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General Reader Abstract 

What gives matter its mass? In standard physics, particles acquire mass by interacting with the 

Higgs field. This paper proposes a different mechanism rooted in the Void Energy-Regulated 

Space Framework (VERSF), where reality emerges from a deeper information-processing layer 

called the void substrate. 

The central idea is surprisingly intuitive. Imagine two oscillations — one belonging to a particle-

like mode, the other belonging to the underlying substrate. When these oscillations are well 

synchronized (in phase with each other), opportunities arise for irreversible information changes 

called "bit-flips." But a single opportunity isn't enough — a particle must accumulate many 

successful opportunities before a bit-flip is fully committed, and the number required (called the 

anchoring depth) differs between particle types. Mass is proportional to the density of committed 

bit-flips per substrate tick — the more bit-flips completed per tick, the greater the mass. Good 

synchronization means frequent opportunities; shallow anchoring means fewer opportunities 

needed per commitment. Both contribute to higher mass. 

We formalize this with a number called R that measures how well-synchronized the two 

oscillations are, ranging from 0 (completely out of sync) to 1 (perfectly locked together). From R 

we derive the probability that a bit-flip opportunity occurs at any given moment, and from that 

probability we derive mass. The key result is an equation — the "bridge formula" — that 

connects the abstract concept of synchronization quality to concrete, measurable mass. 

This approach explains several features of the physical world. Stable particles are expected to 

correspond to modes in the high-coherence regime, where synchronization with the substrate is 

strong and resistant to disruption. Unstable particles correspond to modes at intermediate 

synchronization, where small fluctuations cause large changes in mass — leading to decay. The 

vast differences in mass between different particles (for example, the top quark is roughly 

340,000 times heavier than the electron) emerge naturally from differences in synchronization 

quality and internal complexity. 

The paper connects VERSF to the well-studied physics of synchronization — the same 

mathematics that describes fireflies flashing in unison, neurons firing together, and power grids 
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maintaining frequency — giving the framework concrete mathematical tools and a clear path 

toward testable predictions. 

 

Technical Abstract 

In the Void Energy-Regulated Space Framework (VERSF), mass emerges from irreversible bit-

flipping dynamics on a zero-entropy substrate. Prior work defined void coupling as a statistical 

probability p_v without dynamical origin. This paper reinterprets void coupling as phase 

coherence between interface and substrate oscillations, introducing a coherence order parameter 

R = |⟨exp(iΔ)⟩| and deriving the micro-event probability p_ε as an explicit functional of R via an 

error-function bridge formula. The mass relation m = (ηℏp_ε)/(c²ΔtK_c) remains structurally 

intact but acquires dynamical content grounded in synchronization physics. We derive 

fluctuation structure and decay widths from coherence drift, demonstrate robustness across 

Gaussian and von Mises phase distributions, present a noisy Adler phase-locking model as a 

minimal dynamical realization, and establish scaling relations yielding the primary prediction m 

∝ g · q^{N_eff(K_c)} / K_c as an exponential mass hierarchy governed by the effective number 

of independent alignment constraints. An explicit mapping of Standard Model Yukawa couplings 

to coherence–anchoring ratios is derived, with scale dependence arising naturally from the 

resolution-dependent character of phase averaging. The formalism connects VERSF anchoring to 

established synchronization theory and defines a concrete simulation protocol for mass 

prediction. 
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1. Introduction 

For general readers: This section explains the problem we're solving. Previous work in VERSF 

showed that mass comes from a process of irreversible information changes, but left unexplained 

why some particles undergo these changes more readily than others. This paper answers that 

question: it's about how well-synchronized a particle is with the underlying fabric of reality. 

In the Void Energy-Regulated Space Framework (VERSF), mass emerges from irreversible bit-

flipping dynamics on a zero-entropy substrate. Prior anchoring work established that rest mass 

scales as m ∝ p_v / K_c, where p_v represented a void-coupling probability and K_c an 

anchoring commitment depth — the number of micro-events required to complete one 

irreversible state transition. This relation successfully connects mass to discrete information 

processing, but leaves p_v defined purely as the statistical occupancy of an anchorable subset, 

with no dynamical origin. 

The absence of a dynamical grounding for p_v raises two problems. First, without a mechanism 

generating the coupling probability, the mass formula describes but does not explain the mass 

hierarchy. Second, without a dynamical variable underlying p_v, there is no natural route to time 

evolution, fluctuation spectra, or phase transitions — all of which a complete theory of mass 

emergence should accommodate. 

This paper resolves both problems by reinterpreting void coupling as phase coherence between 

the interface mode and the substrate. We introduce a coherence order parameter R — the 

magnitude of the circular mean of the relative phase — and show that the micro-event 

probability p_ε is a derived functional of R. The mass relation remains structurally intact but 

acquires a dynamical interpretation: mass is regulated by the degree of phase synchronization 

between a mode and the void substrate, modulated by the anchoring depth required to commit 

each bit-flip. 

This reformulation connects VERSF anchoring physics to the well-studied mathematics of 

synchronization theory, circular statistics, and phase-transition phenomena, opening a concrete 

pathway toward simulation, experimental prediction, and contact with established condensed-

matter and quantum-coherence frameworks. 

Contributions. This paper contributes six results to the VERSF program: (i) the separation of 

coherence R and micro-event probability p_ε as logically distinct quantities; (ii) a derived bridge 

formula connecting p_ε to R via the error function, with explicit derivation from the Gaussian 

phase distribution; (iii) a stability and decay interpretation via the coherence derivative dp_ε/dR; 

(iv) a scaling hypothesis linking internal mode complexity to the mass hierarchy through an 

exponential relation m ∝ g · q^{N_eff} / K_c, where N_eff is the effective number of 

independent alignment constraints; (v) a minimal dynamical model demonstrating how R 

emerges from phase-locking dynamics in the single-oscillator reduction of Kuramoto-type 

synchronization; and (vi) an explicit mapping of Standard Model Yukawa couplings to 

coherence–anchoring ratios, with a derived numerical prefactor and natural scale dependence. 
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2. Void Coupling and Void Anchoring: Distinct Roles in Mass 

Emergence 

For general readers: Mass in VERSF comes from two separate processes working together. 

"Coupling" is how often a particle gets an opportunity to make an irreversible change — think of 

it as how often a key tries the lock. "Anchoring" is how many successful tries are needed before 

the change actually sticks — how many tumblers the key must turn. A particle's mass depends on 

both: how frequently opportunities arise and how many are needed. This section explains why 

keeping these concepts separate is essential to understanding why different particles have 

different masses. 

Two distinct physical processes underlie mass emergence in VERSF: void coupling and void 

anchoring. They operate at different scales, answer different questions, and contribute different 

factors to the mass formula. Conflating them obscures the logic of mass emergence; separating 

them clarifies it. 

Void coupling is the interaction between an interface mode and the void substrate. It determines 

whether, at any given tick, a micro-event — an opportunity for an irreversible bit-flip — can 

occur. Coupling is a per-tick, probabilistic, dynamical process. Its strength is governed by how 

well the interface mode's phase aligns with the substrate phase. High coupling means frequent 

micro-event opportunities; low coupling means the mode and substrate oscillate largely 

independently, and micro-events are rare. In this paper, we formalize void coupling as phase 

coherence R and derive the per-tick micro-event probability p_ε as a function of R. 

Void anchoring is the accumulation process by which micro-events build toward an irreversible 

state commitment. A single micro-event does not complete a bit-flip. Rather, K_c successful 

micro-events must accumulate before the transition becomes irreversible — before the bit is 

"anchored." Anchoring is a counting process: it tracks how many successful coupling events 

have occurred and determines when the threshold for irreversibility is reached. The anchoring 

depth K_c characterizes the difficulty of commitment: shallow anchoring (small K_c) requires 

few micro-events and produces rapid, easily reversed transitions; deep anchoring (large K_c) 

demands many micro-events and produces robust, stable state commitments. 

How they combine in the mass formula. Rest mass depends on both: 

m = (η ℏ p_ε) / (c² Δt K_c) 

The numerator contains p_ε — a coupling quantity — measuring how many micro-events occur 

per tick. The denominator contains K_c — an anchoring quantity — measuring how many 

micro-events are needed per committed transition. Mass is the ratio of coupling strength to 

anchoring depth: per-tick micro-event probability divided by the number required. 

This separation has a direct physical analogy. Coupling is like how often a ratchet's pawl 

engages a tooth per attempted cycle. Anchoring is like the number of teeth per full revolution: 
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how many engagements are needed to complete one cycle? The density of completed revolutions 

per cycle — and therefore the emergent mass — depends on both. 

Why the distinction matters. Without separating coupling from anchoring, one might attribute 

the entire mass hierarchy to a single parameter. The formalism developed here shows that the 

hierarchy arises from the interplay of three quantities: coherence R (how well-synchronized the 

mode is), alignment window ε (how precisely the phases must match), and anchoring depth K_c 

(how many successful alignments are needed). Two modes with identical coherence but different 

anchoring depths will have different masses. Two modes with identical anchoring depths but 

different coherence will also have different masses. The mass hierarchy is irreducibly two-

dimensional in the coupling–anchoring plane when ε and g are treated as universal; if ε varies by 

channel or g varies by mode, it becomes higher-dimensional in (R, g, ε, K_c). 

Resonant coupling vs. anchoring-effective coupling. The term "void coupling" requires a 

further distinction. In the original void anchoring framework (prior VERSF work), the 

probability parameter p_v was defined as the probability per tick that a micro-event contributes 

toward irreversible commitment. That is, p_v was an anchoring-effective coupling — not a 

generic measure of resonance strength. 

In the present coherence reformulation, it is useful to distinguish two related but conceptually 

distinct quantities. Resonant phase coupling, measured by the coherence order parameter R = 

|⟨exp(iΔ)⟩|, quantifies how well the interface mode tracks the substrate phase. Anchoring-

effective micro-event probability determines how frequently irreversible commitments actually 

occur and therefore enters directly into the mass formula. Phase resonance does not 

automatically imply irreversible anchoring. A mode may track the substrate phase closely (high 

R) while only rarely entering the subset of aligned configurations that produce irreversible 

commitment. 

We therefore define the anchoring-effective micro-event probability as: 

p_v ≡ p_eff = g · p_align 

where p_align = P(|Δ| ≤ ε) is the alignment probability derived from coherence via the bridge 

formula (Section 6), and g ∈ [0, 1] is a gating factor — a structural selection factor determined 

by the geometry or topology of the anchorable subset, encoding the probability that an aligned 

configuration lies within the anchorable subset that produces irreversible commitment. 

The mass relation therefore becomes: 

m = (η ℏ) / (c² Δt) · p_eff / K_c = (η ℏ) / (c² Δt) · g · p_align / K_c 

This refinement preserves the structure of the original anchoring framework while supplying a 

dynamical origin for the probability parameter p_v. It also permits regimes in which a mode is 

strongly phase-coupled (R ≈ 1) yet generates extremely small mass if anchoring is strongly gated 

(g ≪ 1) — a structure potentially relevant for ultra-light species such as neutrinos. 
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Chirality and anchoring suppression. In addition to phase resonance, irreversible anchoring 

may require compatibility between the internal phase structure of the mode and the topology of 

the anchorable subset. For chiral modes — such as neutrino-like modes whose chirality structure 

restricts anchoring admissibility — only a restricted subset of aligned configurations may satisfy 

the necessary chirality constraints for irreversible commitment. This naturally introduces a 

suppression factor g, representing the fraction of aligned states that are anchorable. In such cases 

a mode may exhibit high phase coherence (R ≈ 1) while remaining weakly anchoring-effective (g 

≪ 1), yielding ultra-light masses despite strong resonance with the substrate. This mechanism 

provides a structural route to neutrino mass suppression without abandoning the coherence–

anchoring framework. 

Chirality-class constraint on g. In this paper g is not treated as an independent continuous 

parameter per species. Rather, g is assumed to be determined primarily by discrete structural 

class (e.g., chiral vs. non-chiral anchoring admissibility) and is therefore expected to take values 

clustered by class — g ∈ {g_chiral, g_nonchiral, ...} — with any residual mode dependence 

arising only from computable geometric overlap with the anchorable subset. This reduces the 

effective freedom from "one g per particle" to "one g per structural class," consistent with the 

interpretation of g as a topological selection factor. In the eigenmode program, g is computed as 

an overlap/selection measure on the same state space used to compute R and K_c, not tuned per 

species. The number of distinct structural classes is expected to be small (order 2–3), determined 

by the topology of the anchorable subset and the discrete admissibility of the mode (e.g., chiral 

vs. non-chiral anchoring). In particular, the class count is assumed to be much smaller than the 

number of particle species, so the class-level g constraint reduces parameter freedom rather than 

reintroducing it at a different level. 

In Sections 3–6, p_ε denotes p_align — the alignment probability derived from coherence. From 

Section 7 onward, p_ε is redefined to denote p_eff = g · p_align — the anchoring-effective 

probability that enters the mass relation and counting process. Where the distinction matters, 

p_align is written explicitly. 

 

3. Definitions and Notation 

For general readers: This section defines the key variables used throughout the paper. The most 

important are: the "relative phase" Δ (how far out of step two oscillations are), the "coherence" 

R (a single number from 0 to 1 measuring overall synchronization quality), and the "micro-event 

probability" p_ε (the chance per moment that a bit-flip opportunity occurs). If you follow only 

these three, the rest of the paper will make sense. 

We define the following quantities used throughout the paper. 

Interface phase φ_n — the phase of the interface mode at discrete tick n. This encodes the 

oscillatory state of a mode coupled to the void substrate. 
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Substrate phase θ_n — the phase of the local void substrate at tick n. The substrate provides the 

reference oscillation against which interface modes synchronize. Its physical origin is discussed 

in Section 4. 

Relative phase: 

Δ_n = φ_n − θ_n (mod 2π) (1) 

Coherence order parameter (circular mean magnitude): 

R = |⟨exp(iΔ)⟩| (2) 

This is the standard Kuramoto-type order parameter measuring the degree of phase 

synchronization. R = 1 indicates perfect phase-locking; R = 0 indicates complete phase 

incoherence. 

Alignment window ε — the maximum relative phase deviation within which a micro-event can 

occur. This is a structural parameter of the interface–substrate interaction, discussed further 

below. 

Micro-event window probability: 

p_ε = P(|Δ| ≤ ε) (3) 

The probability per tick that the relative phase falls within the alignment window, generating an 

anchorable micro-event. 

Notation note. For readability we write p_align := P(|Δ| ≤ ε) for the phase-alignment probability 

derived from coherence, and p_eff := g · p_align for the anchoring-effective probability entering 

the mass relation. This corresponds to the original anchoring paper's p_v, i.e., p_v ≡ p_eff. In 

Sections 3–6, p_ε denotes p_align; from Section 7 onward, p_ε denotes p_eff (see Section 2). 

Anchoring depth K_c — the number of successful micro-events required to complete one 

irreversible bit-flip. Defined operationally as: 

K_c = 2π / ⟨Δφ_event⟩ (4) 

where ⟨Δφ_event⟩ is the mean phase advance per successful micro-event. The 2π in the 

numerator encodes a physical assumption: one completed anchoring event corresponds to one 

full phase cycle of the interface–substrate system. The 2π factor encodes the minimal closed 

cycle of the relative phase Δ required for self-consistent irreversible commitment — a bit-flip 

constitutes a complete state transition that must return the phase relationship to its starting 

configuration, and 2π is the minimal closed path in the U(1) phase space of Δ_n. In principle, 

modes with nontrivial winding structure could require integer multiples of 2π (captured by the 

action normalization η), but the single-cycle case is the minimal and generic requirement. Deeper 

anchoring (larger K_c) requires more micro-events per committed transition. 



 8 

Emergent tick interval Δt — the fundamental discrete time step of the substrate clock. In 

VERSF, continuous time emerges from the accumulation of discrete ticks; Δt sets the temporal 

grain. 

Action normalization η — the number of independent phase sectors per substrate cycle that 

contribute to anchoring. In the simplest single-sector models η = 1. For modes with internal 

rotational structure, η counts the distinct angular regions within one full 2π cycle where 

anchoring can independently occur. It is analogous to a topological winding number: a mode that 

completes η independent anchoring opportunities per substrate cycle contributes η times the 

action of a single-sector mode. The mass formula inherits this factor linearly, so η directly 

multiplies the effective per-tick micro-event probability. 

On the nature of ε. The alignment window ε is not a free fitting parameter. It characterizes the 

angular width of the interface–substrate interaction potential — the range of relative phase over 

which the coupling is strong enough to trigger a micro-event. We treat ε as universal because it is 

set by the local curvature and threshold structure of the substrate coupling potential U(Δ) near its 

minimum. If micro-event registration occurs when U(Δ) ≥ U*, then ε is determined by U(ε) = U* 

and is therefore substrate-defined rather than mode-defined. The potential U(Δ) is a property of 

the void substrate's response to phase misalignment; it does not depend on which mode is being 

coupled. Different modes experience the same substrate potential, just as different particles 

experience the same gravitational metric. 

If ε varies with mode scale. If the universality assumption fails, ε becomes mode-dependent and 

the mass hierarchy acquires a genuinely three-dimensional structure in (R, ε, K_c). The bridge 

formula's exponential sensitivity to ε means that even mild variation can dominate the mass 

scaling. The formalism accommodates mode-dependent ε without structural modification; the 

implications are noted in Section 12. 

Parameter classification. To prevent confusion about what is fixed versus what varies across 

modes, we state the status of each parameter explicitly: 

• Δt — calibration constant, often identified with the Planck time t_P in VERSF; treated as 

universal and fixed throughout this paper. 

• η — topological sector multiplicity (integer or 𝒪(1)); in principle mode-dependent, 

reflecting the internal rotational structure of each mode. Set to unity for single-sector 

modes. 

• ε — alignment window; treated as universal here, but could be channel-dependent in 

extensions involving distinct interaction potentials. 

• g — anchoring gate factor (Section 2); a structural selection factor ∈ [0, 1] determined by 

the geometry or topology of the anchorable subset. Encodes the fraction of phase-aligned 

configurations that produce irreversible commitment. From Section 7 onward, g is 

incorporated into p_ε via p_ε := p_eff = g · p_align. 

• R, K_c — mode-dependent observables; these are the quantities that vary across particle 

species and are the primary drivers of the mass hierarchy. 

• N_eff — effective number of statistically independent phase sectors within a mode's 

internal structure, defined in Section 9. Determined by the mode's spatial extent ξ, the 
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internal correlation length ℓ_c, and the effective dimensionality d_eff via N_eff(ξ) ∼ (ξ / 

ℓ_c)^d_eff. Controls the exponential suppression of micro-event probability for complex 

modes. 

Parameter counting and non-fittability. Although the mass relation can be written as m ∝ g · 

p_ε(R, ε) / K_c, the quantities (R, g, K_c) are not treated as freely adjustable per particle species. 

In the VERSF program they are mode observables determined by the same underlying interface 

dynamics: R is computed from the phase statistics of the mode, K_c is computed from its cycle-

closure/winding structure, and g encodes structural selection (e.g., chirality/topological 

admissibility) that is fixed once the mode class is specified. The alignment window ε is treated as 

substrate-defined and universal in the present work. Under this interpretation, the apparent "four-

parameter freedom" collapses to a small set of universal substrate parameters plus a discrete set 

of mode-specific outputs from the eigenmode map. The Standard Model treats y_f as an 

independent parameter per fermion; the VERSF program aims to reduce this to a small number 

of universal substrate parameters plus computed mode observables. The framework becomes 

predictive once the eigenmode computation program is executed: (R_j, K_{c,j}, g_j) are 

computed, not fitted, and the mass spectrum is the image of the dynamics rather than an arbitrary 

assignment. 

 

4. Nature of the Substrate Phase 

For general readers: If we claim particles synchronize with the void substrate, we need to 

explain what the substrate's "oscillation" actually is — otherwise we've just invented a hidden 

clock and smuggled it into the theory. This section argues that the substrate's phase isn't imposed 

from outside but emerges naturally from the void's own structure, much like how a magnet 

spontaneously "chooses" a direction to point even though no external force picks the direction. 

Only the difference between the particle's phase and the substrate's phase matters — the 

absolute values are meaningless, like the difference between two clocks mattering even though 

neither has the "right" time. 

The substrate phase θ_n requires careful interpretation. It is not an externally imposed oscillator, 

not a background field inserted by hand, and not a hidden degree of freedom smuggled into the 

formalism. It is an emergent consequence of the void substrate's discrete clock structure and its 

associated phase degeneracy. 

Phase degeneracy of the substrate clock. A discrete tick substrate generically admits a phase-

origin degeneracy: shifting the tick index n ↦ n + n₀ leaves the physics invariant but changes the 

phase origin. This is a U(1) symmetry of the substrate dynamics — the void clock has no 

preferred "starting tick." The substrate phase θ_n can be understood as a local choice of this 

phase origin, spontaneously selected by boundary conditions and coarse-graining, analogous to 

how a ferromagnet spontaneously selects a magnetization direction from a rotationally invariant 

Hamiltonian. The void possesses a phase not as an external oscillator but as a spontaneously 

selected phase reference of a periodic substrate update rule. 
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Only relative phases are physical. This framing has an important consequence: θ_n functions 

as a local phase reference — a gauge-like degree of freedom — and only the relative phase Δ_n 

= φ_n − θ_n carries physical content. This is consistent with the formalism developed in this 

paper, which depends entirely on Δ_n and never on φ_n or θ_n individually. A global shift θ_n 

→ θ_n + δ, φ_n → φ_n + δ leaves all observables (R, p_ε, m) unchanged. The coherence order 

parameter R measures how well the interface mode tracks the substrate's locally chosen phase 

convention — not the absolute phase of either oscillation. 

Relation to void entropy structure. In VERSF, the void is a zero-entropy state — the ground 

state of the information-theoretic substrate. A zero-entropy state is maximally ordered, and the 

discrete tick structure of this ordered state defines a natural periodicity. The substrate phase θ_n 

is the local expression of this periodicity. Phase fluctuations in θ_n, if they exist, would represent 

departures from perfect void order and would themselves carry entropy cost — they correspond 

to local disorder in the substrate clock. 

What the interface mode does is oscillate relative to this locally selected phase reference. Void 

coupling measures how well the interface mode tracks it. When tracking is good (small Δ_n), 

micro-events are frequent and mass is efficiently generated. When tracking is poor (large, 

random Δ_n), the mode is effectively decoupled and no mass emerges. 

Operational definition. Operationally, θ_n is defined as the phase of the local substrate clock 

mode obtained by coarse-graining the void state over the minimal correlation cell — the smallest 

spatial region within which the void maintains definite phase coherence. This definition makes 

θ_n computable in any discrete simulation: given a lattice of void states, one identifies the 

correlation cell, extracts the dominant oscillatory mode within it, and reads off its phase at tick n. 

A complete derivation of the substrate clock dynamics — including whether the U(1) degeneracy 

is exact or softly broken — remains an open problem (see Section 12), but the operational 

definition given here is sufficient for the coherence formalism and does not require importing 

any external oscillatory mechanism. 

 

5. Phase Coherence Formalism 

For general readers: This section develops the mathematics of synchronization quality. The key 

quantity R ranges from 0 (no synchronization — like two clocks running at random relative to 

each other) to 1 (perfect lock-step). We show that R drops off rapidly as the "wobble" in the 

phase difference increases, and that this behavior is robust — it doesn't depend on the specific 

mathematical assumptions we make about how the wobble is distributed. 

The coherence order parameter R inherits its mathematical structure from circular statistics. Its 

key properties follow directly from the definition. 

Bounds: 
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0 ≤ R ≤ 1 (5) 

These bounds are exact. The lower bound is saturated when phase differences are uniformly 

distributed; the upper bound is saturated under perfect phase-locking (Δ_n = const for all n). 

Uniform random phase (incoherent limit): 

Δ ∼ Uniform(0, 2π) ⇒ R = 0 (6) 

In this limit, the circular mean of exp(iΔ) vanishes by symmetry. No net phase alignment exists, 

and the mode is fully decoupled from the substrate. 

Gaussian phase fluctuations (partially coherent regime): 

Δ ∼ 𝒩(0, σ²) ⇒ R = exp(−σ²/2) (7) 

This result follows from the characteristic function of the Gaussian distribution evaluated at unit 

frequency. Coherence depends only on the phase variance σ² and contains no dependence on the 

alignment window ε. It is an intrinsic property of the phase-locking dynamics, not of the 

measurement apparatus. 

The exponential sensitivity to phase variance has an important physical consequence: coherence 

degrades rapidly as fluctuations grow. A mode with σ = 1 rad retains only R ≈ 0.61; at σ = 2 rad, 

coherence has collapsed to R ≈ 0.14. Maintaining high coherence requires active suppression of 

phase fluctuations — a constraint that becomes increasingly difficult to satisfy as the internal 

complexity of the mode grows. 

Robustness: von Mises distribution. The Gaussian phase model is appropriate for small to 

moderate fluctuations but is not periodic on [0, 2π). The natural periodic generalization is the 

von Mises distribution: 

f(Δ) = exp(κ cos Δ) / (2π I₀(κ)) (8) 

where κ > 0 is the concentration parameter and I₀ is the modified Bessel function of the first kind 

of order zero. The coherence order parameter for the von Mises distribution is: 

R = I₁(κ) / I₀(κ) (9) 

where I₁ is the modified Bessel function of order one. In the high-concentration limit (κ ≫ 1), the 

von Mises distribution approaches the wrapped Gaussian and R → 1 − 1/(2κ). In the low-

concentration limit (κ → 0), R → 0. The monotonic relationship between concentration and 

coherence is preserved. The corresponding micro-event probability is: 

p_ε(κ, ε) = ∫₋ε^ε exp(κ cos Δ) / (2π I₀(κ)) dΔ 
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and since R(κ) = I₁(κ)/I₀(κ), this defines p_ε as an implicit function p_ε(R, ε). No closed-form 

analog of the Gaussian bridge formula Eq. (14) exists, but the relationship is computable for any 

R and ε by numerical inversion and integration. Crucially, in the high-concentration regime (κ ≫ 

1) where the von Mises approaches the wrapped Gaussian, the quantitative mapping from R to 

p_ε converges to the Gaussian bridge formula: both distributions yield the same p_ε(R, ε) to 

leading order when σ ≪ π. The two predictions diverge only for low coherence (R ≲ 0.3), where 

the wrap-around structure of the von Mises becomes significant. Since the physically most 

important regime for stable particles is high coherence (R near 1), the Gaussian bridge formula is 

quantitatively reliable precisely where it matters most. The Gaussian treatment used throughout 

this paper therefore reflects a generic feature of peaked, symmetric phase distributions, not an 

artifact of a special distributional choice. 

 

6. Derivation of the Bridge Formula 

For general readers: This is the paper's central mathematical result. We derive an equation — 

the "bridge formula" — that converts synchronization quality (R) into the concrete probability 

that a bit-flip opportunity occurs at any given moment. Think of it this way: if you know how 

well-synchronized two oscillations are, this formula tells you how often the synchronization is 

close enough for something to happen. The derivation is four steps of standard calculus; the 

result is a single equation that connects the abstract to the measurable. 

The bridge formula connecting micro-event probability p_ε to coherence R is derived here from 

first principles rather than stated as a result. 

Step 1: Gaussian phase distribution. Assume the relative phase is drawn from a Gaussian with 

zero mean and variance σ²: 

f(Δ) = (1 / √(2πσ²)) exp(−Δ² / (2σ²)) (10) 

Validity note. Although Δ is defined modulo 2π, Eq. (10) is used as a small-fluctuation 

approximation valid when σ ≪ π, so wrap-around probability is negligible. For fully periodic 

treatments, the von Mises model (Section 5) provides the natural replacement. 

Step 2: Integration over the alignment window. The micro-event probability is the integral of 

the phase density over the window [−ε, ε]: 

p_ε = ∫₋ε^ε f(Δ) dΔ (11) 

Substituting the Gaussian density and evaluating: 

p_ε = ∫₋ε^ε (1/√(2πσ²)) exp(−Δ²/(2σ²)) dΔ 

Applying the standard substitution u = Δ/(σ√2): 
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p_ε = (2/√π) ∫₀^{ε/(σ√2)} exp(−u²) du 

p_ε = erf(ε / (σ√2)) (12) 

Step 3: Express σ² in terms of R. From the Gaussian coherence result Eq. (7): 

R = exp(−σ²/2) ⟹ σ² = −2 ln R (13) 

Step 4: Substitute into Eq. (12). 

p_ε = erf( ε / √(−4 ln R) ) (14) 

This is the bridge formula. It establishes that the micro-event probability is a derived function of 

two quantities: the coherence order parameter R (a dynamical variable) and the alignment 

window ε (a structural parameter of the interface–substrate interaction). 

Properties of the bridge formula. The formula is well-defined for 0 < R ≤ 1. In the high-

coherence limit (R → 1), ln R → 0 and the argument of the error function diverges, giving p_ε 

→ 1: nearly every tick produces a micro-event. In the low-coherence regime (R → 0), |ln R| → ∞ 

and the argument approaches zero, giving p_ε → 0: micro-events become vanishingly rare. 

Between these limits, p_ε increases monotonically with R for fixed ε, confirming that better 

phase synchronization reliably produces more frequent micro-events. 

High-coherence expansion. Near R ≈ 1, write R = 1 − δ with δ ≪ 1. Then ln R ≈ −δ, so σ² ≈ 2δ 

and: 

p_ε ≈ erf(ε / (2√δ)) (15) 

For ε²/(4δ) ≫ 1 (tight coherence relative to window width), p_ε ≈ 1 − (2√δ)/(ε√π) · 

exp(−ε²/(4δ)). The departure from unity is exponentially small, confirming that high-coherence 

modes generate micro-events at nearly every tick. 

 

7. Mass Relation 

For general readers: This section connects synchronization to actual mass. The logic is: 

synchronization quality → per-tick bit-flip probability → committed bit-flips per tick → mass. 

The formula says mass equals the density of committed information changes per substrate tick 

times a fundamental constant of nature (ℏ, Planck's reduced constant) divided by the speed of 

light squared — echoing Einstein's E = mc². More synchronization means more bit-flips per tick 

means more mass. More anchoring depth (more bit-flips required per committed change) means 

less mass. Crucially, continuous time itself emerges from the accumulation of these ticks — so 

mass is not a "rate" in the ordinary sense but a per-tick information-processing density. 



 14 

The mass formula carries forward from prior VERSF anchoring work, now with p_ε explicitly 

grounded in phase coherence. 

Notation reminder. The bridge formula (Section 6) derives p_align; the mass relation uses p_eff 

= g · p_align. From this point onward we write p_ε := p_eff = g · p_align for the anchoring-

effective micro-event probability that enters the counting process and mass relation; the 

alignment probability derived from coherence is denoted explicitly as p_align. 

Rest mass: 

m = (η ℏ p_ε) / (c² Δt K_c) (16) 

The quantity p_ε sets the per-tick micro-event probability and, together with K_c, determines the 

expected number of ticks per committed bit-flip. Under the VERSF action postulate — 

developed and motivated in prior VERSF anchoring work, where it is derived from the 

requirement that each irreversible bit-flip constitute a minimal quantum of action — each 

completed cycle contributes η ℏ of action, yielding Eq. (16). The denominator c² Δt K_c converts 

from micro-event counting to rest mass via the tick interval, anchoring depth, and mass-energy 

equivalence. 

Flip period — the mean time between completed bit-flips: 

T_bit = (Δt K_c) / p_ε (17) 

This is the product of the tick interval, the number of required micro-events (K_c), and the 

inverse of the per-tick success probability (1/p_ε). T_bit sets the characteristic emergent 

timescale of mass generation for a given mode — it counts the expected number of ticks per 

committed bit-flip and converts to duration via Δt. 

Rest energy: 

E = η ℏ / T_bit (18) 

Combining with the flip period yields the expected E = mc² identity, confirming dimensional and 

structural consistency. 

Mass scaling (explicit dependence chain): 

m ∝ p_eff / K_c = g · p_align(R, ε) / K_c (19) 

Here p_align(R, ε) is given by the bridge formula (Eq. 14), and g encodes anchoring 

admissibility (Section 2). Mass is ultimately determined by four quantities: the phase coherence 

R (dynamical), the alignment window ε (structural), the anchoring gate g (topological/chirality-

class), and the anchoring depth K_c (topological). The mass hierarchy across particle species 

arises from different combinations of these parameters. 
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8. Stability and Fluctuation Structure 

For general readers: Why are protons stable for billions of years while other particles decay in 

fractions of a second? This section shows the answer lies in synchronization quality. Highly 

synchronized modes produce bit-flip opportunities so reliably that the process is almost clock-

like — the particle is rock-solid. Moderately synchronized modes are vulnerable: small wobbles 

in synchronization quality cause big swings in the per-tick bit-flip probability, leading to decay. 

The mathematics predicts that stability is exponentially strong for well-synchronized particles — 

explaining why certain particles are essentially immortal while others vanish almost instantly. 

The stochastic character of micro-event generation produces intrinsic fluctuations in the 

anchoring process. These fluctuations determine particle stability, decay widths, and spectral line 

structure. In this section p_ε denotes the anchoring-effective probability p_eff, since it is the 

probability of registering commitment-contributing micro-events in the counting process. 

Waiting-time distribution. The total number of ticks N required to accumulate K_c successful 

micro-events follows a negative binomial distribution NB(K_c, p_ε). 

Mean waiting time: 

E[N] = K_c / p_ε (20) 

Variance: 

Var(N) = K_c(1 − p_ε) / p_ε² (21) 

Coefficient of variation of the waiting time: 

CV = √((1 − p_ε) / K_c) (22) 

The CV characterizes the fractional fluctuation in the number of ticks required to complete one 

bit-flip cycle. Two limiting behaviors are physically significant. When p_ε → 1 (high coherence, 

near-deterministic micro-events), CV → 0 regardless of K_c: the anchoring process becomes 

clock-like and the particle is maximally stable. When K_c is large with p_ε moderate, CV ∝ 

1/√K_c: deeper anchoring suppresses fluctuations statistically, producing greater stability 

through redundancy. 

Energy fluctuations from coherence drift. If the coherence R undergoes slow stochastic drift 

δR, the resulting fluctuation in rest energy is: 

δE ∝ (dp_ε/dR) · δR (23) 

The derivative dp_ε/dR follows from the bridge formula Eq. (14) by the chain rule. Writing p_ε 

= erf(x) with x(R) = ε / √(−4 ln R), we have dp_ε/dR = (2/√π) exp(−x²) · dx/dR. Computing 
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dx/dR by differentiating x = ε(−4 ln R)^{−1/2} with respect to R gives dx/dR = 2ε / (R(−4 ln 

R)^{3/2}). Combining: 

dp_ε/dR = (4ε) / (√π · R · (−4 ln R)^{3/2}) · exp(−ε² / (−4 ln R)) (24) 

This closed-form expression has the following limiting behavior. As R → 1, ln R → 0 and (−4 ln 

R)^{3/2} → 0 in the denominator, but the exponential term exp(−ε²/(−4 ln R)) → 0 faster, 

dominating the algebraic prefactor and ensuring dp_ε/dR → 0. As R → 0, (−4 ln R)^{3/2} → ∞ 

in the denominator, so dp_ε/dR → 0. The derivative therefore peaks at intermediate coherence 

and vanishes in both limits, implying that marginally coherent modes are most susceptible to 

energy fluctuations. 

This provides a natural mechanism for decay widths: 

Γ ∝ |dp_ε/dR| · σ_R (25) 

where σ_R is the standard deviation of coherence fluctuations. Stable particles correspond to 

modes deep in the high-coherence regime where dp_ε/dR is small; unstable resonances occupy 

intermediate coherence where the derivative is large. 

Near-unity expansion of decay width. For R = 1 − δ with δ ≪ 1, we have −4 ln R ≈ 4δ, so Eq. 

(24) gives dp_ε/dR ∝ exp(−ε²/(4δ)) / δ^{3/2}. The decay width becomes: 

Γ ∝ exp(−ε²/(4δ)) · σ_R / δ^{3/2} (26) 

The exponential suppression dominates: decay width is exponentially small for tightly coherent 

modes. This provides a concrete mechanism for the observed stability of fundamental particles 

— they occupy the extreme high-coherence regime where the decay width is suppressed beyond 

any power law. 

 

9. Scaling Relations and the Mass Hierarchy 

For general readers: Why is the top quark 340,000 times heavier than the electron? This section 

proposes an answer: more internally complex particles have to keep more "pieces" synchronized 

simultaneously, and the difficulty of doing so grows exponentially with complexity. Imagine 

trying to get a room of people to clap in unison — easy with 3 people, nearly impossible with 

300. The same principle applies here: larger, more complex modes find it exponentially harder 

to maintain the phase synchronization needed for frequent bit-flips, so they end up with 

exponentially less mass. This single mechanism — exponential decay of synchronization with 

internal complexity — naturally produces the enormous range of masses we observe in nature. 

The formalism developed above determines the mass of a single mode given its coherence R, 

alignment window ε, and anchoring depth K_c. To address the mass hierarchy — why different 
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particle species have the masses they do — we require scaling relations connecting these 

parameters to the internal structure of each mode. 

9.1 Coherence Decay with Internal Complexity 

Consider a mode whose internal phase field extends over a characteristic scale ξ, measured in 

units of the substrate correlation length. Maintaining coherence requires phase alignment across 

all internal degrees of freedom. If phase fluctuations accumulate independently across the 

internal structure, the total phase variance grows as: 

⟨(Δφ)²⟩ ∼ C · ξ^α (27) 

where C is a coupling constant and α > 0 is a fluctuation growth exponent determined by the 

dimensionality and statistics of the internal phase field (α = 1 for diffusive accumulation, α = 2 

for ballistic). 

Substituting into the Gaussian coherence result Eq. (7): 

R(ξ) ∼ exp(−(C/2) ξ^α) (28) 

Coherence decays exponentially with internal complexity. Modes with larger internal structure 

are exponentially harder to keep phase-locked to the substrate. 

9.2 Micro-Event Probability Scaling 

Anchoring-effective probability. In the hierarchy analysis we model the anchoring-effective 

micro-event probability p_ε (= p_eff). Under the gating decomposition p_eff = g · p_align 

(Section 2), the multiplicative alignment hypothesis below is applied to p_align, while g is 

treated as a class-level structural factor. 

A mode of internal scale ξ embedded in a d-dimensional interface must maintain simultaneous 

phase alignment across its internal structure for a micro-event to register. We make the following 

independence assumption explicit: 

Assumption (multiplicative alignment). The internal phase field of the mode can be 

decomposed into N_eff statistically independent phase sectors, each of which must 

independently satisfy the alignment condition |Δ| ≤ ε for a global micro-event to occur. 

Justification. Why multiplicative rather than additive? An additive model p_align ∼ N_eff · q 

would imply that increasing internal complexity increases the chance of global alignment — the 

wrong qualitative direction. A linear suppression model p_align ∼ 1/N_eff cannot generate 

observed hierarchies spanning 10⁵–10¹⁷ without extreme fine-tuning of other parameters. 

Multiplicative suppression is the minimal structure that (i) decreases with complexity, (ii) is 

stable under coarse-graining, and (iii) naturally produces large hierarchies from modest changes 

in N_eff. Partial correlations are handled by replacing N_eff with an effective independent count 

based on the correlation length ℓ_c (below); this softens the exponent rather than eliminating 
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exponential structure. In simulation, the hypothesis is directly falsifiable: measure p_align as a 

function of estimated N_eff and test whether ln p_align scales linearly with N_eff. 

The number of effectively independent sectors is not simply ξ^d, because partial correlations 

within the internal phase field reduce the number of independent alignment constraints. If ℓ_c is 

the internal correlation length — the scale over which phase fluctuations are correlated — then: 

N_eff(ξ) ∼ (ξ / ℓ_c)^d_eff (29) 

where d_eff is the effective dimensionality of the independent sector decomposition. In the fully 

uncorrelated limit ℓ_c → 1, N_eff → ξ^d and d_eff = d. In the strongly correlated limit ℓ_c → ξ, 

N_eff → 1 and the mode aligns as a single unit. Physical systems occupy the intermediate 

regime where d_eff encodes the correlation structure: it is a correlation-controlled exponent, not 

a handwavy fit, and need not equal the geometric dimension d. 

In this analysis, ℓ_c is treated as mode-independent — a property of the substrate's intrinsic 

correlation structure rather than of the mode itself. However, in many physical systems 

correlation lengths grow with system size near criticality. If ℓ_c = ℓ_c(ξ) (or equivalently ℓ_c = 

ℓ_c(K_c)), the effective sector count N_eff and the resulting mass hierarchy would be modified. 

In particular, if ℓ_c grows with ξ, the effective number of independent sectors grows more 

slowly than (ξ)^d_eff, softening the exponential decay. This possibility is noted as an open 

question; the present treatment assumes constant ℓ_c as the simplest case. 

Under the multiplicative assumption, if each independent sector has an alignment probability q ∈ 

(0, 1) — defined as q ≡ P(|Δ| ≤ ε) evaluated on a single effectively independent sector, i.e., the 

per-sector analog of the global p_align — then the global alignment probability is: 

p_align = q^{N_eff(ξ)} (30) 

Thus p_eff = g · q^{N_eff} under class-level gating (Section 2). 

In the simplest case, q is substrate-defined and approximately universal for a given ε; mode 

dependence then enters primarily through N_eff. Since q is determined by the same alignment 

window ε and per-sector phase statistics, it is approximately universal under the same 

assumptions that justify ε universality (Section 3). If q varies across modes (for example, due to 

mode-dependent local coupling geometry), it introduces an additional degree of freedom beyond 

N_eff. The present treatment assumes universal q as the minimal case. 

Taking logarithms: 

ln p_align = N_eff(ξ) · ln q (31) 

Since ln q < 0, this gives exponential decay of p_align with N_eff. This exponential form is the 

fundamental scaling prediction of the multiplicative alignment assumption. 
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Over restricted ranges of ξ relevant to observed particle species, this exponential decay may be 

parametrized as an effective power law p_align(ξ) ∝ ξ^{−d_eff} for convenience, but the power-

law form is not derived from the multiplicative assumption. It is a phenomenological 

approximation whose validity range must be established by simulation. 

9.3 Anchoring Depth Scaling 

Anchoring depth scales linearly with the coherent domain size: 

K_c ∼ ξ (32) 

The physical content is that a mode with a larger coherent structure requires proportionally more 

micro-events to commit a single irreversible transition, because the bit-flip must propagate 

across the full coherent domain. 

9.4 Mass Scaling Along the Hierarchy 

Eliminating ξ via K_c ∼ ξ, the effective independent sector count becomes N_eff(K_c) ∼ (K_c / 

ℓ_c)^d_eff. Substituting into Eq. (30): 

p_align(K_c) = q^{N_eff(K_c)} (33) 

The mass relation m ∝ p_eff / K_c = g · p_align / K_c then gives the primary structural 

prediction: 

m ∝ g · q^{N_eff(K_c)} / K_c (34) 

This is an exponential hierarchy: mass decreases exponentially with the effective number of 

independent alignment constraints, modulated by the linear anchoring depth. This is substantially 

more falsifiable than a power law — it predicts a specific functional form (exponential times 

inverse-linear) that can be tested directly once N_eff is measured in simulation. 

Secondary phenomenology. Over restricted ranges of K_c where N_eff varies modestly, the 

exponential decay may be approximated as an effective power law: 

m ∝ K_c^{−(d_eff + 1)} (effective, finite-range) (35) 

The power-law form is not the fundamental prediction of the formalism. It is a 

phenomenological parametrization that may prove useful for fitting observed mass ratios over a 

limited range, but the exponential form Eq. (34) is the structural prediction that simulations 

should test. 

For d_eff ≈ 3 and moderate K_c, both forms produce a steep mass hierarchy spanning many 

orders of magnitude for modest variation in K_c — the correct qualitative feature. 



 20 

Status. The multiplicative alignment assumption (Eq. 30) is the central physical postulate of this 

section. The introduction of N_eff via the correlation length ℓ_c ensures the assumption is not 

artificially strong: correlations within the internal phase field reduce the effective sector count 

and soften the exponential decay relative to the fully uncorrelated limit. The exponential 

hierarchy Eq. (34) is the primary prediction; the power-law Eq. (35) is a secondary convenience. 

Both require validation by explicit simulation of phase-field dynamics on discrete substrates. 

Worked numerical example (toy demonstration). The following illustrates how exponential 

suppression generates large mass hierarchies from modest structural differences. It is illustrative 

rather than a claim of calibrated parameter values. 

Assume Planck-tick calibration Δt = t_P, single-sector η = 1 (prefactor cancels in ratios), and 

equal class-level g for both species. Choose per-sector alignment probability q = 0.8 and assume 

N_eff(K_c) = A · K_c with A = 1 for simplicity. The mass ratio between a top-like mode and an 

electron-like mode reduces to: 

m_t / m_e = (q^{N_t} / K_{c,t}) / (q^{N_e} / K_{c,e}) = q^{ΔN} · (K_{c,e} / K_{c,t}) 

To reproduce the observed order-of-magnitude hierarchy m_t/m_e ≈ 3.4 × 10⁵, one needs 

q^{ΔN} · (K_{c,e}/K_{c,t}) ≈ 3.4 × 10⁵. If (for illustration) K_{c,e}/K_{c,t} ≈ 10⁶ — i.e., the 

electron-like mode has anchoring depth one million times deeper than the top-like mode — then 

the remaining factor required is q^{ΔN} ≈ 0.34. With q = 0.8, this corresponds to ΔN ≈ 5 

constraints (since 0.8⁵ ≈ 0.33). This ratio is illustrative; the eigenmode program (Section 12) 

treats K_c as a computed output rather than a fitted parameter. 

This demonstrates the key point: exponential dependence makes large hierarchies possible with 

modest differences in effective constraint count ΔN_eff, while anchoring depth ratios account for 

the bulk scaling. The real predictive program is to compute (K_c, N_eff, q, g) from mode 

geometry; this example only illustrates that the mechanism is numerically plausible without 

extreme fine-tuning. 

 

10. Minimal Dynamical Model 

For general readers: So far we've described what synchronization does (produces mass) and 

how to measure it (the R parameter), but we haven't shown where synchronization comes from. 

This section provides a simple example — not the final answer, but a proof that the mechanism 

works. We take a well-understood equation from synchronization science (used to describe 

things like electronic oscillators locking to a reference signal) and show that it naturally 

produces a coherence value R, which feeds through our bridge formula to produce mass. The 

model also reveals a threshold effect: below a critical coupling strength, synchronization fails 

entirely and no mass emerges — a kind of "mass switch" built into the physics. 

The following model is not proposed as the fundamental dynamics of void-substrate coupling but 

as proof of concept that the R → p_ε → m chain is realizable in a concrete, analytically tractable 
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dynamical system. Its purpose is to demonstrate that coherence R emerges naturally from the 

competition between coupling and noise, and that the formalism of Sections 5–7 applies without 

modification once R is given a dynamical origin. 

Model. Consider a single interface oscillator with phase φ coupled to a substrate oscillator with 

fixed frequency ω₀: 

dφ/dt = ω + κ sin(θ − φ) + σ_η · ξ(t) (36) 

where ω is the natural frequency of the interface mode, κ is the coupling strength, σ_η is the 

noise amplitude, and ξ(t) is unit white noise. The substrate phase advances deterministically: θ(t) 

= ω₀t. This is the noisy Adler equation [6], the single-oscillator reduction of Kuramoto-type 

population synchronization [1], and the simplest model exhibiting a synchronization transition. 

Steady-state coherence. In the synchronized regime (|ω − ω₀| < κ), the relative phase Δ = φ − θ 

fluctuates around a fixed point. The steady-state distribution of Δ is approximately von Mises 

with concentration parameter: 

κ_eff = 2κ / σ_η² (37) 

The coherence order parameter is then: 

R = I₁(κ_eff) / I₀(κ_eff) (38) 

Micro-event probability. Evaluating p_ε from the steady-state distribution: 

p_ε ≈ erf(ε / √(−4 ln R)) (39) 

where R is given by Eq. (38). 

Physical content. This toy model demonstrates three essential features. First, R emerges 

dynamically from the competition between coupling strength κ and noise σ_η, without being 

inserted by hand. Second, there exists a synchronization threshold: when noise dominates 

coupling (κ_eff ≪ 1), R → 0 and p_ε → 0, producing no mass. Mass emergence requires 

sufficient coupling to overcome noise — a phase transition in the synchronization sense. Third, 

the dependence of p_ε on coupling strength κ is monotonic and saturating: increasing κ beyond 

the threshold produces diminishing returns in mass, consistent with the physical expectation that 

there is a maximum mass achievable for a given anchoring depth. 

This model is illustrative, not a claim that actual void-substrate coupling follows Adler 

dynamics. Its purpose is to demonstrate that the R → p_ε → m chain is realizable in concrete 

dynamical systems, that R emerges from the competition between deterministic coupling and 

stochastic noise without being imposed, and to motivate the phase-transition structure discussed 

in Section 11.1. 

 



 22 

11. Relation to Standard Model Mass Structure 

For general readers: The Standard Model of particle physics explains mass through the Higgs 

mechanism — particles acquire mass by interacting with the Higgs field. This paper doesn't 

claim to replace that explanation. Instead, it asks: what determines the strength of each particle's 

interaction with the Higgs? The Standard Model treats these strengths (called Yukawa 

couplings) as unexplained numbers that must be measured experimentally. This section shows 

that the synchronization framework provides a possible microphysical origin for those numbers: 

each particle's Yukawa coupling is determined by its synchronization quality and anchoring 

depth. We also show that the formalism is compatible with the way these couplings change at 

different energy scales (a phenomenon called "running"), and that the synchronization threshold 

has a structural parallel to the phase transition that gives the Higgs its mass-generating power. 

11.1 Higgs–VERSF Bridge: Yukawa Couplings as Coherence–Anchoring Ratios 

In the Standard Model, fermion masses arise from Yukawa couplings to the Higgs field. In the 

electroweak broken phase: 

m_f = y_f v / √2 (40) 

where y_f is the dimensionless Yukawa coupling and v ≈ 246 GeV is the Higgs vacuum 

expectation value. The Standard Model does not predict the numerical values of y_f; they are 

empirical inputs. 

In the VERSF coherence–anchoring formalism, the rest mass of a mode is: 

m_f = (η ℏ p_{ε,f}) / (c² Δt K_{c,f}) (41) 

with micro-event probability p_{ε,f} derived from coherence R_f via the bridge formula Eq. (14) 

and anchoring depth K_{c,f} defined by Eq. (4). In the original void anchoring formulation 

(prior VERSF work), the void coupling probability p_v was defined as the per-tick probability 

that a micro-event contributes toward irreversible commitment. In the present notation this 

corresponds to the anchoring-effective probability p_eff = g · p_align, so p_v ≡ p_eff. The 

present coherence formalism supplies dynamical substructure by deriving p_align = P(|Δ| ≤ ε) 

from coherence R (Section 6), while retaining the original mass scaling m ∝ p_v / K_c 

unchanged. Equating Eqs. (40) and (41) yields the explicit bridge between Yukawa couplings 

and coherence–anchoring structure: 

y_f = (√2 η ℏ) / (v c² Δt) · p_{ε,f} / K_{c,f} (42) 

This relation is dimensionally consistent: ℏ/(c²Δt) has units of mass, v has units of mass, and 

p_{ε,f}/K_{c,f} is dimensionless, so y_f is dimensionless as required. 

Planck-tick calibration and numerical prefactor. Under the VERSF calibration Δt = t_P 

(Planck time), one has the identity: 
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ℏ / (c² t_P) = m_P (43) 

so Eq. (42) becomes: 

y_f = √2 η (m_P / v) · p_{ε,f} / K_{c,f} (44) 

Using m_P ≈ 1.22 × 10¹⁹ GeV and v ≈ 246 GeV: 

m_P / v ≈ 4.96 × 10¹⁶, √2 m_P / v ≈ 7.02 × 10¹⁶ (45) 

so the bridge may be written numerically as: 

y_f ≈ (7.0 × 10¹⁶) η · p_{ε,f} / K_{c,f} (46) 

This makes explicit that the observed Yukawa couplings correspond to extremely small 

coherence–anchoring ratios. For the top quark (y_t ≈ 1), we require η p_ε/K_c ≈ 1.4 × 10⁻¹⁷. For 

the electron (y_e ≈ 2.9 × 10⁻⁶), we require η p_ε/K_c ≈ 4 × 10⁻²³. The smallness of these ratios is 

not a flaw of the mapping: it is precisely the regime expected if micro-event probability is 

exponentially suppressed by the effective number of independent alignment constraints (Section 

9), yielding an exponential hierarchy of the form m ∝ g · q^{N_eff(K_c)} / K_c. The six-order-

of-magnitude separation between top and electron Yukawas corresponds, in the exponential 

picture, to a comparatively small shift in the effective alignment sector count N_eff for 

reasonable per-sector alignment probabilities q < 1, illustrating the efficiency of exponential 

suppression mechanisms. 

Structural relation to electroweak symmetry breaking. This bridge does not claim to replace 

the Higgs mechanism at the effective-field-theory level. Rather, it proposes a microphysical 

interpretation of the Yukawa parameters. In the Standard Model, masses vanish above the 

electroweak transition because the Higgs condensate disappears (v → 0), even though Yukawa 

couplings y_f remain nonzero. In the coherence–anchoring picture, mass vanishes when the 

effective committed bit-flip density p_ε/K_c tends to zero — whether due to loss of coherence 

(R → 0 ⇒ p_ε → 0) or divergence of anchoring depth (K_c → ∞) — even though structural 

parameters such as ε, η, and the anchoring rule remain defined. The parallel is therefore not an 

identification v ↔ R, but the existence of a threshold phenomenon that switches on mass 

generation when a coherent/condensed phase forms. 

Scope. Equation (42) provides a clean correspondence: Yukawa couplings map to coherence–

anchoring ratios multiplied by a universal prefactor set by (v, Δt, η). Whether this interpretation 

can reproduce the detailed mass spectrum of quarks and leptons — including generation mixing, 

CKM/PMNS matrix structure, and radiative corrections — remains an open question requiring 

explicit computation of coherence and anchoring parameters for each particle species. The role 

of this bridge is interpretive: it situates the coherence mechanism as a candidate microscopic 

origin for Yukawa hierarchies, while leaving the Standard Model as the correct low-energy 

effective description. 
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This mapping therefore applies to anchoring-effective probabilities rather than to generic 

resonance strength. 

When the Yukawa bridge becomes predictive. Equations (42)–(46) are a correspondence 

relation: they translate Standard Model Yukawa parameters into coherence–anchoring quantities. 

The mapping becomes predictive only when combined with the structural hierarchy result of 

Section 9. Under the exponential hierarchy m ∝ g · q^{N_eff(K_c)} / K_c (with universal q and 

substrate correlation structure), Yukawa ratios between species satisfy: 

y_i / y_j = (g_i / g_j) · q^{ΔN_eff} · (K_{c,j} / K_{c,i}) 

For species within the same structural class g_i = g_j, the ratio reduces to q^{ΔN_eff} · (K_{c,j} 

/ K_{c,i}), where ΔN_eff := N_eff(K_{c,i}) − N_eff(K_{c,j}), and the approximation assumes 

universal q (Section 9.2) and class-level g (Section 2). In this way the framework replaces "one 

free Yukawa per species" with a small set of universal substrate parameters (q, ℓ_c, and effective 

dimensionality d_eff) plus mode outputs K_{c,i} from the eigenmode map. This is the sense in 

which the coherence–anchoring program aims to supply a microphysical origin for Yukawa 

hierarchies rather than merely restating them. 

11.2 Scale Dependence of Coherence 

The Standard Model treats Yukawa couplings as scale-dependent quantities that run under 

renormalization group (RG) flow. If the coherence formalism is to provide a microphysical 

foundation for effective Yukawa parameters, it must be compatible with this scale dependence. 

The coherence order parameter R = |⟨exp(iΔ)⟩| is defined via an averaging operation that 

implicitly depends on the resolution at which phase fluctuations are probed. Let μ denote a UV 

momentum scale in the renormalization-group sense. Increasing μ corresponds to resolving 

shorter-distance fluctuations, which increases the phase variance accessible to the averaging 

procedure. 

If phase variance grows with scale according to: 

σ²(μ) = ⟨Δ²⟩_μ (47) 

then coherence becomes scale-dependent via the Gaussian result Eq. (7): 

R(μ) = exp(−σ²(μ)/2) (48) 

Higher μ (UV, finer resolution) resolves more fluctuations, increasing σ² and decreasing R. 

Lower μ (IR, coarser resolution) averages over short-distance noise, reducing effective σ² and 

increasing R. The generic sign of the coherence flow is therefore: 

dR/d ln μ < 0 (49) 
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Coherence increases toward the infrared. This is physically natural within VERSF: the 

macroscopic world exhibits well-defined, stable particle masses precisely because long-distance 

effective behavior reflects coherence that has been enhanced by averaging over short-distance 

phase noise. 

11.3 Running of Effective Yukawa Couplings 

Since p_ε is a derived functional of R via the bridge formula Eq. (14), it inherits scale 

dependence: 

p_ε(μ) = p_ε(R(μ)) (50) 

Differentiating with respect to scale: 

dp_ε/d ln μ = (dp_ε/dR) · (dR/d ln μ) (51) 

The closed-form derivative Eq. (24) ensures that this flow vanishes in both extreme coherence 

limits (R → 0 and R → 1) and peaks at intermediate coherence. Effective coupling strengths are 

therefore most sensitive to scale where coherence is neither maximal nor minimal. 

The Yukawa mapping Eq. (42) then gives: 

dy_f/d ln μ = (√2 η m_P / v) · [ (1/K_c) dp_ε/d ln μ − (p_ε/K_c²) dK_c/d ln μ ] (52) 

This expression has the same structural form as a renormalization group equation: effective 

couplings flow under scale transformations according to competing contributions from 

interaction strength (dp_ε/d ln μ) and internal structure (dK_c/d ln μ). The coherence formalism 

is therefore compatible with scale-dependent effective couplings, since both phase coherence and 

anchoring observables depend on resolution; deriving the Standard Model's specific beta-

function structure would require incorporating gauge and Higgs-sector dynamics into the 

substrate framework. 

However, the present framework does not reproduce the detailed one-loop structure of Standard 

Model Yukawa beta functions, which have the form β_y = y(ay² − bg² + ···) involving Yukawa 

self-enhancement, gauge-coupling suppression, and Higgs coupling terms. The coherence flow 

Eq. (52) has no gauge sector and no Higgs self-coupling contribution. Incorporating gauge 

structure into the coherence formalism and deriving the specific form of the Standard Model beta 

functions from coherence dynamics remains an open problem. 

On fixed points. Mass parameters evolve under the scale dependence of coherence and 

anchoring. Non-trivial fixed points — where dR/d ln μ and dK_c/d ln μ simultaneously vanish 

— would correspond to scale-stable masses. However, if σ²(μ) grows monotonically with 

resolution (the generic case for accumulated fluctuations), then R(μ) decreases monotonically 

and no fixed points exist without a feedback mechanism. Such stabilization could in principle 

arise if the anchoring process itself suppresses phase variance growth at specific scales, but 

whether this occurs in full VERSF dynamics remains an open question. 
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12. Limitations and Open Questions 

For general readers: Every honest scientific paper should be clear about what it hasn't solved. 

This section lists the open problems: we haven't derived the substrate's clock from deeper 

principles, we haven't proven our scaling assumptions, and we haven't yet run the simulations 

needed to test the predictions. We also include a speculative conjecture — that the 

synchronization framework might explain why particles come in families — which is suggestive 

but unproven. 

Several aspects of the formalism remain incomplete and are noted here for transparency. 

The substrate phase θ_n is given a physical interpretation in Section 4 as a spontaneously 

selected phase reference arising from the U(1) degeneracy of the substrate clock, but the 

dynamics of this spontaneous selection are not yet derived from deeper VERSF axioms. A 

complete treatment should derive the substrate clock dynamics from the entropy-gradient 

structure of the void and determine whether the U(1) phase degeneracy is exact or softly broken. 

The Gaussian assumption for the phase distribution, while analytically tractable and shown to be 

robust against generalization to the von Mises distribution (Section 5), may break down in 

strongly coupled or topologically nontrivial regimes. A full treatment should characterize the 

phase distribution from the microscopic dynamics. 

The scaling exponents α and d_eff in Section 9 are physically motivated by the multiplicative 

alignment assumption with correlation-controlled effective sector count, but not derived from 

first principles within VERSF. The internal correlation length ℓ_c and its dependence on mode 

structure remain to be determined. These values may depend on the specific anchoring topology 

and could differ across particle families. 

Composite particle treatment — where multiple anchoring channels interact — requires a multi-

channel extension of the coherence formalism. The framework is naturally suited to this (each 

channel carries its own R_i and K_{c,i}), but the interaction terms between channels have not 

yet been specified. 

The alignment window ε is treated as a universal constant (Section 3). A deeper theory should 

derive ε from the curvature of the interface–substrate interaction potential and determine whether 

it varies across modes. If ε is mode-dependent, the mass hierarchy becomes genuinely three-

dimensional in (R, ε, K_c). In the high-coherence regime, the bridge formula gives 1 − p_ε ∼ 

(√(−4 ln R) / (ε√π)) exp(−ε²/(−4 ln R)), showing exponential sensitivity to ε: if ε(ξ) decreases 

with internal complexity, it steepens the hierarchy beyond the R-only effect; if it increases, it 

softens it. The general mass scaling becomes m(ξ) ∝ p_ε(R(ξ), ε(ξ)) / K_c(ξ). 

The toy model of Section 10 demonstrates that R emerges in noisy Adler dynamics but does not 

constitute a derivation of the actual void-substrate coupling law. Identifying the correct 

dynamical equation governing φ_n remains an open problem. 
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Eigenmode computation program. The quantities (R, K_c, g) are not introduced as tunable 

parameters per particle species. They are intended to be derived from a single underlying 

interface dynamics via an eigenmode analysis. The minimal program is as follows. (1) Define a 

discrete interface state variable c(x, n) (e.g., contrast pair or admissibility vector) evolving on the 

substrate tick n. (2) Specify the local update operator U acting on c, including the substrate phase 

reference θ and mode phase φ = arg(c). (3) Compute eigenmodes ψ_j of the linearised (or 

Floquet) operator describing phase evolution around a stable cycle. (4) For each mode ψ_j, 

compute coherence R_j = |⟨exp(iΔ_j)⟩| from the induced Δ_j distribution. (5) Compute alignment 

probability p_{align,j} = P(|Δ_j| ≤ ε) via the bridge formula or via numerical integration. (6) 

Compute anchoring depth K_{c,j} from phase-winding closure: K_{c,j} = 2π / ⟨Δφ_event⟩j. (7) 

Compute gating factor g_j as a structural overlap/selection measure: the fraction of aligned 

configurations that lie in the anchorable subset (e.g., chirality/topology admissibility filter). (8) 

Predict mass via m_j ∝ (g_j · p{align,j}) / K_{c,j}, and compare ratios across modes without 

fitting per species. This program makes the framework predictive: once the update operator U 

(and substrate parameters ε, Δt, etc.) is fixed, the spectrum {m_j} is an output. The present paper 

establishes the mapping from these outputs to mass and stability; the eigenmode analysis is the 

next technical deliverable. 

The scale dependence of coherence (Section 11.2–11.3) is compatible with running effective 

couplings, but the resulting flow equations do not reproduce the detailed one-loop structure of 

Standard Model Yukawa beta functions. The SM beta functions involve gauge-coupling 

suppression, Yukawa self-enhancement, and Higgs coupling terms — none of which are present 

in the current coherence flow. Deriving the SM beta function structure from coherence 

dynamics, or identifying the additional ingredients needed, is an open problem that would 

significantly strengthen the connection to established particle physics. 

Conjecture: coherence collapse and symmetry breaking. The synchronization transition in the 

toy model — the threshold below which R = 0 and no mass emerges — has a suggestive parallel 

to symmetry breaking. Above the critical coupling, the relative phase locks to a definite value, 

breaking the rotational symmetry Δ → Δ + const. Mass emergence is coincident with this 

symmetry breaking. If this parallel extends to the full VERSF framework, particle families might 

correspond to distinct synchronization phases — different stable configurations of the phase-

locking dynamics, each with its own characteristic R, ε, and K_c. Phase transitions between 

configurations could correspond to particle transmutations or the restoration of symmetry at high 

energy (where high noise destroys coherence and mass). The Kuramoto model on complex 

networks is known to exhibit multiple synchronization transitions and coexisting synchronized 

clusters, which could in principle map onto family structure. This conjecture is structurally 

motivated by the formalism but entirely untested; it is recorded here as a direction for future 

investigation, not as a claim of the present paper. 

 

13. Conclusion 

For general readers: The paper's central message is that mass emerges from the interplay of 

synchronization and anchoring commitment. A particle's mass is determined by two things 
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working together: how well its internal oscillation locks onto the underlying substrate's rhythm 

(synchronization — which controls how often bit-flip opportunities arise), and how many 

successful alignments are needed to commit an irreversible change (anchoring depth — which 

controls how many opportunities it takes to complete one bit-flip). A third parameter, the 

alignment precision required, modulates both. This gives us a concrete recipe: simulate the 

synchronization, measure the anchoring depth, predict the mass. The mathematics connects to a 

well-established branch of science (synchronization theory), which means decades of existing 

tools and results become immediately applicable to fundamental physics. 

Void coupling, previously an abstract statistical parameter in the VERSF anchoring formalism, is 

identified here as phase coherence between interface and substrate oscillations. The coherence 

order parameter R = |⟨exp(iΔ)⟩| measures the quality of phase synchronization; the micro-event 

probability p_ε is derived from R through an explicit bridge formula Eq. (14) involving the error 

function. The mass relation m = (ηℏp_ε)/(c²ΔtK_c) remains structurally intact but now possesses 

a dynamical interpretation grounded in synchronization physics. 

What the coherence reformulation buys VERSF. Prior to this paper, the mass relation m ∝ 

p_v / K_c was a structural result that did not explain what set p_v for any given mode. The 

coherence formalism transforms p_v from an input parameter into a derived quantity determined 

by synchronization dynamics. The mass formula is now falsifiable at a deeper level: one can 

simulate the phase dynamics, extract R and K_c, and predict mass. The formalism provides a 

natural mechanism for particle decay — unstable particles occupy intermediate coherence where 

dp_ε/dR is large, while stable particles occupy the high-coherence regime where decay width is 

exponentially suppressed. The connection to Kuramoto synchronization theory opens VERSF to 

the full toolkit of synchronization analysis: bifurcation diagrams, frequency-locking regions, 

chimera states, and multi-oscillator dynamics. And the Yukawa mapping y_f = √2 η (m_P/v) · 

p_{ε,f}/K_{c,f} derived in Section 11 situates the formalism within Standard Model mass 

structure rather than in opposition to it. 

The key results are: the separation of coherence R from micro-event probability p_ε as logically 

distinct quantities connected by a derived relation; the identification of mass as ultimately 

regulated by four parameters — phase coherence, alignment window, anchoring gate, and 

anchoring depth; the derivation of fluctuation structure and decay widths from coherence drift 

with exponential suppression at high coherence; a scaling argument yielding the exponential 

hierarchy m ∝ g · q^{N_eff(K_c)} / K_c as the primary structural prediction of the mass 

hierarchy; an explicit mapping of Yukawa couplings to coherence–anchoring ratios with a 

computed numerical prefactor; and a minimal dynamical model demonstrating the emergence of 

R from phase-locking dynamics with an associated mass-generating phase transition. 

Predictive protocol. The formalism yields a three-step computational procedure for mass 

prediction: 

Step 1: Simulate phase dynamics, extract R = |⟨exp(i(φ − θ))⟩| 

Step 2: Measure anchoring depth K_c = 2π / ⟨Δφ_event⟩ 
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Step 3: Compute p_ε = erf(ε / √(−4 ln R)), then m = (ηℏp_ε)/(c²ΔtK_c) 

Each step involves quantities measurable within a discrete phase-field simulation. The formalism 

connects VERSF anchoring physics to the established mathematics of Kuramoto 

synchronization, circular statistics, and phase-transition theory, and opens a concrete pathway 

from theoretical framework to quantitative prediction. 

Falsifiability. The mechanism makes a specific structural prediction: simulations of a discrete 

phase-field interface must produce a stable high-coherence regime with measured N_eff(K_c) 

yielding an exponential mass hierarchy m ∝ g · q^{N_eff} / K_c. If no such regime exists — if 

coherence cannot be sustained, or if the measured mass scaling deviates qualitatively from 

exponential-times-inverse-linear — the mechanism is falsified. 
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