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1. General Reader Abstract

What this paper is about, in plain language.

Everything around you — your body, the light on this page, the device in your hand — has mass.
The Standard Model of particle physics explains how masses arise (via Yukawa couplings to the
Higgs field and symmetry breaking) but does not predict the numerical values of those couplings
from first principles. The electron is roughly 1/1836 the mass of a proton. Why those numbers?
No existing theory computes them.



This paper proposes a new way to think about where mass comes from. The core idea is that
reality, at its most fundamental level, operates like a discrete information-processing system — a
substrate that "ticks" forward one step at a time, flipping bits via irreversible transitions in a
process we call void anchoring. Each particle corresponds to a particular pattern of bit-flipping,
and the intrinsic flip frequency of that pattern — set by how many substrate ticks it takes to
complete one flip cycle — determines the particle's mass. Fewer ticks per flip means higher
frequency, higher energy, and therefore greater mass.

What is void anchoring? Imagine the ocean surface. A surfer rides the waves — strongly
coupled to the water, their motion tracking the oscillations of the surface. They move with the
medium,; their behavior reflects local fluctuations. A buoy anchored to the seabed, by contrast, is
both coupled and anchored. It responds to waves, but it is tethered to something deeper. The
tether prevents it from drifting freely.

Two distinct concepts are at work:

e Void coupling (resonance) (p_v) — the per-tick probability that the interface mode
enters a void-resonant micro-event configuration. This measures how readily the mode
couples to the void substrate at each tick. In the buoy analogy: responsiveness to waves.

e Void anchoring (commitment depth) (K c) — the number of micro-events that must
accumulate before an irreversible bit-flip commits. In the buoy analogy: the depth of the
tether.

Void coupling determines how readily micro-events occur; void anchoring determines how many
are required before an irreversible bit-flip commits. Neither alone sets the mass. The quantity
that tracks rest mass is the flip completion per tick p_v/K ¢ — coupling resonance divided by
commitment depth — which sets the tick-count per flip (K_c¢/p_v). A particle is not merely
coupled to the void — it is anchored through a barrier, and its mass emerges from the interplay
of both parameters: strong coupling with a low barrier means fewer ticks per flip (which, once
mapped to emergent time via the standard physics bridge, corresponds to high energy and high
mass); weak coupling or a high barrier means more ticks per flip (low energy, low mass). The
buoy's resistance to being dragged sideways (inertia) is not the same as its bobbing frequency
(rest energy) — a distinction that becomes precise in Section 12.

Key definitions. Void coupling (resonance): p_v (micro-event probability per tick). Void
anchoring (commitment depth): K ¢ (micro-event threshold for irreversible flip). Flip
completion per tick: p_ v/K c. Tick-count per flip: K c/p_v. Mass scale (after Layer B bridge): m
xp v/iK c.

In plain language: a particle is not a solid object at the deepest level. It is a repeating pattern of
information updates on the void substrate. Each time that pattern completes one full cycle, it
carries a fixed chunk of physical action (postulate P#). The fewer substrate ticks that cycle takes
to complete, the higher the particle's energy — and higher energy means higher mass. Mass is
not a mysterious property; it is the rate at which a stable information pattern completes its
fundamental cycle.



A crucial subtlety: since bit-flips constitute emergent time in this framework, all temporal
language ("frequency," "fast," "slow") is Layer B shorthand that applies only after tick-counts
are mapped to an external clock. At the fundamental level (Layer A), the correct statement is not
that heavy particles "flip faster," but that they require fewer substrate ticks per flip — a smaller
ratio K _c¢/p_v. Under the standard physics bridge, this corresponds to a shorter cycle period and
therefore larger rest energy E, and hence larger mass via E = mc?.

We do not claim to have solved the mass spectrum from scratch. What we show is that, given
one well-motivated postulate about how action (a fundamental quantity in physics) relates to bit-
flipping, the anchoring framework produces a compact formula for mass that is internally
consistent with known physics. We stress-test this formula across multiple regimes — stochastic
coupling, composite particles, the Planck mass, gravitational redshift, and particle decay — and
show that the equivalence of inertial and rest mass (a foundational principle in general relativity)
emerges as a structural consequence. We also lay out a concrete research program for turning
this consistency result into genuine predictions.

2. Technical Abstract

We develop a tick—bit (pre-temporal) void-anchoring model in which irreversible bit-flipping
occurs after K_c anchoring micro-events, each occurring with per-tick probability p_v. We argue
that Bernoulli micro-event increments are forced by locality, Markov sufficiency, and closure
under coarse-graining: under these assumptions, the admissible micro-event class reduces to
conditionally independent Bernoulli increments and their binomial coarse-grainings. We then
introduce an explicit postulate (P#) that each completed bit carries a fixed cycle-action increment
AJ bit =nh, motivated by a topological cycle-closure condition on irreversible anchoring.

Combining (a) the anchoring time scale, (b) postulate P#4, and (c) the standard action—energy and
mass—energy bridges from relativistic kinematics, we derive a conditional mass-scale relation:

m =nhAp_v/ (c*AtK c¢)

Mass is thereby identified as proportional to the ratio p_v/K ¢ — the coupling probability per
tick divided by the barrier height — which sets the expected flip increment per tick (and hence
the tick-count per flip K _c/p v). We stress-test this relation across multiple regimes: stochastic
coupling (p_v < 1), multi-channel flipping, the Planck-mass limit (yielding K ¢,P ~ 2w as a
nontrivial structural identification), gravitational redshift compatibility, and unstable-particle
interpretation. We derive the structural condition under which inertial mass (resistance to
acceleration) equals rest mass (flip-cycle energy), showing that these two operationally distinct
manifestations of mass coincide when the spatial projection scale is determined by the same
anchoring parameters that set the tick-count per flip.

We identify three necessary conditions for stable particle-like modes and outline a research
program to compute (K ¢, p_v) from BCB interface eigenmodes, which would convert these
consistency checks into genuine mass-spectrum predictions.



3. Scope: What Is Derived vs What Is Assumed

For the general reader: Science advances by being honest about its assumptions. Every
physical theory rests on postulates — statements accepted as starting points. Newton assumed
forces act at a distance; Einstein assumed the speed of light is constant. What matters is whether
the assumptions are well-motivated, whether the consequences are testable, and whether the
framework reveals structure that wasn't visible before. This section lays out exactly what we
assume and what we derive, so the reader can judge for themselves.

This paper operates on two distinct layers:

Layer A — Internal to the VERSF/BCB-TPB anchoring model. These are purely tick-
domain statements about anchoring times, stability, and scaling. They require no reference to
background time, energy, or relativistic kinematics. Results in this layer are derived from the
axioms of the tick—bit framework alone.

Layer B— Mapping to established physics. This layer uses standard relations connecting
action to energy (the Bohr—Sommerfeld/de Broglie relation for stationary states) and energy to
mass (Einstein's E = mc?). These are imported from existing physics; we claim consistency with
them, not derivation of them.

Central Claim (Conditional)

Given postulate P#, tick—bit anchoring with parameters (K ¢, p_v), and the standard
action—energy—mass bridge, the model implies a mass scalem« p_v/K c.

What Is Explicitly Not Derived

The following quantities and relations are taken as external inputs. They are not derived within
the VERSF anchoring framework:

e ¢ (speed of light) — imported from special relativity

e & (reduced Planck constant) — imported from quantum mechanics

e At =t_P (tick spacing identified with Planck time) — a calibration assumption, not a
derived result

e E =mc? (mass—energy equivalence) — imported from special relativity

e Ph (action postulate) — motivated by topological cycle-closure arguments (Section 7)
but not derived from tick—bit axioms alone

e P =n#A/t_b (de Broglie momentum identification) — imported from quantum kinematics
as a Layer B bridge element; used in the inertial mass derivation (Section 12)

The value of this paper lies not in replacing these inputs but in showing that, given them, the
anchoring framework produces a structurally interpretable mass formula with a concrete path to
predictive computation.



Notation
The following symbols are used throughout, grouped by domain:

Layer A (substrate primitives — no background time)

Symbol Meaning
n Tick index (substrate update ordering)
pVv Per-tick void-coupling (resonance) probability
K c Barrier threshold (micro-events per flip)
X n Bernoulli micro-event increment at tick n
N[n] Cumulative micro-event count by tick n

N_anchor Tick-count to bit-flip

B[n] Cumulative bit-flip count by tick n

o Dimensionless perturbation strength

X Channel multiplicity (composite particles)

Postulate

Symbol Meaning
n Action normalization factor (1 = 2z for full cycle)

Layer B (emergent quantities — require At calibration or standard physics bridge)

Symbol Meaning

At Emergent tick-to-clock calibration

T bit Emergent flip period (At - K c/p v)

tb Bit-to-length spatial projection scale

vV e Flip frequency (1/T_bit=p v/(AtK c¢))

C(x)  Flip completion density field (p v(x)/K c(x))
$(x) Entropy production density

() Emergent gravitational potential

Terminology Alignment

In the VERSF framework, void coupling denotes the resonant susceptibility of an interface mode
to the void substrate — how readily the mode enters micro-event—producing configurations. Void
anchoring denotes the irreversible commitment mechanism (barrier-crossing and cycle closure)
by which micro-events accumulate into a stable bit-flip. In this paper these map to: coupling
(resonance) — p_v (or p_v(c[n])); anchoring (commitment depth) — K _c. The flip completion
per tick is p_v/K c and the tick-count per flip is K _c¢/p_v. We avoid using "anchoring strength"



to mean K _c alone; where disambiguation is needed, we write anchoring depth for K _c and
coupling resonance forp_v.

Conceptual summary. Void coupling (resonance) = how strongly a mode resonates with the
void substrate (probability of micro-event per tick). Void anchoring (commitment depth) = how
much irreversible commitment is required to complete a stable informational cycle (barrier
threshold). Rest mass = the intrinsic cycle rate of a resonant anchored mode (tick-count per flip,
mapped to energy via Layer B bridge). Inertial mass = the geometric resistance to deforming the
spatial projection of that anchored mode (Section 12).

Bridge Chain Summary
The logic from substrate primitives to mass proceeds through a single chain:

Tick-count per flip (K _c/p v, Layer A) — Flip period (At - K c/p_v, Layer B bridge) —
Action per cycle (n%, Postulate P#) — Rest energy (n%/T_bit, imported action-energy relation)
— Rest mass (E/c?, imported mass-energy equivalence)

Each arrow introduces one assumption or import. The mass formula m = nap_ v/(c*AtK c) is the
algebraic composition of the entire chain. The only element internal to the VERSF framework is
the first: the tick-count per flip.

The inertial mass derivation (Section 12) requires one additional Layer B import beyond this
chain: the de Broglie momentum identification P =n#/_b. This enters when defining
momentum for the projected spatial dynamics and is listed explicitly in "What Is Not Derived"
above.

4. Conceptual Foundation: What Is Void Anchoring?

For the general reader: Section 1 introduced void anchoring through the surfer/buoy analogy.
This section makes each element precise: the void, the interface, the bit-flip, and the connection
to mass. If you understand this section, the rest of the paper is a formalization of these ideas.

4.1 The Void (Operational Definition)

In VERSF, the "void" is not empty space and not the QFT vacuum. It is defined operationally as
the null element in the algebra of distinctions: the configuration in which all bits occupy their
reference state — no bit has been flipped. In this sense the void carries no informational content
relative to the interface, and it is the reference configuration against which all flips are measured.
Physical structure is then modeled as stable, cyclic patterns of bit-flips written against this null
substrate. The total number of bits is fixed (Bit Conservation); only their states change.

For the general reader: Think of the void as the "blank" against which all information is
written. It isn't "nothing" — it is the reference state that makes distinctions possible, just as



silence is the reference state that makes sound meaningful. The void has no structure of its own;
it is defined entirely by what it lacks (bits).

4.2 The Interface: Where Structure Meets the Void

Physical reality exists at the interface between structured information and the void substrate.
This interface is where the action happens — it is the boundary between "something" and
"nothing," the frontier where new information is being written.

The interface has a minimal internal structure: a two-component configuration ¢ = (c1, ¢2) that we
call the contrast pair. This is the simplest possible distinction — a binary degree of freedom at
the boundary between void and structure. Every more complex structure (particles, forces,
spacetime geometry) is built from patterns of these minimal contrasts.

4.3 Anchoring: Irreversible Bit-Flips

Void anchoring is the irreversible commitment step by which the interface locks in a bit-flip,
characterized by the barrier threshold K c. Void coupling (resonance) controls the micro-event
arrival propensity p_v — how readily the interface mode enters void-resonant configurations at
each tick. The resulting flip completion per tick is p_v/K c. We define the elementary transition
precisely:

Definition. A bit-flip is the irreversible interface transition triggered when cumulative anchoring
micro-events reach the barrier threshold K _c. Bits are not created or destroyed — the total bit
count is conserved (BCB). What changes is their state: a bit flips from one stable configuration
to another.

"Irreversible" here means operationally irreversible under the admissibility and non-redundancy
criteria: once a bit has flipped, the new state is stable under coarse-graining and cannot be
reversed without accumulating K ¢ fresh micro-events in the opposite direction. This is
analogous to the operational irreversibility of measurement outcomes in quantum mechanics — a
bit-flip is a stable macroscopic record, not a claim about microscopic non-unitarity.

This doesn't happen all at once. At each discrete tick of the substrate, the interface has some
probability of registering a micro-event — a small increment of progress toward the flip barrier.
After enough micro-events accumulate (reaching the barrier threshold K _c¢), the bit flips: the
irreversible transition locks in.

The analogy is a ratchet mechanism. Each micro-event clicks the ratchet forward one notch.
After K c clicks, the mechanism snaps over — the bit flips to its new state. The next flip cycle
begins.

4.4 Why This Connects to Mass

Here is the conceptual link: mass is set by the tick-count per flip.



A particle, in this framework, is a self-sustaining pattern of bit-flips at the interface — a mode
that repeatedly flips bits in a stable, cyclic process. The mass of that particle is set by the tick-
count per flip cycle (K _c/p_v). Fewer ticks per cycle corresponds — once mapped to an external
clock via the Layer B bridge — to higher frequency, higher energy, and therefore greater mass
via E = hv. More ticks per cycle corresponds to lower energy and lower mass. (Since bit-flips
generate emergent time, "frequency" is Layer B shorthand. The fundamental Layer A quantity is
the tick-count per flip, not a rate in time.)

This may seem counterintuitive — one might expect that heavier objects should require more
ticks to flip, not fewer. But that intuition conflates two distinct meanings of "mass":

e Mass as rest energy (tick-count per flip — energy via Layer B bridge). Fewer ticks
per flip — higher energy via E = hv. The electron, with K ¢ ~ 10%, takes enormously
many ticks per flip — correspondingly low energy and low mass. The Planck mass, with
K ¢ ~ 2m, completes a flip in a handful of ticks — the highest energy and mass the
framework admits.

e Mass as inertia (resistance to acceleration). This is the dynamical response to external
forcing (F = ma). A massive particle resists acceleration not because it flips slowly, but
because perturbing its flip pattern requires overcoming a structure that is tightly coupled
to emergent geometry (Section 12).

These two quantities — rest energy and inertial resistance — coincide numerically, but they arise
from distinct structural layers. Their equality is the equivalence principle, and Section 12 shows
the structural condition under which it holds.

This is not a metaphor — the rest of the paper makes it mathematically precise. The barrier
threshold K c and the per-tick coupling probability p v together determine the tick-count per
bit-flip (K_c/p_v), and therefore the intrinsic flip frequency and rest mass. The formula m o«
p_v/K c is the quantitative expression of this relationship.

Caution. In this paper, "deep anchoring" (large K c) does nof mean "high mass." Large K ¢
means greater commitment depth — more stability — but also more ticks per flip, hence lower
rest energy. The quantity that tracks rest mass is the flip completion per tick p v/K ¢, not the
anchoring depth K _c alone.

4.5 Why "Void" Anchoring?

The word "void" is not decorative. The anchoring process is specifically an interaction between
the informational interface and the void substrate. The void is not passive — it is the ground
against which bit-flips occur. A micro-event is, operationally, the interface coupling to the void:
registering an increment of progress toward the next bit-flip.

This is why the coupling probability is called the void-coupling probability p v: it measures
how readily the interface couples to the void at each tick. Strong coupling (high p_v) means the
interface is in close contact with the void substrate — micro-events occur at most ticks. Weak



coupling (low p_v) means the interface is partially decoupled — micro-events are sparse, many
ticks pass per flip, and the mode is fragile.

4.6 From Concept to Formalism
The rest of this paper translates these concepts into mathematics:

e Section 5 formalizes the tick—bit process and derives the statistics of anchoring.

e Section 6 shows that the Bernoulli micro-event law is structurally forced, not chosen.

e Section 7 introduces the action postulate linking anchoring to quantum mechanics.

e Sections 8-9 derive the mass formula and establish the proposition.

o Sections 10—12 stress-test the formula and derive the equivalence of inertial and rest
mass.

e Sections 14-16 address stability, the mass-gap problem, the emergence of gravity from
flip-entropy gradients, and the predictive program.

With this conceptual map in hand, the formal development should be considerably easier to
follow.

5. Tick—Bit Anchoring Core (No Background Time)

For the general reader: This section translates the conceptual picture of Section 4 into precise
mathematics. We build the anchoring process from first principles — discrete ticks, probabilistic
micro-events, and a barrier threshold — without ever assuming that time flows continuously.
Time will emerge later from the accumulation of bit-flips.

5.1 Primitives

The substrate updates in discrete ticks indexed by n =0, 1, 2, ... . No background time parameter
is introduced; the tick index n is the sole ordering primitive.

At each tick n, an anchoring micro-event may occur. Operationally, a micro-event corresponds
to the interface entering an anchorable configuration subset — a region of the interface state
space in which a void-coupling commitment increment is registered (Section 4.3). The precise
characterization of this subset depends on the detailed interface dynamics and is addressed in
Section 16; here we treat micro-event occurrence as primitive.

The micro-event probability p_v(c[n]) € [0, 1] may depend on the current interface configuration

c[n] = (ci[n], c2[n]). Operationally, p_v(c[n]) is the occupancy measure of the anchorable subset
A — the fraction of the configuration space accessible from c[n] that lies within A:

p_v(c[n]) = u(A [ c[n])



where p is the natural measure on the interface configuration space. (The precise form of p
depends on the interface dynamics; here we leave it abstract.) Define Bernoulli increments that
are conditionally independent given the interface sequence {c[n]}:

X n|c[n] ~ Bernoulli(p_v(c[n]))

The cumulative micro-event count is:

N[n] := Zq1 X

5.2 Bit Threshold

A bit — the irreversible threshold transition defined in Section 4.3 — is triggered when the
cumulative micro-event count reaches an integer threshold K ¢ € N:

N _anchor :=inf{n>0:N[n]>K c}

For the general reader: Think of K c as the number of clicks on the ratchet (Section 4.3)
needed to flip one bit. Higher K ¢ means a higher barrier — more ticks required per flip. Lower
K ¢ means fewer ticks per flip.

Terminology. A cycle is the operationally closed sequence of K ¢ micro-events that advances
the cycle-action ledger by AJ bit =n# (Section 7) and triggers one irreversible bit-flip. "One
cycle" and "one bit-flip" are synonymous throughout this paper.

5.3 Homogeneous Statistics

In the homogeneous case p_v(c[n]) =p_v (constant), N_anchor follows a Negative Binomial
(Pascal) waiting-time law — the distribution of the number of independent trials needed to
accumulate K _c successes, each with probability p_v. The expectation and variance are:

E[N anchor]=K c/p v

Var(N_anchor)=K c¢(1 —p v)/p v?

5.4 Anchoring Stability (Discrete Lemma)

The sharpness of the anchoring time is controlled by the coefficient of variation:

CvV = \/(Var(N_anchor)) / E[N_anchor] = (1 - p v)/K ¢)

For fixed p_v < 1, stability scales as CV ~ 1/VK_c. As K_c increases, the flip tick-count
N_anchor becomes sharply concentrated around its mean. In the sparse-event limitp v — 0, the

factor (1 —p_v) — 1 and the discrete CV collapses exactly to the continuous Erlang result CV =
1/NK_c, confirming the correspondence between discrete and continuous formulations.

10



5.5 State-Dependent Coupling

When p_v depends on the evolving interface state c[n], the cumulative expected micro-event
count is:

An] =X p_v(c[j])
The mean-field anchoring estimate becomes:
N anchor=inf{n: A[n]>K c}

Note that under state-dependent coupling, the variance of the anchoring time becomes path-
dependent — the simple CV = 1/7K_c result no longer holds exactly, and anchoring stability
must be assessed along specific interface trajectories.

6. Structural Forcing of the Bernoulli Law

For the general reader: A common criticism of theoretical models is "you just chose that
mathematical form — why not something else?" This section answers that challenge. We show
that the Bernoulli (coin-flip) law for micro-events isn't an arbitrary choice — it is the natural
admissible form compatible with a small set of physically reasonable requirements. If the
anchoring process satisfies basic principles of locality, informational efficiency, and consistency
across scales, then the micro-event law must take the Bernoulli form.

6.1 Admissibility Axioms for Anchoring Micro-Events
We impose four minimal conditions on the micro-event law:

A1l (Locality on the interface). The probability of a micro-event at tick n depends only on the
current interface state c[n], not on hidden global variables.

A2 (Markov sufficiency / BCB non-redundancy). Given c[n], additional dependence on the
detailed micro-history {Xi, ..., X {n—1}} is operationally redundant. Two interface
configurations that are operationally equivalent (identical c[n]) must produce identical anchoring
statistics.

A3 (Closure under coarse-graining — model selection constraint). Aggregating ticks into
blocks of size m preserves the functional form of the micro-event law. Specifically, we restrict to
micro-event descriptions whose coarse-grained statistics remain within a one-parameter hazard
family. This is a deliberate admissibility restriction, not a theorem of nature: it excludes models
with hidden internal state variables that would require additional parameters at coarser scales.
Alternatives to A3 correspond to enriching the micro-event model with internal memory or
multi-state structure beyond the interface observable c[n].
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A4 (Finite throughput). For any physically realized interface trajectory c[n], expected
anchoring time is finite: E[N_anchor] < oo.

6.2 Proposition: Admissible Micro-Event Class

Proposition (Admissible class reduction). Under axioms A1-A3, the admissible micro-event
model reduces to a conditionally memoryless hazard parameterization. In discrete ticks, this is
naturally represented by conditionally independent Bernoulli increments and their binomial
coarse-grainings.

Proof outline.

(i) A1 + A2 force conditional independence. Suppose the micro-event law at tick n depended
on elapsed waiting time since the last micro-event, beyond what is encoded in c[n]. Then two
operationally equivalent states (identical c¢[n]) would produce different observable anchoring
statistics — violating A2. Therefore, given the interface sequence {c[n]}, the increment at tick n
can depend only on c[n], and the increments are conditionally independent.

(i1) Conditional independence on {0, 1} implies Bernoulli. Given conditional independence,
each increment X n takes values in {0, 1} with some distribution parameterized by c[n]. The
only free parameter is the success probability p_v(c[n]), yielding X n |c[n] ~
Bernoulli(p_v(c[n])).

(ii1) A3 confirms closure. Under block aggregation (grouping m consecutive ticks with constant
¢), the count S m =X, + -+ + X_m follows a Binomial(m, p_v) distribution. The sufficient
statistic is the count S_m and the per-trial hazard p_v is preserved, so the aggregated law remains
within the same parametric family. More general renewal processes with non-geometric waiting
times would violate this closure: aggregating m ticks would introduce dependence on the
position within the current waiting interval, requiring an additional parameter beyond the per-
trial hazard and thereby violating A2 at the coarse-grained scale. The geometric distribution
(equivalently, Bernoulli trials in discrete time) is the unique discrete memoryless distribution, a
classical result related to the Rényi characterization theorem for Poisson processes in the
continuous-time limit [R4]. Formally, A3 is taken to require closure within a one-parameter
hazard family under block aggregation; under this requirement, the unique admissible discrete
waiting-time law is the geometric distribution, which is equivalent to Bernoulli increments. In
other words, A3 is a modeling restriction selecting hazard descriptions stable under block
aggregation; relaxing A3 would require introducing additional internal state variables beyond
c[n], producing a richer but less parsimonious micro-event model.

(iv) A4 excludes degeneracy. Finite throughput requires p_v > 0 on the physically realized
trajectory, ensuring the Negative Binomial waiting time has finite expectation. m

For the general reader: What this proposition says, in essence, is that if you want an anchoring
process that (a) only cares about the current interface state, (b) doesn't carry hidden memory
beyond that state, and (c) looks the same whether you observe it tick-by-tick or in blocks, then
you are naturally led to a coin-flip process. More complex alternatives either smuggle in hidden

12



memory or break consistency across scales. (Note: the interface state c[n] itself does carry
memory — one micro-event can change c[n], which then shifts the coupling probability at the
next tick. The point is that c[n] carries all the relevant memory; there is no additional hidden
dependence on elapsed time or past micro-event history beyond what is encoded in ¢[n].)

6.3 Continuous-Time Limit

If one introduces an emergent calibration At (mapping ticks to a macroscopic clock) and takes
p_v =7 vAt with At — 0 while holding y v fixed, the Bernoulli counting process converges to a
Poisson process with rate y_v. In this limit, N_anchor - At converges to the Erlang-distributed
anchoring time:

T anchor ~ Erlang(K ¢,y v)

with E[T anchor] =K c/y vand Var(T anchor) =K c/y v This recovers the continuous-time
results as a corollary of the tick-domain analysis. The continuous formulation is a derived limit,
not the starting point.

7. The Action Postulate (P%): Motivation and Statement

For the general reader: In physics, "action" is a fundamental quantity that measures the total
dynamical content of a process — roughly, energy multiplied by time. Quantum mechanics tells
us that action comes in discrete packets (quanta) of size % (the reduced Planck constant). This
section introduces the paper's key postulate: that each bit of information carries exactly one
quantum of action corresponding to a complete cycle. This is the load-bearing assumption of the
paper, and we take care to motivate why it should hold rather than simply asserting it.

7.1 Motivation and Assumptions

We motivate the action postulate through four considerations. Crucially, the emergence of a
phase variable is treated here as an explicit representational assumption (A¢), not a derived
consequence of the contrast-pair axioms.

(M1) Irreversibility requires cycle closure. Anchoring is irreversible: once a bit has flipped,
the interface must return to an operationally equivalent configuration class for the next
independent bit to begin. Otherwise successive bits would not be independent, violating the non-
redundancy principle (BCB). Therefore, each bit event corresponds to a closed operational cycle
of the interface.

(A @) Phase structure assumption. The interface contrast pair ¢ = (c1, ¢2) is a tWo-component
object (Section 4.2). We assume that the contrast-pair space carries a real-valued metric structure
(i.e., c takes values in R?); this is itself a nontrivial assumption about the interface algebra — if
the contrast pair were discrete, categorical, or non-Euclidean, the topology below would not
follow. Under coarse-graining constrained by non-redundancy, only relative contrast and cycle-
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class information is retained; overall scale is gauge-like and discarded. A minimal faithful
representation of a two-component real contrast up to overall scale is therefore a normalized
vector u = ¢/lcl, which lives on S'. Such a state is naturally parameterized by a single angular
variable ¢ € [0, 27). Cycle closure (M1) then corresponds to closed loops on S, classified by the
winding number m:(S') = Z. This does not force quantum mechanics, but it makes an effective
phase coordinate the minimal topological carrier of cycle information in the two-contrast
representation. We treat A@ as a modeling assumption selecting the smallest phase-bearing
representation consistent with observed quantum interference phenomenology; the S' topology is
contingent on the R? metric structure of the contrast-pair space.

(M3) Cycle-invariants under coarse-graining are topological. Under the non-redundancy
principle (BCB), only cycle-invariants survive coarse-graining — details internal to a cycle are
"averaged out" by any macroscopic observer. For a phase-bearing interface (A), the robust
cycle-invariant is the total phase winding number: the integer counting how many times ¢ winds
around [0, 2m) during one flip cycle. This is a topological invariant — it cannot be changed by
smooth deformations of the cycle and is therefore stable under coarse-graining.

(M4) Minimal winding — action quantum (bridge-motivated). The smallest nontrivial
winding number is 1, corresponding to one full 2= rotation of the interface phase. The
identification of quantum mechanical phase with action in units of 7 (S/4 <> ¢, as in the
Feynman path-integral formulation) is imported from established quantum mechanics — it is
part of the Layer B bridge, not derived within the tick—bit formalism. Under this bridge, the
minimal nontrivial flip cycle carries a cycle-action increment of 2n/ = h.

In summary: M1 motivates cycle closure; A¢ introduces phase as an explicit representational
assumption; M3 identifies winding number as the coarse-graining-robust invariant; M4 imports
the phase—action identification from quantum mechanics.

The appearance of % here is not arbitrary: any theory that reproduces the observed interference
and diffraction phenomena of quantum mechanics must contain a universal phase scale, and in
the standard formulation that scale is /. The action postulate ties the flip cycle to this universal
scale rather than introducing a new one.

7.2 Formal Statement

Postulate (P#). The cycle-action ledger of irreversible anchoring advances by a fixed quantum
per completed bit:

AJ_bit =nh, where n=0(1)
Here J denotes the cycle action variable (the action-angle variable $p dq for periodic motion),
not the Lagrangian action functional. The standard action-angle relation 0J/OE = T connects

cycle action to energy and period [R2, R7]; with quantized J = AJ_bit = n/ fixed per cycle, this
gives E = AJ bit/T directly.
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Choice of n. If the flip cycle corresponds to a complete phase winding of an internal interface
mode (winding number = 1), then the minimal topological increment is Ap = 2z, giving:

AJ bit=2mh=h

We keep 1 explicit throughout and set 1 = 2n only when performing numerical consistency
checks against the electron Compton period. If one prefers a radian-normalized cycle-action
ledger, n may be set to 1 and the factor of 2x enters at the point of comparison to cycle-based
observables.

7.3 Alternative Normalizations and Falsifiability

The choice n = 2 is not aesthetic — it is physically consequential and in principle testable.
Different values of n produce different inferred barrier thresholds:

K ¢c=nhA/(mc?At)

If n were 1 rather than 2=, all inferred K _c values would decrease by a factor of 2n = 6.28. When
the predictive program (Section 16) computes K ¢ independently from interface eigenmode
dynamics, the computed values will be consistent with one and only one value of 1 — or with
none, in which case the postulate is falsified.

More broadly, P# is falsifiable in the following sense: if interface eigenmode calculations (P1-P3
of Section 16) produce (K ¢, p_v) values whose implied masses, via the mass formula, are
inconsistent with observation for any choice of 1, then the action postulate is rejected. The
postulate makes a specific, testable structural claim — that anchoring and action are related by a
fixed quantum — not a freely adjustable parameter.

7.4 Status of the Postulate

P# is the primary load-bearing assumption of this paper. It is motivated by M1, Ap, M3, M4 but
not derived from the tick—bit axioms alone. A full derivation would require showing that the
interface phase structure (A) follows from BCB axioms and that the phase—action identification
(M4) emerges from the anchoring dynamics rather than being imported. We regard this as an
important open problem. Concretely, a derivation would need to show that the BCB non-
redundancy principle, applied to the full interface configuration space, forces the effective state
space to be topologically S! rather than admitting richer or lower-dimensional alternatives — i.e.,
that phase structure is the unique minimal topology compatible with irreversible cycle closure on
a two-contrast interface. The value of P in its current form is that it is (i) physically well-
motivated, (i1) falsifiable (Section 7.3), and (ii1) structurally minimal (a single postulate rather
than a family of ad hoc assumptions).

8. Bridge to Energy and Mass: What Is Imported
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For the general reader: This section is where we connect the abstract tick—bit framework to the
physics you already know — energy, mass, and the speed of light. We are completely transparent
that these connections import established physics. The anchoring model doesn't re-derive
Einstein's E = mc?; it shows that the anchoring picture is consistent with it and produces a
specific formula for mass in terms of anchoring parameters.

8.1 Emergent Time Calibration

Introduce an emergent calibration At that maps tick counts to a macroscopic clock:

T=n" At

This is a coarse-grained, observer-level mapping — not a primitive time variable. The tick index

n remains fundamental; At is the conversion factor between substrate updates and the readings on
a macroscopic clock built from many anchoring subsystems.

8.2 Action-Energy Bridge (Imported)

For a periodic or stationary flip cycle, we use the stationary-cycle identification: the energy scale
associated with a completed phase cycle is the cycle-action divided by the cycle period. For
stationary cyclic modes, this identification follows from action-angle quantization: a mode with
quantized cycle-action AJ = n# and cycle period T has energy:

E=Al/T=nh/T

where T is the cycle period in emergent time and AJ is the cycle-action accumulated per cycle.
The underlying identity is the action-angle relation 8J/0E = T for periodic motion, where J = ¢ p
dq is the action variable: the period of a periodic orbit equals the derivative of its action with
respect to energy. For quantized action J = n4, this gives E = n4/T directly. This is the Bohr—
Sommerfeld energy quantization for stationary states, not the general Lagrangian action
principle.

8.3 Relativistic Mass—Energy Equivalence (Imported)

From special relativity:

E rest=mc?

This relation is not derived here; it is taken as an empirical input from established physics.

8.4 What the Bridge Accomplishes

Given these two imported relations, any framework that specifies (i) an action per cycle and (ii) a
cycle period can compute an implied rest mass. The anchoring model provides both: P% gives the
action per cycle, and the anchoring time gives the cycle period. The bridge translates anchoring
parameters into a mass prediction.
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9. Conditional Proposition: Mass Scale from Void
Anchoring

For the general reader: This is the central result of the paper. It says: if you accept the action
postulate (Section 7) and the standard physics bridge (Section 8), then the mass of a particle is
determined by just two numbers from the anchoring process — how likely a micro-event is at
each tick (p_v), and how many micro-events are needed to flip one bit (K c¢). Stronger coupling
and lower barriers mean fewer ticks per flip, which the Layer B bridge translates into higher
energy and greater mass. That's the punchline: mass is set by the tick-count per flip.

9.1 Statement
Proposition 1 (Conditional mass—anchoring relation). Assume:
e (A) Tick-bit anchoring with homogeneous coupling p v and barrier threshold K ¢
(Section 5).
e (B) Action postulate PA: AJ_bit =nA per completed bit (Section 7).
e (C) Emergent tick—clock calibration At and the stationary-cycle action—energy bridge E
= AJ/T (Section 8).
e (D) Standard rest-energy relation E_rest = mc? (Section 8).
Domain: single elementary flip channel; homogeneous p_v; At treated as a calibration constant;
sharp anchoring regime CV = \((1-p_v)/K_c) « 1, so that the random flip period is
concentrated around its mean and the identification T bit = At - E[N_anchor] is justified as a
cycle period for energy quantization (see Section 5.4).
Then the implied rest mass scale is:
m =nAp_v/ (cAtK c¢)
9.2 Derivation
Step 1. From the anchoring model (Section 5.3), the expected number of ticks per flip is:
E[N anchor]=K c/p_ v
Step 2. Map ticks to emergent clock time via At:
T bit:= At - E[N_anchor]=At-K c/p v
Step 3. Apply Pk to one completed bit:

AJ_bit=n/
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Step 4. Apply the stationary-cycle action—energy bridge:
E rest:=AJ bit/ T bit

Step 5. Substitute steps 2—4:

E rest=mh/(At-K c/p v)=nhp v/ (AtK c)

Step 6. Apply E _rest = mc?:

m=nhp v/(c*AtK c) m

9.3 Structural Interpretation

The mass formula has the form m &« p_v /K _e. This is the physically interpretable core of the
result:

e p_v (coupling probability per tick) measures how readily the interface couples to the void
substrate at each update (Section 4.5). Higher coupling — fewer ticks per flip — higher
intrinsic frequency — higher mass.

e K c (barrier threshold) measures the height of the barrier separating stable bit-states
(Section 4.3). Higher barrier — more ticks per flip — lower intrinsic frequency — lower
mass.

Mass is therefore set by the tick-count per flip: the ratio K _c¢/p v determines the number of
substrate ticks per flip cycle. Via the energy-period bridge E =n4/T (a Layer B relation requiring
the emergent-time calibration At), fewer ticks per flip corresponds to higher rest energy. This is
the standard quantum-mechanical relationship E = hv applied to the flip cycle; "frequency" is the
Layer B image of the tick-count.

A crucial distinction (developed fully in Section 12): the inertial mass — resistance to
acceleration — is a separate structural quantity that happens to equal the rest mass under the
equivalence-principle condition (12.9). The flip frequency sets rest energy; the projection-scale
geometry sets inertial response. Their equality is not automatic — it is a structural constraint on
how information projects into emergent space. The fundamental quantity is the tick-count per
flip, not a rate in time; temporal language applies only after the emergent-time mapping of
Section 8.

9.4 Terminology: Flip Channel

A flip channel is a single, independent pathway through which the interface flips bits. An
elementary particle corresponds to one flip channel with characteristic parameters (K ¢, p_v).
Composite particles may involve multiple coupled channels whose contributions combine; the
extension to multi-channel systems is developed in Section 11.3. The mass formula as stated
applies to a single elementary channel.
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10. Parameter Identification and Consistency Checks

For the general reader: This section does not predict the electron's mass — it works backwards
from the known electron mass to figure out what the anchoring parameters would have to be.
This is like measuring the speed of a car and then calculating what gear ratio the transmission
must have. It's useful because it tells us whether the framework produces sensible numbers, and
it sets a target: if we can someday calculate K c from first principles and it comes out near 1.50
x 10%, that would be a genuine prediction confirmed.

10.1 Calibration Choices

For the consistency check, we adopt the following values:

Symbol Value Status

h 1.054571817 x 10734 J-s Empirical constant (CODATA)

h=2nh 6.62607015 x 1034 J-s Empirical constant (CODATA)

c 2.99792458 x 10 m/s  Empirical constant (CODATA)

m e 9.1093837015 x 107" kg Empirical constant (CODATA)

t P 5.391247 x 10* s Derived from G, %, ¢ (standard definition)

n 2n Postulate: full cycle (Section 7)

pVv ~1 Assumption for this check (Section 13)

At t P Assumption: At =t P is adopted, not derived (Section 13)

10.2 Electron Barrier Threshold

Setting n=2n (somz =h) and p_v = 1, the mass formula gives:

K ce=nha/(m ec?At)=h/(m_ec*t P)

Numerically:

m_e c?=8.18710565 x 1074]J

K ¢,e=6.62607015 x 1073/ (8.18710565 x 107! x 5.391247 x 107*)
K c,e=1.50 x 10%

This does not predict m_e. It infers the barrier threshold that the electron would require under the
stated calibration choices.

10.3 Flip Period
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The implied flip period for the electron is:
T bit=K ce-t P=8.09x102*'s
Compare to the electron Compton period:
T Cle)=h/(m _ec?)=8.09x1072%'s

The agreement is exact by construction under n = 2m — this is an algebraic identity, not an
independent check. Its value is illustrative: it confirms that the flip tick-count K c¢,e, once
mapped to emergent time via the Layer B bridge, is the Compton period. The anchoring model
reinterprets the Compton period as the emergent-time image of the K c,e substrate ticks required
to complete one bit-flip.

10.4 Other Particle Thresholds (Consistency Translation)

Under fixed At, 1, and comparable p v, the mass formula gives K ¢ « 1/m. Known mass ratios
therefore translate directly into threshold ratios:

Particle Mass ratio to electron Implied K ¢
Electron (e) 1 1.50 x 10*
Muon (u) m_wm e~=206.768 K c,e/206.768 =7.26 x 10*°
Proton (p) m p/m e~=1836.152 K c,e/1836.152~=8.17 x 10"

Heavier particles correspond to smaller K ¢ — shallower barrier thresholds, fewer ticks per flip,
and (under the Layer B bridge) higher energy per cycle. If p_v varies significantly between
modes, the relationship K ¢ « 1/m is modified: the relevant quantity is the ratio K_c/p v &« 1/m,
and modes with smaller p_v could have proportionally larger K c at the same mass.

These values are not predictions. They are the framework's translation of empirical mass data

into anchoring language. A genuine prediction would compute K c¢ from interface eigenmode
dynamics (Section 16) and then derive the mass ratios without fitting to them.

10.5 What Would Constitute a Non-Trivial Check

The numerical work in this section becomes genuinely predictive only if one can independently
estimate K_c,e — for instance, by solving the interface eigenmode problem (Section 16) — and
obtain a value near 10** without using the electron mass as input. Establishing that target is one

purpose of the parameter identification performed here.

11. Extended Void-Coupling Tests and Hierarchy Analysis
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For the general reader: So far, we translated the known electron mass into anchoring language.
That shows consistency, but it doesn't yet test the framework under variation. In this section we
stress-test the mass relation in multiple regimes: stochastic coupling, multi-channel flipping, the
Planck-mass limit, gravitational redshift, and unstable particles. These are not new postulates —
they are consequences of the same conditional mass relation derived in Section 9.

11.1 The Conditional Mass Relation (Recap)

Under the assumptions of Proposition 1:

m=nhp v/ (c*AtK c) (11.1)

where K _c is the barrier threshold, p_v is the per-tick micro-event probability, At is the tick
calibration, and 1 is the action normalization factor (n = 2= for full phase winding). Mass
therefore scales as:

mxp v/K c(11.2)

This section explores the structural consequences of that scaling.

11.2 Stochastic Regime Test: p v<1

In Section 10 we evaluated the electron in the near-deterministic regime p_v = 1. We now relax
that assumption to test whether the framework remains physically sensible when anchoring is
genuinely stochastic.

Recall the anchoring statistics (Section 5.3-5.4):

E[N anchor]=K c/p v

CV=(1-p v)/K ¢

Suppose for the electron p v = 0.1 (a tenfold reduction from the deterministic limit). Using
equation (11.1) with At=t P and n = 2, the inferred barrier threshold becomes:

Kcelp v=01)=h-p v/(m ec’t P)=K c,e(1) x0.1 =1.50 x 10*
The coefficient of variation at this operating point is:
CV =1(0.9/1.50 x 102) = 7.7 x 1012

Even for p_v = 0.1, anchoring is extremely sharp — the relative fluctuation in anchoring time is
of order 107'? of the mean.

Conclusion. Elementary particle stability does not require deterministic anchoring. Large K ¢
alone ensures extremely narrow anchoring-time distributions. Stochastic anchoring (p v well
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below 1) remains fully compatible with sharp mass peaks. The Bernoulli framework built in
Sections 5—6 is not merely formal — it functions correctly across the physically relevant range of

p_V.

11.3 Multi-Channel Flip Scaling

In this paper the single-channel mass formula is derived for elementary flip modes. Composite
masses require effective coarse-grained anchoring parameters reflecting interaction energy and
confinement. The single-channel formula generalizes naturally to composite systems. If a
particle corresponds to y independent flip channels, each flipping one bit per cycle, the total
action per cycle is:

AJ total =y - nh

and the mass becomes:
m=ynip v/ (c?AtK ¢) (11.3)
so that:

mxyp v/K c(11.4)

Structural implications. Increasing channel count y increases mass linearly. Increasing barrier
height K c decreases mass. Increasing coupling p_v increases mass.

For the general reader: You might wonder: could the proton simply be three electrons glued
together, since protons are made of three quarks? This formula lets us test that idea directly.

Naive quark-channel test. Consider whether the proton mass could arise solely from three flip
channels (a naive quark analogy), with equal K c and p_v to the electron. Equation (11.4)
predicts:

mp/me=y=3

Observed: m p/m_e = 1836. The discrepancy is a factor of ~612. Therefore the proton mass
cannot arise from channel multiplicity alone. The dominant contribution to the proton—electron
mass hierarchy must reside in the anchoring parameters K c and/or p_v — the proton's flip
channels must have substantially shallower depth (smaller K c) and/or stronger coupling (larger
p_v) than the electron's.

An important caveat: in the Standard Model, the proton mass arises predominantly (~99%) from
QCD binding energy — gluon field dynamics and the kinetic energy of confined quarks — not
from the constituent quark masses (m_u~2 MeV, m_d =5 MeV). The proton's effective K ¢
and p_v are therefore not simple functions of constituent quark anchoring parameters; they must
reflect the entire confinement dynamics as encoded in the interface eigenmode structure.
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Effective anchoring parameters for composite bound states. In the anchoring framework,
(p_v, K c) for a composite particle are effective parameters of the bound-state eigenmode after
coarse-graining over internal channels — not inherited additively from constituents. Binding
energy enters by increasing the flip completion density C =p_ v/K_c of the confined field
configuration relative to a free-field baseline: either through increased coupling resonance p_v in
the confined void-resonant region, reduced effective anchoring depth K c for the collective cycle
closure, or multiplicity of tightly coupled internal channels that contribute coherently to cycle
action. The predictive program therefore requires computing (p_v, K _c) directly for hadronic
eigenmodes (analogous to lattice QCD extracting hadron masses from correlation functions
[R15]), rather than attempting to build hadron masses from "constituent anchoring" parameters.
In this paper we treat hadron masses as a target application of the eigenmode program, not as an
immediate consequence of the single-channel formula.

This constrains the predictive program of Section 16: a successful computation must explain a
K c ratio of roughly 1836 (or a corresponding p_v shift) between proton and electron
eigenmodes.

11.4 Planck Mass Limit: Minimal Barrier Height

We now examine the extreme high-mass end of the framework by setting m = m_P (the Planck
mass). Using At=t Pandn =2n withp v=1:

KcP=hp v/(m Pc*t P)(11.5)

By the definition of the Planck mass, m P ¢* t P = 4. Substituting:
K c,P=2nh/h=2n

Thus:

K_c,P ~ O(1)

For the general reader: This is a striking result. It says that the heaviest meaningful mass scale
in physics — the Planck mass, roughly 10" times heavier than a proton — corresponds in the
anchoring framework to the absolute minimum barrier height: just one full topological cycle. You
can't flip with fewer micro-events than one complete winding requires. So the Planck mass isn't
arbitrary — it's the mass you get when the tick-count per bit-flip is as small as it can possibly be,
giving the highest possible intrinsic flip frequency.

Interpretation. The Planck mass is the regime where anchoring requires only one full
topological cycle — the minimum allowed by the action postulate P#, yielding the highest
possible intrinsic flip frequency. Lighter particles have higher barriers (more micro-events, more
ticks per cycle, lower frequency). The entire observed mass hierarchy maps onto a barrier-height
hierarchy:
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Mass Scale  Approximate K ¢ Interpretation

Planck mass (m P) ~ 2= Lowest barrier, highest flip frequency
Proton (m_p) ~10% Shallow but stable anchoring

Muon (m_p) ~10%° Intermediate depth

Electron (m_e) ~10% Highest barrier, lowest flip frequency

This is a structural identification: the Planck scale, which in standard physics appears as a
dimensional combination of G, %, and c, is reinterpreted here as the minimal-flip boundary of the
void-anchoring framework. This result follows algebraically from the calibration choices At =

t P and n = 2n together with the definition of the Planck mass; we do not claim it as a numerical
prediction. Its physical content lies not in the number itself but in the interpretation: the Planck
scale corresponds to the minimal-flip boundary of the anchoring framework (K _c ~ O(1)) rather
than being an arbitrary ultraviolet cutoff. The Planck mass is not just "very large" — it is the
mass at which barrier height bottoms out. Section 14.4 shows that this same boundary is
independently the minimal-stability boundary (where flip-period fluctuations become O(1)), a
coincidence with genuine structural content.

Pattern in the inferred K _c spectrum. Under the assumption p_v = 1, the mass formula
reduces to K ¢ =n//(mc?At), and the known particle masses map one-to-one onto K c values.
Examining the resulting set — K c,e ~ 1.5 x 102, K c,u~ 7.3 x 10*,K c,t ~4.3x 10 K c,p
~ 8.1 x 10", etc. — reveals no obvious simple numerical pattern (no recognizable integer
sequence, geometric progression, or small-number relation among the values). This is not
surprising: the K _c values are inferred, not predicted, and there is no reason to expect a simple
pattern without a theory of the interface eigenmodes. The mass formula has two free parameters
per particle (p_v, K c); under p_v =1, this reduces to one, but a single-parameter fit to a known
mass is not predictive. Section 14.6 argues that stability conditions further constrain the
parameter space: stable particles lie on a fixed-point curve p_v = f(K c¢), reducing the effective
freedom to one parameter (position along the curve). Genuine prediction requires the eigenmode
program of Section 16 to compute (p_v, K c¢) pairs from interface dynamics. Until then, the
framework parameterizes the mass hierarchy but does not explain it.

11.5 Maximum Flip Completion and Black Hole Formation (Threshold
Correspondence)

For the general reader: As mass increases, the mode's spatial projection scale shrinks. At some
point, this projection scale becomes smaller than the gravitational radius of the mass itself — the
object would be inside its own black hole. This sets a physical ceiling on mass, and it coincides
with the Planck scale.

In this framework, rest mass scales with flip completion density C :=p v/K_c. Under the
inertial-rest equivalence condition (Section 12), the spatial projection scale satisfies £ b

(K _c/p_v) - At - ¢ = (At - ¢)/C; thus heavier modes (larger C) correspond to smaller projection
lengths.
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In relativistic gravity, a mass m has an associated Schwarzschild radius r s = 2Gm/c?. Particle-
like localization is expected to fail once the intrinsic projection length is contained within the
gravitational radius, i.e., when £ b < r_s. Using the standard Compton-scale bridge A C =
h/(mc) as the minimal localization scale for a mode, the threshold r s = A C yields:

m? 2 he/(2G)
1.e., a Planck-scale mass up to an O(1) factor.

Interpretation. The framework admits a natural "maximum flip completion" boundary:
sufficiently large C compresses the projection scale until horizon formation occurs. Beyond this
threshold, the mode cannot manifest as a conventional particle excitation — it becomes a black-
hole-like anchored region in emergent spacetime. This unifies three independently motivated
boundaries:

1. Minimal-flip boundary (Section 11.4): K ¢ bottoms out at ~27 (one topological cycle).

2. Minimal-stability boundary (Section 14.4): CV becomes O(1) when K ¢ ~ O(1).

3. Horizon boundary (this subsection): projection scale falls below Schwarzschild radius at
Planck mass.

All three converge at the same mass scale. This is presented as a correspondence target rather
than a derivation of GR: the full realization requires deriving r_s and the metric response from
flip-density curvature (Section 15).

11.6 Gravitational Redshift Consistency

We now test whether the anchoring interpretation of mass is compatible with gravitational
effects. Consider a flip mode operating at radial coordinate r in a Schwarzschild geometry with
mass M. Let At _local denote the proper tick calibration at r (the local observer's clock), and At o
the corresponding coordinate-time calibration as seen from spatial infinity. Operationally, At is
defined relative to an observer's physical clock construction: it is the proper time interval that
one substrate tick maps onto for that observer. This is a Layer B bridge choice — the tick itself
(Layer A) has no intrinsic duration.

Under gravitational time dilation:
At oo = At _local / V(1 — 2GM/(rc?))

Since the flip tick-count K _c/p v is a dimensionless integer count (Layer A), it is observer-
independent. The flip period as measured at infinity is therefore:

T biteo=At oo K _c¢/p v="T bitlocal / V(1 — 2GM/(rc?))
The rest energy as measured at infinity is:

E cw=n#/T biteo=E local - V(1 — 2GM/(rc?))
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This is exactly the standard gravitational redshift: energy observed at infinity is reduced by the
factor V(1 — 2GM/(rc?)) relative to the locally measured rest energy.

Conclusion. The anchoring interpretation of mass is consistent with relativistic gravitational
redshift once the standard time-dilation bridge is applied and the observer (local vs infinity) is
specified. The key structural point is that K ¢ and p_v — being dimensionless tick-domain
quantities — are invariant under the coordinate transformation; only the emergent tick
calibration At transforms, and it transforms in exactly the way required by general relativity.

11.7 Unstable Particles and Decay Width

For the general reader: Not all particles are stable. The muon, for example, decays in about
two-millionths of a second. In our framework, stability corresponds to a rock-solid flip pattern.
Instability means the anchoring parameters are drifting — the pattern is slowly falling apart.

Unstable particles correspond to flip modes that fail one or more of the stability conditions
(Section 14) — specifically, modes whose anchoring parameters (K ¢, p_v) are not fixed points
of the coarse-graining flow but instead drift over time due to coupling to additional channels or
environmental perturbations.

Let K c(t) slowly evolve due to coupling to other modes. Then the anchoring time acquires
fluctuations:

OT bit~ (At/p v) 90K ¢
This produces a spread in rest energy:
OE ~ (A /T _bit?) - 8T bit
which maps to a decay width:
I' ~dE
This suggests a structural classification of particles by anchoring stability:
o Stable particles (electron, proton): deep anchoring fixed points with negligible
parameter drift. K c and p_v are effectively constant over all accessible timescales.
e Metastable particles (muon, neutron): shallow fixed points with slow drift in K ¢ or
p_v. The flip pattern holds for many cycles but eventually loses coherence.
o Rapidly decaying resonances (A, p, etc.): near-boundary flip modes where the
anchoring parameters are far from any fixed point. Flip coherence is lost within a small

number of bit-flip cycles.

A full quantitative decay-width prediction requires computing the fluctuation dynamics of K ¢
and p_v from interface evolution (Section 16). The classification above is structural, not

26



quantitative — but it demonstrates that particle instability has a natural interpretation within the
anchoring framework.

11.8 Section Summary

The extended tests demonstrate that the conditional mass relation (11.1) behaves consistently
across multiple regimes:

o Stochastic variation: sharp mass peaks are maintained even for p_ v < 1, due to the
large K _c values characteristic of elementary particles.

e Multi-channel scaling: channel multiplicity alone cannot account for the proton—
electron mass ratio, constraining the predictive program.

e Planck limit: the Planck mass corresponds to minimal barrier height K ¢ ~2n—a
nontrivial structural identification.

e Gravitational redshift: the mass formula is compatible with standard relativistic energy
redshift without modification.

o Instability: particle decay is interpretable as drift in anchoring parameters away from
coarse-graining fixed points.

12. Compatibility Condition for Inertial-Rest Mass
Equivalence

For the general reader: So far we have shown how rest mass arises from the tick-count per flip
(fewer ticks = higher energy = higher mass via E = hv). But in physics, mass appears in two
distinct roles: in Einstein's E = mc? (rest mass, set by tick-count per flip) and in Newton's F = ma
(inertial mass, resistance to acceleration). These two masses are experimentally identical to
extraordinary precision — that is one of the deepest facts in physics, and it underlies Einstein's
general theory of relativity. This section shows under what structural conditions the anchoring
framework reproduces that equality. The result is striking: the equivalence principle becomes a
constraint on how information projects into geometry.

This section does not derive the equivalence principle from first principles. Instead, it establishes
a necessary and sufficient compatibility condition: given the rest-mass scale derived in Section
9 and the imported momentum normalization P = n#A/{_b, inertial and rest mass coincide if and

only if the spatial projection scale £ b satisfies equation (12.9). Deriving £ b from interface
dynamics is deferred to the predictive program (Section 12.9 / Section 16).

12.1 Spatial Projection and Velocity
We work entirely in tick—bit primitives, building on the notation of Sections 5 and 9.

Let n be the tick index, B[n] the cumulative bit-flip count, and At the emergent tick calibration.
Define a spatial projection via:
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x[n] := € b - B[n] (12.1)

where £ b is the bit-to-length projection scale — the emergent spatial extent associated with
one bit-flip. This scale is not assumed universal; it may depend on the anchoring structure of the
mode in question.

From Section 5.3, the expected flip increment per tick in mean-field is:

E[AB]=p v/K c(12.2)

Define the projected velocity — the expected spatial displacement per emergent time unit:
v:=0b-E[AB]/At=0 b -p v/(K c- At)(12.3)

This is the emergent drift velocity of the mode's spatial projection under its intrinsic flip
dynamics.

12.2 Emergent Momentum

From Section 7, each bit-flip carries action AJ bit = n4 and projects onto spatial extent £ b
(equation 12.1). The associated emergent momentum is:

P:=nAa/t b(12.4)

This is structurally identical to the de Broglie relation p = h/A when £ _b is identified with the de
Broglie wavelength — a consistency check, not a derivation. This identification is a structural
consistency requirement with de Broglie kinematics imported as part of the Layer B bridge; it is
not derived within Layer A. When n = 2x, equation (12.4) becomes P = h/{_b; thus identifying

£ b with the de Broglie wavelength A, when tested against known kinematics, reproduces the
standard momentum normalization. Whether the BCB interface dynamics independently produce
an {_b that matches this identification remains an open problem (Section 12.9).

12.3 Inertial Mass from Momentum and Velocity

The inertial mass is defined as the ratio of momentum to velocity:
m_inertial :=P /v (12.5)

This is the standard mechanical definition: given a mode with momentum P and projected
velocity v, its inertial mass is the proportionality constant relating the two. The identification of v
=0 b p v/(K c - At) with the particle's observable velocity rests on the spatial projection
(12.1): if each bit-flip advances the mode's spatial coordinate by £ b, then the expected spatial
displacement per unit emergent time is the mode's center-of-mass drift velocity. This is the same
identification used in lattice random-walk models, where the macroscopic drift velocity emerges
from the microscopic hopping rate and lattice spacing.
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Substituting equations (12.4) and (12.3):

m _inertial=[nA /L b]/[L b-p v/(K ¢ At)]

Simplifying:

m_inertial=nA - K ¢ At/ ({_b*- p_v) (12.6)

12.4 The Equivalence Compatibility Condition

From Proposition 1 (Section 9), rest mass is:

m_rest=nip v/ (c*AtK c¢) (12.7)

For the general reader: We now have two expressions for mass. One (rest mass) comes from
the flip frequency — how many ticks per flip. The other (inertial mass) comes from the ratio of
momentum to velocity — how the mode's spatial projection carries its action. The question is:
when are these equal?

Setting m_inertial = m_rest:

nh-Kc-At/ (L. b*>-p v)=nh-p v/(c* At-K ¢)

Canceling common factors and rearranging:

£ b2=(At)*- K ¢*-¢c2/p_v*(12.8)

which implies:

Eb=(K c/p_v) At-c(12.9)

12.5 Acceleration and Force as Consequences

With inertial mass established, we can derive acceleration and force as consequences rather than
definitions.

Under an external perturbation dp v, the projected velocity changes:

ov=1Lb-op v/(K c- At)(12.10)

The perturbation 6p_v arises from coupling to the same void-interaction structure that determines
the baseline p_v (Section 4.5). In occupancy-measure language, p v = (W(A). Under small
perturbations of the measure p — p + 8y, the first-order change is 8p v =] A 8y, which is

proportional to L(A) for uniform fractional perturbations. Thus in the linear-response regime:

op v=a-p v(12.11)
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where o is a dimensionless parameter encoding the applied field strength. Non-uniform
perturbations would introduce mode-dependent corrections to a, but the leading-order
proportional response is generic.

Emergent acceleration is the velocity change per unit emergent time:

a=0v/At=L b-dp v/(K c- At (12.12)

The force follows from Newton's second law as a derived relation:

F=m inertial -a=[nAa-K c- At/ (L b*-p v)] - [L b -dp v/(K c-At)]

Simplifying:

F=nh-0p v/(L b-p v-At)(12.13)

Under the equivalence condition (12.9), this reduces to:

F=nh-3dp v/(K c- (At)*- ¢) (12.14)

The force is proportional to the perturbation dp v and inversely proportional to the barrier height
— consistent with the expectation that modes with higher barriers (lighter particles) respond
more to a given perturbation in p_v.

12.6 Interpretation

Equation (12.8) is the necessary and sufficient condition for inertial and rest mass equivalence
within the anchoring framework. Its content is physically transparent:

o High barriers (large K _c) produce a larger spatial projection scale { b. Modes that take
many micro-events to flip one bit project over more emergent space per flip.

e Strong coupling (large p_v) produces a smaller projection scale. Modes that couple
readily to the void are more spatially compact per flip.

e The same anchoring parameters (K c, p_v) that determine the energy scale (rest mass)

also determine the spatial response (inertial mass) — but only if £ b obeys equation
(12.9).

Under this condition:
m_inertial = m_rest
and the equivalence principle is structurally recovered.

12.7 Conceptual Consequence
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For the general reader: Here is the deep point: the equivalence of inertial and rest mass is not
automatic in an informational framework. In most models where mass comes from information,
there's no reason why "energy of the information process" and "resistance to acceleration" should
be the same number. In our framework, they are the same if and only if the way information
projects into space is governed by the same anchoring parameters that set the flip frequency. The
equivalence principle becomes a constraint on how information becomes geometry.

The equivalence of inertial and rest mass emerges in this framework if and only if three
conditions hold simultaneously:

1. Action per flip cycle is fixed (P#).

Momentum is the de Broglie momentum P =n/4/(_b.

The spatial projection scale £ b derives from the same anchoring parameters (K _c, p_v)
as the flip frequency.

hadiag

Condition 3 is the nontrivial structural content. It means that the equivalence principle is not a
separate postulate but a constraint on the geometry of information projection. If the interface
dynamics that determine K c and p v also determine £ b via equation (12.9), then inertial-rest
mass equivalence follows as a theorem, not an assumption.

12.8 Two Meanings of Mass

The preceding derivation makes explicit a distinction that is often elided: "mass" refers to two
operationally distinct quantities that happen to be numerically equal.

Mass as rest energy (intrinsic flip frequency). The rest mass m = nap_ v/(c*AtK _c) is set by the
intrinsic flip frequency v =p_v/(AtK c) via E =hv. A massive particle flips in fewer ticks — it
has a higher intrinsic frequency and higher rest energy. The electron, with K ¢ ~ 10%, takes
enormously many ticks per flip and has correspondingly low mass. The Planck mass, with K ¢ ~
2w, completes a flip in a handful of ticks and has the highest mass the framework admits.

Mass as inertia (resistance to acceleration). Inertial mass m_inertial = nAK_cAt/(f b - p v)
measures how much the mode resists changes to its spatial flip pattern. This is not determined by
intrinsic flip frequency — it is determined by how the flip pattern is coupled to emergent
geometry through the projection scale {_b.

These two quantities coincide (m_inertial = m_rest) if and only if £ b satisfies equation (12.9).
Their equality is the structural content of the equivalence principle: mass as rest energy and
mass as inertia arise from distinct structural layers in the framework, but are locked
together by the geometry of information projection.

A system may have extremely rapid intrinsic phase evolution (large rest energy) while
simultaneously requiring enormous external energy input to change its momentum state. The
"resistance" that mass provides to acceleration is not slowness of internal flipping — it is the
rigidity of the coupling between the flip pattern and emergent space.
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For the general reader: Think of it this way: a very massive particle flips its bits very quickly
(high frequency = high energy = high mass). But it is also very hard to push (high inertia). These
are different things — one is about internal rhythm, the other about external stubbornness. The
deep result of this section is that they are equal if and only if the particle's spatial extent is
determined by the same parameters that set its internal rhythm. That constraint is what the
equivalence principle means in this framework.

12.9 Status and Open Problems

The derivation uses standard mechanical definitions (P =nA/L_ b,v=£0 b -p v/(K c - At), m=
P/v) and introduces one structural assumption: the linear-response condition (12.11). The
equivalence condition (12.8) follows algebraically.

What remains open:

e Deriving £ b from BCB interface geometry. Equation (12.9) tells us what £ b must be
for equivalence to hold; it does not derive £ b from first principles. Showing that the
BCB interface dynamics independently produce an {_b satisfying (12.9) would convert
the equivalence principle from a compatibility condition into a derived theorem.

o Physical origin and universality of the linear-response assumption. Equation (12.11)
assumes dp_v = a - p_v — that perturbations couple proportionally to the baseline void-
coupling strength, with o universal across modes. The equivalence principle has been
tested to extraordinary precision: ~107"* in E6tvos-type torsion balance experiments
[R10] and ~107** by the MICROSCOPE satellite mission [R9]. Within the anchoring
framework, the equality m_inertial = m_rest requires this proportional response, and
universality imposes a sharp constraint on its structure.

If perturbations instead produced mode-dependent responses dp v=oa,_j - p_v with
coefficients a_j that vary across modes, then equation (12.9) would yield mode-
dependent projection scales £ b,j*> « a_j, leading to composition-dependent deviations in
inertial-rest mass equivalence — precisely the signature that E6tvs-type experiments
constrain. Current bounds therefore require |o_j — a_k|/a < 107" across all observed
matter species.

This leaves two possibilities: (a) the proportional response is a deep structural feature of
the void-coupling mechanism — the substrate reweights the anchorable subset uniformly
by construction, making o mode-independent exactly — or (b) the framework makes a
falsifiable prediction: equivalence principle violations at field strengths or in exotic
matter sectors where nonlinear or mode-dependent corrections to dp v become
significant. We regard this as an open empirical question. Either outcome has significant
implications: exact universality constrains the admissible class of void-coupling
mechanisms, while any detected violation would provide direct empirical access to the
mode-structure of anchoring.
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If both can be established, the equivalence principle becomes a derived feature of void anchoring
rather than an imposed compatibility condition — a result that would have significant
implications for the relationship between information, gravity, and geometry.

13. Discussion of Key Assumptions

For the general reader: Every calculation rests on choices. This section examines the two most
consequential ones: the assumption that micro-events happen almost certainly at every tick (p_v
~ 1), and the assumption that the substrate ticks at the Planck timescale. We discuss what these
assumptions mean physically, when they might break down, and what happens to the framework
if they're relaxed.

13.1 Physical Meaning of p v

The coupling probability p_v has a direct physical interpretation: it is the per-tick probability that
the interface occupies the anchorable configuration subset — the region of state space in which a
void-coupling commitment increment is registered (Section 4.3). Different interface eigenmodes

occupy this subset to different degrees:

e A strongly bound, stable eigenmode spends almost all ticks in the anchorable region —
p_v close to 1. The anchoring process is nearly deterministic, with low variance in
anchoring time.

e A weakly bound or excited eigenmode spends fewer ticks in the anchorable region —
p_v significantly below 1. The anchoring process is genuinely stochastic, with larger
variance — broader mass linewidths and shorter lifetimes.

e A marginally stable eigenmode has p_v near the boundary of the admissible region —
large fluctuations in anchoring time — observable as particle instability or decay.

This interpretation ties p_v directly to the stability analysis of Section 14: modes with low p_v
have large CV (Section 5.4) and are candidates for unstable or short-lived particles.

13.2 The p_v =1 Regime

Setting p_v = 1 for the electron consistency check corresponds to assuming that the electron's
dominant flip channel is a strongly bound eigenmode that spends nearly every tick in the
anchorable region. In this limit, the Negative Binomial distribution reduces to deterministic
counting: the variance vanishes and N_anchor = K_c with certainty.

This does not eliminate stochasticity from the framework in general:

(1) State-dependent coupling p v(c[n]) reintroduces fluctuations even if the time-averaged
coupling is near unity.
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(i) Composite systems may have effective p_v < 1 after coarse-graining over internal degrees of
freedom.

(iii) Other particle modes — particularly heavier, less stable particles — may operate in
regimes where p_v is significantly less than 1, producing genuinely stochastic anchoring with
physical consequences (e.g., broader anchoring time distributions contributing to linewidths or
decay rates).

If stochastic anchoring is to be physically significant at the fundamental level — which is one of
the motivations for building the Bernoulli framework — then p_v < 1 should be retained and
estimated from interface dynamics rather than set to unity. The p_v =1 limit is a useful
consistency check but may not represent the physically correct operating point. Section 11.2
demonstrates that the framework remains well-behaved for p_v as low as 0.1.

13.3 The At =t_P Identification

Identifying the tick spacing with the Planck time is natural within VERSF (it identifies the
substrate update rate with the Planck scale), but it is a substantive physical assumption — it
asserts that the substrate operates at the shortest meaningful timescale in quantum gravity.

The framework can also be presented with At left symbolic. In that case, the mass formula
becomes a relation among three unknowns (K _c, p_v, At) per particle, and empirical input — or
a separate derivation of At from TPB/BCB substrate dynamics — is required to fix the tick scale.
The choice At =t_P is the simplest and most physically motivated identification, but it is
separable from the rest of the derivation.

14. Stability and the Mass-Gap Problem

For the general reader: One of the deepest puzzles in physics is why there are only a handful of
stable elementary particles with specific masses, rather than a continuous smear of possible
masses. This is called the "mass-gap problem." Our framework rephrases it in informational
terms: why do only certain anchoring configurations produce stable, long-lived flip patterns? We
don't solve this problem here, but we identify the precise conditions that a solution must satisfy
— which is itself progress, because it tells us what to look for.

14.1 The Problem

The statement that "particles correspond to stable BCB interface eigenmodes" conceals a deep
question: why should the set of stable modes be discrete with a gap (a minimum nonzero mass),
rather than forming a continuum? This is the mass-gap problem expressed in anchoring
language.

14.2 Necessary Stability Conditions
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Within this anchoring framework, a stable particle-like mode must satisfy at minimum three
conditions:

(S1) Bounded anchoring variance. The coefficient of variation CV = V((1 — p_v)/K_c) must be
sufficiently small over the mode's operating regime. Concretely, we require CV < ¢ for some ¢
determined by observational constraints on mass stability. Modes with large CV produce broad
anchoring-time distributions and would not appear as sharp mass peaks.

(S2) Self-consistency under coarse-graining (renormalization fixed-point condition). The
mode's effective parameters (K _c, p_v) must remain within an admissible basin when ticks are
aggregated into blocks of increasing size. Formally, this is a renormalization group fixed-point
condition: the flow of (K c, p_v) under block-spin—type coarse-graining must converge to a
fixed point or limit cycle rather than running to an inadmissible boundary (p v — 0,K ¢ — 0, or
K ¢ — oo without bound). The number of stable fixed points determines the number of particle
species — and explaining why this number is finite is the core of the mass-gap problem in this
language.

(S3) Non-redundant cycle closure. The mode must return to an operationally equivalent
configuration class after a full flip cycle. Failure to close means successive "bits" are not
independent — the mode either drifts (unstable) or produces redundant information that is
eliminated under coarse-graining (not a genuine flip channel). This condition is the anchoring
analogue of the quantization condition in Bohr—Sommerfeld theory: only closed orbits in
configuration space produce stable states.

14.3 Connection to Sections 11.7 and 12

The stability classification of Section 11.7 (stable / metastable / resonance) maps directly onto
S1-S3: stable particles satisfy all three conditions robustly, metastable particles satisfy them
marginally (slow drift away from a near-fixed-point), and resonances fail S2 or S3 outright. The
decay-width analysis of Section 11.7 is the dynamical consequence of departure from the fixed-
point structure described by S2.

The inertial-rest mass equivalence of Section 12 adds a further stability requirement: the spatial
projection scale £ b must remain slaved to (K _c, p_v) via equation (12.9) throughout the mode's
evolution. Modes for which £ b decouples from anchoring parameters would exhibit a growing
discrepancy between inertial and rest mass — a signature that is not observed for any known
particle, suggesting that condition (12.9) is robustly satisfied in the physical regime.

14.4 The Planck Boundary as Minimal-Stability Boundary
Since CV ~ 1/VK_c (Section 5.4), modes with small K_c have large relative fluctuations in their
flip tick-count. For a mode to appear as a particle with a well-defined mass, its flip period must

be sharply concentrated — otherwise the mode produces a broad continuum rather than a
discrete mass peak. We formalize this as a critical stability threshold:
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A mode is particle-like if CV < ¢ _c, where € _c is the maximum relative fluctuation compatible
with experimental mass resolution.

For the minimal topological cycle K c = 2x (the Planck-mass mode from Section 11.4), CV ~
1/N(2m) =~ 0.40, meaning the flip tick-count fluctuates by ~40% of its mean. Whether this
constitutes a stable particle depends on ¢ c. If € ¢ ~ 0.1 (10% relative width, comparable to
broad resonances like the p meson), then K c must exceed ~100 for stability, and the Planck-
mass mode at K ¢ ~ 2x is firmly excluded. If € c is more permissive, the boundary shifts, but
the qualitative conclusion holds: the Planck-mass boundary is simultaneously the minimal-flip
boundary (fewest micro-events per flip allowed by P#) and the minimal-stability boundary
(smallest K ¢ compatible with sharp anchoring).

The precise value of € c is an open empirical question tied to the interface dynamics. What is
structurally robust is that both constraints — action quantization and anchoring stability —
produce upper mass limits, and these limits coincide at the same scale (K _c of order unity). This
coincidence is a structural consistency check on the framework, not a tuned result.

14.5 Path to Resolution

A full solution requires showing that conditions S1-S3, applied to the space of all possible
interface configurations, admit only a finite or countable set of solutions. This is equivalent to
showing that the joint fixed-point structure of the coarse-graining flow (S2) intersected with the
cycle-closure constraint (S3) and the variance bound (S1) produces a discrete set. We treat this as
an open problem and note that the mathematical structure is closely analogous to the problem of
classifying stable orbits in Hamiltonian systems — a problem with a rich existing literature that
may provide analytical tools.

14.6 Parameter Reduction: Why the Apparent Two-Parameter Freedom Is Not
Physical

A common objection is that the mass relation m = nAp_v/(c*AtK _c) contains two parameters
(p_v, K c¢) per particle, so any single mass could be fit by adjusting two numbers. This is true
only if p_ v and K c are treated as independent knobs. In the anchoring framework they are not
independent once the interface dynamics and the micro-event criterion are fixed. The "two-
parameter freedom" is therefore best understood as an incomplete specification problem: we
have not yet specified the interface rule tightly enough to compute the map (mode) - (p v,

K o¢).

We now state precisely how the freedom collapses.

14.6.1 p_v is a derived measure once the micro-event criterion is fixed. Let c[n] be the
interface state and let micro-events be defined operationally by a resonance functional R(c) € [0,
1], which measures void coupling (resonant susceptibility) of state c. Fix a threshold R* and

define the anchorable subset:

A :={c:R(c)>R*}
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The micro-event indicator is X n =1{c[n] € A}, and the coupling probability is:
p v=E[X n]= I_A p(c) dc

where p is the stationary (invariant) measure induced by the interface dynamics for the mode
under consideration. Once the interface update rule and R(c) are specified, p_v is no longer a free

parameter — it is a computed overlap of the mode's invariant measure with the resonance region
A.

14.6.2 K c is a derived cycle-closure count once phase/action bookkeeping is fixed. Under
the phase-cycle assumption (A¢@), each micro-event advances the cycle coordinate by an
increment determined by the interface dynamics. Define the accumulated winding variable:

Wln+1]=W[n] + X n - Ae(c[n] — c[n+1])

with cycle completion when [W| > 2n (equivalently, when the action ledger reaches AJ_bit = nA).
The anchoring depth is then:

K c = E[ #{micro-events per completed cycle} ]

Once the interface rule and the cycle-increment functional Ag(+) (or 6J event(-)) are fixed, K ¢
is not chosen — it is measured from the same dynamics that determine p_v.

14.6.3 The physical spectrum is the image of the dynamics, not the full (p_v, K c¢) plane.
The pair (p_v, K _c) is not an arbitrary point in [0, 1] x N. For a given interface rule and
resonance functional R, each candidate eigenmode j induces a specific pair:

(p_v,K ¢) j=(] Ap_j(c)dc, E_j[#{micro-events per cycle}])

The "allowed" parameter set is the image of the eigenmode map M : j = (p_v, K ¢) j. Even
before coarse-graining constraints are imposed, M is typically low-dimensional because p_v and
K c are computed from the same underlying mode geometry.

14.6.4 Stability restricts the image further: only coarse-graining fixed points are particle-
like. Stable particle-like modes are defined by the stability criteria S1-S3 (Section 14.2). Coarse-
graining induces a renormalization map:

R:pv,Kc)yr(p v,K <)

Particle-like modes correspond to fixed points (or limit cycles) of R — points where (p_v, K c¢)
~R(p_v, K c). This typically reduces the admissible set to a discrete collection of points (or a
small number of one-dimensional branches). The "two-parameter freedom" is removed twice:

first by the eigenmode map M, and again by the stability constraint R.

14.6.5 Off-manifold variation is not free: it corresponds to linewidth and decay. Modes that
do not sit on the stable fixed-point set are not additional stable particles; they are unstable
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excitations. Departures from fixed-point structure manifest as drift in effective anchoring
parameters and therefore as a spread in cycle period and rest energy. Via the energy—period
relation (Section 9), a spread OT in cycle period produces a rest-energy uncertainty 0E ~ E -
OT/T, which maps onto the decay width I" (Section 11.7). The apparent second degree of freedom
is therefore the distance from stability, which corresponds to observable decay widths — not an
arbitrary fitting handle.

14.6.6 What remains open. At present we have not computed M or R for a fully specified BCB
interface rule. This is exactly the content of the predictive program (Section 16): once the
interface dynamics and resonance functional are fixed, the theory predicts a discrete set of (p_v,
K c¢) pairs and therefore a discrete mass spectrum viam o« p_v/K_c. Until that computation is
performed, the framework parameterizes masses; it does not yet explain the observed spectrum
from first principles.

14.7 Weak Scaling Constraint from Interface Scale Invariance

While Section 14.6 shows that (p_v, K c¢) are not freely adjustable once the interface dynamics
and resonance criterion are specified, one may still ask whether any structural relation between
them can be derived prior to full eigenmode computation. In this subsection we show that a weak
but nontrivial power-law constraint p v «< K ¢ {—a} emerges naturally under a minimal scale-
invariance assumption for the interface.

14.7.1 Coherence length and scale invariance. Assume that the interface dynamics admit an
emergent coherence length &, measured in substrate units, characterizing the spatial extent over
which the contrast-pair field remains phase-coherent. We require only: (i) the interface is
statistically homogeneous; (ii) under coarse-graining by scale factor b, coherence rescales as § —
b&; (iii) the resonance (anchorable) condition is local in the interface field. No detailed
microscopic model is required.

14.7.2 Scaling of p_v. Recall that p v=[ A p(c) dc (Section 14.6.1). If coherent regions of size
¢ tile the interface with approximate independence beyond that scale, the fraction of the interface
in resonant configuration scales inversely with the number of independent coherent domains. In
an interface of effective dimension d, the number of independent domains scales as £*{—d}, so:

p_v(§) ~ &*{~d}

This follows from statistical self-similarity under coarse-graining and does not depend on
microscopic details.

14.7.3 Scaling of K c. Under the phase-cycle assumption (Section 7), each micro-event
advances the phase variable by an increment A¢_event. For a mode of coherence length &, phase
gradients scale inversely with domain size: Ag_event(§) ~ &"{—1}. Larger coherent domains
evolve more rigidly and accumulate phase more slowly per local resonant fluctuation. Since one
full cycle requires total winding A = 2m:

K c(&) ~2n/ Ap _event(§) ~ &
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Thus £ ~ K _c: the coherence length and the anchoring depth are proportional.
14.7.4 Emergent power law. Eliminating & between p_v(§) ~ £*{—d} and K c(&) ~ & yields:
p_vx K c*{—a}, where a :=d

This relation is not imposed; it follows from interface scale invariance and local resonance
structure. The exponent equals the effective interface dimension.

14.7.5 Consequence for the mass relation. Substituting into m «< p_v/K ¢ gives:
m o« K cM{—(o+1)}

Along a scale-invariant family of interface modes, the apparent two-parameter freedom collapses
to a single effective degree of freedom parameterized by K c, with mass scaling as a power law
determined by the effective interface dimension. For a two-dimensional interface (d = 2): m «

K {3}

14.7.6 Status. This result does not derive the mass spectrum. It establishes: (i) p vand K ¢
cannot vary independently under scale invariance; (ii) stable modes are expected to lie on a one-
dimensional scaling manifold in (p_v, K c¢) space; (iii) deviations from this manifold correspond
naturally to instability and linewidth (Section 11.7, Section 14.6.5). Verification of the exponent
a requires explicit simulation of the interface dynamics (Section 16.3). The scaling law therefore
provides a concrete falsifiable target: if numerical interface models fail to exhibit a stable power-
law relation between p_v and K _c, the scale-invariance hypothesis is invalid.

15. Entropy Gradients and the Emergence of Gravity
(Correspondence Target)

For the general reader: In this framework, mass is not a primitive property — it is set by the
tick-count per flip (fewer ticks = higher energy = higher mass, once mapped through the Layer B
bridge). Anchoring is irreversible, and irreversibility generates entropy. If the density of flip
activity varies across space, that variation must affect how emergent space itself is structured.
This section constructs a consistent mapping from flip density to a weak-field gravitational
potential, and identifies the precise equations that a full derivation must target. We do not derive
Einstein's field equations — this is a correspondence, not a derivation.

15.0 Relation to Entropic and Thermodynamic Gravity
The idea that gravity has an entropic or thermodynamic character has a substantial prior
literature. Verlinde's entropic gravity program [R11] and Jacobson's thermodynamic derivation

of the Einstein equations [R12] highlight both opportunities and challenges: reproducing the
correct tensor structure, treating radiation-dominated regimes, and avoiding inconsistencies in
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cosmology. More broadly, the anchoring framework belongs to the "it from bit" tradition
initiated by Wheeler [R13], with connections to Bekenstein's entropy-area bound [R14] and
Lloyd's computational capacity arguments [R16]. The present section does not claim to resolve
these issues or to re-derive GR. Instead, we identify a correspondence target specific to the
anchoring framework: spatial variation in flip completion density C(x) = p_v(x)/K_c¢(x) induces
variation in the projection scale £ b(x), which can be interpreted as a metric component in a
weak-field limit. A full comparison requires (i) constructing an emergent metric from £ b and
At, (ii) deriving geodesic motion from that metric, and (iii) showing that the resulting field
equations match Einstein gravity (or a controlled modification) across matter and radiation
sectors. We treat this as future work and include this section as a roadmap and consistency target
rather than a completed derivation. The novelty relative to prior entropic gravity proposals lies in
the specific microfoundation: discrete irreversible anchoring with a projection metric via £ b,
rather than postulated holographic screens or temperature fields. The role of the Unruh effect and
local equilibrium assumptions in Jacobson's derivation has no direct analogue in the anchoring
framework, which operates pre-thermally at the tick level; whether an Unruh-like structure
emerges from tick-domain dynamics is an open question.

15.1 Mass as Flip-Entropy Density
From Proposition 1 (Section 9), the rest mass of a flip channel is:
m=nhp_v/(c*AtK c) (15.1)

Each completed flip cycle irreversibly flips one bit. Each bit increases thermodynamic entropy
by:

AS entropy =k BIn2(15.2)

where k B is Boltzmann's constant. The entropy increment per cycle is therefore fixed; it is the
number of cycles per unit emergent time (the flip frequency, a Layer B quantity) that determines
the entropy production rate.

Define the flip frequency (Layer B — requires the emergent-time mapping t = nAt):

v ¢c:=1/T bit=p v/(AtK ¢)(15.3)

Then the entropy production rate per channel is:

S=k BIn2-v c(15.4)

Using equation (15.1), mc> =nAv_c, so:

S=(k_BIn2/nh) - me?(15.5)

Mass is proportional to entropy production rate per flip channel. Mass density therefore
corresponds to entropy-generation density. This is a structural identity within the framework, not
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an additional assumption — it follows directly from the irreversibility of anchoring and the mass
formula.

15.2 Spatial Flip Density
Let p_m(x) denote mass density at emergent spatial position x. From equation (15.5):
$(x) o« p m(x) (15.6)

Regions of higher mass density are regions of higher irreversible flip activity. Define a flip
density field:

C(x):=p v(x)/K c(x)(15.7)

From equation (15.1):

p_m(x) o< C(x) (15.8)

Spatial gradients in mass correspond to spatial gradients in flip density.

15.3 Entropy Gradients and Effective Geometric Response

In statistical mechanics, entropy gradients generate effective forces (F = TVS). We adopt an
analogous structural statement within the anchoring framework: spatial gradients in flip-entropy

density produce an effective geometric response.

The spatial projection scale € b is tied to barrier height by the inertial-rest mass equivalence
condition (Section 12, equation 12.9):

L b (K c/pv) At-c(15.9)

Therefore:

L bo1/C(x)(15.10)

Regions of high flip density correspond to a compressed projection scale — each bit projects
onto less emergent space. This is the anchoring analogue of spatial curvature: where flipping is
dense, space is "compressed."

15.4 Emergent Gravitational Potential (Weak-Field Limit)

Define an emergent gravitational potential @ via projection-scale variation in the weak-field
regime:

€ b(x)=£_0 (1 +2d(x)/c?) (15.11)
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where € 0 is the projection scale at spatial infinity and |®| <« c?. Variations in £ b encode
curvature.

Combining equations (15.10) and (15.11):
VO « -VC(x) (15.12)

Gravitational acceleration corresponds to flip-density gradients: matter falls toward regions of
higher flip activity.

15.5 Poisson Equation Target

In Newtonian gravity:

V20 =4nGp_m (15.13)

Using equation (15.8), the Poisson equation requires:
V2O « C(x) (15.14)

Important caveat. Equation (15.14) does not follow directly from (15.12). From V® o —VC,
taking the divergence gives V*® o« —V2C, not C(x). For V2® o C to hold, the relationship between
the projection scale £ b and the emergent metric must be nonlinear — specifically, the Laplacian
of the metric component constructed from 1/€ b must be proportional to the source density, not
to the Laplacian of C. This requires:

V20 ~ V-V(1/0_b) « p_m (15.15)

which involves the second-order structure of the £ b — metric mapping that is not derived here.
The Poisson structure is therefore a farget for the emergent metric construction, not a
consequence of the weak-field definitions alone. Deriving the precise proportionality constant
(recovering 4nG) requires specifying how £ b enters the emergent metric tensor — a task
deferred to future work.

Status: correspondence, not derivation. This section constructs a consistent structural mapping
from flip density to an effective gravitational potential. It does not derive the Poisson equation
from first principles — it identifies the equation the framework must reproduce and shows that
the mapping has the correct qualitative structure. The correspondence becomes a derivation only
when £_b is shown to define a metric component and flip-density gradients are shown to produce
geodesic acceleration.

15.6 Interpretation and Consistency
For the general reader: Here is the picture: mass generates entropy through irreversible

anchoring. Where mass is concentrated, entropy production is concentrated. The spatial variation
of this entropy production compresses the emergent spatial scale, which is what we experience as
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gravitational curvature. Objects fall toward regions of higher flip density — that is, toward mass
— because the geometry of emergent space is shaped by the density of informational
commitment.

This section establishes a structural mapping:

e Anchoring irreversibility — entropy production (15.2)

o Entropy production rate < mass density (15.5-15.6)

o Spatial entropy gradients — projection-scale gradients (15.10)

o Projection-scale gradients — curvature in weak-field limit (15.11-15.12)
e Curvature — gravitational acceleration (15.12—-15.13)

This chain is consistent with the intrinsic mass formula (Section 9), the Planck minimal-flip
boundary (Section 11.4), the inertial-rest equivalence condition (Section 12), and gravitational
redshift compatibility (Section 11.6).

15.7 Status

This section does not derive Einstein's field equations. It establishes:

e A consistent weak-field correspondence between flip density and gravitational potential.
e A structural entropy—mass mapping that follows from the irreversibility of anchoring.
e A concrete target (equations 15.13—15.15) that a full derivation must reproduce.

A full gravity theory within VERSF requires: (i) constructing the emergent metric tensor from
€ b and At, (i1) deriving curvature tensors from flip-density gradients, and (ii1) demonstrating
that the resulting equations reduce to Einstein's equations (or a testable modification) in the
appropriate limit. This remains an open research direction — but the structural correspondence
established here identifies the path.

16. Predictive Program: Computing K ¢ and p_v from
Interface Dynamics

For the general reader: Everything up to this point has been about building the machinery —
showing that if you know the anchoring parameters of a particle, you can compute its mass. The
real prize is computing those parameters from scratch, without using any measured masses as
input. This section outlines how that computation would work. It's a research program, not a
completed calculation — but it's a concrete one with clearly defined steps.

16.1 Program Outline

To convert consistency checks into genuine predictions, one must compute K c and p_v from
the BCB/One-Fold interface model rather than inferring them from measured masses.
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(P1) Define the anchoring observable. Construct an observable (or operator) on the interface
configuration space that flags micro-events — i.e., identifies when the interface enters the
anchorable configuration subset (Section 4.3). This requires a precise characterization of which
interface states contribute to flip progress.

(P2) Compute per-mode parameters. For each candidate eigenmode j of the interface
dynamics, compute:

e The per-tick micro-event probability p_{v,j} from the mode's overlap with the anchorable
configuration set (i.e., the fraction of ticks the mode spends in the anchorable region —
see Section 13.1).

e The barrier threshold K {c,j} from the mode's phase-winding structure — specifically,
the number of micro-events required to complete one full topological cycle (winding
number = 1) of the interface phase.

(P3) Apply the mass formula. Insert (K_{c,j}, p_{v,j}) into the conditional mass relation:

m_j =nhp_{v,j} / (CAK_{c,j})
For multi-channel modes (Section 11.3), include the channel multiplicity y_j.

(P4) Compare to observation. Compute mass ratios m_p/m_e, m_p/m_e, etc. from the derived
parameters and compare to measured values without fitting those ratios. Section 11.3 provides a
specific constraint: the proton computation must explain a mass ratio of ~1836, which cannot
arise from channel multiplicity alone.

(PS) Verify equivalence-principle consistency. For each stable eigenmode, compute the spatial
projection scale £ b from interface geometry and verify that it satisfies equation (12.9). Failure
would indicate that the mode cannot support inertial-rest mass equivalence and is therefore not a
viable particle candidate.

(P6) Recover gravitational coupling. Construct the emergent metric tensor from £ b and At,
derive the curvature produced by flip-density gradients (Section 15), and verify that the weak-
field limit reproduces the Poisson equation V*® = 4nGp_m with the correct proportionality
constant. This would determine G within the framework.

16.2 What "Computing p_v and K _c" Means Concretely

Steps P1-P2 above are abstract. Here we specify what the computation reduces to
mathematically.

Computing p_v. Let the interface state at tick n be c[n] (the contrast pair), and let A € C denote
the anchorable subset — the region of interface configuration space where micro-event
registration occurs (Section 4.3). If the interface dynamics admit a stationary distribution p(c),
then:
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pv= I_A p(c) dc

In the book-consistent language: p v (void coupling / resonance) is the fraction of ticks the
mode's trajectory spends in states that resonate with the void substrate strongly enough to
register a commitment micro-event. Computing p_v therefore reduces to two sub-problems: (i)
computing the stationary measure p(c) of the interface dynamics, and (ii) defining the anchorable
subset A.

For a specific eigenmode j of the interface operator, this becomes:
p_{vi} = Al () de

where y_j is the eigenmode's amplitude over configuration space — the mode's overlap with the
anchorable region.

Computing K_c. Under Ao, each micro-event advances the interface phase ¢ by some
increment A¢@_event. The barrier threshold is the expected number of micro-events required for
one full topological winding (A = 2m):

K c=2n/E[A¢ event]

Equivalently, in action-ledger form: if each full cycle commits AJ = n# (postulate P#) and each
micro-event commits a computable action increment 8] event, then:

K c=nh/dJ event

Computing K ¢ therefore reduces to computing the micro-event's mean contribution to phase
advance (or equivalently, to cycle action).

Minimal computable model (toy but non-handwavy). To illustrate that (p_ v, K c) are
genuinely computable quantities — not just symbols — consider a stochastic phase-oscillator on
St

¢ {n+tl} =0 n+0+c& n(mod2m)

where 9 is the coherent phase advance per tick, ¢ the noise amplitude, and £ n ~ N(0,1). Define
the anchorable subset as a phase window A = {¢ : |@ — ¢*| < ¢}. If noise mixes phases
sufficiently, p(¢) = 1/(2m), giving:

p v=en

The conditional phase advance per micro-event is E[0 + 6 | ¢ € A] = 6 (under symmetric noise),
s0:

K c=2n/6
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The mass relation then becomes m o« p_v/K ¢ = €6/(2n*) — a computable prediction once € and
o are derived from a specific BCB interface update rule. This is not the final theory, but it
demonstrates that the program is mathematically well-posed: p_v is set by the size of the
resonant window, K _c is set by the per-tick coherent phase advance, and mass emerges from
their ratio.

From toy model to VERSF first principles. The path from the toy model to genuine
predictions involves four refinements: (i) specifying the BCB interface as a concrete dynamical
system; (i1) defining a measurable resonance functional on the interface; (iii) computing the
phase/action increment per micro-event from the interface geometry; and (iv) simulating the
interface to identify stable eigenmodes and measure their (p_v, K _c¢) directly. The following
subsection carries out steps (i)—(iii) explicitly.

16.3 Minimal Computable Interface Model

We specify a concrete lattice dynamics from which p_ v and K ¢ can be measured by simulation.
This is not claimed as the final BCB interface — it is the smallest model that is local, has a well-
defined stationary distribution, supports an operational resonance definition, and yields
measurable (p_v, K c).

State space. Let the interface be a periodic L % L lattice. At each site 1, define a contrast vector
c_i[n] € R? with phase ¢_i[n] = atan2(c_{i,2}, c_{i,1}).

Update rule. Local diffusion + noise (discrete-time Langevin):
c ilntl]=(1—-A)c_i[n] +(WN@G)|)Z {j €N} c jln] +0c& i[n]

where N(i) are nearest neighbors (4-neighborhood, periodic boundary), 0 <A <1 controls spatial
coupling (interface stiffness), & i[n] ~ N(0, L) i.i.d., and o sets noise amplitude. This update is
local (only neighbors contribute), Markov (depends only on current state), and stable under
coarse-graining (diffusive linear dynamics are closed under block-averaging).

Resonance functional (void coupling). Define local phase coherence via the Kuramoto-style
order parameter:

r_i[n]=[( VIN@]) Z_{j € N(D)} exp(ip_j[n])|

where r_i~ 1 means locally phase-aligned (resonant/coherent) and r_i~ 0 means disordered. The
anchorable subset is A = {i : r_i[n] >r*} for a threshold r* € (0, 1). The micro-event indicator is
X i[n] =1{r i[n] =r*}. The coupling probability is then:

p v=E[X i[n]]=(I/(TL?)) X nX iX i[n]

This is literally the fraction of site-ticks in the resonant set — void coupling as resonance,
measured from the simulation.
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Phase winding (void anchoring). Track the accumulated phase advance during micro-events
only:

W i[n+1]=W _i[n] + X i[n] - Ae_i[n]

where A _i[n] = wrap(¢_i[n+1] — ¢_i[n]) € (—x, n]. A cycle completes when [W_i| > 2m; at that
point, W_i resets and a bit-flip commits. The anchoring depth is then:

K ¢ = E[ #{micro-events between consecutive 21 windings} |

measured by recording how many micro-events occur between windings, averaged across sites
and time (after burn-in). This turns K_c into a measured outcome of the phase dynamics, not a

chosen threshold — anchoring depth is how many resonant ratchet clicks it takes to close a full
cycle.

Eigenmodes. The deterministic part of the update is linear: c[n+1] = A c[n] + c§[n], where A is
the neighbor-averaging operator. Its eigenvectors are Fourier modes on the lattice. Exciting a
particular wavevector k by initializing ¢ i[0] = (cos(k - x 1), sin(k - x 1)) and evolving under
noise yields mode-specific coherence statistics — different p_v, different winding behavior —
different K _c. Different modes produce different flip completion densities C_j =

p_{v.,j}/K {c,j}, and therefore different mass scales.

Parameter scan. The first scan varies three parameters: A (spatial coupling), ¢ (noise), r*
(resonance threshold). Qualitative expectations: higher A — more local coherence — higher p v;
higher 6 — more mixing but reduced coherence; higher r* — stricter resonance — lower p_v.
The structure of K ¢ — how phase evolves inside resonant states — is where mode-dependent
mass ratios emerge.

What this achieves. A simulation of this model produces, for each mode k: a measured p_v,k, a
measured K _c,k, and therefore a predicted mass ratio m_k/m_{k'} = C k/C {k'} with no free
parameters beyond the interface dynamics (A, o, r*). Whether these ratios bear any relationship
to observed particle mass ratios is the empirical test of the framework. If they do not — for any
choice of (A, o, r*) — the framework is falsified at the level of this minimal model.

16.4 What Success Looks Like

The program succeeds if step P4 reproduces known mass ratios to within the precision of the
interface eigenmode calculation. Partial success — e.g., correctly ordering the mass hierarchy or
predicting ratios to within an order of magnitude — would still constitute significant evidence
for the framework. Failure to reproduce any observed mass pattern would indicate either that the
interface dynamics are incorrectly specified or that the single-channel mass formula requires
modification (e.g., multi-channel coupling for composite particles).

16.5 Relation to Existing Approaches
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The structure of this program — classifying stable modes of a dynamical system and reading off
physical observables from mode parameters — is analogous to lattice QCD computations of
hadron masses [R15], where one solves a discretized field theory and extracts mass eigenvalues.
The key difference is that the "field theory" here is the BCB interface dynamics on a tick—bit
substrate rather than a gauge theory on a spacetime lattice. Whether this analogy is deep or
superficial is itself an open question that the program's execution would resolve.

16.6 Near-Term Falsifiability Constraints

Even prior to executing the eigenmode computation program, the framework is constrained by
existing observations:

(i) Equivalence-principle universality. Any coupling perturbation mechanism entering op v
must be universal across ordinary matter at the 10** level [R9, R10] (Section 12.9), strongly
restricting admissible void-coupling dynamics. Mode-dependent perturbation responses would
produce composition-dependent deviations already excluded by experiment.

(i1) Discrete mass spectrum. Stable particle-like modes correspond to discrete coarse-graining
fixed points in (p_v, K _c) space (Section 14), implying that isolated elementary rest masses
should not form a continuous stable spectrum. Discovery of an elementary particle with
continuously tunable rest mass (not composite) would contradict the fixed-point picture.

(i11)) Maximum mass from horizon formation. Under the standard GR bridge, flip completion
density beyond the Planck regime compresses the projection scale below the Schwarzschild
radius (Section 11.5), precluding stable particle-like modes above the Planck mass. Observation
of a stable elementary particle above m_P would require modifying either the framework or the
GR bridge.

These are conditional but operationally testable constraints independent of completing the full
eigenmode program.

16.7 Limitations

For the referee's convenience, we collect the principal limitations of the present work:

(a) No mass predicted from first principles. The mass formula m = nAip_v/(c*?AtK c) expresses
mass in terms of anchoring parameters, but no particle's (K _c, p_v) values are derived. The
framework parameterizes the mass hierarchy; it does not yet explain it. Prediction requires
executing the eigenmode program (P1-P4 above).

(b) Two free parameters per particle, reduced to one by stability. The mass formula has two
parameters (p_v, K c) per particle. Section 14.6 argues that stability conditions constrain stable
modes to a one-dimensional fixed-point curve p_v = f(K_c), reducing effective freedom to one
parameter (with the off-curve displacement controlling decay width). However, this reduction is
structural, not yet computed; the framework becomes fully predictive only when the eigenmode
program (Section 16) determines f and the fixed-point locations.
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(c) Composite-particle masses require coarse-grained eigenmode computation. The single-
channel formula applies to elementary flip modes. Hadron masses, which arise predominantly
from QCD binding energy, require computing effective (p_v, K c) for the entire confined
eigenmode (Section 11.3) — a substantially harder problem analogous to lattice QCD.

(d) Gravity section is a correspondence target only. Section 15 identifies the qualitative
structure the framework must reproduce (Poisson equation, weak-field limit) but does not derive
it. The chain from flip-density gradients to the Poisson equation requires a nonlinear { b —
metric mapping that is not constructed here (Section 15.5).

(e) Phase structure (A¢) is assumed, not derived. The S' topology of the interface effective
state space is a representational assumption contingent on the R? metric structure of the contrast-
pair space. Deriving it from BCB axioms remains open (Section 7.4).

These limitations define the research frontier. The contribution of this paper is the framework
itself — a structurally consistent, physically interpretable parameterization of mass with a
concrete path to prediction — not the predictions themselves.

17. Conclusion

This paper establishes a conditional mass-scale formula within the VERSF/BCB-TPB void-
anchoring framework, stress-tests it across multiple physical regimes, and derives the structural
condition for inertial-rest mass equivalence. The result rests on three pillars:

Pillar 1 (Structural — Layer A). The tick—bit anchoring model, with Bernoulli micro-events
reduced from locality, Markov sufficiency, and closure under coarse-graining, provides a
mathematically rigorous foundation for irreversible bit-flipping. Anchoring times, stability, and
scaling are derived without reference to background time.

Pillar 2 (Postulational). The action postulate P2 — that each bit carries a fixed cycle-action
quantum AJ bit = nA# — is motivated by topological cycle-closure requirements on irreversible
anchoring but remains an explicit postulate awaiting deeper derivation. It is falsifiable through
the predictive program (Section 16).

Pillar 3 (Bridge — Layer B). Standard action—energy and mass—energy relations from
relativistic quantum mechanics translate the anchoring cycle into a rest-mass formula: m =
nhap_ v/(c*AtK c).

The extended analysis of Section 11 demonstrates that this formula behaves consistently under
stochastic variation, multi-channel generalization, the Planck-mass limit (yielding K c,P ~ 2w as
a nontrivial structural result), gravitational redshift, and unstable-particle interpretation. The
mass hierarchy across twenty-three orders of magnitude — from the Planck mass to the electron
— maps onto a barrier-height hierarchy from K ¢ ~ 1 to K ¢ ~ 10%.
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Section 12 establishes that the equivalence of inertial and rest mass — a foundational principle in
general relativity — is recovered within the anchoring framework under a single structural
condition: the spatial projection scale £ b must be determined by the same anchoring parameters
(K _c, p_v) that set the tick-count per flip. The equivalence principle thereby becomes a
constraint on how information projects into emergent geometry, rather than a separate postulate.

Section 15 extends this geometric thread by constructing a consistent mapping from mass density
to flip-entropy density and from spatial flip-density gradients to projection-scale curvature,
whose weak-field limit targets the structure of the Newtonian Poisson equation. Gravity, in this
framework, would be the geometric response of emergent space to flip-entropy gradients — a
structural correspondence that identifies a concrete target for a full derivation of Einstein's field
equations from anchoring dynamics.

The resulting framework identifies mass as set by the tick-count per flip — determined by the
ratio of coupling strength to barrier height. It reinterprets the Compton period as the emergent-
time image of the substrate tick-count per bit-flip, translates the mass spectrum problem into an
eigenmode computation on the BCB interface, and identifies three necessary conditions (S1-S3)
for stable particle-like modes. Mass as rest energy (tick-count per flip mapped to energy via the
Layer B bridge) and mass as inertia (resistance to acceleration) coincide numerically but arise
from distinct structural layers — their equality is the structural content of the equivalence
principle (Section 12.8).

What this paper does not do is predict any particle mass from first principles. That achievement
requires executing the research program of Section 16: computing (K c, p_v) from interface
dynamics and verifying the equivalence-principle condition (12.9) from interface geometry.
Until then, the contribution is a new, physically interpretable, and mathematically consistent
parameterization of the mass scale — together with a concrete roadmap for turning consistency
into prediction.
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