phase correlations decay. An effective description
incorporates this through a mass term for the phase:

S 60— S 0—|XdxlVy (K = p22) 62 (35)
The screening mass L receives contributions from two physically distinct sources:

o Finite coherence length (Landau—Ginzburg origin): amplitude fluctuations at the edge of
the coherent band generate an effective mass @ LG ~ 1/ _in for the phase, scaling as
\(laJ/x). This is intrinsic to the ordered phase and is present even without sources.

o Explicit U(1) breaking (source origin): the linear coupling aJ0 (Eq. 15) generates a
preferred phase vacuum, producing an effective mass p_src that depends on the source
strength and coupling constant.

In the galactic context, the Landau—Ginzburg contribution is expected to dominate. The reason is
that LG is set by the coherence physics of the ordered band — a bulk property of the phase —
while p_src is proportional to aJ, which is the small perturbative coupling that sources the phase
in the first place. If the sourcing were strong enough for p_src to dominate, the linear-response
(Poisson) treatment of the phase equation would break down. Consistency of the perturbative
framework therefore requires p_src < p_ LG, and we identify p=~p LG = 1/£_in as the leading
contribution.

The screened phase equation is:

(Ve — 1*) O(R) = (w/K_X) Z_b(R) (36)

7.3 Screened Green's Function and Rotation Curve Profile

The Green's function for the screened 2D equation is the modified Bessel function Ko:
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G_w(R) =—(1/2m) Ko(1R) (37)
The asymptotic behaviour is:

e pR K1 (inside the coherence band): Ko(uR) = —In(uR/2) — y_E, recovering the
logarithmic regime and flat rotation curves.

« pR > 1 (beyond the coherence band): Ko(uR) =~ V(m/2uR) - exp(—uR), giving exponential
decay and a return toward Keplerian fall-off.

The transition occurs at R ~ 1/u = &_in, providing a natural outer boundary for the flat rotation
curve regime without fine-tuning.

8. Effective Halo Mapping

For the general reader: If a conventional astronomer tried to explain the overlap-induced
gravitational effects using only standard physics, they would be forced to invent an invisible halo
of matter with a very specific density profile — falling off as 1/R?. This is precisely the
"isothermal halo" that dark matter models invoke. In other words, what dark matter models
describe as a physical substance, VERSF describes as the gravitational shadow of two-
dimensional phase coherence.

8.1 Rewriting in Local Poisson Form

If one insists on describing the total gravitational potential through the local 3D Poisson
equation, one must define an effective source density:

V20 total =4nG (p_b + p_eff) (38)

The overlap contribution @ ov is defined on the 2D disk X. The actual 3D gravitational potential
generated by a surface distribution is obtained by solving the 3D Laplace equation with boundary
conditions set by the surface values. The result is smooth off-plane, not distributional: at height z
above the disk, the logarithmic in-plane behaviour transitions to 3D (1/r) behaviour over a
vertical scale comparable to the in-plane wavelength. Specifically, for a surface potential

® ov@(R) « In R on the disk, the 3D continuation satisfies:

® ov(R,z) > ® ovCP»(R)asz— 0, D ov(R,z) — —GM/\/(R2 + 7%) as |z| — «© (39)

The logarithmic regime and its associated 1/R acceleration hold strictly in the disk plane; off-
plane, the potential smoothly crosses over to standard 3D behaviour. This has direct implications
for gravitational lensing predictions (since photon trajectories generally do not remain in the disk
plane) and for dynamical tracers with significant vertical excursions. A full treatment of lensing
and off-plane dynamics requires solving the 3D boundary-value problem with the surface
potential as input, which we defer to future work. For the rotation curve analysis (circular orbits
in the midplane), the 2D treatment is exact. (In the strict thin-disk limit one may approximate the
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surface source by a d(z) distribution; however, the physically correct continuation is smooth off-
plane as a solution of the 3D boundary-value problem.)

8.2 The Isothermal Profile via Spherically Averaged Mass

The correct route to the effective halo density is not the 3D Laplacian of In R (which is a
distributional object with different structure), but the standard spherically averaged mass profile
interpretation used in observational astronomy.

In the flat rotation curve regime, a(R) = v_o0?/R. By the Gauss-law / enclosed-mass argument:
M_eff(R) = (v_%?G) R (40)

The effective mass enclosed within radius R grows linearly. The spherically averaged density
profile that produces this enclosed mass is:

p_eff(R) = [1/(47R?)] dM_eff/dR =v_oo* / (47G R?) (41)

This is the isothermal halo profile — the standard dark matter density profile used to fit flat
rotation curves. It is the spherically averaged effective density that a conventional Newtonian
analysis would attribute to an unseen mass component producing the observed 1/R acceleration.

The isothermal profile has a well-known pathology: the total enclosed mass M_eff(R) o« R
diverges linearly, so the integrated mass is infinite. In standard CDM, this is resolved by the
NFW profile's outer fall-off (Navarro, Frenk & White 1997). In the present framework, the
divergence is resolved by the screening mechanism of Section 7: the screened Green's function
(Eq. 37) transitions from logarithmic to exponentially decaying at R ~ 1/, so the effective 1/R?
density profile is truncated at the coherence radius, yielding a finite total effective mass. The
screening thus provides the physical regularisation that the isothermal profile alone lacks.

The VERSF overlap mechanism reproduces the empirical dark matter halo profile as an effective
description within the coherence band, with a built-in outer truncation: what conventional gravity
interprets as a 1/R? density distribution of physical particles, the TPB framework identifies as the
gravitational signature of two-dimensional phase coherence on the disk.

9. Regime of Validity and Limitations

For the general reader: Every good theory should be honest about where it works and where it
doesn't. This mechanism relies on having a thin, ordered layer — which disk galaxies naturally
provide. But elliptical galaxies and galaxy clusters don't have this structure, so the mechanism
won't straightforwardly explain their dark matter phenomenology. That's not a fatal flaw — it
defines the regime where this particular VERSF effect operates, and other mechanisms may be
relevant elsewhere.
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9.1 Geometry Dependence
The derivation in Section 4 relies on two features of disk galaxies:

1. High midplane commitment density producing a(z) < 0 in a thin band.
2. Thin-band geometry (h_eff < R) enabling the dimensional reduction to 2D.

Elliptical galaxies and galaxy clusters do not generically satisfy these conditions. In a roughly
spherical matter distribution, a(x) may be driven negative throughout a 3D volume, yielding a 3D
coherent phase with a 3D Green's function (1/r) rather than the 2D logarithmic one. In this case,
the overlap contribution to the potential would not produce flat rotation curves.

This is a feature, not a bug: disk galaxies and ellipticals show different dark matter
phenomenology observationally, and a framework that treats them differently is potentially more
discriminating than one that invokes a universal dark halo.

9.2 Additional Observational Constraints
A complete replacement for dark matter must also address:

e Galaxy cluster dynamics: Virial masses, X-ray gas profiles, and the Bullet Cluster
morphology.

e Gravitational lensing: Strong and weak lensing profiles around galaxies and clusters.
Because the overlap-induced potential is confined to a thin coherence band, the effective
gravitational field is anisotropic — concentrated in the disk plane rather than distributed
in a quasi-spherical halo as in CDM. The framework therefore predicts orientation-
dependent lensing signatures: disk galaxies viewed edge-on should exhibit stronger
projected lensing asymmetry aligned with the disk plane than face-on systems. A full
covariant lensing calculation requires solving the Einstein equations with the overlap
stress-energy included (or, equivalently, the 3D boundary-value problem of §8.1) and lies
beyond the present scope. However, the geometric anisotropy is a clear qualitative
discriminator between this mechanism and spherical dark matter halos.

e Cosmic Microwave Background: The acoustic peak structure, which in ACDM is
sensitive to the dark matter density.

e Structure formation: The growth of large-scale structure from primordial perturbations.

The present paper does not address these; its scope is limited to providing an internally
consistent structural mechanism for flat rotation curves in disk galaxies within the VERSF-TPB
framework. Extension to the above domains is a programme for future work.

9.3 Falsifiability

The framework makes several concrete, testable predictions that distinguish it from standard cold
dark matter (CDM) models:
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1. Geometry dependence: The mechanism predicts qualitatively different dark matter
phenomenology for disk vs. non-disk galaxies, tied to the existence (or absence) of a thin
coherence band.

2. Correlation with disk structure: The onset and extent of the flat rotation curve regime
should correlate with disk scale height h and surface density (through the coherence
threshold a = 0).

3. Transition profile: The screened Green's function (Section 7.3) predicts a specific
functional form for the transition from flat to Keplerian at large R, governed by a single
parameter p, which differs from the NFW (Navarro, Frenk & White 1997) or Burkert
(1995) profiles used in CDM.

4. Scaling relations: The prediction v_oo? x M_b (before possible mass-dependent
corrections to K_¥) differs from the MOND prediction of v_oo* « M_b and from CDM
predictions that depend on halo concentration.

Of these, the cleanest near-term discriminator is prediction (3): the transition profile governed by
the single parameter p yields a specific functional form (modified Bessel Ko) that differs from
the NFW (Navarro, Frenk & White 1997), Burkert (1995), and isothermal profiles used in
standard dark matter fits, and can be tested against high-quality extended rotation curve data.

9.4 Pre-emptive Clarifications and Scope Boundaries

This subsection addresses predictable objections and delineates precisely what is and is not
claimed.

9.4.1 Scope and status of the mechanism. The present mechanism does not modify Newton's
law or General Relativity universally. The 1/R regime arises only in geometries that support a
thin coherence band — specifically, disk galaxies in which a(x) < 0 in a narrow midplane region.
In approximately spherical systems (e.g., the Solar System), coherence would extend in three
dimensions, the Green's function reverts to the standard 3D 1/r form, and no deviation from
tested dynamics is predicted. The mechanism is regime-specific, not universal. No new particle
species are introduced; the overlap field ¥ is a coarse-grained order parameter, and the phase
mode 6 arises only where the ordering threshold is crossed. The identification ® ov := A0
(Section 6.3) is an effective description in the static weak-field disk sector: the shape of the
effect (logarithmic potential, 1/R acceleration) is derived from 2D Poisson structure; the
normalisation A is phenomenological. A full covariant derivation promoting ¥ to a dynamical
field and solving Einstein's equations for backreaction is beyond the present scope.

9.4.2 Lensing implications. Because the overlap-induced potential is confined to a thin disk-
aligned band, the framework predicts anisotropic gravitational effects contrasting with quasi-
spherical CDM halos. Qualitatively: disk galaxies viewed edge-on should exhibit stronger
projected deflection aligned with the disk plane; face-on systems should show reduced projected
asymmetry. A full lensing calculation requires solving the Einstein equations with the overlap
stress-energy included (cf. the 3D boundary-value problem of §8.1) and lies beyond the present
scope. However, geometric anisotropy is a robust qualitative discriminator between the TPB
overlap mechanism and spherical halo models.
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9.4.3 The role of the coherence threshold X_crit. The threshold surface density X crit = ao/n is
a phenomenological parameter packaging microscopic constants of the TPB ordering
mechanism. In principle, X _crit is directly measurable: it corresponds to the baryonic surface
density at which rotation curves begin to deviate from Keplerian behaviour. Its relationship to
empirical disk surface density scales (e.g., Freeman 1970) provides a direct observational test of
the framework (see §6.5).

9.4.4 On the baryonic Tully—Fisher relation. The recovery of the BTFR requires a specific
scaling of the integrated stiffness K X with baryonic mass. This is not assumed but identified as
a constraint on the TPB microphysics (§6.5). If disk size—mass and scale-height relations satisfy
the conditions outlined there, BTFR follows with slope 4. If not, the mechanism predicts
deviations from slope 4. The BTFR therefore functions as a quantitative diagnostic of how
coherence stiffness scales with galactic structure.

9.4.5 Scope of the present work. This paper provides a structural mechanism for flat rotation
curves in thin disk galaxies within the VERSF-TPB framework. It does not claim: (a) a universal
replacement for dark matter in all astrophysical contexts, (b) a completed covariant lensing
solution, or (c) a full cosmological structure-formation model. Those extensions require further
development of the VERSF gravitational sector.

Closing remark. The central claim is narrow and testable: in geometries that support a thin TPB
coherence band, the confined phase mode produces a logarithmic Green's function whose 1/R
acceleration profile matches flat rotation curves. When interpreted through standard 3D gravity,
this appears as an isothermal halo.

10. Summary and Conclusions

We have presented a structural mechanism within the VERSF-TPB framework by which flat
galactic rotation curves arise from phase-coherent overlap dynamics rather than dark matter
particles. The argument proceeds through five steps:

Step 1 (Section 1): Local vacuum geometry in 3D produces 1/r* gravitational acceleration, which
is incompatible with flat rotation curves. An additional source or an effective dimensional
reduction is required.

Step 2 (Sections 2-3): The physical picture of bit projection and overlap is introduced (Section
2), and TPB overlap synchronisation is formalised through a complex order parameter ¥ with
U(1) symmetry (Section 3), whose amplitude measures coherence and whose phase 6 is the long-
range degree of freedom.

Step 3 (Section 4): Starting from a 3D Landau—Ginzburg energy functional with a spatially
varying commitment-driven ordering control parameter a(x), we derive that coherence is
confined to a thin band X coinciding with the galactic disk. The phase mode is a localised surface
excitation — a Goldstone mode of the free overlap field (pseudo-Goldstone under sourcing)
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living on an ordered film in a disordered bulk. This gives a 2D effective phase theory without
assuming 2D.

Step 4 (Sections 5-6): The sourced 2D phase equation has a logarithmic Green's function,
yielding ® ov « In R, acceleration « 1/R, and flat rotation curves v = v_oo = constant.

Step 5 (Section 7): A screening mass from finite coherence length provides a natural outer
cutoff, beyond which rotation curves return toward Keplerian fall-off.

The effective density profile that conventional gravity would attribute to this mechanism is p_eff
x 1/R? — the isothermal halo. No new particles are introduced. The mechanism is specific to
geometries supporting thin ordered bands, which provides falsifiable predictions distinguishing it
from universal dark matter models.
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Appendix A: Notation and Conventions
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Symbol Definition
G uv Einstein tensor

T pv Stress-energy tensor

() Newtonian gravitational potential

T(X) TPB commitment scalar (coarse-grained commitment density)
Y =1 e Overlap order parameter

f Coherence amplitude

0 Overlap phase

z Coherence manifold (support of ordered phase)
vy_ab Induced metric on £

K Overlap field stiffness

a(x) Commitment-driven ordering control parameter
b Quartic stabilisation coefficient

KX Integrated phase stiffness on X

o Phase-source coupling constant

A Overlap-gravity coupling constant

u Screening mass (= 1/&_in)

& in Interior coherence (healing) length

§ bulk  Bulk (exterior) healing length
J, X b TPB commitment density, baryonic surface density

Units: Natural units ¢ = # = 1 unless stated otherwise. Metric signature (—,+,+,+).

Appendix B: Detailed Derivation of the Amplitude Equation

Starting from the energy functional (7) with ¥ = f(z) e®®,®, and applying the z-only
approximation for f justified in §4.4 (V_|I> f < 0 _z? f), the variation dE/6f = 0 gives:

—2x 0z* f+2a(z) f+2b =0

Dividing by 2:

—kxo0z2f+a(z)f+bf=0(BIl)

For a step-function profile a(z) = —|a| for |z| < h and a(z) = a_bulk for |z| > h:

Interior (|z| <h): Setting 0* z f = 0 (uniform solution), we get —|a|f + bf* = 0, yielding fo =
V(ja)/b).
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Exterior (|z| > h): Linearising about f = 0, the equation becomes —x 6> z f + a bulk f= 0, with
decaying solution f o e’(—|z|/&_bulk) where & bulk = V(k/a_bulk).

Matching region (|z| = h): The amplitude interpolates smoothly between fo and 0 over a
characteristic width &_in = \(i/2|a]), the interior healing length (the factor of 2 reflects the
curvature V" (fo) = 2|a| of the potential at its minimum, as in Eq. (34)). We use £_in as an order-
of-magnitude width for the interface; precise numerical prefactors depend on the detailed smooth
profile of a(z). The full domain-wall-type interpolating solution can be obtained analytically for
specific smooth a(z) profiles (e.g., hyperbolic tangent) but the qualitative structure — flat
interior, exponential exterior, smooth matching — is universal.

Appendix C: Beyond Disk Rotation Curves — Clusters,
Lensing, CMB, and Structure Formation

This appendix clarifies how the disk-coherence mechanism developed in the main text interfaces
with the broader empirical roles commonly attributed to dark matter: galaxy cluster dynamics,
gravitational lensing, CMB acoustic peaks, and large-scale structure formation. The purpose is
not to claim completion of these domains, but to (i) state precisely what the present paper does
and does not imply, (ii) identify the minimal extensions required for coverage, and (iii) define
falsifiable intermediate targets.

C.1 Scope of the Main Mechanism

The main paper establishes a specific result: in geometries supporting a thin TPB coherence band
(disk galaxies), confinement of the overlap phase mode produces a 2D Poisson equation with
logarithmic Green's function and thus a 1/R acceleration regime, with a screening cutoff at scale
R ~ p (Section 7).

This mechanism is not claimed to be universal. It is activated only when the ordering condition
a(x) < 0 occurs in a thin band (Section 4.3). In systems lacking this geometry (e.g., clusters), the
overlap phase is not expected to be confined in the same way, and the 2D logarithmic regime
should not be assumed.

C.2 Cluster Mass Discrepancy: What Must Be Explained

Galaxy clusters exhibit mass discrepancies inferred from virial equilibrium of member galaxies,
X-ray temperature and density profiles of intracluster gas, and strong and weak gravitational
lensing including merging systems (e.g., the Bullet Cluster; Clowe et al. 2006).

Any full alternative to particle dark matter must provide a gravitational field sufficient to
reproduce cluster lensing convergence maps, reproduce hydrostatic equilibrium profiles, and
maintain consistency across dynamical and lensing estimators. The present paper does not
provide this.
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However, it does provide a framework for how such effects could arise without new particles:
through ordered overlap phases supported by the local sign structure of a(x).

C.3 Cluster Regime Hypothesis: 3D Ordering Rather Than Disk Confinement

In clusters, baryons are distributed approximately three-dimensionally (gas dominates the
baryonic mass budget). Within TPB, this suggests a different ordering morphology:

e In disks: a(x) <0 in a thin midplane band — 2D confined phase — logarithmic potential
— flat rotation curves (this paper).

e In clusters: a(x) < 0 may occur in an extended 3D volume (or in multiple
filaments/sheets) — 3D coherent phase — 3D Green's function structure. Whether this
occurs depends on whether T sourced by intracluster gas crosses the ordering threshold
throughout a volume rather than in a sheet — a question determined by the gas density
profile and the microscopic coupling 7.

Consequence. If a 3D ordered overlap phase forms, the relevant Green's function is no longer
logarithmic but reverts to the standard 1/r form. The resulting acceleration follows the usual 1/1
scaling — the overlap contribution does not change the radial profile but adds to the effective
gravitational strength, renormalising G_eff upward. This is appropriate to the cluster problem,
which is fundamentally a magnitude discrepancy (not enough gravitational mass to explain
observed binding) rather than a scaling discrepancy (wrong radial dependence). The cluster
regime therefore requires its own analysis: the disk mechanism should not be naively
extrapolated. This provides a disciplined separation: disks are a 2D band regime where overlap
changes the force law; clusters are a candidate 3D regime where overlap enhances gravitational
strength within the standard scaling.

C.4 Lensing: Minimal Requirements and Qualitative Predictions

Gravitational lensing depends on the spacetime metric potentials (often denoted ® and ¥ in
weak-field cosmology), not only on the Newtonian acceleration inferred from rotation curves. In
GR, the deflection is sensitive to the lensing potential (® + ¥)/2.

Implication. Any TPB overlap mechanism must be embedded in a covariant gravitational sector
to predict lensing robustly. The main text flags this as future work (§6.3, Remark on covariant
completion).

Nevertheless, the disk mechanism implies a robust qualitative signature: disk-driven overlap
contributions should produce orientation-dependent lensing asymmetry aligned with the disk
plane, unlike spherical CDM halos (see also §9.2 and §9.4.2). This can be tested statistically with
galaxy—galaxy lensing: stacked lensing around disk galaxies binned by inclination should show
measurable anisotropy if the overlap component is significant.

Intermediate falsifier. If lensing around disk galaxies is consistent with quasi-spherical halos

with no inclination dependence beyond baryonic disk effects, then any disk-confined overlap
contribution must be subdominant.

29



C.5 CMB Acoustic Peaks: What Any Replacement Must Reproduce

In ACDM, cold dark matter plays two key roles in the CMB: it deepens gravitational potential
wells without coupling to photons (shifting peak heights and phases), and it supports early
structure growth prior to recombination.

A TPB-only disk mechanism does not address this, because it is a late-time, galactic-scale
ordering phenomenon. Therefore, a programme claiming full replacement must supply either: (a)
an early-universe overlap sector — perhaps a cosmological-scale ordering of TPB commitment
structure tied to the approximately homogeneous matter distribution at high redshift, before disk
formation — that behaves effectively like a pressureless gravitational component at
recombination, or (b) a modification of the gravitational response at early times (analogous in
spirit to scalar-tensor extensions of GR) that reproduces equivalent potential evolution without
particle dark matter. This appendix does not assert which route is correct; it identifies the
requirement and notes that route (a) would represent a different ordering morphology of the same
a(x) framework, while route (b) would require a separate gravitational sector within VERSF.

C.6 Structure Formation: Growth Rate Constraint

Large-scale structure growth requires enhanced gravitational clustering in the matter-dominated
era, consistency with observed fos(z), and consistency with the baryon acoustic oscillation
(BAO) imprint.

A purely disk-confined late-time overlap mechanism cannot drive early structure formation.
Therefore, if the TPB overlap programme aims to replace dark matter globally, it must include a
second mechanism operating in the early universe or at cosmological scales.

C.7 Two-Mechanism Programme: Local Disk Regime + Cosmological Regime

A coherent way to unify the programme is to treat TPB overlap as admitting multiple ordered
morphologies depending on a(x):

e Regime A (Disk band ordering): thin £ — 2D Poisson — logarithmic potential — flat
rotation curves (this paper).

e Regime B (Cosmological / volumetric ordering): extended 3D ordering or filamentary
ordering — different Green's function — candidate contributor to cluster and
cosmological potentials.

The programme thus becomes: the sign structure and geometry of the ordering parameter a(x)
determines the morphology of overlap ordering, which determines the effective gravitational
response. This "morphology-dependence" is a strong discriminator from CDM, which assumes a
broadly universal halo phenomenology.

C.8 Observable Intermediate Targets

Even before a full CMB/structure solution is built, the programme yields intermediate targets:
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1. Inclination-dependent lensing anisotropy around disk galaxies (as in C.4).

2. Cluster morphology dependence: if overlap ordering occurs in cluster cores, lensing
should correlate more strongly with baryonic gas morphology than with galaxy
distribution alone.

3. Redshift evolution: if overlap ordering is threshold-driven, the onset and strength of the
effect should evolve with the cosmic star formation history and disk settling; this predicts
a redshift trend in disk rotation-curve anomalies at fixed baryonic mass. The expected
direction is that flat rotation curve signatures should be weaker at high redshift, because
early disks are thicker and less settled — degrading the thin-band condition h_eff << R on
which the dimensional reduction depends. Higher gas fractions at early times would
increase commitment density and partially compensate, but the geometric requirement
(thin coherence band) is the dominant constraint. Quantitatively, the onset redshift for
robust flat rotation curves should correlate with the epoch of disk settling.

Failure of these intermediate tests would constrain or rule out overlap as a dominant contributor.
C.9 What This Appendix Does Not Claim

This appendix does not claim that the TPB overlap mechanism presented here already explains
the Bullet Cluster, the CMB acoustic spectrum, or linear structure growth. It identifies what
additional ingredients are required and how those ingredients could be framed within the same
ordering-parameter logic, without introducing new particles.

C.10 Summary

The disk-coherence mechanism established in this paper is a controlled, regime-specific account
of flat rotation curves. Extending the TPB overlap programme to clusters and cosmology
requires a separate analysis of overlap ordering morphologies in 3D and their covariant

gravitational embedding. The cleanest near-term discriminators are lensing anisotropy and
morphology dependence, which provide falsifiable stepping-stones toward broader claims.

VERSF Theoretical Physics Program
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