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General Reader Abstract

What gives matter its mass? In standard physics, particles acquire mass by interacting with the
Higgs field. This paper proposes a different mechanism rooted in the Void Energy-Regulated
Space Framework (VERSF), where reality emerges from a deeper information-processing layer
called the void substrate.

The central idea is surprisingly intuitive. Imagine two oscillations — one belonging to a particle-
like mode, the other belonging to the underlying substrate. When these oscillations are well
synchronized (in phase with each other), opportunities arise for irreversible information changes
called "bit-flips." But a single opportunity isn't enough — a particle must accumulate many
successful opportunities before a bit-flip is fully committed, and the number required (called the
anchoring depth) differs between particle types. Mass is proportional to the density of committed
bit-flips per substrate tick — the more bit-flips completed per tick, the greater the mass. Good
synchronization means frequent opportunities; shallow anchoring means fewer opportunities
needed per commitment. Both contribute to higher mass.

We formalize this with a number called R that measures how well-synchronized the two
oscillations are, ranging from 0 (completely out of sync) to 1 (perfectly locked together). From R
we derive the probability that a bit-flip opportunity occurs at any given moment, and from that
probability we derive mass. The key result is an equation — the "bridge formula" — that
connects the abstract concept of synchronization quality to concrete, measurable mass.

This approach explains several features of the physical world. Stable particles are expected to
correspond to modes in the high-coherence regime, where synchronization with the substrate is
strong and resistant to disruption. Unstable particles correspond to modes at intermediate
synchronization, where small fluctuations cause large changes in mass — leading to decay. The
vast differences in mass between different particles (for example, the top quark is roughly
340,000 times heavier than the electron) emerge naturally from differences in synchronization
quality and internal complexity.

The paper connects VERSF to the well-studied physics of synchronization — the same
mathematics that describes fireflies flashing in unison, neurons firing together, and power grids



maintaining frequency — giving the framework concrete mathematical tools and a clear path
toward testable predictions.

Technical Abstract

In the Void Energy-Regulated Space Framework (VERSF), mass emerges from irreversible bit-
flipping dynamics on a zero-entropy substrate. Prior work defined void coupling as a statistical
probability p v without dynamical origin. This paper reinterprets void coupling as phase
coherence between interface and substrate oscillations, introducing a coherence order parameter
R = |(exp(iA))| and deriving the micro-event probability p_¢ as an explicit functional of R via an
error-function bridge formula. The mass relation m = (nAip_€)/(c?AtK _c¢) remains structurally
intact but acquires dynamical content grounded in synchronization physics. We derive
fluctuation structure and decay widths from coherence drift, demonstrate robustness across
Gaussian and von Mises phase distributions, present a noisy Adler phase-locking model as a
minimal dynamical realization, and establish scaling relations yielding the primary prediction m
x g - qM{N_eff(K c¢)} /K c as an exponential mass hierarchy governed by the effective number
of independent alignment constraints. An explicit mapping of Standard Model Yukawa couplings
to coherence—anchoring ratios is derived, with scale dependence arising naturally from the
resolution-dependent character of phase averaging. The formalism connects VERSF anchoring to
established synchronization theory and defines a concrete simulation protocol for mass
prediction.
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1. Introduction

For general readers: This section explains the problem we're solving. Previous work in VERSF
showed that mass comes from a process of irreversible information changes, but left unexplained
why some particles undergo these changes more readily than others. This paper answers that
question. it's about how well-synchronized a particle is with the underlying fabric of reality.

In the Void Energy-Regulated Space Framework (VERSF), mass emerges from irreversible bit-
flipping dynamics on a zero-entropy substrate. Prior anchoring work established that rest mass
scalesas m < p_v/K c, where p_v represented a void-coupling probability and K ¢ an
anchoring commitment depth — the number of micro-events required to complete one
irreversible state transition. This relation successfully connects mass to discrete information
processing, but leaves p_v defined purely as the statistical occupancy of an anchorable subset,
with no dynamical origin.

The absence of a dynamical grounding for p_v raises two problems. First, without a mechanism
generating the coupling probability, the mass formula describes but does not explain the mass
hierarchy. Second, without a dynamical variable underlying p_v, there is no natural route to time
evolution, fluctuation spectra, or phase transitions — all of which a complete theory of mass
emergence should accommodate.

This paper resolves both problems by reinterpreting void coupling as phase coherence between
the interface mode and the substrate. We introduce a coherence order parameter R — the
magnitude of the circular mean of the relative phase — and show that the micro-event
probability p_¢ is a derived functional of R. The mass relation remains structurally intact but
acquires a dynamical interpretation: mass is regulated by the degree of phase synchronization
between a mode and the void substrate, modulated by the anchoring depth required to commit
each bit-flip.

This reformulation connects VERSF anchoring physics to the well-studied mathematics of
synchronization theory, circular statistics, and phase-transition phenomena, opening a concrete
pathway toward simulation, experimental prediction, and contact with established condensed-
matter and quantum-coherence frameworks.

Contributions. This paper contributes six results to the VERSF program: (i) the separation of
coherence R and micro-event probability p ¢ as logically distinct quantities; (i1) a derived bridge
formula connecting p_¢ to R via the error function, with explicit derivation from the Gaussian
phase distribution; (ii1) a stability and decay interpretation via the coherence derivative dp_&/dR;
(iv) a scaling hypothesis linking internal mode complexity to the mass hierarchy through an
exponential relation m o< g - M {N_eff} / K c, where N_eff is the effective number of
independent alignment constraints; (v) a minimal dynamical model demonstrating how R
emerges from phase-locking dynamics in the single-oscillator reduction of Kuramoto-type
synchronization; and (vi) an explicit mapping of Standard Model Yukawa couplings to
coherence—anchoring ratios, with a derived numerical prefactor and natural scale dependence.



2. Void Coupling and Void Anchoring: Distinct Roles in Mass
Emergence

For general readers: Mass in VERSF comes from two separate processes working together.
"Coupling" is how often a particle gets an opportunity to make an irreversible change — think of
it as how often a key tries the lock. "Anchoring" is how many successful tries are needed before
the change actually sticks — how many tumblers the key must turn. A particle's mass depends on
both: how frequently opportunities arise and how many are needed. This section explains why
keeping these concepts separate is essential to understanding why different particles have
different masses.

Two distinct physical processes underlie mass emergence in VERSF: void coupling and void
anchoring. They operate at different scales, answer different questions, and contribute different
factors to the mass formula. Conflating them obscures the logic of mass emergence; separating
them clarifies it.

Void coupling is the interaction between an interface mode and the void substrate. It determines
whether, at any given tick, a micro-event — an opportunity for an irreversible bit-flip — can
occur. Coupling is a per-tick, probabilistic, dynamical process. Its strength is governed by how
well the interface mode's phase aligns with the substrate phase. High coupling means frequent
micro-event opportunities; low coupling means the mode and substrate oscillate largely
independently, and micro-events are rare. In this paper, we formalize void coupling as phase
coherence R and derive the per-tick micro-event probability p € as a function of R.

Void anchoring is the accumulation process by which micro-events build toward an irreversible
state commitment. A single micro-event does not complete a bit-flip. Rather, K ¢ successful
micro-events must accumulate before the transition becomes irreversible — before the bit is
"anchored." Anchoring is a counting process: it tracks how many successful coupling events
have occurred and determines when the threshold for irreversibility is reached. The anchoring
depth K_c characterizes the difficulty of commitment: shallow anchoring (small K_c) requires
few micro-events and produces rapid, easily reversed transitions; deep anchoring (large K c¢)
demands many micro-events and produces robust, stable state commitments.

How they combine in the mass formula. Rest mass depends on both:

m=Mmhp_g)/(c*AtK c)

The numerator contains p_& — a coupling quantity — measuring how many micro-events occur
per tick. The denominator contains K ¢ — an anchoring quantity — measuring how many
micro-events are needed per committed transition. Mass is the ratio of coupling strength to

anchoring depth: per-tick micro-event probability divided by the number required.

This separation has a direct physical analogy. Coupling is like how often a ratchet's pawl
engages a tooth per attempted cycle. Anchoring is like the number of teeth per full revolution:



how many engagements are needed to complete one cycle? The density of completed revolutions
per cycle — and therefore the emergent mass — depends on both.

Why the distinction matters. Without separating coupling from anchoring, one might attribute
the entire mass hierarchy to a single parameter. The formalism developed here shows that the
hierarchy arises from the interplay of three quantities: coherence R (how well-synchronized the
mode is), alignment window € (how precisely the phases must match), and anchoring depth K ¢
(how many successful alignments are needed). Two modes with identical coherence but different
anchoring depths will have different masses. Two modes with identical anchoring depths but
different coherence will also have different masses. The mass hierarchy is irreducibly two-
dimensional in the coupling—anchoring plane when € and g are treated as universal; if € varies by
channel or g varies by mode, it becomes higher-dimensional in (R, g, €, K c).

Resonant coupling vs. anchoring-effective coupling. The term "void coupling" requires a
further distinction. In the original void anchoring framework (prior VERSF work), the
probability parameter p_v was defined as the probability per tick that a micro-event contributes
toward irreversible commitment. That is, p_v was an anchoring-effective coupling — not a
generic measure of resonance strength.

In the present coherence reformulation, it is useful to distinguish two related but conceptually
distinct quantities. Resonant phase coupling, measured by the coherence order parameter R =
|(exp(iA))|, quantifies how well the interface mode tracks the substrate phase. Anchoring-
effective micro-event probability determines how frequently irreversible commitments actually
occur and therefore enters directly into the mass formula. Phase resonance does not
automatically imply irreversible anchoring. A mode may track the substrate phase closely (high
R) while only rarely entering the subset of aligned configurations that produce irreversible
commitment.

We therefore define the anchoring-effective micro-event probability as:

p v=p eff=g-p align

where p_align = P(JA| < ¢) is the alignment probability derived from coherence via the bridge
formula (Section 6), and g € [0, 1] is a gating factor — a structural selection factor determined
by the geometry or topology of the anchorable subset, encoding the probability that an aligned
configuration lies within the anchorable subset that produces irreversible commitment.

The mass relation therefore becomes:

m=Mhn)/(c?At) - p eff/ K c=(Mm#h)/(c*At) - g - p align/K ¢

This refinement preserves the structure of the original anchoring framework while supplying a
dynamical origin for the probability parameter p_v. It also permits regimes in which a mode is

strongly phase-coupled (R = 1) yet generates extremely small mass if anchoring is strongly gated
(g K 1) — a structure potentially relevant for ultra-light species such as neutrinos.



Chirality and anchoring suppression. In addition to phase resonance, irreversible anchoring
may require compatibility between the internal phase structure of the mode and the topology of
the anchorable subset. For chiral modes — such as neutrino-like modes whose chirality structure
restricts anchoring admissibility — only a restricted subset of aligned configurations may satisfy
the necessary chirality constraints for irreversible commitment. This naturally introduces a
suppression factor g, representing the fraction of aligned states that are anchorable. In such cases
a mode may exhibit high phase coherence (R = 1) while remaining weakly anchoring-effective (g
« 1), yielding ultra-light masses despite strong resonance with the substrate. This mechanism
provides a structural route to neutrino mass suppression without abandoning the coherence—
anchoring framework.

Chirality-class constraint on g. In this paper g is not treated as an independent continuous
parameter per species. Rather, g is assumed to be determined primarily by discrete structural
class (e.g., chiral vs. non-chiral anchoring admissibility) and is therefore expected to take values
clustered by class — g € {g chiral, g nonchiral, ...} — with any residual mode dependence
arising only from computable geometric overlap with the anchorable subset. This reduces the
effective freedom from "one g per particle”" to "one g per structural class," consistent with the
interpretation of g as a topological selection factor. In the eigenmode program, g is computed as
an overlap/selection measure on the same state space used to compute R and K _c, not tuned per
species. The number of distinct structural classes is expected to be small (order 2—3), determined
by the topology of the anchorable subset and the discrete admissibility of the mode (e.g., chiral
vs. non-chiral anchoring). In particular, the class count is assumed to be much smaller than the
number of particle species, so the class-level g constraint reduces parameter freedom rather than
reintroducing it at a different level.

In Sections 3—6, p_¢ denotes p_align — the alignment probability derived from coherence. From
Section 7 onward, p_¢ is redefined to denote p_eff = g - p_align — the anchoring-effective
probability that enters the mass relation and counting process. Where the distinction matters,
p_align is written explicitly.

3. Definitions and Notation

For general readers: This section defines the key variables used throughout the paper. The most
important are: the "relative phase" A (how far out of step two oscillations are), the "coherence"
R (a single number from 0 to I measuring overall synchronization quality), and the "micro-event
probability" p_¢ (the chance per moment that a bit-flip opportunity occurs). If you follow only
these three, the rest of the paper will make sense.

We define the following quantities used throughout the paper.

Interface phase @ n — the phase of the interface mode at discrete tick n. This encodes the
oscillatory state of a mode coupled to the void substrate.



Substrate phase 6 n — the phase of the local void substrate at tick n. The substrate provides the
reference oscillation against which interface modes synchronize. Its physical origin is discussed
in Section 4.

Relative phase:
A n=¢ n—0 n(mod2n) (1)
Coherence order parameter (circular mean magnitude):

R = [{exp(iA))| (2)

This is the standard Kuramoto-type order parameter measuring the degree of phase
synchronization. R = 1 indicates perfect phase-locking; R = 0 indicates complete phase
incoherence.

Alignment window ¢ — the maximum relative phase deviation within which a micro-event can
occur. This is a structural parameter of the interface—substrate interaction, discussed further
below.

Micro-event window probability:
p_e=P(Al<¢) 3)

The probability per tick that the relative phase falls within the alignment window, generating an
anchorable micro-event.

Notation note. For readability we write p_align := P(]A| < ¢) for the phase-alignment probability
derived from coherence, and p_eff := g - p_align for the anchoring-effective probability entering
the mass relation. This corresponds to the original anchoring paper's p v, i.e.,p v=p_eff. In
Sections 3—6, p_¢ denotes p_align; from Section 7 onward, p_¢ denotes p_eff (see Section 2).

Anchoring depth K ¢ — the number of successful micro-events required to complete one
irreversible bit-flip. Defined operationally as:

K c¢c=2n/(A¢ event) (4)

where (A@_event) is the mean phase advance per successful micro-event. The 27 in the
numerator encodes a physical assumption: one completed anchoring event corresponds to one
full phase cycle of the interface—substrate system. The 2x factor encodes the minimal closed
cycle of the relative phase A required for self-consistent irreversible commitment — a bit-flip
constitutes a complete state transition that must return the phase relationship to its starting
configuration, and 2 is the minimal closed path in the U(1) phase space of A n. In principle,
modes with nontrivial winding structure could require integer multiples of 2x (captured by the
action normalization 1), but the single-cycle case is the minimal and generic requirement. Deeper
anchoring (larger K _c) requires more micro-events per committed transition.



Emergent tick interval At — the fundamental discrete time step of the substrate clock. In
VERSF, continuous time emerges from the accumulation of discrete ticks; At sets the temporal
grain.

Action normalization 1 — the number of independent phase sectors per substrate cycle that
contribute to anchoring. In the simplest single-sector models n = 1. For modes with internal
rotational structure, n counts the distinct angular regions within one full 2w cycle where
anchoring can independently occur. It is analogous to a topological winding number: a mode that
completes 1 independent anchoring opportunities per substrate cycle contributes 1 times the
action of a single-sector mode. The mass formula inherits this factor linearly, so n directly
multiplies the effective per-tick micro-event probability.

On the nature of &. The alignment window ¢ is not a free fitting parameter. It characterizes the
angular width of the interface—substrate interaction potential — the range of relative phase over
which the coupling is strong enough to trigger a micro-event. We treat € as universal because it is
set by the local curvature and threshold structure of the substrate coupling potential U(A) near its
minimum. If micro-event registration occurs when U(A) > U*, then ¢ is determined by U(g) = U*
and 1s therefore substrate-defined rather than mode-defined. The potential U(A) is a property of
the void substrate's response to phase misalignment; it does not depend on which mode is being
coupled. Different modes experience the same substrate potential, just as different particles
experience the same gravitational metric.

If € varies with mode scale. If the universality assumption fails, € becomes mode-dependent and
the mass hierarchy acquires a genuinely three-dimensional structure in (R, €, K _c¢). The bridge
formula's exponential sensitivity to € means that even mild variation can dominate the mass
scaling. The formalism accommodates mode-dependent € without structural modification; the
implications are noted in Section 12.

Parameter classification. To prevent confusion about what is fixed versus what varies across
modes, we state the status of each parameter explicitly:

e At — calibration constant, often identified with the Planck time t P in VERSEF; treated as
universal and fixed throughout this paper.

e 1 — topological sector multiplicity (integer or O(1)); in principle mode-dependent,
reflecting the internal rotational structure of each mode. Set to unity for single-sector
modes.

o & — alignment window; treated as universal here, but could be channel-dependent in
extensions involving distinct interaction potentials.

e g — anchoring gate factor (Section 2); a structural selection factor € [0, 1] determined by
the geometry or topology of the anchorable subset. Encodes the fraction of phase-aligned
configurations that produce irreversible commitment. From Section 7 onward, g is
incorporated into p e viap & :=p eff=g - p align.

e R, K ¢— mode-dependent observables; these are the quantities that vary across particle
species and are the primary drivers of the mass hierarchy.

o N_eff — effective number of statistically independent phase sectors within a mode's
internal structure, defined in Section 9. Determined by the mode's spatial extent &, the



internal correlation length £ c, and the effective dimensionality d eff via N_eff(&) ~ (§/
£ c)*d_eft. Controls the exponential suppression of micro-event probability for complex
modes.

Parameter counting and non-fittability. Although the mass relation can be writtenas m < g -
p_e(R, €) / K c, the quantities (R, g, K c¢) are not treated as freely adjustable per particle species.
In the VERSF program they are mode observables determined by the same underlying interface
dynamics: R is computed from the phase statistics of the mode, K c is computed from its cycle-
closure/winding structure, and g encodes structural selection (e.g., chirality/topological
admissibility) that is fixed once the mode class is specified. The alignment window ¢ is treated as
substrate-defined and universal in the present work. Under this interpretation, the apparent "four-
parameter freedom" collapses to a small set of universal substrate parameters plus a discrete set
of mode-specific outputs from the eigenmode map. The Standard Model treats y f as an
independent parameter per fermion; the VERSF program aims to reduce this to a small number
of universal substrate parameters plus computed mode observables. The framework becomes
predictive once the eigenmode computation program is executed: (R _j, K {c,j}, g j) are
computed, not fitted, and the mass spectrum is the image of the dynamics rather than an arbitrary
assignment.

4. Nature of the Substrate Phase

For general readers: If we claim particles synchronize with the void substrate, we need to
explain what the substrate's "oscillation" actually is — otherwise we've just invented a hidden
clock and smuggled it into the theory. This section argues that the substrate's phase isn't imposed
from outside but emerges naturally from the void's own structure, much like how a magnet
spontaneously "chooses" a direction to point even though no external force picks the direction.
Only the difference between the particle's phase and the substrate's phase matters — the
absolute values are meaningless, like the difference between two clocks mattering even though
neither has the "right" time.

The substrate phase 6 _n requires careful interpretation. It is not an externally imposed oscillator,
not a background field inserted by hand, and not a hidden degree of freedom smuggled into the
formalism. It is an emergent consequence of the void substrate's discrete clock structure and its
associated phase degeneracy.

Phase degeneracy of the substrate clock. A discrete tick substrate generically admits a phase-
origin degeneracy: shifting the tick index n = n + no leaves the physics invariant but changes the
phase origin. This is a U(1) symmetry of the substrate dynamics — the void clock has no
preferred "starting tick." The substrate phase 6 n can be understood as a local choice of this
phase origin, spontaneously selected by boundary conditions and coarse-graining, analogous to
how a ferromagnet spontaneously selects a magnetization direction from a rotationally invariant
Hamiltonian. The void possesses a phase not as an external oscillator but as a spontaneously
selected phase reference of a periodic substrate update rule.



Only relative phases are physical. This framing has an important consequence: 6 _n functions
as a local phase reference — a gauge-like degree of freedom — and only the relative phase A n
=@ n— 0 n carries physical content. This is consistent with the formalism developed in this
paper, which depends entirely on A n and never on ¢ _n or 6 _n individually. A global shift 6 n
— 0 n+9d,¢ n— ¢ n+Jleaves all observables (R, p_&, m) unchanged. The coherence order
parameter R measures how well the interface mode tracks the substrate's locally chosen phase
convention — not the absolute phase of either oscillation.

Relation to void entropy structure. In VERSF, the void is a zero-entropy state — the ground
state of the information-theoretic substrate. A zero-entropy state is maximally ordered, and the
discrete tick structure of this ordered state defines a natural periodicity. The substrate phase 6 n
is the local expression of this periodicity. Phase fluctuations in 6 n, if they exist, would represent
departures from perfect void order and would themselves carry entropy cost — they correspond
to local disorder in the substrate clock.

What the interface mode does is oscillate relative to this locally selected phase reference. Void
coupling measures how well the interface mode tracks it. When tracking is good (small A n),
micro-events are frequent and mass is efficiently generated. When tracking is poor (large,
random A _n), the mode is effectively decoupled and no mass emerges.

Operational definition. Operationally, 6 n is defined as the phase of the local substrate clock
mode obtained by coarse-graining the void state over the minimal correlation cell — the smallest
spatial region within which the void maintains definite phase coherence. This definition makes

0 _n computable in any discrete simulation: given a lattice of void states, one identifies the
correlation cell, extracts the dominant oscillatory mode within it, and reads off its phase at tick n.

A complete derivation of the substrate clock dynamics — including whether the U(1) degeneracy
is exact or softly broken — remains an open problem (see Section 12), but the operational
definition given here is sufficient for the coherence formalism and does not require importing
any external oscillatory mechanism.

5. Phase Coherence Formalism

For general readers: This section develops the mathematics of synchronization quality. The key
quantity R ranges from 0 (no synchronization — like two clocks running at random relative to
each other) to 1 (perfect lock-step). We show that R drops off rapidly as the "wobble" in the
phase difference increases, and that this behavior is robust — it doesn't depend on the specific
mathematical assumptions we make about how the wobble is distributed.

The coherence order parameter R inherits its mathematical structure from circular statistics. Its
key properties follow directly from the definition.

Bounds:
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0<R<1(5)

These bounds are exact. The lower bound is saturated when phase differences are uniformly
distributed; the upper bound is saturated under perfect phase-locking (A _n = const for all n).

Uniform random phase (incoherent limit):
A ~ Uniform(0, 2n) = R =0 (6)

In this limit, the circular mean of exp(iA) vanishes by symmetry. No net phase alignment exists,
and the mode is fully decoupled from the substrate.

Gaussian phase fluctuations (partially coherent regime):
A ~ N(0, 6%) = R =exp(—6%2) (7)

This result follows from the characteristic function of the Gaussian distribution evaluated at unit
frequency. Coherence depends only on the phase variance 6* and contains no dependence on the
alignment window &. It is an intrinsic property of the phase-locking dynamics, not of the
measurement apparatus.

The exponential sensitivity to phase variance has an important physical consequence: coherence
degrades rapidly as fluctuations grow. A mode with ¢ = 1 rad retains only R = 0.61; at 6 = 2 rad,
coherence has collapsed to R = 0.14. Maintaining high coherence requires active suppression of
phase fluctuations — a constraint that becomes increasingly difficult to satisfy as the internal
complexity of the mode grows.

Robustness: von Mises distribution. The Gaussian phase model is appropriate for small to
moderate fluctuations but is not periodic on [0, 27). The natural periodic generalization is the
von Mises distribution:

f(A) = exp(k cos A) / (2m To(x)) (8)

where k > 0 is the concentration parameter and Io is the modified Bessel function of the first kind
of order zero. The coherence order parameter for the von Mises distribution is:

R = Ti(x) / To(x) (9)

where 1 is the modified Bessel function of order one. In the high-concentration limit (k >> 1), the
von Mises distribution approaches the wrapped Gaussian and R — 1 — 1/(2k). In the low-
concentration limit (k — 0), R — 0. The monotonic relationship between concentration and
coherence is preserved. The corresponding micro-event probability is:

p_e(k, €) = J-e"e exp(k cos A) / (27 Io(k)) dA
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and since R(k) = Li(k)/Io(k), this defines p_& as an implicit function p_g(R, €). No closed-form
analog of the Gaussian bridge formula Eq. (14) exists, but the relationship is computable for any
R and & by numerical inversion and integration. Crucially, in the high-concentration regime (k >
1) where the von Mises approaches the wrapped Gaussian, the quantitative mapping from R to
p_& converges to the Gaussian bridge formula: both distributions yield the same p_&(R, €) to
leading order when ¢ < m. The two predictions diverge only for low coherence (R < 0.3), where
the wrap-around structure of the von Mises becomes significant. Since the physically most
important regime for stable particles is high coherence (R near 1), the Gaussian bridge formula is
quantitatively reliable precisely where it matters most. The Gaussian treatment used throughout
this paper therefore reflects a generic feature of peaked, symmetric phase distributions, not an
artifact of a special distributional choice.

6. Derivation of the Bridge Formula

For general readers: This is the paper's central mathematical result. We derive an equation —
the "bridge formula" — that converts synchronization quality (R) into the concrete probability
that a bit-flip opportunity occurs at any given moment. Think of it this way: if you know how
well-synchronized two oscillations are, this formula tells you how often the synchronization is
close enough for something to happen. The derivation is four steps of standard calculus, the
result is a single equation that connects the abstract to the measurable.

The bridge formula connecting micro-event probability p & to coherence R is derived here from
first principles rather than stated as a result.

Step 1: Gaussian phase distribution. Assume the relative phase is drawn from a Gaussian with
zero mean and variance 6%

f(A) = (1 / N(2162)) exp(—A? / (26?)) (10)
Validity note. Although A is defined modulo 27, Eq. (10) is used as a small-fluctuation
approximation valid when ¢ « 7, so wrap-around probability is negligible. For fully periodic

treatments, the von Mises model (Section 5) provides the natural replacement.

Step 2: Integration over the alignment window. The micro-event probability is the integral of
the phase density over the window [—¢, €]:

p_e=le e f(A) dA (11)
Substituting the Gaussian density and evaluating:
p_e=[e"e (1N(2n6?)) exp(—A%(26%)) dA

Applying the standard substitution u = A/(c\2):

12



p_e=(2Nn) [ {e/(c\2)} exp(—u?) du

p_e=erf(e/ (c\2)) (12)

Step 3: Express 62 in terms of R. From the Gaussian coherence result Eq. (7):
R =exp(-0%2) = 6*>=-21nR (13)

Step 4: Substitute into Eq. (12).

p e=erf(e/\(—4 InR)) (14)

This is the bridge formula. It establishes that the micro-event probability is a derived function of
two quantities: the coherence order parameter R (a dynamical variable) and the alignment
window ¢ (a structural parameter of the interface—substrate interaction).

Properties of the bridge formula. The formula is well-defined for 0 <R < 1. In the high-
coherence limit (R — 1), In R — 0 and the argument of the error function diverges, giving p_¢
— 1: nearly every tick produces a micro-event. In the low-coherence regime (R — 0), [In R| — oo
and the argument approaches zero, giving p_& — 0: micro-events become vanishingly rare.
Between these limits, p_¢ increases monotonically with R for fixed €, confirming that better
phase synchronization reliably produces more frequent micro-events.

High-coherence expansion. Near R =~ 1, write R =1 — 6 with § < 1. Then In R = =9, so 6* = 2%
and:

p_e=~erf(e / (2V8)) (15)

For €2/(48) > 1 (tight coherence relative to window width), p_e ~ 1 — (2V8)/(e\n) -
exp(—€?*/(49)). The departure from unity is exponentially small, confirming that high-coherence
modes generate micro-events at nearly every tick.

7. Mass Relation

For general readers: This section connects synchronization to actual mass. The logic is:
synchronization quality — per-tick bit-flip probability — committed bit-flips per tick — mass.
The formula says mass equals the density of committed information changes per substrate tick
times a fundamental constant of nature (h, Planck's reduced constant) divided by the speed of
light squared — echoing Einstein's E = mc?. More synchronization means more bit-flips per tick
means more mass. More anchoring depth (more bit-flips required per committed change) means
less mass. Crucially, continuous time itself emerges from the accumulation of these ticks — so
mass is not a "rate" in the ordinary sense but a per-tick information-processing density.

13



The mass formula carries forward from prior VERSF anchoring work, now with p_¢ explicitly
grounded in phase coherence.

Notation reminder. The bridge formula (Section 6) derives p_align; the mass relation uses p_eff
= g - p_align. From this point onward we write p_¢ :=p_eff = g - p_align for the anchoring-
effective micro-event probability that enters the counting process and mass relation; the
alignment probability derived from coherence is denoted explicitly as p_align.

Rest mass:
m=Mm#np &)/ (c*AtK c) (16)

The quantity p_¢ sets the per-tick micro-event probability and, together with K _c, determines the
expected number of ticks per committed bit-flip. Under the VERSF action postulate —
developed and motivated in prior VERSF anchoring work, where it is derived from the
requirement that each irreversible bit-flip constitute a minimal quantum of action — each
completed cycle contributes | % of action, yielding Eq. (16). The denominator ¢ At K ¢ converts
from micro-event counting to rest mass via the tick interval, anchoring depth, and mass-energy
equivalence.

Flip period — the mean time between completed bit-flips:

T bit=(AtK ¢)/p e(17)

This is the product of the tick interval, the number of required micro-events (K _c), and the
inverse of the per-tick success probability (1/p_¢). T bit sets the characteristic emergent
timescale of mass generation for a given mode — it counts the expected number of ticks per
committed bit-flip and converts to duration via At.

Rest energy:

E=nh/T bit(18)

Combining with the flip period yields the expected E = mc? identity, confirming dimensional and
structural consistency.

Mass scaling (explicit dependence chain):

mxp eff/ K c=g-p align(R,¢)/K c(19)

Here p_align(R, ¢) is given by the bridge formula (Eq. 14), and g encodes anchoring
admissibility (Section 2). Mass is ultimately determined by four quantities: the phase coherence
R (dynamical), the alignment window ¢ (structural), the anchoring gate g (topological/chirality-

class), and the anchoring depth K _c (topological). The mass hierarchy across particle species
arises from different combinations of these parameters.
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8. Stability and Fluctuation Structure

For general readers: Why are protons stable for billions of years while other particles decay in
fractions of a second? This section shows the answer lies in synchronization quality. Highly
synchronized modes produce bit-flip opportunities so reliably that the process is almost clock-
like — the particle is rock-solid. Moderately synchronized modes are vulnerable: small wobbles
in synchronization quality cause big swings in the per-tick bit-flip probability, leading to decay.
The mathematics predicts that stability is exponentially strong for well-synchronized particles —
explaining why certain particles are essentially immortal while others vanish almost instantly.

The stochastic character of micro-event generation produces intrinsic fluctuations in the
anchoring process. These fluctuations determine particle stability, decay widths, and spectral line
structure. In this section p_g denotes the anchoring-effective probability p_eff, since it is the
probability of registering commitment-contributing micro-events in the counting process.

Waiting-time distribution. The total number of ticks N required to accumulate K ¢ successful
micro-events follows a negative binomial distribution NB(K ¢, p_¢).

Mean waiting time:

E[N]=K c/p _€(20)

Variance:

Var(N)=K c(1 —p_g)/p_g*(21)

Coefficient of variation of the waiting time:

CV="((1-p_g)/K_c)(22)

The CV characterizes the fractional fluctuation in the number of ticks required to complete one
bit-flip cycle. Two limiting behaviors are physically significant. When p_& — 1 (high coherence,
near-deterministic micro-events), CV — 0 regardless of K _c: the anchoring process becomes
clock-like and the particle is maximally stable. When K _c is large with p_& moderate, CV «
1/NK_c: deeper anchoring suppresses fluctuations statistically, producing greater stability

through redundancy.

Energy fluctuations from coherence drift. If the coherence R undergoes slow stochastic drift
OR, the resulting fluctuation in rest energy is:

SE o« (dp_&/dR) - 8R (23)
The derivative dp_&/dR follows from the bridge formula Eq. (14) by the chain rule. Writing p ¢
= erf(x) with x(R) = & / V(=4 In R), we have dp_&/dR = (2/\r) exp(—x?) - dx/dR. Computing
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dx/dR by differentiating x = &(—4 In R)*{—1/2} with respect to R gives dx/dR =2¢/ (R(—4 In
R)*{3/2}). Combining:

dp_e/dR = (4g) / (Vn - R - (=4 In R){3/2}) - exp(—€>/ (=4 In R)) (24)

This closed-form expression has the following limiting behavior. AsR — 1,InR — 0 and (—4 In
R)*{3/2} — 0 in the denominator, but the exponential term exp(—&?(—4 In R)) — 0 faster,
dominating the algebraic prefactor and ensuring dp _&/dR — 0. AsR — 0, (=4 In R)*{3/2} —
in the denominator, so dp_&/dR — 0. The derivative therefore peaks at intermediate coherence
and vanishes in both limits, implying that marginally coherent modes are most susceptible to
energy fluctuations.

This provides a natural mechanism for decay widths:
I'oc|dp_e/dR| - o R (25)

where o_R is the standard deviation of coherence fluctuations. Stable particles correspond to
modes deep in the high-coherence regime where dp ¢/dR is small; unstable resonances occupy
intermediate coherence where the derivative is large.

Near-unity expansion of decay width. For R =1 — 6 with 6 << 1, we have —4 In R = 49, so Eq.
(24) gives dp_e/dR o exp(—€?/(46)) / 0"{3/2}. The decay width becomes:

T o« exp(—%(43)) - 6_R /" {3/2} (26)

The exponential suppression dominates: decay width is exponentially small for tightly coherent
modes. This provides a concrete mechanism for the observed stability of fundamental particles
— they occupy the extreme high-coherence regime where the decay width is suppressed beyond
any power law.

9. Scaling Relations and the Mass Hierarchy

For general readers: Why is the top quark 340,000 times heavier than the electron? This section
proposes an answer: more internally complex particles have to keep more "pieces" synchronized
simultaneously, and the difficulty of doing so grows exponentially with complexity. Imagine
trying to get a room of people to clap in unison — easy with 3 people, nearly impossible with
300. The same principle applies here: larger, more complex modes find it exponentially harder
to maintain the phase synchronization needed for frequent bit-flips, so they end up with
exponentially less mass. This single mechanism — exponential decay of synchronization with
internal complexity — naturally produces the enormous range of masses we observe in nature.

The formalism developed above determines the mass of a single mode given its coherence R,
alignment window ¢, and anchoring depth K c. To address the mass hierarchy — why different
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particle species have the masses they do — we require scaling relations connecting these
parameters to the internal structure of each mode.

9.1 Coherence Decay with Internal Complexity

Consider a mode whose internal phase field extends over a characteristic scale &, measured in
units of the substrate correlation length. Maintaining coherence requires phase alignment across
all internal degrees of freedom. If phase fluctuations accumulate independently across the
internal structure, the total phase variance grows as:

((Agy’) ~ C - & (27)

where C is a coupling constant and o > 0 is a fluctuation growth exponent determined by the
dimensionality and statistics of the internal phase field (o = 1 for diffusive accumulation, o =2
for ballistic).

Substituting into the Gaussian coherence result Eq. (7):

R(&) ~ exp(=(C/2) & ) (28)

Coherence decays exponentially with internal complexity. Modes with larger internal structure
are exponentially harder to keep phase-locked to the substrate.

9.2 Micro-Event Probability Scaling

Anchoring-effective probability. In the hierarchy analysis we model the anchoring-effective
micro-event probability p & (= p_eff). Under the gating decomposition p_eff =g - p _align
(Section 2), the multiplicative alignment hypothesis below is applied to p align, while g is
treated as a class-level structural factor.

A mode of internal scale § embedded in a d-dimensional interface must maintain simultaneous
phase alignment across its internal structure for a micro-event to register. We make the following
independence assumption explicit:

Assumption (multiplicative alignment). The internal phase field of the mode can be
decomposed into N_eff statistically independent phase sectors, each of which must
independently satisfy the alignment condition |A| < ¢ for a global micro-event to occur.

Justification. Why multiplicative rather than additive? An additive model p_align ~ N_eff - q
would imply that increasing internal complexity increases the chance of global alignment — the
wrong qualitative direction. A linear suppression model p_align ~ 1/N_eff cannot generate
observed hierarchies spanning 10°-10" without extreme fine-tuning of other parameters.
Multiplicative suppression is the minimal structure that (i) decreases with complexity, (ii) is
stable under coarse-graining, and (iii) naturally produces large hierarchies from modest changes
in N_eff. Partial correlations are handled by replacing N_eff with an effective independent count
based on the correlation length £ ¢ (below); this softens the exponent rather than eliminating
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exponential structure. In simulation, the hypothesis is directly falsifiable: measure p_align as a
function of estimated N_eff and test whether In p_align scales linearly with N_eff.

The number of effectively independent sectors is not simply £"d, because partial correlations
within the internal phase field reduce the number of independent alignment constraints. If £ c is
the internal correlation length — the scale over which phase fluctuations are correlated — then:

N_eff(&) ~ (& /£_c)’d_eff (29)

where d_eff is the effective dimensionality of the independent sector decomposition. In the fully
uncorrelated limit £ ¢ — 1, N_eff — £*d and d_eff = d. In the strongly correlated limit £ ¢ — &,
N_eff — 1 and the mode aligns as a single unit. Physical systems occupy the intermediate
regime where d_eff encodes the correlation structure: it is a correlation-controlled exponent, not
a handwavy fit, and need not equal the geometric dimension d.

In this analysis, £ c is treated as mode-independent — a property of the substrate's intrinsic
correlation structure rather than of the mode itself. However, in many physical systems
correlation lengths grow with system size near criticality. If £ ¢ = £ c(§) (or equivalently £ ¢ =
€ c¢(K c)), the effective sector count N_eff and the resulting mass hierarchy would be modified.
In particular, if £ _c grows with &, the effective number of independent sectors grows more
slowly than (§)"d_eff, softening the exponential decay. This possibility is noted as an open
question; the present treatment assumes constant £ c as the simplest case.

Under the multiplicative assumption, if each independent sector has an alignment probability q €
(0, 1) — defined as q = P(JA| < ¢) evaluated on a single effectively independent sector, i.e., the
per-sector analog of the global p align — then the global alignment probability is:

p_align = qM{N_eff(&)} (30)
Thus p_eff=g - ¢*{N_eff} under class-level gating (Section 2).

In the simplest case, q is substrate-defined and approximately universal for a given g; mode
dependence then enters primarily through N _eff. Since q is determined by the same alignment
window ¢ and per-sector phase statistics, it is approximately universal under the same
assumptions that justify € universality (Section 3). If q varies across modes (for example, due to
mode-dependent local coupling geometry), it introduces an additional degree of freedom beyond
N_eff. The present treatment assumes universal q as the minimal case.

Taking logarithms:
Inp_align=N _eff(§) - Inq (31)

Since In q <0, this gives exponential decay of p_align with N_eff. This exponential form is the
fundamental scaling prediction of the multiplicative alignment assumption.
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Over restricted ranges of & relevant to observed particle species, this exponential decay may be
parametrized as an effective power law p_align(§) < EM{—d_eff} for convenience, but the power-
law form is not derived from the multiplicative assumption. It is a phenomenological
approximation whose validity range must be established by simulation.

9.3 Anchoring Depth Scaling

Anchoring depth scales linearly with the coherent domain size:
K c~&(32)
The physical content is that a mode with a larger coherent structure requires proportionally more

micro-events to commit a single irreversible transition, because the bit-flip must propagate
across the full coherent domain.

9.4 Mass Scaling Along the Hierarchy

Eliminating £ via K ¢ ~ &, the effective independent sector count becomes N_eff(K ¢) ~ (K ¢/
£ c)*d_eff. Substituting into Eq. (30):

p_align(K c)=q"{N _eff(K c)} (33)

The mass relation m < p_eff /K ¢c=g - p align/K c then gives the primary structural
prediction:

mo g qMN eff(K c)} /K c(34)

This is an exponential hierarchy: mass decreases exponentially with the effective number of
independent alignment constraints, modulated by the linear anchoring depth. This is substantially
more falsifiable than a power law — it predicts a specific functional form (exponential times
inverse-linear) that can be tested directly once N_eff is measured in simulation.

Secondary phenomenology. Over restricted ranges of K ¢ where N _eff varies modestly, the
exponential decay may be approximated as an effective power law:

mx K c*{—(d eff+ 1)} (effective, finite-range) (35)

The power-law form is not the fundamental prediction of the formalism. It is a
phenomenological parametrization that may prove useful for fitting observed mass ratios over a
limited range, but the exponential form Eq. (34) is the structural prediction that simulations

should test.

For d_eff = 3 and moderate K _c, both forms produce a steep mass hierarchy spanning many
orders of magnitude for modest variation in K ¢ — the correct qualitative feature.
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Status. The multiplicative alignment assumption (Eq. 30) is the central physical postulate of this
section. The introduction of N_eff via the correlation length £ ¢ ensures the assumption is not
artificially strong: correlations within the internal phase field reduce the effective sector count
and soften the exponential decay relative to the fully uncorrelated limit. The exponential
hierarchy Eq. (34) is the primary prediction; the power-law Eq. (35) is a secondary convenience.
Both require validation by explicit simulation of phase-field dynamics on discrete substrates.

Worked numerical example (toy demonstration). The following illustrates how exponential
suppression generates large mass hierarchies from modest structural differences. It is illustrative
rather than a claim of calibrated parameter values.

Assume Planck-tick calibration At =t P, single-sector 1 =1 (prefactor cancels in ratios), and
equal class-level g for both species. Choose per-sector alignment probability q = 0.8 and assume
N _eff(K c)=A - K ¢ with A =1 for simplicity. The mass ratio between a top-like mode and an
electron-like mode reduces to:

m t/m e=(qMN _t} /K {c,t})/ (@ {N e} /K {c,e})=q"{AN} - (K {c,e} /K {c,t})

To reproduce the observed order-of-magnitude hierarchy m t/m e = 3.4 x 10°, one needs
qQM{AN} - (K {c,e}/K {c,t})=3.4 x 10° If (for illustration) K_{c,e}/K {c,t} =10°—i.e., the
electron-like mode has anchoring depth one million times deeper than the top-like mode — then
the remaining factor required is 9" {AN} = 0.34. With q = 0.8, this corresponds to AN = 5
constraints (since 0.8° = 0.33). This ratio is illustrative; the eigenmode program (Section 12)
treats K _c as a computed output rather than a fitted parameter.

This demonstrates the key point: exponential dependence makes large hierarchies possible with
modest differences in effective constraint count AN _eff, while anchoring depth ratios account for
the bulk scaling. The real predictive program is to compute (K _c, N_eff, q, g) from mode
geometry; this example only illustrates that the mechanism is numerically plausible without
extreme fine-tuning.

10. Minimal Dynamical Model

For general readers: So far we've described what synchronization does (produces mass) and
how to measure it (the R parameter), but we haven't shown where synchronization comes from.
This section provides a simple example — not the final answer, but a proof that the mechanism
works. We take a well-understood equation from synchronization science (used to describe
things like electronic oscillators locking to a reference signal) and show that it naturally
produces a coherence value R, which feeds through our bridge formula to produce mass. The
model also reveals a threshold effect: below a critical coupling strength, synchronization fails
entirely and no mass emerges — a kind of "mass switch"” built into the physics.

The following model is not proposed as the fundamental dynamics of void-substrate coupling but
as proof of concept that the R — p & — m chain is realizable in a concrete, analytically tractable

20



dynamical system. Its purpose is to demonstrate that coherence R emerges naturally from the
competition between coupling and noise, and that the formalism of Sections 5—7 applies without
modification once R is given a dynamical origin.

Model. Consider a single interface oscillator with phase ¢ coupled to a substrate oscillator with
fixed frequency wo:

do/dt=o + ksin(0 — @) + 6_n - &(t) (36)

where o is the natural frequency of the interface mode, « is the coupling strength, ¢ 1 is the
noise amplitude, and &(t) is unit white noise. The substrate phase advances deterministically: 6(t)
= wot. This is the noisy Adler equation [6], the single-oscillator reduction of Kuramoto-type
population synchronization [1], and the simplest model exhibiting a synchronization transition.

Steady-state coherence. In the synchronized regime (jo — wo| < k), the relative phase A=¢ — 0
fluctuates around a fixed point. The steady-state distribution of A is approximately von Mises
with concentration parameter:

Kk eff=2x/0 n?*(37)

The coherence order parameter is then:

R =Li(x_eff) / lo(x_eff) (38)

Micro-event probability. Evaluating p_¢ from the steady-state distribution:
p_e=~erf(e/ V(-4 In R)) (39)

where R is given by Eq. (38).

Physical content. This toy model demonstrates three essential features. First, R emerges
dynamically from the competition between coupling strength k and noise 6_1, without being
inserted by hand. Second, there exists a synchronization threshold: when noise dominates
coupling (k_eff K 1), R — 0 and p_g& — 0, producing no mass. Mass emergence requires
sufficient coupling to overcome noise — a phase transition in the synchronization sense. Third,
the dependence of p_& on coupling strength «k is monotonic and saturating: increasing k beyond
the threshold produces diminishing returns in mass, consistent with the physical expectation that
there is a maximum mass achievable for a given anchoring depth.

This model is illustrative, not a claim that actual void-substrate coupling follows Adler
dynamics. Its purpose is to demonstrate that the R — p_& — m chain is realizable in concrete
dynamical systems, that R emerges from the competition between deterministic coupling and
stochastic noise without being imposed, and to motivate the phase-transition structure discussed
in Section 11.1.
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11. Relation to Standard Model Mass Structure

For general readers: The Standard Model of particle physics explains mass through the Higgs
mechanism — particles acquire mass by interacting with the Higgs field. This paper doesn't
claim to replace that explanation. Instead, it asks: what determines the strength of each particle's
interaction with the Higgs? The Standard Model treats these strengths (called Yukawa
couplings) as unexplained numbers that must be measured experimentally. This section shows
that the synchronization framework provides a possible microphysical origin for those numbers:
each particle's Yukawa coupling is determined by its synchronization quality and anchoring
depth. We also show that the formalism is compatible with the way these couplings change at
different energy scales (a phenomenon called "running"), and that the synchronization threshold
has a structural parallel to the phase transition that gives the Higgs its mass-generating power.

11.1 Higgs—VERSF Bridge: Yukawa Couplings as Coherence—Anchoring Ratios

In the Standard Model, fermion masses arise from Yukawa couplings to the Higgs field. In the
electroweak broken phase:

m f=y fv/\2(40)

where y fis the dimensionless Yukawa coupling and v = 246 GeV is the Higgs vacuum
expectation value. The Standard Model does not predict the numerical values of y_f; they are
empirical inputs.

In the VERSF coherence—anchoring formalism, the rest mass of a mode is:
m_f=n7%p_{ef})/(c* AtK_{c,f}) (41)

with micro-event probability p_{e,f} derived from coherence R fvia the bridge formula Eq. (14)
and anchoring depth K {c,f} defined by Eq. (4). In the original void anchoring formulation
(prior VERSF work), the void coupling probability p_v was defined as the per-tick probability
that a micro-event contributes toward irreversible commitment. In the present notation this
corresponds to the anchoring-effective probability p eff =g - p align, sop v=p eff. The
present coherence formalism supplies dynamical substructure by deriving p_align = P(|A| <¢)
from coherence R (Section 6), while retaining the original mass scalingm xp v/K ¢
unchanged. Equating Egs. (40) and (41) yields the explicit bridge between Yukawa couplings
and coherence—anchoring structure:

y f=(\2nh) /(v At) - p_{ef} /K {c,f} (42)

This relation is dimensionally consistent: 4/(c?At) has units of mass, v has units of mass, and
p_{&,f}/K {c.f} is dimensionless, soy fis dimensionless as required.

Planck-tick calibration and numerical prefactor. Under the VERSF calibration At=t P
(Planck time), one has the identity:
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h/(c*t P)=m P (43)

so Eq. (42) becomes:

y f=V2n(m_P/v) p {ef} /K {cf} (44)

Usingm P =1.22 x 10" GeV and v = 246 GeV:

m P/v=~4.96x10',\2m P/v=~7.02x 10 (45)
so the bridge may be written numerically as:

y f= (7.0 x10")n - p_{&f} /K {c,f} (46)

This makes explicit that the observed Yukawa couplings correspond to extremely small
coherence—anchoring ratios. For the top quark (y _t~= 1), we require np_&/K ¢~ 1.4 x 107"". For
the electron (y_e~=2.9 x 107%), we require 1 p_&/K _c =4 x 1072, The smallness of these ratios is
not a flaw of the mapping: it is precisely the regime expected if micro-event probability is
exponentially suppressed by the effective number of independent alignment constraints (Section
9), yielding an exponential hierarchy of the form m o g - ¢*{N_eff(K _c)} /K c. The six-order-
of-magnitude separation between top and electron Yukawas corresponds, in the exponential
picture, to a comparatively small shift in the effective alignment sector count N_eff for
reasonable per-sector alignment probabilities q < 1, illustrating the efficiency of exponential
suppression mechanisms.

Structural relation to electroweak symmetry breaking. This bridge does not claim to replace
the Higgs mechanism at the effective-field-theory level. Rather, it proposes a microphysical
interpretation of the Yukawa parameters. In the Standard Model, masses vanish above the
electroweak transition because the Higgs condensate disappears (v — 0), even though Yukawa
couplings y_fremain nonzero. In the coherence—anchoring picture, mass vanishes when the
effective committed bit-flip density p_&/K_c tends to zero — whether due to loss of coherence
(R — 0= p & — 0) or divergence of anchoring depth (K ¢ — o) — even though structural
parameters such as g, 1, and the anchoring rule remain defined. The parallel is therefore not an
identification v <> R, but the existence of a threshold phenomenon that switches on mass
generation when a coherent/condensed phase forms.

Scope. Equation (42) provides a clean correspondence: Yukawa couplings map to coherence—
anchoring ratios multiplied by a universal prefactor set by (v, At, ). Whether this interpretation
can reproduce the detailed mass spectrum of quarks and leptons — including generation mixing,
CKM/PMNS matrix structure, and radiative corrections — remains an open question requiring
explicit computation of coherence and anchoring parameters for each particle species. The role
of this bridge is interpretive: it situates the coherence mechanism as a candidate microscopic
origin for Yukawa hierarchies, while leaving the Standard Model as the correct low-energy
effective description.
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This mapping therefore applies to anchoring-effective probabilities rather than to generic
resonance strength.

When the Yukawa bridge becomes predictive. Equations (42)—(46) are a correspondence
relation: they translate Standard Model Yukawa parameters into coherence—anchoring quantities.
The mapping becomes predictive only when combined with the structural hierarchy result of
Section 9. Under the exponential hierarchy m o< g - q*{N_eff(K c¢)} / K c (with universal q and
substrate correlation structure), Yukawa ratios between species satisfy:

y_i/y j=(gi/gj) - q*{AN_eff} - (K_{cj} /K _{c,i})

For species within the same structural class g_i=g_j, the ratio reduces to q*{AN_eff} - (K_{c,j}
/K {c,i}), where AN _eff :=N_eff(K {c,i}) — N _eff(K {c,j}), and the approximation assumes
universal q (Section 9.2) and class-level g (Section 2). In this way the framework replaces "one
free Yukawa per species" with a small set of universal substrate parameters (q, £ c, and effective
dimensionality d_eff) plus mode outputs K {c,i} from the eigenmode map. This is the sense in
which the coherence—anchoring program aims to supply a microphysical origin for Yukawa
hierarchies rather than merely restating them.

11.2 Scale Dependence of Coherence

The Standard Model treats Yukawa couplings as scale-dependent quantities that run under
renormalization group (RG) flow. If the coherence formalism is to provide a microphysical
foundation for effective Yukawa parameters, it must be compatible with this scale dependence.

The coherence order parameter R = |[(exp(iA))| is defined via an averaging operation that
implicitly depends on the resolution at which phase fluctuations are probed. Let p denote a UV
momentum scale in the renormalization-group sense. Increasing p corresponds to resolving
shorter-distance fluctuations, which increases the phase variance accessible to the averaging
procedure.

If phase variance grows with scale according to:

o*(W) = (A%)_p (47)

then coherence becomes scale-dependent via the Gaussian result Eq. (7):

R(u) = exp(-c*(1)/2) (48)

Higher p (UV, finer resolution) resolves more fluctuations, increasing ¢ and decreasing R.
Lower p (IR, coarser resolution) averages over short-distance noise, reducing effective 62 and

increasing R. The generic sign of the coherence flow is therefore:

dR/d In p < 0 (49)
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Coherence increases toward the infrared. This is physically natural within VERSF: the
macroscopic world exhibits well-defined, stable particle masses precisely because long-distance
effective behavior reflects coherence that has been enhanced by averaging over short-distance
phase noise.

11.3 Running of Effective Yukawa Couplings

Since p_g is a derived functional of R via the bridge formula Eq. (14), it inherits scale
dependence:

p_e() = p_e(R(w) (50)
Differentiating with respect to scale:
dp e/dInp=(dp €/dR) - (dR/d In p) (51)

The closed-form derivative Eq. (24) ensures that this flow vanishes in both extreme coherence
limits (R — 0 and R — 1) and peaks at intermediate coherence. Effective coupling strengths are
therefore most sensitive to scale where coherence is neither maximal nor minimal.

The Yukawa mapping Eq. (42) then gives:
dy fidlnp=M2nm P/v) - [(1/K ¢)dp e/dInp—(p e/K ¢ dK c/dInp](52)

This expression has the same structural form as a renormalization group equation: effective
couplings flow under scale transformations according to competing contributions from
interaction strength (dp_¢/d In p) and internal structure (dK_c/d In p). The coherence formalism
is therefore compatible with scale-dependent effective couplings, since both phase coherence and
anchoring observables depend on resolution; deriving the Standard Model's specific beta-
function structure would require incorporating gauge and Higgs-sector dynamics into the
substrate framework.

However, the present framework does not reproduce the detailed one-loop structure of Standard
Model Yukawa beta functions, which have the form By = y(ay? — bg? + ---) involving Yukawa
self-enhancement, gauge-coupling suppression, and Higgs coupling terms. The coherence flow
Eq. (52) has no gauge sector and no Higgs self-coupling contribution. Incorporating gauge
structure into the coherence formalism and deriving the specific form of the Standard Model beta
functions from coherence dynamics remains an open problem.

On fixed points. Mass parameters evolve under the scale dependence of coherence and
anchoring. Non-trivial fixed points — where dR/d In p and dK_c¢/d In p simultaneously vanish
— would correspond to scale-stable masses. However, if 6%(i) grows monotonically with
resolution (the generic case for accumulated fluctuations), then R(p) decreases monotonically
and no fixed points exist without a feedback mechanism. Such stabilization could in principle
arise if the anchoring process itself suppresses phase variance growth at specific scales, but
whether this occurs in full VERSF dynamics remains an open question.
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12. Limitations and Open Questions

For general readers: Every honest scientific paper should be clear about what it hasn't solved.
This section lists the open problems: we haven't derived the substrate's clock from deeper
principles, we haven't proven our scaling assumptions, and we haven't yet run the simulations
needed to test the predictions. We also include a speculative conjecture — that the
synchronization framework might explain why particles come in families — which is suggestive
but unproven.

Several aspects of the formalism remain incomplete and are noted here for transparency.

The substrate phase 0 _n is given a physical interpretation in Section 4 as a spontaneously
selected phase reference arising from the U(1) degeneracy of the substrate clock, but the
dynamics of this spontaneous selection are not yet derived from deeper VERSF axioms. A
complete treatment should derive the substrate clock dynamics from the entropy-gradient
structure of the void and determine whether the U(1) phase degeneracy is exact or softly broken.

The Gaussian assumption for the phase distribution, while analytically tractable and shown to be
robust against generalization to the von Mises distribution (Section 5), may break down in
strongly coupled or topologically nontrivial regimes. A full treatment should characterize the
phase distribution from the microscopic dynamics.

The scaling exponents o and d_eff in Section 9 are physically motivated by the multiplicative
alignment assumption with correlation-controlled effective sector count, but not derived from
first principles within VERSF. The internal correlation length £ ¢ and its dependence on mode
structure remain to be determined. These values may depend on the specific anchoring topology
and could differ across particle families.

Composite particle treatment — where multiple anchoring channels interact — requires a multi-
channel extension of the coherence formalism. The framework is naturally suited to this (each
channel carries its own R _iand K _{c,1}), but the interaction terms between channels have not
yet been specified.

The alignment window ¢ is treated as a universal constant (Section 3). A deeper theory should
derive € from the curvature of the interface—substrate interaction potential and determine whether
it varies across modes. If € is mode-dependent, the mass hierarchy becomes genuinely three-
dimensional in (R, &, K c). In the high-coherence regime, the bridge formula gives 1 —p & ~
(N(—4 In R) / (e\n)) exp(—€¥(—4 In R)), showing exponential sensitivity to &: if £(£) decreases
with internal complexity, it steepens the hierarchy beyond the R-only effect; if it increases, it
softens it. The general mass scaling becomes m(§) < p_g(R(§), (&) / K _c(§).

The toy model of Section 10 demonstrates that R emerges in noisy Adler dynamics but does not

constitute a derivation of the actual void-substrate coupling law. Identifying the correct
dynamical equation governing ¢ n remains an open problem.
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Eigenmode computation program. The quantities (R, K _c, g) are not introduced as tunable
parameters per particle species. They are intended to be derived from a single underlying
interface dynamics via an eigenmode analysis. The minimal program is as follows. (1) Define a
discrete interface state variable c(x, n) (e.g., contrast pair or admissibility vector) evolving on the
substrate tick n. (2) Specify the local update operator U acting on c, including the substrate phase
reference O and mode phase ¢ = arg(c). (3) Compute eigenmodes y_j of the linearised (or
Floquet) operator describing phase evolution around a stable cycle. (4) For each mode v _j,
compute coherence R _j = [(exp(iA_j))| from the induced A _j distribution. (5) Compute alignment
probability p_{align,j} = P(|A_j| <¢) via the bridge formula or via numerical integration. (6)
Compute anchoring depth K_{c,j} from phase-winding closure: K {c,j} =2n/(A¢_event)). (7)
Compute gating factor g j as a structural overlap/selection measure: the fraction of aligned
configurations that lie in the anchorable subset (e.g., chirality/topology admissibility filter). (8)
Predict mass viam_j o (g _j - p{align,j}) /K _ {c,j}, and compare ratios across modes without
fitting per species. This program makes the framework predictive: once the update operator U
(and substrate parameters ¢, At, etc.) is fixed, the spectrum {m_j} is an output. The present paper
establishes the mapping from these outputs to mass and stability; the eigenmode analysis is the
next technical deliverable.

The scale dependence of coherence (Section 11.2—11.3) is compatible with running effective
couplings, but the resulting flow equations do not reproduce the detailed one-loop structure of
Standard Model Yukawa beta functions. The SM beta functions involve gauge-coupling
suppression, Yukawa self-enhancement, and Higgs coupling terms — none of which are present
in the current coherence flow. Deriving the SM beta function structure from coherence
dynamics, or identifying the additional ingredients needed, is an open problem that would
significantly strengthen the connection to established particle physics.

Conjecture: coherence collapse and symmetry breaking. The synchronization transition in the
toy model — the threshold below which R = 0 and no mass emerges — has a suggestive parallel
to symmetry breaking. Above the critical coupling, the relative phase locks to a definite value,
breaking the rotational symmetry A — A + const. Mass emergence is coincident with this
symmetry breaking. If this parallel extends to the full VERSF framework, particle families might
correspond to distinct synchronization phases — different stable configurations of the phase-
locking dynamics, each with its own characteristic R, €, and K _c. Phase transitions between
configurations could correspond to particle transmutations or the restoration of symmetry at high
energy (where high noise destroys coherence and mass). The Kuramoto model on complex
networks is known to exhibit multiple synchronization transitions and coexisting synchronized
clusters, which could in principle map onto family structure. This conjecture is structurally
motivated by the formalism but entirely untested; it is recorded here as a direction for future
investigation, not as a claim of the present paper.

13. Conclusion

For general readers: The paper's central message is that mass emerges from the interplay of
synchronization and anchoring commitment. A particle's mass is determined by two things
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working together: how well its internal oscillation locks onto the underlying substrate's rhythm
(synchronization — which controls how often bit-flip opportunities arise), and how many
successful alignments are needed to commit an irreversible change (anchoring depth — which
controls how many opportunities it takes to complete one bit-flip). A third parameter, the
alignment precision required, modulates both. This gives us a concrete recipe: simulate the
synchronization, measure the anchoring depth, predict the mass. The mathematics connects to a
well-established branch of science (synchronization theory), which means decades of existing
tools and results become immediately applicable to fundamental physics.

Void coupling, previously an abstract statistical parameter in the VERSF anchoring formalism, is
identified here as phase coherence between interface and substrate oscillations. The coherence
order parameter R = |[(exp(iA))| measures the quality of phase synchronization; the micro-event
probability p_¢ is derived from R through an explicit bridge formula Eq. (14) involving the error
function. The mass relation m = (n4p_g)/(c*>AtK_c) remains structurally intact but now possesses
a dynamical interpretation grounded in synchronization physics.

What the coherence reformulation buys VERSF. Prior to this paper, the mass relation m «
p_v /K c was a structural result that did not explain what set p_v for any given mode. The
coherence formalism transforms p_v from an input parameter into a derived quantity determined
by synchronization dynamics. The mass formula is now falsifiable at a deeper level: one can
simulate the phase dynamics, extract R and K c, and predict mass. The formalism provides a
natural mechanism for particle decay — unstable particles occupy intermediate coherence where
dp_¢/dR is large, while stable particles occupy the high-coherence regime where decay width is
exponentially suppressed. The connection to Kuramoto synchronization theory opens VERSF to
the full toolkit of synchronization analysis: bifurcation diagrams, frequency-locking regions,
chimera states, and multi-oscillator dynamics. And the Yukawa mapping y_f= V21 (m_P/v) -
p_{&,f}/K {c.,f} derived in Section 11 situates the formalism within Standard Model mass
structure rather than in opposition to it.

The key results are: the separation of coherence R from micro-event probability p_¢ as logically
distinct quantities connected by a derived relation; the identification of mass as ultimately
regulated by four parameters — phase coherence, alignment window, anchoring gate, and
anchoring depth; the derivation of fluctuation structure and decay widths from coherence drift
with exponential suppression at high coherence; a scaling argument yielding the exponential
hierarchy m < g - " {N_eff(K c¢)} /K c as the primary structural prediction of the mass
hierarchy; an explicit mapping of Yukawa couplings to coherence—anchoring ratios with a
computed numerical prefactor; and a minimal dynamical model demonstrating the emergence of
R from phase-locking dynamics with an associated mass-generating phase transition.

Predictive protocol. The formalism yields a three-step computational procedure for mass
prediction:

Step 1: Simulate phase dynamics, extract R = [(exp(i(¢ — 0)))|

Step 2: Measure anchoring depth K ¢ =2n/ (A¢_event)
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Step 3: Compute p_e& = erf(e / V(4 In R)), then m = (nAip_e)/(c?AtK_c)

Each step involves quantities measurable within a discrete phase-field simulation. The formalism
connects VERSF anchoring physics to the established mathematics of Kuramoto
synchronization, circular statistics, and phase-transition theory, and opens a concrete pathway
from theoretical framework to quantitative prediction.

Falsifiability. The mechanism makes a specific structural prediction: simulations of a discrete
phase-field interface must produce a stable high-coherence regime with measured N_eff(K c)
yielding an exponential mass hierarchy m o< g - q*{N_eff} /K c. If no such regime exists — if

coherence cannot be sustained, or if the measured mass scaling deviates qualitatively from
exponential-times-inverse-linear — the mechanism is falsified.
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