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1. General Reader Abstract 

What this paper is about, in plain language. 

Everything around you — your body, the light on this page, the device in your hand — has mass. 

The Standard Model of particle physics explains how masses arise (via Yukawa couplings to the 

Higgs field and symmetry breaking) but does not predict the numerical values of those couplings 

from first principles. The electron is roughly 1/1836 the mass of a proton. Why those numbers? 

No existing theory computes them. 
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This paper proposes a new way to think about where mass comes from. The core idea is that 

reality, at its most fundamental level, operates like a discrete information-processing system — a 

substrate that "ticks" forward one step at a time, flipping bits via irreversible transitions in a 

process we call void anchoring. Each particle corresponds to a particular pattern of bit-flipping, 

and the intrinsic flip frequency of that pattern — set by how many substrate ticks it takes to 

complete one flip cycle — determines the particle's mass. Fewer ticks per flip means higher 

frequency, higher energy, and therefore greater mass. 

What is void anchoring? Imagine the ocean surface. A surfer rides the waves — strongly 

coupled to the water, their motion tracking the oscillations of the surface. They move with the 

medium; their behavior reflects local fluctuations. A buoy anchored to the seabed, by contrast, is 

both coupled and anchored. It responds to waves, but it is tethered to something deeper. The 

tether prevents it from drifting freely. 

Two distinct concepts are at work: 

• Void coupling (resonance) (p_v) — the per-tick probability that the interface mode 

enters a void-resonant micro-event configuration. This measures how readily the mode 

couples to the void substrate at each tick. In the buoy analogy: responsiveness to waves. 

• Void anchoring (commitment depth) (K_c) — the number of micro-events that must 

accumulate before an irreversible bit-flip commits. In the buoy analogy: the depth of the 

tether. 

Void coupling determines how readily micro-events occur; void anchoring determines how many 

are required before an irreversible bit-flip commits. Neither alone sets the mass. The quantity 

that tracks rest mass is the flip completion per tick p_v/K_c — coupling resonance divided by 

commitment depth — which sets the tick-count per flip (K_c/p_v). A particle is not merely 

coupled to the void — it is anchored through a barrier, and its mass emerges from the interplay 

of both parameters: strong coupling with a low barrier means fewer ticks per flip (which, once 

mapped to emergent time via the standard physics bridge, corresponds to high energy and high 

mass); weak coupling or a high barrier means more ticks per flip (low energy, low mass). The 

buoy's resistance to being dragged sideways (inertia) is not the same as its bobbing frequency 

(rest energy) — a distinction that becomes precise in Section 12. 

Key definitions. Void coupling (resonance): p_v (micro-event probability per tick). Void 

anchoring (commitment depth): K_c (micro-event threshold for irreversible flip). Flip 

completion per tick: p_v/K_c. Tick-count per flip: K_c/p_v. Mass scale (after Layer B bridge): m 

∝ p_v/K_c. 

In plain language: a particle is not a solid object at the deepest level. It is a repeating pattern of 

information updates on the void substrate. Each time that pattern completes one full cycle, it 

carries a fixed chunk of physical action (postulate Pℏ). The fewer substrate ticks that cycle takes 

to complete, the higher the particle's energy — and higher energy means higher mass. Mass is 

not a mysterious property; it is the rate at which a stable information pattern completes its 

fundamental cycle. 
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A crucial subtlety: since bit-flips constitute emergent time in this framework, all temporal 

language ("frequency," "fast," "slow") is Layer B shorthand that applies only after tick-counts 

are mapped to an external clock. At the fundamental level (Layer A), the correct statement is not 

that heavy particles "flip faster," but that they require fewer substrate ticks per flip — a smaller 

ratio K_c/p_v. Under the standard physics bridge, this corresponds to a shorter cycle period and 

therefore larger rest energy E, and hence larger mass via E = mc². 

We do not claim to have solved the mass spectrum from scratch. What we show is that, given 

one well-motivated postulate about how action (a fundamental quantity in physics) relates to bit-

flipping, the anchoring framework produces a compact formula for mass that is internally 

consistent with known physics. We stress-test this formula across multiple regimes — stochastic 

coupling, composite particles, the Planck mass, gravitational redshift, and particle decay — and 

show that the equivalence of inertial and rest mass (a foundational principle in general relativity) 

emerges as a structural consequence. We also lay out a concrete research program for turning 

this consistency result into genuine predictions. 

 

2. Technical Abstract 

We develop a tick–bit (pre-temporal) void-anchoring model in which irreversible bit-flipping 

occurs after K_c anchoring micro-events, each occurring with per-tick probability p_v. We argue 

that Bernoulli micro-event increments are forced by locality, Markov sufficiency, and closure 

under coarse-graining: under these assumptions, the admissible micro-event class reduces to 

conditionally independent Bernoulli increments and their binomial coarse-grainings. We then 

introduce an explicit postulate (Pℏ) that each completed bit carries a fixed cycle-action increment 

ΔJ_bit = ηℏ, motivated by a topological cycle-closure condition on irreversible anchoring. 

Combining (a) the anchoring time scale, (b) postulate Pℏ, and (c) the standard action–energy and 

mass–energy bridges from relativistic kinematics, we derive a conditional mass-scale relation: 

m = ηℏp_v / (c²ΔtK_c) 

Mass is thereby identified as proportional to the ratio p_v/K_c — the coupling probability per 

tick divided by the barrier height — which sets the expected flip increment per tick (and hence 

the tick-count per flip K_c/p_v). We stress-test this relation across multiple regimes: stochastic 

coupling (p_v < 1), multi-channel flipping, the Planck-mass limit (yielding K_c,P ∼ 2π as a 

nontrivial structural identification), gravitational redshift compatibility, and unstable-particle 

interpretation. We derive the structural condition under which inertial mass (resistance to 

acceleration) equals rest mass (flip-cycle energy), showing that these two operationally distinct 

manifestations of mass coincide when the spatial projection scale is determined by the same 

anchoring parameters that set the tick-count per flip. 

We identify three necessary conditions for stable particle-like modes and outline a research 

program to compute (K_c, p_v) from BCB interface eigenmodes, which would convert these 

consistency checks into genuine mass-spectrum predictions. 
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3. Scope: What Is Derived vs What Is Assumed 

For the general reader: Science advances by being honest about its assumptions. Every 

physical theory rests on postulates — statements accepted as starting points. Newton assumed 

forces act at a distance; Einstein assumed the speed of light is constant. What matters is whether 

the assumptions are well-motivated, whether the consequences are testable, and whether the 

framework reveals structure that wasn't visible before. This section lays out exactly what we 

assume and what we derive, so the reader can judge for themselves. 

This paper operates on two distinct layers: 

Layer A — Internal to the VERSF/BCB–TPB anchoring model. These are purely tick-

domain statements about anchoring times, stability, and scaling. They require no reference to 

background time, energy, or relativistic kinematics. Results in this layer are derived from the 

axioms of the tick–bit framework alone. 

Layer B — Mapping to established physics. This layer uses standard relations connecting 

action to energy (the Bohr–Sommerfeld/de Broglie relation for stationary states) and energy to 

mass (Einstein's E = mc²). These are imported from existing physics; we claim consistency with 

them, not derivation of them. 

Central Claim (Conditional) 

Given postulate Pℏ, tick–bit anchoring with parameters (K_c, p_v), and the standard 

action→energy→mass bridge, the model implies a mass scale m ∝ p_v / K_c. 

What Is Explicitly Not Derived 

The following quantities and relations are taken as external inputs. They are not derived within 

the VERSF anchoring framework: 

• c (speed of light) — imported from special relativity 

• ℏ (reduced Planck constant) — imported from quantum mechanics 

• Δt = t_P (tick spacing identified with Planck time) — a calibration assumption, not a 

derived result 

• E = mc² (mass–energy equivalence) — imported from special relativity 

• Pℏ (action postulate) — motivated by topological cycle-closure arguments (Section 7) 

but not derived from tick–bit axioms alone 

• P = ηℏ/ℓ_b (de Broglie momentum identification) — imported from quantum kinematics 

as a Layer B bridge element; used in the inertial mass derivation (Section 12) 

The value of this paper lies not in replacing these inputs but in showing that, given them, the 

anchoring framework produces a structurally interpretable mass formula with a concrete path to 

predictive computation. 
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Notation 

The following symbols are used throughout, grouped by domain: 

Layer A (substrate primitives — no background time) 

Symbol Meaning 

n Tick index (substrate update ordering) 

p_v Per-tick void-coupling (resonance) probability 

K_c Barrier threshold (micro-events per flip) 

X_n Bernoulli micro-event increment at tick n 

N[n] Cumulative micro-event count by tick n 

N_anchor Tick-count to bit-flip 

B[n] Cumulative bit-flip count by tick n 

α Dimensionless perturbation strength 

χ Channel multiplicity (composite particles) 

Postulate 

Symbol Meaning 

η Action normalization factor (η = 2π for full cycle) 

Layer B (emergent quantities — require Δt calibration or standard physics bridge) 

Symbol Meaning 

Δt Emergent tick-to-clock calibration 

T_bit Emergent flip period (Δt · K_c/p_v) 

ℓ_b Bit-to-length spatial projection scale 

ν_c Flip frequency (1/T_bit = p_v/(ΔtK_c)) 

C(x) Flip completion density field (p_v(x)/K_c(x)) 

ṡ(x) Entropy production density 

Φ Emergent gravitational potential 

Terminology Alignment 

In the VERSF framework, void coupling denotes the resonant susceptibility of an interface mode 

to the void substrate — how readily the mode enters micro-event–producing configurations. Void 

anchoring denotes the irreversible commitment mechanism (barrier-crossing and cycle closure) 

by which micro-events accumulate into a stable bit-flip. In this paper these map to: coupling 

(resonance) → p_v (or p_v(c[n])); anchoring (commitment depth) → K_c. The flip completion 

per tick is p_v/K_c and the tick-count per flip is K_c/p_v. We avoid using "anchoring strength" 
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to mean K_c alone; where disambiguation is needed, we write anchoring depth for K_c and 

coupling resonance for p_v. 

Conceptual summary. Void coupling (resonance) = how strongly a mode resonates with the 

void substrate (probability of micro-event per tick). Void anchoring (commitment depth) = how 

much irreversible commitment is required to complete a stable informational cycle (barrier 

threshold). Rest mass = the intrinsic cycle rate of a resonant anchored mode (tick-count per flip, 

mapped to energy via Layer B bridge). Inertial mass = the geometric resistance to deforming the 

spatial projection of that anchored mode (Section 12). 

Bridge Chain Summary 

The logic from substrate primitives to mass proceeds through a single chain: 

Tick-count per flip (K_c/p_v, Layer A) → Flip period (Δt · K_c/p_v, Layer B bridge) → 

Action per cycle (ηℏ, Postulate Pℏ) → Rest energy (ηℏ/T_bit, imported action-energy relation) 

→ Rest mass (E/c², imported mass-energy equivalence) 

Each arrow introduces one assumption or import. The mass formula m = ηℏp_v/(c²ΔtK_c) is the 

algebraic composition of the entire chain. The only element internal to the VERSF framework is 

the first: the tick-count per flip. 

The inertial mass derivation (Section 12) requires one additional Layer B import beyond this 

chain: the de Broglie momentum identification P = ηℏ/ℓ_b. This enters when defining 

momentum for the projected spatial dynamics and is listed explicitly in "What Is Not Derived" 

above. 

 

4. Conceptual Foundation: What Is Void Anchoring? 

For the general reader: Section 1 introduced void anchoring through the surfer/buoy analogy. 

This section makes each element precise: the void, the interface, the bit-flip, and the connection 

to mass. If you understand this section, the rest of the paper is a formalization of these ideas. 

4.1 The Void (Operational Definition) 

In VERSF, the "void" is not empty space and not the QFT vacuum. It is defined operationally as 

the null element in the algebra of distinctions: the configuration in which all bits occupy their 

reference state — no bit has been flipped. In this sense the void carries no informational content 

relative to the interface, and it is the reference configuration against which all flips are measured. 

Physical structure is then modeled as stable, cyclic patterns of bit-flips written against this null 

substrate. The total number of bits is fixed (Bit Conservation); only their states change. 

For the general reader: Think of the void as the "blank" against which all information is 

written. It isn't "nothing" — it is the reference state that makes distinctions possible, just as 



 7 

silence is the reference state that makes sound meaningful. The void has no structure of its own; 

it is defined entirely by what it lacks (bits). 

4.2 The Interface: Where Structure Meets the Void 

Physical reality exists at the interface between structured information and the void substrate. 

This interface is where the action happens — it is the boundary between "something" and 

"nothing," the frontier where new information is being written. 

The interface has a minimal internal structure: a two-component configuration c = (c₁, c₂) that we 

call the contrast pair. This is the simplest possible distinction — a binary degree of freedom at 

the boundary between void and structure. Every more complex structure (particles, forces, 

spacetime geometry) is built from patterns of these minimal contrasts. 

4.3 Anchoring: Irreversible Bit-Flips 

Void anchoring is the irreversible commitment step by which the interface locks in a bit-flip, 

characterized by the barrier threshold K_c. Void coupling (resonance) controls the micro-event 

arrival propensity p_v — how readily the interface mode enters void-resonant configurations at 

each tick. The resulting flip completion per tick is p_v/K_c. We define the elementary transition 

precisely: 

Definition. A bit-flip is the irreversible interface transition triggered when cumulative anchoring 

micro-events reach the barrier threshold K_c. Bits are not created or destroyed — the total bit 

count is conserved (BCB). What changes is their state: a bit flips from one stable configuration 

to another. 

"Irreversible" here means operationally irreversible under the admissibility and non-redundancy 

criteria: once a bit has flipped, the new state is stable under coarse-graining and cannot be 

reversed without accumulating K_c fresh micro-events in the opposite direction. This is 

analogous to the operational irreversibility of measurement outcomes in quantum mechanics — a 

bit-flip is a stable macroscopic record, not a claim about microscopic non-unitarity. 

This doesn't happen all at once. At each discrete tick of the substrate, the interface has some 

probability of registering a micro-event — a small increment of progress toward the flip barrier. 

After enough micro-events accumulate (reaching the barrier threshold K_c), the bit flips: the 

irreversible transition locks in. 

The analogy is a ratchet mechanism. Each micro-event clicks the ratchet forward one notch. 

After K_c clicks, the mechanism snaps over — the bit flips to its new state. The next flip cycle 

begins. 

4.4 Why This Connects to Mass 

Here is the conceptual link: mass is set by the tick-count per flip. 
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A particle, in this framework, is a self-sustaining pattern of bit-flips at the interface — a mode 

that repeatedly flips bits in a stable, cyclic process. The mass of that particle is set by the tick-

count per flip cycle (K_c/p_v). Fewer ticks per cycle corresponds — once mapped to an external 

clock via the Layer B bridge — to higher frequency, higher energy, and therefore greater mass 

via E = hν. More ticks per cycle corresponds to lower energy and lower mass. (Since bit-flips 

generate emergent time, "frequency" is Layer B shorthand. The fundamental Layer A quantity is 

the tick-count per flip, not a rate in time.) 

This may seem counterintuitive — one might expect that heavier objects should require more 

ticks to flip, not fewer. But that intuition conflates two distinct meanings of "mass": 

• Mass as rest energy (tick-count per flip → energy via Layer B bridge). Fewer ticks 

per flip → higher energy via E = hν. The electron, with K_c ∼ 10²³, takes enormously 

many ticks per flip — correspondingly low energy and low mass. The Planck mass, with 

K_c ∼ 2π, completes a flip in a handful of ticks — the highest energy and mass the 

framework admits. 

• Mass as inertia (resistance to acceleration). This is the dynamical response to external 

forcing (F = ma). A massive particle resists acceleration not because it flips slowly, but 

because perturbing its flip pattern requires overcoming a structure that is tightly coupled 

to emergent geometry (Section 12). 

These two quantities — rest energy and inertial resistance — coincide numerically, but they arise 

from distinct structural layers. Their equality is the equivalence principle, and Section 12 shows 

the structural condition under which it holds. 

This is not a metaphor — the rest of the paper makes it mathematically precise. The barrier 

threshold K_c and the per-tick coupling probability p_v together determine the tick-count per 

bit-flip (K_c/p_v), and therefore the intrinsic flip frequency and rest mass. The formula m ∝ 

p_v/K_c is the quantitative expression of this relationship. 

Caution. In this paper, "deep anchoring" (large K_c) does not mean "high mass." Large K_c 

means greater commitment depth — more stability — but also more ticks per flip, hence lower 

rest energy. The quantity that tracks rest mass is the flip completion per tick p_v/K_c, not the 

anchoring depth K_c alone. 

4.5 Why "Void" Anchoring? 

The word "void" is not decorative. The anchoring process is specifically an interaction between 

the informational interface and the void substrate. The void is not passive — it is the ground 

against which bit-flips occur. A micro-event is, operationally, the interface coupling to the void: 

registering an increment of progress toward the next bit-flip. 

This is why the coupling probability is called the void-coupling probability p_v: it measures 

how readily the interface couples to the void at each tick. Strong coupling (high p_v) means the 

interface is in close contact with the void substrate — micro-events occur at most ticks. Weak 
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coupling (low p_v) means the interface is partially decoupled — micro-events are sparse, many 

ticks pass per flip, and the mode is fragile. 

4.6 From Concept to Formalism 

The rest of this paper translates these concepts into mathematics: 

• Section 5 formalizes the tick–bit process and derives the statistics of anchoring. 

• Section 6 shows that the Bernoulli micro-event law is structurally forced, not chosen. 

• Section 7 introduces the action postulate linking anchoring to quantum mechanics. 

• Sections 8–9 derive the mass formula and establish the proposition. 

• Sections 10–12 stress-test the formula and derive the equivalence of inertial and rest 

mass. 

• Sections 14–16 address stability, the mass-gap problem, the emergence of gravity from 

flip-entropy gradients, and the predictive program. 

With this conceptual map in hand, the formal development should be considerably easier to 

follow. 

 

5. Tick–Bit Anchoring Core (No Background Time) 

For the general reader: This section translates the conceptual picture of Section 4 into precise 

mathematics. We build the anchoring process from first principles — discrete ticks, probabilistic 

micro-events, and a barrier threshold — without ever assuming that time flows continuously. 

Time will emerge later from the accumulation of bit-flips. 

5.1 Primitives 

The substrate updates in discrete ticks indexed by n = 0, 1, 2, … . No background time parameter 

is introduced; the tick index n is the sole ordering primitive. 

At each tick n, an anchoring micro-event may occur. Operationally, a micro-event corresponds 

to the interface entering an anchorable configuration subset — a region of the interface state 

space in which a void-coupling commitment increment is registered (Section 4.3). The precise 

characterization of this subset depends on the detailed interface dynamics and is addressed in 

Section 16; here we treat micro-event occurrence as primitive. 

The micro-event probability p_v(c[n]) ∈ [0, 1] may depend on the current interface configuration 

c[n] = (c₁[n], c₂[n]). Operationally, p_v(c[n]) is the occupancy measure of the anchorable subset 

A — the fraction of the configuration space accessible from c[n] that lies within A: 

p_v(c[n]) = μ(A | c[n]) 
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where μ is the natural measure on the interface configuration space. (The precise form of μ 

depends on the interface dynamics; here we leave it abstract.) Define Bernoulli increments that 

are conditionally independent given the interface sequence {c[n]}: 

X_n | c[n] ∼ Bernoulli(p_v(c[n])) 

The cumulative micro-event count is: 

N[n] := Σⱼ₌₁ⁿ Xⱼ 

5.2 Bit Threshold 

A bit — the irreversible threshold transition defined in Section 4.3 — is triggered when the 

cumulative micro-event count reaches an integer threshold K_c ∈ ℕ: 

N_anchor := inf{ n ≥ 0 : N[n] ≥ K_c } 

For the general reader: Think of K_c as the number of clicks on the ratchet (Section 4.3) 

needed to flip one bit. Higher K_c means a higher barrier — more ticks required per flip. Lower 

K_c means fewer ticks per flip. 

Terminology. A cycle is the operationally closed sequence of K_c micro-events that advances 

the cycle-action ledger by ΔJ_bit = ηℏ (Section 7) and triggers one irreversible bit-flip. "One 

cycle" and "one bit-flip" are synonymous throughout this paper. 

5.3 Homogeneous Statistics 

In the homogeneous case p_v(c[n]) = p_v (constant), N_anchor follows a Negative Binomial 

(Pascal) waiting-time law — the distribution of the number of independent trials needed to 

accumulate K_c successes, each with probability p_v. The expectation and variance are: 

E[N_anchor] = K_c / p_v 

Var(N_anchor) = K_c(1 − p_v) / p_v² 

5.4 Anchoring Stability (Discrete Lemma) 

The sharpness of the anchoring time is controlled by the coefficient of variation: 

CV = √(Var(N_anchor)) / E[N_anchor] = √((1 − p_v) / K_c) 

For fixed p_v < 1, stability scales as CV ∼ 1/√K_c. As K_c increases, the flip tick-count 

N_anchor becomes sharply concentrated around its mean. In the sparse-event limit p_v → 0, the 

factor (1 − p_v) → 1 and the discrete CV collapses exactly to the continuous Erlang result CV = 

1/√K_c, confirming the correspondence between discrete and continuous formulations. 
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5.5 State-Dependent Coupling 

When p_v depends on the evolving interface state c[n], the cumulative expected micro-event 

count is: 

Λ[n] := Σⱼ₌₁ⁿ p_v(c[j]) 

The mean-field anchoring estimate becomes: 

N_anchor ≈ inf{ n : Λ[n] ≥ K_c } 

Note that under state-dependent coupling, the variance of the anchoring time becomes path-

dependent — the simple CV = 1/√K_c result no longer holds exactly, and anchoring stability 

must be assessed along specific interface trajectories. 

 

6. Structural Forcing of the Bernoulli Law 

For the general reader: A common criticism of theoretical models is "you just chose that 

mathematical form — why not something else?" This section answers that challenge. We show 

that the Bernoulli (coin-flip) law for micro-events isn't an arbitrary choice — it is the natural 

admissible form compatible with a small set of physically reasonable requirements. If the 

anchoring process satisfies basic principles of locality, informational efficiency, and consistency 

across scales, then the micro-event law must take the Bernoulli form. 

6.1 Admissibility Axioms for Anchoring Micro-Events 

We impose four minimal conditions on the micro-event law: 

A1 (Locality on the interface). The probability of a micro-event at tick n depends only on the 

current interface state c[n], not on hidden global variables. 

A2 (Markov sufficiency / BCB non-redundancy). Given c[n], additional dependence on the 

detailed micro-history {X₁, …, X_{n−1}} is operationally redundant. Two interface 

configurations that are operationally equivalent (identical c[n]) must produce identical anchoring 

statistics. 

A3 (Closure under coarse-graining — model selection constraint). Aggregating ticks into 

blocks of size m preserves the functional form of the micro-event law. Specifically, we restrict to 

micro-event descriptions whose coarse-grained statistics remain within a one-parameter hazard 

family. This is a deliberate admissibility restriction, not a theorem of nature: it excludes models 

with hidden internal state variables that would require additional parameters at coarser scales. 

Alternatives to A3 correspond to enriching the micro-event model with internal memory or 

multi-state structure beyond the interface observable c[n]. 
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A4 (Finite throughput). For any physically realized interface trajectory c[n], expected 

anchoring time is finite: E[N_anchor] < ∞. 

6.2 Proposition: Admissible Micro-Event Class 

Proposition (Admissible class reduction). Under axioms A1–A3, the admissible micro-event 

model reduces to a conditionally memoryless hazard parameterization. In discrete ticks, this is 

naturally represented by conditionally independent Bernoulli increments and their binomial 

coarse-grainings. 

Proof outline. 

(i) A1 + A2 force conditional independence. Suppose the micro-event law at tick n depended 

on elapsed waiting time since the last micro-event, beyond what is encoded in c[n]. Then two 

operationally equivalent states (identical c[n]) would produce different observable anchoring 

statistics — violating A2. Therefore, given the interface sequence {c[n]}, the increment at tick n 

can depend only on c[n], and the increments are conditionally independent. 

(ii) Conditional independence on {0, 1} implies Bernoulli. Given conditional independence, 

each increment X_n takes values in {0, 1} with some distribution parameterized by c[n]. The 

only free parameter is the success probability p_v(c[n]), yielding X_n | c[n] ∼ 

Bernoulli(p_v(c[n])). 

(iii) A3 confirms closure. Under block aggregation (grouping m consecutive ticks with constant 

c), the count S_m = X₁ + ⋯ + X_m follows a Binomial(m, p_v) distribution. The sufficient 

statistic is the count S_m and the per-trial hazard p_v is preserved, so the aggregated law remains 

within the same parametric family. More general renewal processes with non-geometric waiting 

times would violate this closure: aggregating m ticks would introduce dependence on the 

position within the current waiting interval, requiring an additional parameter beyond the per-

trial hazard and thereby violating A2 at the coarse-grained scale. The geometric distribution 

(equivalently, Bernoulli trials in discrete time) is the unique discrete memoryless distribution, a 

classical result related to the Rényi characterization theorem for Poisson processes in the 

continuous-time limit [R4]. Formally, A3 is taken to require closure within a one-parameter 

hazard family under block aggregation; under this requirement, the unique admissible discrete 

waiting-time law is the geometric distribution, which is equivalent to Bernoulli increments. In 

other words, A3 is a modeling restriction selecting hazard descriptions stable under block 

aggregation; relaxing A3 would require introducing additional internal state variables beyond 

c[n], producing a richer but less parsimonious micro-event model. 

(iv) A4 excludes degeneracy. Finite throughput requires p_v > 0 on the physically realized 

trajectory, ensuring the Negative Binomial waiting time has finite expectation. ∎ 

For the general reader: What this proposition says, in essence, is that if you want an anchoring 

process that (a) only cares about the current interface state, (b) doesn't carry hidden memory 

beyond that state, and (c) looks the same whether you observe it tick-by-tick or in blocks, then 

you are naturally led to a coin-flip process. More complex alternatives either smuggle in hidden 
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memory or break consistency across scales. (Note: the interface state c[n] itself does carry 

memory — one micro-event can change c[n], which then shifts the coupling probability at the 

next tick. The point is that c[n] carries all the relevant memory; there is no additional hidden 

dependence on elapsed time or past micro-event history beyond what is encoded in c[n].) 

6.3 Continuous-Time Limit 

If one introduces an emergent calibration Δt (mapping ticks to a macroscopic clock) and takes 

p_v = γ_vΔt with Δt → 0 while holding γ_v fixed, the Bernoulli counting process converges to a 

Poisson process with rate γ_v. In this limit, N_anchor · Δt converges to the Erlang-distributed 

anchoring time: 

T_anchor ∼ Erlang(K_c, γ_v) 

with E[T_anchor] = K_c/γ_v and Var(T_anchor) = K_c/γ_v². This recovers the continuous-time 

results as a corollary of the tick-domain analysis. The continuous formulation is a derived limit, 

not the starting point. 

 

7. The Action Postulate (Pℏ): Motivation and Statement 

For the general reader: In physics, "action" is a fundamental quantity that measures the total 

dynamical content of a process — roughly, energy multiplied by time. Quantum mechanics tells 

us that action comes in discrete packets (quanta) of size ℏ (the reduced Planck constant). This 

section introduces the paper's key postulate: that each bit of information carries exactly one 

quantum of action corresponding to a complete cycle. This is the load-bearing assumption of the 

paper, and we take care to motivate why it should hold rather than simply asserting it. 

7.1 Motivation and Assumptions 

We motivate the action postulate through four considerations. Crucially, the emergence of a 

phase variable is treated here as an explicit representational assumption (Aφ), not a derived 

consequence of the contrast-pair axioms. 

(M1) Irreversibility requires cycle closure. Anchoring is irreversible: once a bit has flipped, 

the interface must return to an operationally equivalent configuration class for the next 

independent bit to begin. Otherwise successive bits would not be independent, violating the non-

redundancy principle (BCB). Therefore, each bit event corresponds to a closed operational cycle 

of the interface. 

(Aφ) Phase structure assumption. The interface contrast pair c = (c₁, c₂) is a two-component 

object (Section 4.2). We assume that the contrast-pair space carries a real-valued metric structure 

(i.e., c takes values in ℝ²); this is itself a nontrivial assumption about the interface algebra — if 

the contrast pair were discrete, categorical, or non-Euclidean, the topology below would not 

follow. Under coarse-graining constrained by non-redundancy, only relative contrast and cycle-
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class information is retained; overall scale is gauge-like and discarded. A minimal faithful 

representation of a two-component real contrast up to overall scale is therefore a normalized 

vector u = c/‖c‖, which lives on S¹. Such a state is naturally parameterized by a single angular 

variable φ ∈ [0, 2π). Cycle closure (M1) then corresponds to closed loops on S¹, classified by the 

winding number π₁(S¹) = ℤ. This does not force quantum mechanics, but it makes an effective 

phase coordinate the minimal topological carrier of cycle information in the two-contrast 

representation. We treat Aφ as a modeling assumption selecting the smallest phase-bearing 

representation consistent with observed quantum interference phenomenology; the S¹ topology is 

contingent on the ℝ² metric structure of the contrast-pair space. 

(M3) Cycle-invariants under coarse-graining are topological. Under the non-redundancy 

principle (BCB), only cycle-invariants survive coarse-graining — details internal to a cycle are 

"averaged out" by any macroscopic observer. For a phase-bearing interface (Aφ), the robust 

cycle-invariant is the total phase winding number: the integer counting how many times φ winds 

around [0, 2π) during one flip cycle. This is a topological invariant — it cannot be changed by 

smooth deformations of the cycle and is therefore stable under coarse-graining. 

(M4) Minimal winding → action quantum (bridge-motivated). The smallest nontrivial 

winding number is 1, corresponding to one full 2π rotation of the interface phase. The 

identification of quantum mechanical phase with action in units of ℏ (S/ℏ ↔ φ, as in the 

Feynman path-integral formulation) is imported from established quantum mechanics — it is 

part of the Layer B bridge, not derived within the tick–bit formalism. Under this bridge, the 

minimal nontrivial flip cycle carries a cycle-action increment of 2πℏ = h. 

In summary: M1 motivates cycle closure; Aφ introduces phase as an explicit representational 

assumption; M3 identifies winding number as the coarse-graining-robust invariant; M4 imports 

the phase–action identification from quantum mechanics. 

The appearance of ℏ here is not arbitrary: any theory that reproduces the observed interference 

and diffraction phenomena of quantum mechanics must contain a universal phase scale, and in 

the standard formulation that scale is ℏ. The action postulate ties the flip cycle to this universal 

scale rather than introducing a new one. 

7.2 Formal Statement 

Postulate (Pℏ). The cycle-action ledger of irreversible anchoring advances by a fixed quantum 

per completed bit: 

ΔJ_bit = ηℏ, where η = O(1) 

Here J denotes the cycle action variable (the action-angle variable ∮p dq for periodic motion), 

not the Lagrangian action functional. The standard action-angle relation ∂J/∂E = T connects 

cycle action to energy and period [R2, R7]; with quantized J = ΔJ_bit = ηℏ fixed per cycle, this 

gives E = ΔJ_bit/T directly. 
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Choice of η. If the flip cycle corresponds to a complete phase winding of an internal interface 

mode (winding number = 1), then the minimal topological increment is Δφ = 2π, giving: 

ΔJ_bit = 2πℏ = h 

We keep η explicit throughout and set η = 2π only when performing numerical consistency 

checks against the electron Compton period. If one prefers a radian-normalized cycle-action 

ledger, η may be set to 1 and the factor of 2π enters at the point of comparison to cycle-based 

observables. 

7.3 Alternative Normalizations and Falsifiability 

The choice η = 2π is not aesthetic — it is physically consequential and in principle testable. 

Different values of η produce different inferred barrier thresholds: 

K_c = ηℏ / (mc²Δt) 

If η were 1 rather than 2π, all inferred K_c values would decrease by a factor of 2π ≈ 6.28. When 

the predictive program (Section 16) computes K_c independently from interface eigenmode 

dynamics, the computed values will be consistent with one and only one value of η — or with 

none, in which case the postulate is falsified. 

More broadly, Pℏ is falsifiable in the following sense: if interface eigenmode calculations (P1–P3 

of Section 16) produce (K_c, p_v) values whose implied masses, via the mass formula, are 

inconsistent with observation for any choice of η, then the action postulate is rejected. The 

postulate makes a specific, testable structural claim — that anchoring and action are related by a 

fixed quantum — not a freely adjustable parameter. 

7.4 Status of the Postulate 

Pℏ is the primary load-bearing assumption of this paper. It is motivated by M1, Aφ, M3, M4 but 

not derived from the tick–bit axioms alone. A full derivation would require showing that the 

interface phase structure (Aφ) follows from BCB axioms and that the phase–action identification 

(M4) emerges from the anchoring dynamics rather than being imported. We regard this as an 

important open problem. Concretely, a derivation would need to show that the BCB non-

redundancy principle, applied to the full interface configuration space, forces the effective state 

space to be topologically S¹ rather than admitting richer or lower-dimensional alternatives — i.e., 

that phase structure is the unique minimal topology compatible with irreversible cycle closure on 

a two-contrast interface. The value of Pℏ in its current form is that it is (i) physically well-

motivated, (ii) falsifiable (Section 7.3), and (iii) structurally minimal (a single postulate rather 

than a family of ad hoc assumptions). 

 

8. Bridge to Energy and Mass: What Is Imported 
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For the general reader: This section is where we connect the abstract tick–bit framework to the 

physics you already know — energy, mass, and the speed of light. We are completely transparent 

that these connections import established physics. The anchoring model doesn't re-derive 

Einstein's E = mc²; it shows that the anchoring picture is consistent with it and produces a 

specific formula for mass in terms of anchoring parameters. 

8.1 Emergent Time Calibration 

Introduce an emergent calibration Δt that maps tick counts to a macroscopic clock: 

τ = n · Δt 

This is a coarse-grained, observer-level mapping — not a primitive time variable. The tick index 

n remains fundamental; Δt is the conversion factor between substrate updates and the readings on 

a macroscopic clock built from many anchoring subsystems. 

8.2 Action–Energy Bridge (Imported) 

For a periodic or stationary flip cycle, we use the stationary-cycle identification: the energy scale 

associated with a completed phase cycle is the cycle-action divided by the cycle period. For 

stationary cyclic modes, this identification follows from action-angle quantization: a mode with 

quantized cycle-action ΔJ = ηℏ and cycle period T has energy: 

E = ΔJ / T = ηℏ / T 

where T is the cycle period in emergent time and ΔJ is the cycle-action accumulated per cycle. 

The underlying identity is the action-angle relation ∂J/∂E = T for periodic motion, where J = ∮ p 

dq is the action variable: the period of a periodic orbit equals the derivative of its action with 

respect to energy. For quantized action J = ηℏ, this gives E = ηℏ/T directly. This is the Bohr–

Sommerfeld energy quantization for stationary states, not the general Lagrangian action 

principle. 

8.3 Relativistic Mass–Energy Equivalence (Imported) 

From special relativity: 

E_rest = mc² 

This relation is not derived here; it is taken as an empirical input from established physics. 

8.4 What the Bridge Accomplishes 

Given these two imported relations, any framework that specifies (i) an action per cycle and (ii) a 

cycle period can compute an implied rest mass. The anchoring model provides both: Pℏ gives the 

action per cycle, and the anchoring time gives the cycle period. The bridge translates anchoring 

parameters into a mass prediction. 
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9. Conditional Proposition: Mass Scale from Void 

Anchoring 

For the general reader: This is the central result of the paper. It says: if you accept the action 

postulate (Section 7) and the standard physics bridge (Section 8), then the mass of a particle is 

determined by just two numbers from the anchoring process — how likely a micro-event is at 

each tick (p_v), and how many micro-events are needed to flip one bit (K_c). Stronger coupling 

and lower barriers mean fewer ticks per flip, which the Layer B bridge translates into higher 

energy and greater mass. That's the punchline: mass is set by the tick-count per flip. 

9.1 Statement 

Proposition 1 (Conditional mass–anchoring relation). Assume: 

• (A) Tick–bit anchoring with homogeneous coupling p_v and barrier threshold K_c 

(Section 5). 

• (B) Action postulate Pℏ: ΔJ_bit = ηℏ per completed bit (Section 7). 

• (C) Emergent tick→clock calibration Δt and the stationary-cycle action–energy bridge E 

= ΔJ/T (Section 8). 

• (D) Standard rest-energy relation E_rest = mc² (Section 8). 

Domain: single elementary flip channel; homogeneous p_v; Δt treated as a calibration constant; 

sharp anchoring regime CV = √((1−p_v)/K_c) ≪ 1, so that the random flip period is 

concentrated around its mean and the identification T_bit = Δt · E[N_anchor] is justified as a 

cycle period for energy quantization (see Section 5.4). 

Then the implied rest mass scale is: 

m = ηℏp_v / (c²ΔtK_c) 

9.2 Derivation 

Step 1. From the anchoring model (Section 5.3), the expected number of ticks per flip is: 

E[N_anchor] = K_c / p_v 

Step 2. Map ticks to emergent clock time via Δt: 

T_bit := Δt · E[N_anchor] = Δt · K_c / p_v 

Step 3. Apply Pℏ to one completed bit: 

ΔJ_bit = ηℏ 
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Step 4. Apply the stationary-cycle action–energy bridge: 

E_rest := ΔJ_bit / T_bit 

Step 5. Substitute steps 2–4: 

E_rest = ηℏ / (Δt · K_c / p_v) = ηℏp_v / (ΔtK_c) 

Step 6. Apply E_rest = mc²: 

m = ηℏp_v / (c²ΔtK_c) ∎ 

9.3 Structural Interpretation 

The mass formula has the form m ∝ p_v / K_c. This is the physically interpretable core of the 

result: 

• p_v (coupling probability per tick) measures how readily the interface couples to the void 

substrate at each update (Section 4.5). Higher coupling → fewer ticks per flip → higher 

intrinsic frequency → higher mass. 

• K_c (barrier threshold) measures the height of the barrier separating stable bit-states 

(Section 4.3). Higher barrier → more ticks per flip → lower intrinsic frequency → lower 

mass. 

Mass is therefore set by the tick-count per flip: the ratio K_c/p_v determines the number of 

substrate ticks per flip cycle. Via the energy-period bridge E = ηℏ/T (a Layer B relation requiring 

the emergent-time calibration Δt), fewer ticks per flip corresponds to higher rest energy. This is 

the standard quantum-mechanical relationship E = hν applied to the flip cycle; "frequency" is the 

Layer B image of the tick-count. 

A crucial distinction (developed fully in Section 12): the inertial mass — resistance to 

acceleration — is a separate structural quantity that happens to equal the rest mass under the 

equivalence-principle condition (12.9). The flip frequency sets rest energy; the projection-scale 

geometry sets inertial response. Their equality is not automatic — it is a structural constraint on 

how information projects into emergent space. The fundamental quantity is the tick-count per 

flip, not a rate in time; temporal language applies only after the emergent-time mapping of 

Section 8. 

9.4 Terminology: Flip Channel 

A flip channel is a single, independent pathway through which the interface flips bits. An 

elementary particle corresponds to one flip channel with characteristic parameters (K_c, p_v). 

Composite particles may involve multiple coupled channels whose contributions combine; the 

extension to multi-channel systems is developed in Section 11.3. The mass formula as stated 

applies to a single elementary channel. 
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10. Parameter Identification and Consistency Checks 

For the general reader: This section does not predict the electron's mass — it works backwards 

from the known electron mass to figure out what the anchoring parameters would have to be. 

This is like measuring the speed of a car and then calculating what gear ratio the transmission 

must have. It's useful because it tells us whether the framework produces sensible numbers, and 

it sets a target: if we can someday calculate K_c from first principles and it comes out near 1.50 

× 10²³, that would be a genuine prediction confirmed. 

10.1 Calibration Choices 

For the consistency check, we adopt the following values: 

Symbol Value Status 

ℏ 1.054571817 × 10⁻³⁴ J·s Empirical constant (CODATA) 

h = 2πℏ 6.62607015 × 10⁻³⁴ J·s Empirical constant (CODATA) 

c 2.99792458 × 10⁸ m/s Empirical constant (CODATA) 

m_e 9.1093837015 × 10⁻³¹ kg Empirical constant (CODATA) 

t_P 5.391247 × 10⁻⁴⁴ s Derived from G, ℏ, c (standard definition) 

η 2π Postulate: full cycle (Section 7) 

p_v ≈ 1 Assumption for this check (Section 13) 

Δt t_P Assumption: Δt = t_P is adopted, not derived (Section 13) 

10.2 Electron Barrier Threshold 

Setting η = 2π (so ηℏ = h) and p_v = 1, the mass formula gives: 

K_c,e = ηℏ / (m_e c² Δt) = h / (m_e c² t_P) 

Numerically: 

m_e c² = 8.18710565 × 10⁻¹⁴ J 

K_c,e = 6.62607015 × 10⁻³⁴ / (8.18710565 × 10⁻¹⁴ × 5.391247 × 10⁻⁴⁴) 

K_c,e ≈ 1.50 × 10²³ 

This does not predict m_e. It infers the barrier threshold that the electron would require under the 

stated calibration choices. 

10.3 Flip Period 
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The implied flip period for the electron is: 

T_bit = K_c,e · t_P ≈ 8.09 × 10⁻²¹ s 

Compare to the electron Compton period: 

T_C(e) = h / (m_e c²) ≈ 8.09 × 10⁻²¹ s 

The agreement is exact by construction under η = 2π — this is an algebraic identity, not an 

independent check. Its value is illustrative: it confirms that the flip tick-count K_c,e, once 

mapped to emergent time via the Layer B bridge, is the Compton period. The anchoring model 

reinterprets the Compton period as the emergent-time image of the K_c,e substrate ticks required 

to complete one bit-flip. 

10.4 Other Particle Thresholds (Consistency Translation) 

Under fixed Δt, η, and comparable p_v, the mass formula gives K_c ∝ 1/m. Known mass ratios 

therefore translate directly into threshold ratios: 

Particle Mass ratio to electron Implied K_c 

Electron (e) 1 1.50 × 10²³ 

Muon (μ) m_μ/m_e ≈ 206.768 K_c,e / 206.768 ≈ 7.26 × 10²⁰ 

Proton (p) m_p/m_e ≈ 1836.152 K_c,e / 1836.152 ≈ 8.17 × 10¹⁹ 

Heavier particles correspond to smaller K_c — shallower barrier thresholds, fewer ticks per flip, 

and (under the Layer B bridge) higher energy per cycle. If p_v varies significantly between 

modes, the relationship K_c ∝ 1/m is modified: the relevant quantity is the ratio K_c/p_v ∝ 1/m, 

and modes with smaller p_v could have proportionally larger K_c at the same mass. 

These values are not predictions. They are the framework's translation of empirical mass data 

into anchoring language. A genuine prediction would compute K_c from interface eigenmode 

dynamics (Section 16) and then derive the mass ratios without fitting to them. 

10.5 What Would Constitute a Non-Trivial Check 

The numerical work in this section becomes genuinely predictive only if one can independently 

estimate K_c,e — for instance, by solving the interface eigenmode problem (Section 16) — and 

obtain a value near 10²³ without using the electron mass as input. Establishing that target is one 

purpose of the parameter identification performed here. 

 

11. Extended Void-Coupling Tests and Hierarchy Analysis 
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For the general reader: So far, we translated the known electron mass into anchoring language. 

That shows consistency, but it doesn't yet test the framework under variation. In this section we 

stress-test the mass relation in multiple regimes: stochastic coupling, multi-channel flipping, the 

Planck-mass limit, gravitational redshift, and unstable particles. These are not new postulates — 

they are consequences of the same conditional mass relation derived in Section 9. 

11.1 The Conditional Mass Relation (Recap) 

Under the assumptions of Proposition 1: 

m = ηℏp_v / (c²ΔtK_c) (11.1) 

where K_c is the barrier threshold, p_v is the per-tick micro-event probability, Δt is the tick 

calibration, and η is the action normalization factor (η = 2π for full phase winding). Mass 

therefore scales as: 

m ∝ p_v / K_c (11.2) 

This section explores the structural consequences of that scaling. 

11.2 Stochastic Regime Test: p_v < 1 

In Section 10 we evaluated the electron in the near-deterministic regime p_v ≈ 1. We now relax 

that assumption to test whether the framework remains physically sensible when anchoring is 

genuinely stochastic. 

Recall the anchoring statistics (Section 5.3–5.4): 

E[N_anchor] = K_c / p_v 

CV = √((1 − p_v) / K_c) 

Suppose for the electron p_v = 0.1 (a tenfold reduction from the deterministic limit). Using 

equation (11.1) with Δt = t_P and η = 2π, the inferred barrier threshold becomes: 

K_c,e(p_v = 0.1) = h · p_v / (m_e c² t_P) = K_c,e(1) × 0.1 ≈ 1.50 × 10²² 

The coefficient of variation at this operating point is: 

CV = √(0.9 / 1.50 × 10²²) ≈ 7.7 × 10⁻¹² 

Even for p_v = 0.1, anchoring is extremely sharp — the relative fluctuation in anchoring time is 

of order 10⁻¹² of the mean. 

Conclusion. Elementary particle stability does not require deterministic anchoring. Large K_c 

alone ensures extremely narrow anchoring-time distributions. Stochastic anchoring (p_v well 
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below 1) remains fully compatible with sharp mass peaks. The Bernoulli framework built in 

Sections 5–6 is not merely formal — it functions correctly across the physically relevant range of 

p_v. 

11.3 Multi-Channel Flip Scaling 

In this paper the single-channel mass formula is derived for elementary flip modes. Composite 

masses require effective coarse-grained anchoring parameters reflecting interaction energy and 

confinement. The single-channel formula generalizes naturally to composite systems. If a 

particle corresponds to χ independent flip channels, each flipping one bit per cycle, the total 

action per cycle is: 

ΔJ_total = χ · ηℏ 

and the mass becomes: 

m = χ ηℏp_v / (c²ΔtK_c) (11.3) 

so that: 

m ∝ χ p_v / K_c (11.4) 

Structural implications. Increasing channel count χ increases mass linearly. Increasing barrier 

height K_c decreases mass. Increasing coupling p_v increases mass. 

For the general reader: You might wonder: could the proton simply be three electrons glued 

together, since protons are made of three quarks? This formula lets us test that idea directly. 

Naïve quark-channel test. Consider whether the proton mass could arise solely from three flip 

channels (a naïve quark analogy), with equal K_c and p_v to the electron. Equation (11.4) 

predicts: 

m_p / m_e ≈ χ = 3 

Observed: m_p / m_e ≈ 1836. The discrepancy is a factor of ~612. Therefore the proton mass 

cannot arise from channel multiplicity alone. The dominant contribution to the proton–electron 

mass hierarchy must reside in the anchoring parameters K_c and/or p_v — the proton's flip 

channels must have substantially shallower depth (smaller K_c) and/or stronger coupling (larger 

p_v) than the electron's. 

An important caveat: in the Standard Model, the proton mass arises predominantly (~99%) from 

QCD binding energy — gluon field dynamics and the kinetic energy of confined quarks — not 

from the constituent quark masses (m_u ≈ 2 MeV, m_d ≈ 5 MeV). The proton's effective K_c 

and p_v are therefore not simple functions of constituent quark anchoring parameters; they must 

reflect the entire confinement dynamics as encoded in the interface eigenmode structure. 
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Effective anchoring parameters for composite bound states. In the anchoring framework, 

(p_v, K_c) for a composite particle are effective parameters of the bound-state eigenmode after 

coarse-graining over internal channels — not inherited additively from constituents. Binding 

energy enters by increasing the flip completion density C = p_v/K_c of the confined field 

configuration relative to a free-field baseline: either through increased coupling resonance p_v in 

the confined void-resonant region, reduced effective anchoring depth K_c for the collective cycle 

closure, or multiplicity of tightly coupled internal channels that contribute coherently to cycle 

action. The predictive program therefore requires computing (p_v, K_c) directly for hadronic 

eigenmodes (analogous to lattice QCD extracting hadron masses from correlation functions 

[R15]), rather than attempting to build hadron masses from "constituent anchoring" parameters. 

In this paper we treat hadron masses as a target application of the eigenmode program, not as an 

immediate consequence of the single-channel formula. 

This constrains the predictive program of Section 16: a successful computation must explain a 

K_c ratio of roughly 1836 (or a corresponding p_v shift) between proton and electron 

eigenmodes. 

11.4 Planck Mass Limit: Minimal Barrier Height 

We now examine the extreme high-mass end of the framework by setting m = m_P (the Planck 

mass). Using Δt = t_P and η = 2π with p_v = 1: 

K_c,P = h p_v / (m_P c² t_P) (11.5) 

By the definition of the Planck mass, m_P c² t_P = ℏ. Substituting: 

K_c,P = 2πℏ / ℏ = 2π 

Thus: 

K_c,P ∼ O(1) 

For the general reader: This is a striking result. It says that the heaviest meaningful mass scale 

in physics — the Planck mass, roughly 10¹⁹ times heavier than a proton — corresponds in the 

anchoring framework to the absolute minimum barrier height: just one full topological cycle. You 

can't flip with fewer micro-events than one complete winding requires. So the Planck mass isn't 

arbitrary — it's the mass you get when the tick-count per bit-flip is as small as it can possibly be, 

giving the highest possible intrinsic flip frequency. 

Interpretation. The Planck mass is the regime where anchoring requires only one full 

topological cycle — the minimum allowed by the action postulate Pℏ, yielding the highest 

possible intrinsic flip frequency. Lighter particles have higher barriers (more micro-events, more 

ticks per cycle, lower frequency). The entire observed mass hierarchy maps onto a barrier-height 

hierarchy: 
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Mass Scale Approximate K_c Interpretation 

Planck mass (m_P) ~ 2π Lowest barrier, highest flip frequency 

Proton (m_p) ~ 10¹⁹ Shallow but stable anchoring 

Muon (m_μ) ~ 10²⁰ Intermediate depth 

Electron (m_e) ~ 10²³ Highest barrier, lowest flip frequency 

This is a structural identification: the Planck scale, which in standard physics appears as a 

dimensional combination of G, ℏ, and c, is reinterpreted here as the minimal-flip boundary of the 

void-anchoring framework. This result follows algebraically from the calibration choices Δt = 

t_P and η = 2π together with the definition of the Planck mass; we do not claim it as a numerical 

prediction. Its physical content lies not in the number itself but in the interpretation: the Planck 

scale corresponds to the minimal-flip boundary of the anchoring framework (K_c ∼ O(1)) rather 

than being an arbitrary ultraviolet cutoff. The Planck mass is not just "very large" — it is the 

mass at which barrier height bottoms out. Section 14.4 shows that this same boundary is 

independently the minimal-stability boundary (where flip-period fluctuations become O(1)), a 

coincidence with genuine structural content. 

Pattern in the inferred K_c spectrum. Under the assumption p_v = 1, the mass formula 

reduces to K_c = ηℏ/(mc²Δt), and the known particle masses map one-to-one onto K_c values. 

Examining the resulting set — K_c,e ∼ 1.5 × 10²³, K_c,μ ∼ 7.3 × 10²⁰, K_c,τ ∼ 4.3 × 10¹⁹, K_c,p 

∼ 8.1 × 10¹⁹, etc. — reveals no obvious simple numerical pattern (no recognizable integer 

sequence, geometric progression, or small-number relation among the values). This is not 

surprising: the K_c values are inferred, not predicted, and there is no reason to expect a simple 

pattern without a theory of the interface eigenmodes. The mass formula has two free parameters 

per particle (p_v, K_c); under p_v = 1, this reduces to one, but a single-parameter fit to a known 

mass is not predictive. Section 14.6 argues that stability conditions further constrain the 

parameter space: stable particles lie on a fixed-point curve p_v = f(K_c), reducing the effective 

freedom to one parameter (position along the curve). Genuine prediction requires the eigenmode 

program of Section 16 to compute (p_v, K_c) pairs from interface dynamics. Until then, the 

framework parameterizes the mass hierarchy but does not explain it. 

11.5 Maximum Flip Completion and Black Hole Formation (Threshold 

Correspondence) 

For the general reader: As mass increases, the mode's spatial projection scale shrinks. At some 

point, this projection scale becomes smaller than the gravitational radius of the mass itself — the 

object would be inside its own black hole. This sets a physical ceiling on mass, and it coincides 

with the Planck scale. 

In this framework, rest mass scales with flip completion density C := p_v/K_c. Under the 

inertial–rest equivalence condition (Section 12), the spatial projection scale satisfies ℓ_b ∝ 

(K_c/p_v) · Δt · c = (Δt · c)/C; thus heavier modes (larger C) correspond to smaller projection 

lengths. 
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In relativistic gravity, a mass m has an associated Schwarzschild radius r_s = 2Gm/c². Particle-

like localization is expected to fail once the intrinsic projection length is contained within the 

gravitational radius, i.e., when ℓ_b ≲ r_s. Using the standard Compton-scale bridge λ_C = 

ℏ/(mc) as the minimal localization scale for a mode, the threshold r_s ≳ λ_C yields: 

m² ≳ ℏc/(2G) 

i.e., a Planck-scale mass up to an O(1) factor. 

Interpretation. The framework admits a natural "maximum flip completion" boundary: 

sufficiently large C compresses the projection scale until horizon formation occurs. Beyond this 

threshold, the mode cannot manifest as a conventional particle excitation — it becomes a black-

hole-like anchored region in emergent spacetime. This unifies three independently motivated 

boundaries: 

1. Minimal-flip boundary (Section 11.4): K_c bottoms out at ~2π (one topological cycle). 

2. Minimal-stability boundary (Section 14.4): CV becomes O(1) when K_c ~ O(1). 

3. Horizon boundary (this subsection): projection scale falls below Schwarzschild radius at 

Planck mass. 

All three converge at the same mass scale. This is presented as a correspondence target rather 

than a derivation of GR: the full realization requires deriving r_s and the metric response from 

flip-density curvature (Section 15). 

11.6 Gravitational Redshift Consistency 

We now test whether the anchoring interpretation of mass is compatible with gravitational 

effects. Consider a flip mode operating at radial coordinate r in a Schwarzschild geometry with 

mass M. Let Δt_local denote the proper tick calibration at r (the local observer's clock), and Δt_∞ 

the corresponding coordinate-time calibration as seen from spatial infinity. Operationally, Δt is 

defined relative to an observer's physical clock construction: it is the proper time interval that 

one substrate tick maps onto for that observer. This is a Layer B bridge choice — the tick itself 

(Layer A) has no intrinsic duration. 

Under gravitational time dilation: 

Δt_∞ = Δt_local / √(1 − 2GM/(rc²)) 

Since the flip tick-count K_c/p_v is a dimensionless integer count (Layer A), it is observer-

independent. The flip period as measured at infinity is therefore: 

T_bit,∞ = Δt_∞ · K_c / p_v = T_bit,local / √(1 − 2GM/(rc²)) 

The rest energy as measured at infinity is: 

E_∞ = ηℏ / T_bit,∞ = E_local · √(1 − 2GM/(rc²)) 
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This is exactly the standard gravitational redshift: energy observed at infinity is reduced by the 

factor √(1 − 2GM/(rc²)) relative to the locally measured rest energy. 

Conclusion. The anchoring interpretation of mass is consistent with relativistic gravitational 

redshift once the standard time-dilation bridge is applied and the observer (local vs infinity) is 

specified. The key structural point is that K_c and p_v — being dimensionless tick-domain 

quantities — are invariant under the coordinate transformation; only the emergent tick 

calibration Δt transforms, and it transforms in exactly the way required by general relativity. 

11.7 Unstable Particles and Decay Width 

For the general reader: Not all particles are stable. The muon, for example, decays in about 

two-millionths of a second. In our framework, stability corresponds to a rock-solid flip pattern. 

Instability means the anchoring parameters are drifting — the pattern is slowly falling apart. 

Unstable particles correspond to flip modes that fail one or more of the stability conditions 

(Section 14) — specifically, modes whose anchoring parameters (K_c, p_v) are not fixed points 

of the coarse-graining flow but instead drift over time due to coupling to additional channels or 

environmental perturbations. 

Let K_c(t) slowly evolve due to coupling to other modes. Then the anchoring time acquires 

fluctuations: 

δT_bit ∼ (Δt / p_v) · δK_c 

This produces a spread in rest energy: 

δE ∼ (ηℏ / T_bit²) · δT_bit 

which maps to a decay width: 

Γ ∼ δE 

This suggests a structural classification of particles by anchoring stability: 

• Stable particles (electron, proton): deep anchoring fixed points with negligible 

parameter drift. K_c and p_v are effectively constant over all accessible timescales. 

• Metastable particles (muon, neutron): shallow fixed points with slow drift in K_c or 

p_v. The flip pattern holds for many cycles but eventually loses coherence. 

• Rapidly decaying resonances (Δ, ρ, etc.): near-boundary flip modes where the 

anchoring parameters are far from any fixed point. Flip coherence is lost within a small 

number of bit-flip cycles. 

A full quantitative decay-width prediction requires computing the fluctuation dynamics of K_c 

and p_v from interface evolution (Section 16). The classification above is structural, not 
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quantitative — but it demonstrates that particle instability has a natural interpretation within the 

anchoring framework. 

11.8 Section Summary 

The extended tests demonstrate that the conditional mass relation (11.1) behaves consistently 

across multiple regimes: 

• Stochastic variation: sharp mass peaks are maintained even for p_v ≪ 1, due to the 

large K_c values characteristic of elementary particles. 

• Multi-channel scaling: channel multiplicity alone cannot account for the proton–

electron mass ratio, constraining the predictive program. 

• Planck limit: the Planck mass corresponds to minimal barrier height K_c ∼ 2π — a 

nontrivial structural identification. 

• Gravitational redshift: the mass formula is compatible with standard relativistic energy 

redshift without modification. 

• Instability: particle decay is interpretable as drift in anchoring parameters away from 

coarse-graining fixed points. 

 

12. Compatibility Condition for Inertial–Rest Mass 

Equivalence 

For the general reader: So far we have shown how rest mass arises from the tick-count per flip 

(fewer ticks = higher energy = higher mass via E = hν). But in physics, mass appears in two 

distinct roles: in Einstein's E = mc² (rest mass, set by tick-count per flip) and in Newton's F = ma 

(inertial mass, resistance to acceleration). These two masses are experimentally identical to 

extraordinary precision — that is one of the deepest facts in physics, and it underlies Einstein's 

general theory of relativity. This section shows under what structural conditions the anchoring 

framework reproduces that equality. The result is striking: the equivalence principle becomes a 

constraint on how information projects into geometry. 

This section does not derive the equivalence principle from first principles. Instead, it establishes 

a necessary and sufficient compatibility condition: given the rest-mass scale derived in Section 

9 and the imported momentum normalization P = ηℏ/ℓ_b, inertial and rest mass coincide if and 

only if the spatial projection scale ℓ_b satisfies equation (12.9). Deriving ℓ_b from interface 

dynamics is deferred to the predictive program (Section 12.9 / Section 16). 

12.1 Spatial Projection and Velocity 

We work entirely in tick–bit primitives, building on the notation of Sections 5 and 9. 

Let n be the tick index, B[n] the cumulative bit-flip count, and Δt the emergent tick calibration. 

Define a spatial projection via: 
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x[n] := ℓ_b · B[n] (12.1) 

where ℓ_b is the bit-to-length projection scale — the emergent spatial extent associated with 

one bit-flip. This scale is not assumed universal; it may depend on the anchoring structure of the 

mode in question. 

From Section 5.3, the expected flip increment per tick in mean-field is: 

E[ΔB] = p_v / K_c (12.2) 

Define the projected velocity — the expected spatial displacement per emergent time unit: 

v := ℓ_b · E[ΔB] / Δt = ℓ_b · p_v / (K_c · Δt) (12.3) 

This is the emergent drift velocity of the mode's spatial projection under its intrinsic flip 

dynamics. 

12.2 Emergent Momentum 

From Section 7, each bit-flip carries action ΔJ_bit = ηℏ and projects onto spatial extent ℓ_b 

(equation 12.1). The associated emergent momentum is: 

P := ηℏ / ℓ_b (12.4) 

This is structurally identical to the de Broglie relation p = h/λ when ℓ_b is identified with the de 

Broglie wavelength — a consistency check, not a derivation. This identification is a structural 

consistency requirement with de Broglie kinematics imported as part of the Layer B bridge; it is 

not derived within Layer A. When η = 2π, equation (12.4) becomes P = h/ℓ_b; thus identifying 

ℓ_b with the de Broglie wavelength λ, when tested against known kinematics, reproduces the 

standard momentum normalization. Whether the BCB interface dynamics independently produce 

an ℓ_b that matches this identification remains an open problem (Section 12.9). 

12.3 Inertial Mass from Momentum and Velocity 

The inertial mass is defined as the ratio of momentum to velocity: 

m_inertial := P / v (12.5) 

This is the standard mechanical definition: given a mode with momentum P and projected 

velocity v, its inertial mass is the proportionality constant relating the two. The identification of v 

= ℓ_b · p_v/(K_c · Δt) with the particle's observable velocity rests on the spatial projection 

(12.1): if each bit-flip advances the mode's spatial coordinate by ℓ_b, then the expected spatial 

displacement per unit emergent time is the mode's center-of-mass drift velocity. This is the same 

identification used in lattice random-walk models, where the macroscopic drift velocity emerges 

from the microscopic hopping rate and lattice spacing. 



 29 

Substituting equations (12.4) and (12.3): 

m_inertial = [ηℏ / ℓ_b] / [ℓ_b · p_v / (K_c · Δt)] 

Simplifying: 

m_inertial = ηℏ · K_c · Δt / (ℓ_b² · p_v) (12.6) 

12.4 The Equivalence Compatibility Condition 

From Proposition 1 (Section 9), rest mass is: 

m_rest = ηℏp_v / (c²ΔtK_c) (12.7) 

For the general reader: We now have two expressions for mass. One (rest mass) comes from 

the flip frequency — how many ticks per flip. The other (inertial mass) comes from the ratio of 

momentum to velocity — how the mode's spatial projection carries its action. The question is: 

when are these equal? 

Setting m_inertial = m_rest: 

ηℏ · K_c · Δt / (ℓ_b² · p_v) = ηℏ · p_v / (c² · Δt · K_c) 

Canceling common factors and rearranging: 

ℓ_b² = (Δt)² · K_c² · c² / p_v² (12.8) 

which implies: 

ℓ_b = (K_c / p_v) · Δt · c (12.9) 

12.5 Acceleration and Force as Consequences 

With inertial mass established, we can derive acceleration and force as consequences rather than 

definitions. 

Under an external perturbation δp_v, the projected velocity changes: 

δv = ℓ_b · δp_v / (K_c · Δt) (12.10) 

The perturbation δp_v arises from coupling to the same void-interaction structure that determines 

the baseline p_v (Section 4.5). In occupancy-measure language, p_v = μ(A). Under small 

perturbations of the measure μ → μ + δμ, the first-order change is δp_v = ∫_A δμ, which is 

proportional to μ(A) for uniform fractional perturbations. Thus in the linear-response regime: 

δp_v = α · p_v (12.11) 
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where α is a dimensionless parameter encoding the applied field strength. Non-uniform 

perturbations would introduce mode-dependent corrections to α, but the leading-order 

proportional response is generic. 

Emergent acceleration is the velocity change per unit emergent time: 

a = δv / Δt = ℓ_b · δp_v / (K_c · Δt²) (12.12) 

The force follows from Newton's second law as a derived relation: 

F = m_inertial · a = [ηℏ · K_c · Δt / (ℓ_b² · p_v)] · [ℓ_b · δp_v / (K_c · Δt²)] 

Simplifying: 

F = ηℏ · δp_v / (ℓ_b · p_v · Δt) (12.13) 

Under the equivalence condition (12.9), this reduces to: 

F = ηℏ · δp_v / (K_c · (Δt)² · c) (12.14) 

The force is proportional to the perturbation δp_v and inversely proportional to the barrier height 

— consistent with the expectation that modes with higher barriers (lighter particles) respond 

more to a given perturbation in p_v. 

12.6 Interpretation 

Equation (12.8) is the necessary and sufficient condition for inertial and rest mass equivalence 

within the anchoring framework. Its content is physically transparent: 

• High barriers (large K_c) produce a larger spatial projection scale ℓ_b. Modes that take 

many micro-events to flip one bit project over more emergent space per flip. 

• Strong coupling (large p_v) produces a smaller projection scale. Modes that couple 

readily to the void are more spatially compact per flip. 

• The same anchoring parameters (K_c, p_v) that determine the energy scale (rest mass) 

also determine the spatial response (inertial mass) — but only if ℓ_b obeys equation 

(12.9). 

Under this condition: 

m_inertial = m_rest 

and the equivalence principle is structurally recovered. 

12.7 Conceptual Consequence 
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For the general reader: Here is the deep point: the equivalence of inertial and rest mass is not 

automatic in an informational framework. In most models where mass comes from information, 

there's no reason why "energy of the information process" and "resistance to acceleration" should 

be the same number. In our framework, they are the same if and only if the way information 

projects into space is governed by the same anchoring parameters that set the flip frequency. The 

equivalence principle becomes a constraint on how information becomes geometry. 

The equivalence of inertial and rest mass emerges in this framework if and only if three 

conditions hold simultaneously: 

1. Action per flip cycle is fixed (Pℏ). 

2. Momentum is the de Broglie momentum P = ηℏ/ℓ_b. 

3. The spatial projection scale ℓ_b derives from the same anchoring parameters (K_c, p_v) 

as the flip frequency. 

Condition 3 is the nontrivial structural content. It means that the equivalence principle is not a 

separate postulate but a constraint on the geometry of information projection. If the interface 

dynamics that determine K_c and p_v also determine ℓ_b via equation (12.9), then inertial–rest 

mass equivalence follows as a theorem, not an assumption. 

12.8 Two Meanings of Mass 

The preceding derivation makes explicit a distinction that is often elided: "mass" refers to two 

operationally distinct quantities that happen to be numerically equal. 

Mass as rest energy (intrinsic flip frequency). The rest mass m = ηℏp_v/(c²ΔtK_c) is set by the 

intrinsic flip frequency ν = p_v/(ΔtK_c) via E = hν. A massive particle flips in fewer ticks — it 

has a higher intrinsic frequency and higher rest energy. The electron, with K_c ∼ 10²³, takes 

enormously many ticks per flip and has correspondingly low mass. The Planck mass, with K_c ∼ 

2π, completes a flip in a handful of ticks and has the highest mass the framework admits. 

Mass as inertia (resistance to acceleration). Inertial mass m_inertial = ηℏK_cΔt/(ℓ_b² · p_v) 

measures how much the mode resists changes to its spatial flip pattern. This is not determined by 

intrinsic flip frequency — it is determined by how the flip pattern is coupled to emergent 

geometry through the projection scale ℓ_b. 

These two quantities coincide (m_inertial = m_rest) if and only if ℓ_b satisfies equation (12.9). 

Their equality is the structural content of the equivalence principle: mass as rest energy and 

mass as inertia arise from distinct structural layers in the framework, but are locked 

together by the geometry of information projection. 

A system may have extremely rapid intrinsic phase evolution (large rest energy) while 

simultaneously requiring enormous external energy input to change its momentum state. The 

"resistance" that mass provides to acceleration is not slowness of internal flipping — it is the 

rigidity of the coupling between the flip pattern and emergent space. 
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For the general reader: Think of it this way: a very massive particle flips its bits very quickly 

(high frequency = high energy = high mass). But it is also very hard to push (high inertia). These 

are different things — one is about internal rhythm, the other about external stubbornness. The 

deep result of this section is that they are equal if and only if the particle's spatial extent is 

determined by the same parameters that set its internal rhythm. That constraint is what the 

equivalence principle means in this framework. 

12.9 Status and Open Problems 

The derivation uses standard mechanical definitions (P = ηℏ/ℓ_b, v = ℓ_b · p_v/(K_c · Δt), m = 

P/v) and introduces one structural assumption: the linear-response condition (12.11). The 

equivalence condition (12.8) follows algebraically. 

What remains open: 

• Deriving ℓ_b from BCB interface geometry. Equation (12.9) tells us what ℓ_b must be 

for equivalence to hold; it does not derive ℓ_b from first principles. Showing that the 

BCB interface dynamics independently produce an ℓ_b satisfying (12.9) would convert 

the equivalence principle from a compatibility condition into a derived theorem. 

• Physical origin and universality of the linear-response assumption. Equation (12.11) 

assumes δp_v = α · p_v — that perturbations couple proportionally to the baseline void-

coupling strength, with α universal across modes. The equivalence principle has been 

tested to extraordinary precision: ~10⁻¹³ in Eötvös-type torsion balance experiments 

[R10] and ~10⁻¹⁵ by the MICROSCOPE satellite mission [R9]. Within the anchoring 

framework, the equality m_inertial = m_rest requires this proportional response, and 

universality imposes a sharp constraint on its structure. 

If perturbations instead produced mode-dependent responses δp_v = α_j · p_v with 

coefficients α_j that vary across modes, then equation (12.9) would yield mode-

dependent projection scales ℓ_b,j² ∝ α_j, leading to composition-dependent deviations in 

inertial–rest mass equivalence — precisely the signature that Eötvös-type experiments 

constrain. Current bounds therefore require |α_j − α_k|/α < 10⁻¹⁵ across all observed 

matter species. 

This leaves two possibilities: (a) the proportional response is a deep structural feature of 

the void-coupling mechanism — the substrate reweights the anchorable subset uniformly 

by construction, making α mode-independent exactly — or (b) the framework makes a 

falsifiable prediction: equivalence principle violations at field strengths or in exotic 

matter sectors where nonlinear or mode-dependent corrections to δp_v become 

significant. We regard this as an open empirical question. Either outcome has significant 

implications: exact universality constrains the admissible class of void-coupling 

mechanisms, while any detected violation would provide direct empirical access to the 

mode-structure of anchoring. 
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If both can be established, the equivalence principle becomes a derived feature of void anchoring 

rather than an imposed compatibility condition — a result that would have significant 

implications for the relationship between information, gravity, and geometry. 

 

13. Discussion of Key Assumptions 

For the general reader: Every calculation rests on choices. This section examines the two most 

consequential ones: the assumption that micro-events happen almost certainly at every tick (p_v 

≈ 1), and the assumption that the substrate ticks at the Planck timescale. We discuss what these 

assumptions mean physically, when they might break down, and what happens to the framework 

if they're relaxed. 

13.1 Physical Meaning of p_v 

The coupling probability p_v has a direct physical interpretation: it is the per-tick probability that 

the interface occupies the anchorable configuration subset — the region of state space in which a 

void-coupling commitment increment is registered (Section 4.3). Different interface eigenmodes 

occupy this subset to different degrees: 

• A strongly bound, stable eigenmode spends almost all ticks in the anchorable region → 

p_v close to 1. The anchoring process is nearly deterministic, with low variance in 

anchoring time. 

• A weakly bound or excited eigenmode spends fewer ticks in the anchorable region → 

p_v significantly below 1. The anchoring process is genuinely stochastic, with larger 

variance → broader mass linewidths and shorter lifetimes. 

• A marginally stable eigenmode has p_v near the boundary of the admissible region → 

large fluctuations in anchoring time → observable as particle instability or decay. 

This interpretation ties p_v directly to the stability analysis of Section 14: modes with low p_v 

have large CV (Section 5.4) and are candidates for unstable or short-lived particles. 

13.2 The p_v ≈ 1 Regime 

Setting p_v ≈ 1 for the electron consistency check corresponds to assuming that the electron's 

dominant flip channel is a strongly bound eigenmode that spends nearly every tick in the 

anchorable region. In this limit, the Negative Binomial distribution reduces to deterministic 

counting: the variance vanishes and N_anchor = K_c with certainty. 

This does not eliminate stochasticity from the framework in general: 

(i) State-dependent coupling p_v(c[n]) reintroduces fluctuations even if the time-averaged 

coupling is near unity. 
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(ii) Composite systems may have effective p_v < 1 after coarse-graining over internal degrees of 

freedom. 

(iii) Other particle modes — particularly heavier, less stable particles — may operate in 

regimes where p_v is significantly less than 1, producing genuinely stochastic anchoring with 

physical consequences (e.g., broader anchoring time distributions contributing to linewidths or 

decay rates). 

If stochastic anchoring is to be physically significant at the fundamental level — which is one of 

the motivations for building the Bernoulli framework — then p_v < 1 should be retained and 

estimated from interface dynamics rather than set to unity. The p_v = 1 limit is a useful 

consistency check but may not represent the physically correct operating point. Section 11.2 

demonstrates that the framework remains well-behaved for p_v as low as 0.1. 

13.3 The Δt = t_P Identification 

Identifying the tick spacing with the Planck time is natural within VERSF (it identifies the 

substrate update rate with the Planck scale), but it is a substantive physical assumption — it 

asserts that the substrate operates at the shortest meaningful timescale in quantum gravity. 

The framework can also be presented with Δt left symbolic. In that case, the mass formula 

becomes a relation among three unknowns (K_c, p_v, Δt) per particle, and empirical input — or 

a separate derivation of Δt from TPB/BCB substrate dynamics — is required to fix the tick scale. 

The choice Δt = t_P is the simplest and most physically motivated identification, but it is 

separable from the rest of the derivation. 

 

14. Stability and the Mass-Gap Problem 

For the general reader: One of the deepest puzzles in physics is why there are only a handful of 

stable elementary particles with specific masses, rather than a continuous smear of possible 

masses. This is called the "mass-gap problem." Our framework rephrases it in informational 

terms: why do only certain anchoring configurations produce stable, long-lived flip patterns? We 

don't solve this problem here, but we identify the precise conditions that a solution must satisfy 

— which is itself progress, because it tells us what to look for. 

14.1 The Problem 

The statement that "particles correspond to stable BCB interface eigenmodes" conceals a deep 

question: why should the set of stable modes be discrete with a gap (a minimum nonzero mass), 

rather than forming a continuum? This is the mass-gap problem expressed in anchoring 

language. 

14.2 Necessary Stability Conditions 
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Within this anchoring framework, a stable particle-like mode must satisfy at minimum three 

conditions: 

(S1) Bounded anchoring variance. The coefficient of variation CV = √((1 − p_v)/K_c) must be 

sufficiently small over the mode's operating regime. Concretely, we require CV < ε for some ε 

determined by observational constraints on mass stability. Modes with large CV produce broad 

anchoring-time distributions and would not appear as sharp mass peaks. 

(S2) Self-consistency under coarse-graining (renormalization fixed-point condition). The 

mode's effective parameters (K_c, p_v) must remain within an admissible basin when ticks are 

aggregated into blocks of increasing size. Formally, this is a renormalization group fixed-point 

condition: the flow of (K_c, p_v) under block-spin–type coarse-graining must converge to a 

fixed point or limit cycle rather than running to an inadmissible boundary (p_v → 0, K_c → 0, or 

K_c → ∞ without bound). The number of stable fixed points determines the number of particle 

species — and explaining why this number is finite is the core of the mass-gap problem in this 

language. 

(S3) Non-redundant cycle closure. The mode must return to an operationally equivalent 

configuration class after a full flip cycle. Failure to close means successive "bits" are not 

independent — the mode either drifts (unstable) or produces redundant information that is 

eliminated under coarse-graining (not a genuine flip channel). This condition is the anchoring 

analogue of the quantization condition in Bohr–Sommerfeld theory: only closed orbits in 

configuration space produce stable states. 

14.3 Connection to Sections 11.7 and 12 

The stability classification of Section 11.7 (stable / metastable / resonance) maps directly onto 

S1–S3: stable particles satisfy all three conditions robustly, metastable particles satisfy them 

marginally (slow drift away from a near-fixed-point), and resonances fail S2 or S3 outright. The 

decay-width analysis of Section 11.7 is the dynamical consequence of departure from the fixed-

point structure described by S2. 

The inertial–rest mass equivalence of Section 12 adds a further stability requirement: the spatial 

projection scale ℓ_b must remain slaved to (K_c, p_v) via equation (12.9) throughout the mode's 

evolution. Modes for which ℓ_b decouples from anchoring parameters would exhibit a growing 

discrepancy between inertial and rest mass — a signature that is not observed for any known 

particle, suggesting that condition (12.9) is robustly satisfied in the physical regime. 

14.4 The Planck Boundary as Minimal-Stability Boundary 

Since CV ∼ 1/√K_c (Section 5.4), modes with small K_c have large relative fluctuations in their 

flip tick-count. For a mode to appear as a particle with a well-defined mass, its flip period must 

be sharply concentrated — otherwise the mode produces a broad continuum rather than a 

discrete mass peak. We formalize this as a critical stability threshold: 
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A mode is particle-like if CV < ε_c, where ε_c is the maximum relative fluctuation compatible 

with experimental mass resolution. 

For the minimal topological cycle K_c = 2π (the Planck-mass mode from Section 11.4), CV ∼ 

1/√(2π) ≈ 0.40, meaning the flip tick-count fluctuates by ~40% of its mean. Whether this 

constitutes a stable particle depends on ε_c. If ε_c ∼ 0.1 (10% relative width, comparable to 

broad resonances like the ρ meson), then K_c must exceed ~100 for stability, and the Planck-

mass mode at K_c ∼ 2π is firmly excluded. If ε_c is more permissive, the boundary shifts, but 

the qualitative conclusion holds: the Planck-mass boundary is simultaneously the minimal-flip 

boundary (fewest micro-events per flip allowed by Pℏ) and the minimal-stability boundary 

(smallest K_c compatible with sharp anchoring). 

The precise value of ε_c is an open empirical question tied to the interface dynamics. What is 

structurally robust is that both constraints — action quantization and anchoring stability — 

produce upper mass limits, and these limits coincide at the same scale (K_c of order unity). This 

coincidence is a structural consistency check on the framework, not a tuned result. 

14.5 Path to Resolution 

A full solution requires showing that conditions S1–S3, applied to the space of all possible 

interface configurations, admit only a finite or countable set of solutions. This is equivalent to 

showing that the joint fixed-point structure of the coarse-graining flow (S2) intersected with the 

cycle-closure constraint (S3) and the variance bound (S1) produces a discrete set. We treat this as 

an open problem and note that the mathematical structure is closely analogous to the problem of 

classifying stable orbits in Hamiltonian systems — a problem with a rich existing literature that 

may provide analytical tools. 

14.6 Parameter Reduction: Why the Apparent Two-Parameter Freedom Is Not 

Physical 

A common objection is that the mass relation m = ηℏp_v/(c²ΔtK_c) contains two parameters 

(p_v, K_c) per particle, so any single mass could be fit by adjusting two numbers. This is true 

only if p_v and K_c are treated as independent knobs. In the anchoring framework they are not 

independent once the interface dynamics and the micro-event criterion are fixed. The "two-

parameter freedom" is therefore best understood as an incomplete specification problem: we 

have not yet specified the interface rule tightly enough to compute the map (mode) ↦ (p_v, 

K_c). 

We now state precisely how the freedom collapses. 

14.6.1 p_v is a derived measure once the micro-event criterion is fixed. Let c[n] be the 

interface state and let micro-events be defined operationally by a resonance functional R(c) ∈ [0, 

1], which measures void coupling (resonant susceptibility) of state c. Fix a threshold R* and 

define the anchorable subset: 

A := { c : R(c) ≥ R* } 
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The micro-event indicator is X_n = 𝟙{c[n] ∈ A}, and the coupling probability is: 

p_v = E[X_n] = ∫_A ρ(c) dc 

where ρ is the stationary (invariant) measure induced by the interface dynamics for the mode 

under consideration. Once the interface update rule and R(c) are specified, p_v is no longer a free 

parameter — it is a computed overlap of the mode's invariant measure with the resonance region 

A. 

14.6.2 K_c is a derived cycle-closure count once phase/action bookkeeping is fixed. Under 

the phase-cycle assumption (Aφ), each micro-event advances the cycle coordinate by an 

increment determined by the interface dynamics. Define the accumulated winding variable: 

W[n+1] = W[n] + X_n · Δφ(c[n] → c[n+1]) 

with cycle completion when |W| ≥ 2π (equivalently, when the action ledger reaches ΔJ_bit = ηℏ). 

The anchoring depth is then: 

K_c = E[ #{micro-events per completed cycle} ] 

Once the interface rule and the cycle-increment functional Δφ(·) (or δJ_event(·)) are fixed, K_c 

is not chosen — it is measured from the same dynamics that determine p_v. 

14.6.3 The physical spectrum is the image of the dynamics, not the full (p_v, K_c) plane. 

The pair (p_v, K_c) is not an arbitrary point in [0, 1] × ℕ. For a given interface rule and 

resonance functional R, each candidate eigenmode j induces a specific pair: 

(p_v, K_c)_j = ( ∫_A ρ_j(c) dc, E_j[#{micro-events per cycle}] ) 

The "allowed" parameter set is the image of the eigenmode map M : j ↦ (p_v, K_c)_j. Even 

before coarse-graining constraints are imposed, M is typically low-dimensional because p_v and 

K_c are computed from the same underlying mode geometry. 

14.6.4 Stability restricts the image further: only coarse-graining fixed points are particle-

like. Stable particle-like modes are defined by the stability criteria S1–S3 (Section 14.2). Coarse-

graining induces a renormalization map: 

R : (p_v, K_c) ↦ (p_v', K_c') 

Particle-like modes correspond to fixed points (or limit cycles) of R — points where (p_v, K_c) 

≈ R(p_v, K_c). This typically reduces the admissible set to a discrete collection of points (or a 

small number of one-dimensional branches). The "two-parameter freedom" is removed twice: 

first by the eigenmode map M, and again by the stability constraint R. 

14.6.5 Off-manifold variation is not free: it corresponds to linewidth and decay. Modes that 

do not sit on the stable fixed-point set are not additional stable particles; they are unstable 
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excitations. Departures from fixed-point structure manifest as drift in effective anchoring 

parameters and therefore as a spread in cycle period and rest energy. Via the energy–period 

relation (Section 9), a spread δT in cycle period produces a rest-energy uncertainty δE ∼ E · 

δT/T, which maps onto the decay width Γ (Section 11.7). The apparent second degree of freedom 

is therefore the distance from stability, which corresponds to observable decay widths — not an 

arbitrary fitting handle. 

14.6.6 What remains open. At present we have not computed M or R for a fully specified BCB 

interface rule. This is exactly the content of the predictive program (Section 16): once the 

interface dynamics and resonance functional are fixed, the theory predicts a discrete set of (p_v, 

K_c) pairs and therefore a discrete mass spectrum via m ∝ p_v/K_c. Until that computation is 

performed, the framework parameterizes masses; it does not yet explain the observed spectrum 

from first principles. 

14.7 Weak Scaling Constraint from Interface Scale Invariance 

While Section 14.6 shows that (p_v, K_c) are not freely adjustable once the interface dynamics 

and resonance criterion are specified, one may still ask whether any structural relation between 

them can be derived prior to full eigenmode computation. In this subsection we show that a weak 

but nontrivial power-law constraint p_v ∝ K_c^{−α} emerges naturally under a minimal scale-

invariance assumption for the interface. 

14.7.1 Coherence length and scale invariance. Assume that the interface dynamics admit an 

emergent coherence length ξ, measured in substrate units, characterizing the spatial extent over 

which the contrast-pair field remains phase-coherent. We require only: (i) the interface is 

statistically homogeneous; (ii) under coarse-graining by scale factor b, coherence rescales as ξ → 

bξ; (iii) the resonance (anchorable) condition is local in the interface field. No detailed 

microscopic model is required. 

14.7.2 Scaling of p_v. Recall that p_v = ∫_A ρ(c) dc (Section 14.6.1). If coherent regions of size 

ξ tile the interface with approximate independence beyond that scale, the fraction of the interface 

in resonant configuration scales inversely with the number of independent coherent domains. In 

an interface of effective dimension d, the number of independent domains scales as ξ^{−d}, so: 

p_v(ξ) ∼ ξ^{−d} 

This follows from statistical self-similarity under coarse-graining and does not depend on 

microscopic details. 

14.7.3 Scaling of K_c. Under the phase-cycle assumption (Section 7), each micro-event 

advances the phase variable by an increment Δφ_event. For a mode of coherence length ξ, phase 

gradients scale inversely with domain size: Δφ_event(ξ) ∼ ξ^{−1}. Larger coherent domains 

evolve more rigidly and accumulate phase more slowly per local resonant fluctuation. Since one 

full cycle requires total winding Δφ = 2π: 

K_c(ξ) ∼ 2π / Δφ_event(ξ) ∼ ξ 
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Thus ξ ∼ K_c: the coherence length and the anchoring depth are proportional. 

14.7.4 Emergent power law. Eliminating ξ between p_v(ξ) ∼ ξ^{−d} and K_c(ξ) ∼ ξ yields: 

p_v ∝ K_c^{−α}, where α := d 

This relation is not imposed; it follows from interface scale invariance and local resonance 

structure. The exponent equals the effective interface dimension. 

14.7.5 Consequence for the mass relation. Substituting into m ∝ p_v/K_c gives: 

m ∝ K_c^{−(α+1)} 

Along a scale-invariant family of interface modes, the apparent two-parameter freedom collapses 

to a single effective degree of freedom parameterized by K_c, with mass scaling as a power law 

determined by the effective interface dimension. For a two-dimensional interface (d = 2): m ∝ 

K_c^{−3}. 

14.7.6 Status. This result does not derive the mass spectrum. It establishes: (i) p_v and K_c 

cannot vary independently under scale invariance; (ii) stable modes are expected to lie on a one-

dimensional scaling manifold in (p_v, K_c) space; (iii) deviations from this manifold correspond 

naturally to instability and linewidth (Section 11.7, Section 14.6.5). Verification of the exponent 

α requires explicit simulation of the interface dynamics (Section 16.3). The scaling law therefore 

provides a concrete falsifiable target: if numerical interface models fail to exhibit a stable power-

law relation between p_v and K_c, the scale-invariance hypothesis is invalid. 

 

15. Entropy Gradients and the Emergence of Gravity 

(Correspondence Target) 

For the general reader: In this framework, mass is not a primitive property — it is set by the 

tick-count per flip (fewer ticks = higher energy = higher mass, once mapped through the Layer B 

bridge). Anchoring is irreversible, and irreversibility generates entropy. If the density of flip 

activity varies across space, that variation must affect how emergent space itself is structured. 

This section constructs a consistent mapping from flip density to a weak-field gravitational 

potential, and identifies the precise equations that a full derivation must target. We do not derive 

Einstein's field equations — this is a correspondence, not a derivation. 

15.0 Relation to Entropic and Thermodynamic Gravity 

The idea that gravity has an entropic or thermodynamic character has a substantial prior 

literature. Verlinde's entropic gravity program [R11] and Jacobson's thermodynamic derivation 

of the Einstein equations [R12] highlight both opportunities and challenges: reproducing the 

correct tensor structure, treating radiation-dominated regimes, and avoiding inconsistencies in 
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cosmology. More broadly, the anchoring framework belongs to the "it from bit" tradition 

initiated by Wheeler [R13], with connections to Bekenstein's entropy-area bound [R14] and 

Lloyd's computational capacity arguments [R16]. The present section does not claim to resolve 

these issues or to re-derive GR. Instead, we identify a correspondence target specific to the 

anchoring framework: spatial variation in flip completion density C(x) = p_v(x)/K_c(x) induces 

variation in the projection scale ℓ_b(x), which can be interpreted as a metric component in a 

weak-field limit. A full comparison requires (i) constructing an emergent metric from ℓ_b and 

Δt, (ii) deriving geodesic motion from that metric, and (iii) showing that the resulting field 

equations match Einstein gravity (or a controlled modification) across matter and radiation 

sectors. We treat this as future work and include this section as a roadmap and consistency target 

rather than a completed derivation. The novelty relative to prior entropic gravity proposals lies in 

the specific microfoundation: discrete irreversible anchoring with a projection metric via ℓ_b, 

rather than postulated holographic screens or temperature fields. The role of the Unruh effect and 

local equilibrium assumptions in Jacobson's derivation has no direct analogue in the anchoring 

framework, which operates pre-thermally at the tick level; whether an Unruh-like structure 

emerges from tick-domain dynamics is an open question. 

15.1 Mass as Flip-Entropy Density 

From Proposition 1 (Section 9), the rest mass of a flip channel is: 

m = ηℏp_v / (c²ΔtK_c) (15.1) 

Each completed flip cycle irreversibly flips one bit. Each bit increases thermodynamic entropy 

by: 

ΔS_entropy = k_B ln 2 (15.2) 

where k_B is Boltzmann's constant. The entropy increment per cycle is therefore fixed; it is the 

number of cycles per unit emergent time (the flip frequency, a Layer B quantity) that determines 

the entropy production rate. 

Define the flip frequency (Layer B — requires the emergent-time mapping τ = nΔt): 

ν_c := 1/T_bit = p_v / (ΔtK_c) (15.3) 

Then the entropy production rate per channel is: 

Ṡ = k_B ln 2 · ν_c (15.4) 

Using equation (15.1), mc² = ηℏν_c, so: 

Ṡ = (k_B ln 2 / ηℏ) · mc² (15.5) 

Mass is proportional to entropy production rate per flip channel. Mass density therefore 

corresponds to entropy-generation density. This is a structural identity within the framework, not 
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an additional assumption — it follows directly from the irreversibility of anchoring and the mass 

formula. 

15.2 Spatial Flip Density 

Let ρ_m(x) denote mass density at emergent spatial position x. From equation (15.5): 

ṡ(x) ∝ ρ_m(x) (15.6) 

Regions of higher mass density are regions of higher irreversible flip activity. Define a flip 

density field: 

C(x) := p_v(x) / K_c(x) (15.7) 

From equation (15.1): 

ρ_m(x) ∝ C(x) (15.8) 

Spatial gradients in mass correspond to spatial gradients in flip density. 

15.3 Entropy Gradients and Effective Geometric Response 

In statistical mechanics, entropy gradients generate effective forces (F = T∇S). We adopt an 

analogous structural statement within the anchoring framework: spatial gradients in flip-entropy 

density produce an effective geometric response. 

The spatial projection scale ℓ_b is tied to barrier height by the inertial–rest mass equivalence 

condition (Section 12, equation 12.9): 

ℓ_b ∝ (K_c / p_v) · Δt · c (15.9) 

Therefore: 

ℓ_b ∝ 1 / C(x) (15.10) 

Regions of high flip density correspond to a compressed projection scale — each bit projects 

onto less emergent space. This is the anchoring analogue of spatial curvature: where flipping is 

dense, space is "compressed." 

15.4 Emergent Gravitational Potential (Weak-Field Limit) 

Define an emergent gravitational potential Φ via projection-scale variation in the weak-field 

regime: 

ℓ_b(x) = ℓ_0 (1 + 2Φ(x)/c²) (15.11) 
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where ℓ_0 is the projection scale at spatial infinity and |Φ| ≪ c². Variations in ℓ_b encode 

curvature. 

Combining equations (15.10) and (15.11): 

∇Φ ∝ −∇C(x) (15.12) 

Gravitational acceleration corresponds to flip-density gradients: matter falls toward regions of 

higher flip activity. 

15.5 Poisson Equation Target 

In Newtonian gravity: 

∇²Φ = 4πGρ_m (15.13) 

Using equation (15.8), the Poisson equation requires: 

∇²Φ ∝ C(x) (15.14) 

Important caveat. Equation (15.14) does not follow directly from (15.12). From ∇Φ ∝ −∇C, 

taking the divergence gives ∇²Φ ∝ −∇²C, not C(x). For ∇²Φ ∝ C to hold, the relationship between 

the projection scale ℓ_b and the emergent metric must be nonlinear — specifically, the Laplacian 

of the metric component constructed from 1/ℓ_b must be proportional to the source density, not 

to the Laplacian of C. This requires: 

∇²Φ ∼ ∇·∇(1/ℓ_b) ∝ ρ_m (15.15) 

which involves the second-order structure of the ℓ_b → metric mapping that is not derived here. 

The Poisson structure is therefore a target for the emergent metric construction, not a 

consequence of the weak-field definitions alone. Deriving the precise proportionality constant 

(recovering 4πG) requires specifying how ℓ_b enters the emergent metric tensor — a task 

deferred to future work. 

Status: correspondence, not derivation. This section constructs a consistent structural mapping 

from flip density to an effective gravitational potential. It does not derive the Poisson equation 

from first principles — it identifies the equation the framework must reproduce and shows that 

the mapping has the correct qualitative structure. The correspondence becomes a derivation only 

when ℓ_b is shown to define a metric component and flip-density gradients are shown to produce 

geodesic acceleration. 

15.6 Interpretation and Consistency 

For the general reader: Here is the picture: mass generates entropy through irreversible 

anchoring. Where mass is concentrated, entropy production is concentrated. The spatial variation 

of this entropy production compresses the emergent spatial scale, which is what we experience as 
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gravitational curvature. Objects fall toward regions of higher flip density — that is, toward mass 

— because the geometry of emergent space is shaped by the density of informational 

commitment. 

This section establishes a structural mapping: 

• Anchoring irreversibility → entropy production (15.2) 

• Entropy production rate ∝ mass density (15.5–15.6) 

• Spatial entropy gradients → projection-scale gradients (15.10) 

• Projection-scale gradients → curvature in weak-field limit (15.11–15.12) 

• Curvature → gravitational acceleration (15.12–15.13) 

This chain is consistent with the intrinsic mass formula (Section 9), the Planck minimal-flip 

boundary (Section 11.4), the inertial–rest equivalence condition (Section 12), and gravitational 

redshift compatibility (Section 11.6). 

15.7 Status 

This section does not derive Einstein's field equations. It establishes: 

• A consistent weak-field correspondence between flip density and gravitational potential. 

• A structural entropy–mass mapping that follows from the irreversibility of anchoring. 

• A concrete target (equations 15.13–15.15) that a full derivation must reproduce. 

A full gravity theory within VERSF requires: (i) constructing the emergent metric tensor from 

ℓ_b and Δt, (ii) deriving curvature tensors from flip-density gradients, and (iii) demonstrating 

that the resulting equations reduce to Einstein's equations (or a testable modification) in the 

appropriate limit. This remains an open research direction — but the structural correspondence 

established here identifies the path. 

 

16. Predictive Program: Computing K_c and p_v from 

Interface Dynamics 

For the general reader: Everything up to this point has been about building the machinery — 

showing that if you know the anchoring parameters of a particle, you can compute its mass. The 

real prize is computing those parameters from scratch, without using any measured masses as 

input. This section outlines how that computation would work. It's a research program, not a 

completed calculation — but it's a concrete one with clearly defined steps. 

16.1 Program Outline 

To convert consistency checks into genuine predictions, one must compute K_c and p_v from 

the BCB/One-Fold interface model rather than inferring them from measured masses. 
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(P1) Define the anchoring observable. Construct an observable (or operator) on the interface 

configuration space that flags micro-events — i.e., identifies when the interface enters the 

anchorable configuration subset (Section 4.3). This requires a precise characterization of which 

interface states contribute to flip progress. 

(P2) Compute per-mode parameters. For each candidate eigenmode j of the interface 

dynamics, compute: 

• The per-tick micro-event probability p_{v,j} from the mode's overlap with the anchorable 

configuration set (i.e., the fraction of ticks the mode spends in the anchorable region — 

see Section 13.1). 

• The barrier threshold K_{c,j} from the mode's phase-winding structure — specifically, 

the number of micro-events required to complete one full topological cycle (winding 

number = 1) of the interface phase. 

(P3) Apply the mass formula. Insert (K_{c,j}, p_{v,j}) into the conditional mass relation: 

m_j = ηℏp_{v,j} / (c²ΔtK_{c,j}) 

For multi-channel modes (Section 11.3), include the channel multiplicity χ_j. 

(P4) Compare to observation. Compute mass ratios m_μ/m_e, m_p/m_e, etc. from the derived 

parameters and compare to measured values without fitting those ratios. Section 11.3 provides a 

specific constraint: the proton computation must explain a mass ratio of ~1836, which cannot 

arise from channel multiplicity alone. 

(P5) Verify equivalence-principle consistency. For each stable eigenmode, compute the spatial 

projection scale ℓ_b from interface geometry and verify that it satisfies equation (12.9). Failure 

would indicate that the mode cannot support inertial–rest mass equivalence and is therefore not a 

viable particle candidate. 

(P6) Recover gravitational coupling. Construct the emergent metric tensor from ℓ_b and Δt, 

derive the curvature produced by flip-density gradients (Section 15), and verify that the weak-

field limit reproduces the Poisson equation ∇²Φ = 4πGρ_m with the correct proportionality 

constant. This would determine G within the framework. 

16.2 What "Computing p_v and K_c" Means Concretely 

Steps P1–P2 above are abstract. Here we specify what the computation reduces to 

mathematically. 

Computing p_v. Let the interface state at tick n be c[n] (the contrast pair), and let A ⊂ C denote 

the anchorable subset — the region of interface configuration space where micro-event 

registration occurs (Section 4.3). If the interface dynamics admit a stationary distribution ρ(c), 

then: 
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p_v = ∫_A ρ(c) dc 

In the book-consistent language: p_v (void coupling / resonance) is the fraction of ticks the 

mode's trajectory spends in states that resonate with the void substrate strongly enough to 

register a commitment micro-event. Computing p_v therefore reduces to two sub-problems: (i) 

computing the stationary measure ρ(c) of the interface dynamics, and (ii) defining the anchorable 

subset A. 

For a specific eigenmode j of the interface operator, this becomes: 

p_{v,j} = ∫_A |ψ_j(c)|² dc 

where ψ_j is the eigenmode's amplitude over configuration space — the mode's overlap with the 

anchorable region. 

Computing K_c. Under Aφ, each micro-event advances the interface phase φ by some 

increment Δφ_event. The barrier threshold is the expected number of micro-events required for 

one full topological winding (Δφ = 2π): 

K_c = 2π / E[Δφ_event] 

Equivalently, in action-ledger form: if each full cycle commits ΔJ = ηℏ (postulate Pℏ) and each 

micro-event commits a computable action increment δJ_event, then: 

K_c = ηℏ / δJ_event 

Computing K_c therefore reduces to computing the micro-event's mean contribution to phase 

advance (or equivalently, to cycle action). 

Minimal computable model (toy but non-handwavy). To illustrate that (p_v, K_c) are 

genuinely computable quantities — not just symbols — consider a stochastic phase-oscillator on 

S¹: 

φ_{n+1} = φ_n + δ + σξ_n (mod 2π) 

where δ is the coherent phase advance per tick, σ the noise amplitude, and ξ_n ∼ N(0,1). Define 

the anchorable subset as a phase window A = {φ : |φ − φ*| < ε}. If noise mixes phases 

sufficiently, ρ(φ) ≈ 1/(2π), giving: 

p_v ≈ ε/π 

The conditional phase advance per micro-event is E[δ + σξ | φ ∈ A] ≈ δ (under symmetric noise), 

so: 

K_c ≈ 2π/δ 
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The mass relation then becomes m ∝ p_v/K_c ≈ εδ/(2π²) — a computable prediction once ε and 

δ are derived from a specific BCB interface update rule. This is not the final theory, but it 

demonstrates that the program is mathematically well-posed: p_v is set by the size of the 

resonant window, K_c is set by the per-tick coherent phase advance, and mass emerges from 

their ratio. 

From toy model to VERSF first principles. The path from the toy model to genuine 

predictions involves four refinements: (i) specifying the BCB interface as a concrete dynamical 

system; (ii) defining a measurable resonance functional on the interface; (iii) computing the 

phase/action increment per micro-event from the interface geometry; and (iv) simulating the 

interface to identify stable eigenmodes and measure their (p_v, K_c) directly. The following 

subsection carries out steps (i)–(iii) explicitly. 

16.3 Minimal Computable Interface Model 

We specify a concrete lattice dynamics from which p_v and K_c can be measured by simulation. 

This is not claimed as the final BCB interface — it is the smallest model that is local, has a well-

defined stationary distribution, supports an operational resonance definition, and yields 

measurable (p_v, K_c). 

State space. Let the interface be a periodic L × L lattice. At each site i, define a contrast vector 

c_i[n] ∈ ℝ² with phase φ_i[n] = atan2(c_{i,2}, c_{i,1}). 

Update rule. Local diffusion + noise (discrete-time Langevin): 

c_i[n+1] = (1 − λ) c_i[n] + (λ/|N(i)|) Σ_{j ∈ N(i)} c_j[n] + σ ξ_i[n] 

where N(i) are nearest neighbors (4-neighborhood, periodic boundary), 0 < λ < 1 controls spatial 

coupling (interface stiffness), ξ_i[n] ∼ N(0, I₂) i.i.d., and σ sets noise amplitude. This update is 

local (only neighbors contribute), Markov (depends only on current state), and stable under 

coarse-graining (diffusive linear dynamics are closed under block-averaging). 

Resonance functional (void coupling). Define local phase coherence via the Kuramoto-style 

order parameter: 

r_i[n] = |( 1/|N(i)| ) Σ_{j ∈ N(i)} exp(iφ_j[n])| 

where r_i ≈ 1 means locally phase-aligned (resonant/coherent) and r_i ≈ 0 means disordered. The 

anchorable subset is A = {i : r_i[n] ≥ r*} for a threshold r* ∈ (0, 1). The micro-event indicator is 

X_i[n] = 𝟙{r_i[n] ≥ r*}. The coupling probability is then: 

p_v = E[X_i[n]] ≈ (1/(TL²)) Σ_n Σ_i X_i[n] 

This is literally the fraction of site-ticks in the resonant set — void coupling as resonance, 

measured from the simulation. 
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Phase winding (void anchoring). Track the accumulated phase advance during micro-events 

only: 

W_i[n+1] = W_i[n] + X_i[n] · Δφ_i[n] 

where Δφ_i[n] = wrap(φ_i[n+1] − φ_i[n]) ∈ (−π, π]. A cycle completes when |W_i| ≥ 2π; at that 

point, W_i resets and a bit-flip commits. The anchoring depth is then: 

K_c = E[ #{micro-events between consecutive 2π windings} ] 

measured by recording how many micro-events occur between windings, averaged across sites 

and time (after burn-in). This turns K_c into a measured outcome of the phase dynamics, not a 

chosen threshold — anchoring depth is how many resonant ratchet clicks it takes to close a full 

cycle. 

Eigenmodes. The deterministic part of the update is linear: c[n+1] = A c[n] + σξ[n], where A is 

the neighbor-averaging operator. Its eigenvectors are Fourier modes on the lattice. Exciting a 

particular wavevector k by initializing c_i[0] = (cos(k · x_i), sin(k · x_i)) and evolving under 

noise yields mode-specific coherence statistics → different p_v, different winding behavior → 

different K_c. Different modes produce different flip completion densities C_j = 

p_{v,j}/K_{c,j}, and therefore different mass scales. 

Parameter scan. The first scan varies three parameters: λ (spatial coupling), σ (noise), r* 

(resonance threshold). Qualitative expectations: higher λ → more local coherence → higher p_v; 

higher σ → more mixing but reduced coherence; higher r* → stricter resonance → lower p_v. 

The structure of K_c — how phase evolves inside resonant states — is where mode-dependent 

mass ratios emerge. 

What this achieves. A simulation of this model produces, for each mode k: a measured p_v,k, a 

measured K_c,k, and therefore a predicted mass ratio m_k/m_{k'} = C_k/C_{k'} with no free 

parameters beyond the interface dynamics (λ, σ, r*). Whether these ratios bear any relationship 

to observed particle mass ratios is the empirical test of the framework. If they do not — for any 

choice of (λ, σ, r*) — the framework is falsified at the level of this minimal model. 

16.4 What Success Looks Like 

The program succeeds if step P4 reproduces known mass ratios to within the precision of the 

interface eigenmode calculation. Partial success — e.g., correctly ordering the mass hierarchy or 

predicting ratios to within an order of magnitude — would still constitute significant evidence 

for the framework. Failure to reproduce any observed mass pattern would indicate either that the 

interface dynamics are incorrectly specified or that the single-channel mass formula requires 

modification (e.g., multi-channel coupling for composite particles). 

16.5 Relation to Existing Approaches 
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The structure of this program — classifying stable modes of a dynamical system and reading off 

physical observables from mode parameters — is analogous to lattice QCD computations of 

hadron masses [R15], where one solves a discretized field theory and extracts mass eigenvalues. 

The key difference is that the "field theory" here is the BCB interface dynamics on a tick–bit 

substrate rather than a gauge theory on a spacetime lattice. Whether this analogy is deep or 

superficial is itself an open question that the program's execution would resolve. 

16.6 Near-Term Falsifiability Constraints 

Even prior to executing the eigenmode computation program, the framework is constrained by 

existing observations: 

(i) Equivalence-principle universality. Any coupling perturbation mechanism entering δp_v 

must be universal across ordinary matter at the 10⁻¹⁵ level [R9, R10] (Section 12.9), strongly 

restricting admissible void-coupling dynamics. Mode-dependent perturbation responses would 

produce composition-dependent deviations already excluded by experiment. 

(ii) Discrete mass spectrum. Stable particle-like modes correspond to discrete coarse-graining 

fixed points in (p_v, K_c) space (Section 14), implying that isolated elementary rest masses 

should not form a continuous stable spectrum. Discovery of an elementary particle with 

continuously tunable rest mass (not composite) would contradict the fixed-point picture. 

(iii) Maximum mass from horizon formation. Under the standard GR bridge, flip completion 

density beyond the Planck regime compresses the projection scale below the Schwarzschild 

radius (Section 11.5), precluding stable particle-like modes above the Planck mass. Observation 

of a stable elementary particle above m_P would require modifying either the framework or the 

GR bridge. 

These are conditional but operationally testable constraints independent of completing the full 

eigenmode program. 

16.7 Limitations 

For the referee's convenience, we collect the principal limitations of the present work: 

(a) No mass predicted from first principles. The mass formula m = ηℏp_v/(c²ΔtK_c) expresses 

mass in terms of anchoring parameters, but no particle's (K_c, p_v) values are derived. The 

framework parameterizes the mass hierarchy; it does not yet explain it. Prediction requires 

executing the eigenmode program (P1–P4 above). 

(b) Two free parameters per particle, reduced to one by stability. The mass formula has two 

parameters (p_v, K_c) per particle. Section 14.6 argues that stability conditions constrain stable 

modes to a one-dimensional fixed-point curve p_v = f(K_c), reducing effective freedom to one 

parameter (with the off-curve displacement controlling decay width). However, this reduction is 

structural, not yet computed; the framework becomes fully predictive only when the eigenmode 

program (Section 16) determines f and the fixed-point locations. 
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(c) Composite-particle masses require coarse-grained eigenmode computation. The single-

channel formula applies to elementary flip modes. Hadron masses, which arise predominantly 

from QCD binding energy, require computing effective (p_v, K_c) for the entire confined 

eigenmode (Section 11.3) — a substantially harder problem analogous to lattice QCD. 

(d) Gravity section is a correspondence target only. Section 15 identifies the qualitative 

structure the framework must reproduce (Poisson equation, weak-field limit) but does not derive 

it. The chain from flip-density gradients to the Poisson equation requires a nonlinear ℓ_b → 

metric mapping that is not constructed here (Section 15.5). 

(e) Phase structure (Aφ) is assumed, not derived. The S¹ topology of the interface effective 

state space is a representational assumption contingent on the ℝ² metric structure of the contrast-

pair space. Deriving it from BCB axioms remains open (Section 7.4). 

These limitations define the research frontier. The contribution of this paper is the framework 

itself — a structurally consistent, physically interpretable parameterization of mass with a 

concrete path to prediction — not the predictions themselves. 

 

17. Conclusion 

This paper establishes a conditional mass-scale formula within the VERSF/BCB–TPB void-

anchoring framework, stress-tests it across multiple physical regimes, and derives the structural 

condition for inertial–rest mass equivalence. The result rests on three pillars: 

Pillar 1 (Structural — Layer A). The tick–bit anchoring model, with Bernoulli micro-events 

reduced from locality, Markov sufficiency, and closure under coarse-graining, provides a 

mathematically rigorous foundation for irreversible bit-flipping. Anchoring times, stability, and 

scaling are derived without reference to background time. 

Pillar 2 (Postulational). The action postulate Pℏ — that each bit carries a fixed cycle-action 

quantum ΔJ_bit = ηℏ — is motivated by topological cycle-closure requirements on irreversible 

anchoring but remains an explicit postulate awaiting deeper derivation. It is falsifiable through 

the predictive program (Section 16). 

Pillar 3 (Bridge — Layer B). Standard action–energy and mass–energy relations from 

relativistic quantum mechanics translate the anchoring cycle into a rest-mass formula: m = 

ηℏp_v/(c²ΔtK_c). 

The extended analysis of Section 11 demonstrates that this formula behaves consistently under 

stochastic variation, multi-channel generalization, the Planck-mass limit (yielding K_c,P ∼ 2π as 

a nontrivial structural result), gravitational redshift, and unstable-particle interpretation. The 

mass hierarchy across twenty-three orders of magnitude — from the Planck mass to the electron 

— maps onto a barrier-height hierarchy from K_c ∼ 1 to K_c ∼ 10²³. 
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Section 12 establishes that the equivalence of inertial and rest mass — a foundational principle in 

general relativity — is recovered within the anchoring framework under a single structural 

condition: the spatial projection scale ℓ_b must be determined by the same anchoring parameters 

(K_c, p_v) that set the tick-count per flip. The equivalence principle thereby becomes a 

constraint on how information projects into emergent geometry, rather than a separate postulate. 

Section 15 extends this geometric thread by constructing a consistent mapping from mass density 

to flip-entropy density and from spatial flip-density gradients to projection-scale curvature, 

whose weak-field limit targets the structure of the Newtonian Poisson equation. Gravity, in this 

framework, would be the geometric response of emergent space to flip-entropy gradients — a 

structural correspondence that identifies a concrete target for a full derivation of Einstein's field 

equations from anchoring dynamics. 

The resulting framework identifies mass as set by the tick-count per flip — determined by the 

ratio of coupling strength to barrier height. It reinterprets the Compton period as the emergent-

time image of the substrate tick-count per bit-flip, translates the mass spectrum problem into an 

eigenmode computation on the BCB interface, and identifies three necessary conditions (S1–S3) 

for stable particle-like modes. Mass as rest energy (tick-count per flip mapped to energy via the 

Layer B bridge) and mass as inertia (resistance to acceleration) coincide numerically but arise 

from distinct structural layers — their equality is the structural content of the equivalence 

principle (Section 12.8). 

What this paper does not do is predict any particle mass from first principles. That achievement 

requires executing the research program of Section 16: computing (K_c, p_v) from interface 

dynamics and verifying the equivalence-principle condition (12.9) from interface geometry. 

Until then, the contribution is a new, physically interpretable, and mathematically consistent 

parameterization of the mass scale — together with a concrete roadmap for turning consistency 

into prediction. 
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